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Abstract
Long-term diet influences the structure and activity of the trillions of microorganisms residing in
the human gut1–5, but it remains unclear how rapidly and reproducibly the human gut microbiome
responds to short-term macronutrient change. Here, we show that the short-term consumption of
diets composed entirely of animal or plant products alters microbial community structure and
overwhelms inter-individual differences in microbial gene expression. The animal-based diet
increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides)
and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia,
Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between
herbivorous and carnivorous mammals2, reflecting trade-offs between carbohydrate and protein
fermentation. Foodborne microbes from both diets transiently colonized the gut, including
bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila
wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the
outgrowth of microorganisms capable of triggering inflammatory bowel disease6. In concert, these
results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially
facilitating the diversity of human dietary lifestyles.

There is growing concern that recent lifestyle innovations, most notably the high-fat/high-
sugar “Western” diet, have altered the genetic composition and metabolic activity of our
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resident microorganisms (the human gut microbiome)7. Such diet-induced changes to gut-
associated microbial communities are now suspected of contributing to growing epidemics
of chronic illness in the developed world, including obesity4,8 and inflammatory bowel
disease6. Yet, it remains unclear how quickly and reproducibly gut bacteria respond to
dietary change. Work in inbred mice shows that shifting dietary macronutrients can broadly
and consistently alter the gut microbiome within a single day7,9. By contrast, dietary
interventions in human cohorts have only measured community changes on timescales of
weeks10 to months4, failed to find significant diet-specific effects1, or demonstrated
responses among a limited number of bacterial taxa3,5.

Here, we examined if dietary interventions in humans can alter gut microbial communities
in a rapid, diet-specific manner. We prepared two diets that varied according to their
primary food source: a “plant-based diet”, which was rich in grains, legumes, fruits, and
vegetables; and an “animal-based diet”, which was composed of meats, eggs, and cheeses
(Supplementary Table 1). We picked these sources to span the global diversity of modern
human diets, which includes exclusively plant-based and nearly exclusively animal-based
regimes11 (the latter being the case among some high-latitude and pastoralist cultures). Each
diet was consumed ad libitum for five consecutive days by six male and four female
American volunteers between the ages of 21–33, whose body mass indices ranged from 19–
32 kg/m2 (Supplementary Table 2). Study volunteers were observed for four days before
each diet arm to measure normal eating habits (the baseline period) and for six days after
each diet arm to assess microbial recovery (the washout period; Extended Data Fig. 1).
Subjects’ baseline nutritional intake correlated well with their estimated long-term diet
(Supplementary Table 3). Our study cohort included a lifetime vegetarian (see
Supplementary Discussion, Extended Data Fig. 2, and Supplementary Table 4 for a detailed
analysis of his diet and gut microbiota).

Each diet arm significantly shifted subjects' macronutrient intake (Fig. 1a–c). On the animal-
based diet, dietary fat increased from 32.5±2.2% to 69.5±0.4% kcal and dietary protein
increased from 16.2±1.3% to 30.1±0.5% kcal (p<0.01 for both comparisons, Wilcoxon
signed-rank test; Supplementary Table 5). Fiber intake was nearly zero, in contrast to
baseline levels of 9.3±2.1 g/1,000kcal. On the plant-based diet, fiber intake rose to 25.6±1.1
g/1,000kcal, while both fat and protein intake declined to 22.1±1.7% and 10.0±0.3%,
respectively (p<0.05 for all comparisons). Subjects’ weights on the plant-based diet
remained stable, but decreased significantly by day 3 of the animal-based diet (q<0.05,
Bonferroni-corrected Mann-Whitney U test; Extended Data Fig. 3). Differential weight loss
between the two diets cannot be explained simply by energy intake, as subjects consumed
equal numbers of calories on the plant- and animal-based diets (1,695±172 kcal and
1,777±221 kcal, respectively; p=0.44).

To characterize temporal patterns of microbial community structure, we performed 16S
rRNA gene sequencing on samples collected each day of the study (Supplementary Table 6).
We quantified the microbial diversity within each subject at a given time-point (α-diversity)
and the difference between each subjects' baseline and diet-associated gut microbiota (β-
diversity) (Fig. 1d,e). Although no significant differences in α-diversity were detected on
either diet, we observed a significant increase in β-diversity that was unique to the animal-
based diet (q<0.05, Bonferroni-corrected Mann-Whitney U test). This change occurred a
single day after the diet reached the distal gut microbiota (as indicated by the food tracking
dye; Extended Data Fig. 3a). Subjects’ gut microbiota reverted to their original structure 2
days after the animal-based diet ended (Fig. 1e).

Analysis of the relative abundance of bacterial taxonomic groups supported our finding that
the animal-based diet had a greater impact on the gut microbiota than the plant-based diet
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(Fig. 2). We hierarchically clustered species-level bacterial phylotypes by the similarity of
their dynamics across diets and subjects (see Supplementary Methods and Supplementary
Tables 7 and 8). Statistical testing identified 22 clusters whose abundance significantly
changed while on the animal-based diet, while only 3 clusters showed significant abundance
changes while on the plant-based diet (q<0.05, Wilcoxon signed-rank test; Supplementary
Table 9). Notably, the genus Prevotella, one of the leading sources of inter-individual gut
microbiota variation12 and hypothesized to be sensitive to long-term fiber intake1,13, was
reduced in our vegetarian subject during consumption of the animal-based diet (see
Supplementary Discussion). We also observed a significant positive correlation between
subjects’ fiber intake over the past year and baseline gut Prevotella levels (Extended Data
Fig. 4 and Supplementary Table 10).

To identify functional traits linking clusters that thrived on the animal-based diet, we
selected the most abundant taxon in the three most-enriched clusters (Bilophila
wadsworthia, Cluster 28; Alistipes putredinis, Cluster 26; and a Bacteroides sp., Cluster 29),
and performed a literature search for their lifestyle traits. That search quickly yielded a
common theme of bile-resistance for these taxa, which is consistent with observations that
high fat intake causes more bile acids to be secreted14.

Analysis of fecal SCFAs and bacterial clusters suggests that macronutrient shifts on both
diets also altered microbial metabolic activity. Relative to the plant-based diet and baseline
samples, the animal-based diet resulted in significantly lower levels of the products of
carbohydrate fermentation and a higher concentration of the products of amino acid
fermentation (Fig. 3a,b; Supplementary Table 11). When we correlated subjects’ SCFA
concentrations with the same-day abundance of bacterial clusters from Fig. 2, we found
significant positive relationships between clusters composed of putrefactive microbes15,16

(i.e. Alistipes putredinis and Bacteroides spp.) and SCFAs that are the end products of
amino acid fermentation (Extended Data Fig. 5). We also observed significant positive
correlations between clusters comprised of saccharolytic microbes3 (e.g. Roseburia, E.
rectale, and F. prausnitzii) and the products of carbohydrate fermentation.

In order to test whether the observed changes in microbial community structure and
metabolic end products were accompanied by more widespread shifts in the gut microbiome,
we measured microbial gene expression using RNA sequencing (RNA-Seq). A subset of
samples was analyzed, targeting the baseline periods and the final 2 days of each diet
(Extended Data Fig. 1, Supplementary Table 12). We identified several differentially-
expressed metabolic modules and pathways during the plant- and animal-based diets
(Supplementary Tables 13 and 14). The animal-based diet was associated with increased
expression of key genes for vitamin biosynthesis (Fig. 3c); the degradation of polycyclic
aromatic hydrocarbons (Fig. 3d), which are carcinogenic compounds produced during the
charring of meat17; and the increased expression of β-lactamase genes (Fig. 3e).
Metagenomic models constructed from our 16S rRNA data18 suggest that the observed
expression differences are due to a combination of regulatory and taxonomic shifts within
the microbiome (Supplementary Tables 15 and 16).

We next hierarchically-clustered microbiome samples based on the transcription of KEGG
orthologous groups19, which suggested that overall microbial gene expression was strongly
linked to host diet. Nearly all of the diet samples could be clustered by diet arm (p<0.003,
Fisher’s exact test; Fig. 3f), despite the pre-existing inter-individual variation we observed
during the baseline diets (Extended Data Fig. 6a,b). Still, subjects maintained their inter-
individual differences on a taxonomic level on the diet arms (Extended Data Fig. 6c). Of the
three RNA-Seq samples on the animal-based diet that clustered with samples from the plant-
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based diet, all were taken on day 3 of the diet arm. In contrast, all RNA-Seq samples from
the final day of the diet arms (day 4) clustered by diet (Fig. 3f).

Remarkably, the plant- and animal-based diets also elicited transcriptional responses that
were consistent with known differences in gene abundance between the gut microbiomes of
herbivorous and carnivorous mammals, such as the tradeoffs between amino acid catabolism
versus biosynthesis, and in the interconversions of phosphoenolpyruvate (PEP) and
oxaloacetate2 (Fig. 3g,h). The former pathway favors amino acid catabolism when protein is
abundant2, and we speculate that the latter pathway produces PEP for aromatic amino acid
synthesis when protein is scarce20. In all 14 steps of these pathways, we observed fold-
changes in gene expression on the plant- and animal-based diets whose directions agreed
with the previously reported differences between herbivores and carnivores (p<0.001,
Binomial test). Notably, this perfect agreement is not observed when the plant- and animal-
based diets are only compared to their respective baseline periods, indicating that the
expression patterns in Fig. 3g,h reflect functional changes from both diet arms
(Supplementary Table 17).

Our findings that the human gut microbiome can rapidly switch between herbivorous and
carnivorous functional profiles may reflect past selective pressures during human evolution.
Consumption of animal foods by our ancestors was likely volatile, depending on season and
stochastic foraging success, with readily available plant foods offering a fallback source of
calories and nutrients21. Microbial communities that could quickly, and appropriately, shift
their functional repertoire in response to diet change would have subsequently enhanced
human dietary flexibility. Examples of this flexibility may persist today in the form of the
wide diversity of modern human diets11.

We next examined if, in addition to affecting the resident gut microbiota, either diet arm
introduced foreign microorganisms into the distal gut. We identified foodborne bacteria on
both diets using 16S rRNA gene sequencing. The cheese and cured meats included in the
animal-based diet were dominated by lactic acid bacteria commonly used as starter cultures
for fermented foods22,23: Lactococcus lactis, Pediococcus acidilactici, and Streptococcus
thermophilus (Fig. 4a). Common non-lactic acid bacteria included several Staphylococcus
taxa; strains from this genus are often used when making fermented sausages23. During the
animal-based diet, three of the bacteria associated with cheese and cured meats (L. lactis, P.
acidilactici, and Staphylococcus) became significantly more prevalent in fecal samples
(p<0.05, Wilcoxon signed-rank test; Extended Data Fig. 7c), indicating that bacteria found
in common fermented foods can reach the gut at abundances above the detection limit of our
sequencing experiments (on average 1 in 4×104 gut bacteria; Supplementary Table 6).

We also sequenced the internal transcribed spacer (ITS) region of the rRNA operon from
community DNA extracted from food and fecal samples to study the relationship between
diet and enteric fungi, which to date remains poorly characterized (Supplementary Table
18). Menu items on both diets were colonized by the genera Candida, Debaryomyces,
Penicillium, and Scopulariopsis (Fig. 4a and Extended Data Fig. 7a), which are often found
in fermented foods22. A Penicillium sp. and Candida sp. were consumed in sufficient
quantities on the animal- and plant-based diets to show significant ITS sequence increases
on those respective diet arms (Extended Data Fig. 7b,c).

Microbial culturing and re-analysis of our RNA-Seq data suggested that foodborne microbes
survived transit through the digestive system and may have been metabolically active in the
gut. Mapping RNA-Seq reads to an expanded reference set of 4,688 genomes (see
Supplementary Methods) revealed a significant increase on the animal-based diet for
transcripts expressed by food-associated bacteria (Fig. 4b–d) and fungi (Fig. 4e; q<0.1,
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Kruskal-Wallis test). Many dairy-associated microbes remained viable after passing through
the digestive tract, as we isolated 19 bacterial and fungal strains with high genetic similarity
(>97% ITS or 16S rRNA) to microbes cultured from cheeses fed to the subjects
(Supplementary Table 19). Moreover, L. lactis was more abundant in fecal cultures sampled
after the animal-based diet, relative to samples from the preceding baseline period (p<0.1;
Wilcoxon Signed-Rank test). We also detected an overall increase in the fecal concentration
of viable fungi on the animal-based diet (Fig. 4f; p<0.02; Mann-Whitney U test).
Interestingly, we detected RNA transcripts from multiple plant viruses Extended Data Fig.
8). One plant pathogen, Rubus chlorotic mottle virus, was only detectable on the plant-based
diet (Fig. 4g). This virus infects spinach24, which was a key ingredient in the prepared meals
on the plant-based diet. These data support the hypothesis that plant pathogens can reach the
human gut via consumed plant matter25.

Finally, we found that microbiota changes on the animal-based diet could be linked to
altered fecal bile acid profiles and the potential for human enteric disease. Recent mouse
experiments have shown high-fat diets lead to increased enteric deoxycholic concentrations
(DCA); this secondary bile acid is the product of microbial metabolism and promotes liver
cancer26. In our study, the animal-based diet significantly increased the levels of fecal DCA
(Fig. 5a). Expression of bacterial genes encoding microbial bile salt hydrolases, which are
prerequisites for gut microbial production of DCA27, also exhibited significantly higher
expression on the animal-based diet (Fig. 5b). Elevated DCA levels in turn, may have
contributed to the microbial disturbances on the animal-based diet, as this bile acid can
inhibit the growth of members of the Bacteroidetes and Firmicutes phyla28.

Mouse models have also found evidence that inflammatory bowel disease can be caused by
B. wadsworthia, a sulfite-reducing bacterium whose production of H2S is thought to inflame
intestinal tissue6. Growth of B. wadsworthia is stimulated in mice by select bile acids
secreted while consuming saturated fats from milk. Our study provides several lines of
evidence confirming that B. wadsworthia growth in humans can also be promoted by a high-
fat diet. First, we observed B. wadsworthia to be a major component of the bacterial cluster
that increased most strongly while on the animal-based diet (C28; Fig. 2 and Supplementary
Table 8). This Bilophila-containing cluster also showed significant positive correlations with
both long-term dairy (p<0.05; Spearman correlation) and baseline saturated fat intake
(Supplementary Table 20), supporting the proposed link to milk-associated saturated fats6.
Second, the animal-based diet led to significantly increased fecal bile acid concentrations
(Fig. 5c and Extended Data Fig. 9). Third, we observed significant increases in the
abundance of microbial DNA and RNA encoding sulfite reductases on the animal-based diet
(Fig. 5d,e). Together, these findings are consistent with the hypothesis that diet-induced
changes to the gut microbiota may contribute to the development of inflammatory bowel
disease. More broadly, our results emphasize that a more comprehensive understanding of
diet-related diseases will benefit from elucidating links between nutritional, biliary, and
microbial dynamics.

Methods
Sample collection

We recruited 11 unrelated subjects (n=10 per diet; 9 individuals completed both arms of the
study). One participant suffered from a chronic gastrointestinal disease, but all other
volunteers were otherwise healthy. The volunteers’ normal bowel frequencies ranged from
three times a day to once every other day. Three participants had taken antibiotics in the past
year. Additional subject information is provided in Supplementary Table 2. Gut microbial
communities were sampled from feces. Subjects were instructed to collect no more than one
sample per day, but to log all bowel movements. No microbiota patterns were observed as a
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function of sampling time of day (data not shown). Subjects collected samples by placing
disposable commode specimen containers (Claflin Medical Equipment, Warwick, RI) under
their toilet seats before bowel movements. CultureSwabs™ (BD, Franklin Lakes, NJ) were
then used to collect fecal specimens for sequencing analyses, and larger collection tubes
were provided for harvesting larger, intact stool samples (~10g) for metabolic analyses.
Each sample was either frozen immediately at −80°C or briefly stored in personal −20°C
freezers before transport to the laboratory.

Diet design
We constructed two diet arms, each of which consisted mostly of plant- or animal-based
foods (Extended Data Fig. 1). Subjects on the plant-based diet ate cereal for breakfast and
precooked meals made of vegetables, rice, and lentils for lunch and dinner (see
Supplementary Table 1 for a full list of diet ingredients). Fresh and dried fruits were
provided as snacks on this diet. Subjects on the animal-based diet ate eggs and bacon for
breakfast, and cooked pork and beef for lunch. Dinner consisted of cured meats and a
selection of four cheeses. Snacks on this diet included pork rinds, cheese, and salami.
Ingredients for the plant-based diet, dinner meats and cheeses for the animal-based diet, and
snacks for both diets were purchased from grocery stores. Lunchmeats for the animal-based
diet were prepared by a restaurant that was instructed to not add sauce to the food. On each
diet arm, subjects were instructed to eat only provided foods or allowable beverages (water
or unsweetened tea for both diets; coffee was allowed on the animal-based diet). They were
also allowed to add 1 salt packet per meal, if desired for taste. Subjects could eat unlimited
amounts of the provided foods. Outside of the five-day diet arms, subjects were instructed to
eat normally.

Food logs, subject metadata, and dietary questionnaires
Subjects were given notepads to log their diet, health, and bowel movements during the
study. Subjects transcribed their notepads into digital spreadsheets when the study ended.
Each ingested food (including foods on the diet arm) was recorded, as well as data on time,
location, portion size, and food brand. Subjects were provided with pocket digital scales
(American Weigh, Norcross, GA) and a visual serving size guide to aid with quantifying the
amount of food consumed. Each day, subjects tracked their weight using either a scale
provided in the lab, or their own personal scales at home. While on the animal-based diet,
subjects were requested to measure their urinary ketone levels using provided Ketostix strips
(Bayer, Leverkusen, Germany; Extended Data Fig. 1). if subjects recorded a range of ketone
levels (the Ketostix color key uses a range-based reporting system), the middle value of that
range was used for further analysis. Subjects were encouraged to record any discomfort they
experienced while on either diet (e.g. bloating, constipation). Subjects tracked all bowel
movements, regardless of whether or not they collected samples, recording movement time,
date, and location, and qualitatively documented stool color, odor, and type1. Subjects were
also asked to report when they observed stool staining from food dyes consumed at the
beginning and end of each diet arm (Extended Data Fig. 3a).

Diet quantification
We quantified subjects' daily nutritional intake during the study using CalorieKing and
Nutrition Data System for Research (NDSR). The CalorieKing™ food database (La Mesa,
CA) was accessed via the CalorieKing Nutrition & Exercise Manager software (version
4.1.0). Subjects' food items were manually transferred from digital spreadsheets into the
CalorieKing software, which then tabulated each food's nutritional content. Macronutrient
content per serving was calculated for each of the prepared meals on the animal- and plant-
based diet using lists of those meals’ ingredients. Nutritional data was outputted from
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CalorieKing in CSV format and parsed for further analysis using a custom Python script.
NDSR intake data were collected and analyzed using Nutrition Data System for Research
software version 2012, developed by the Nutrition Coordinating Center (NCC), University
of Minnesota, Minneapolis, MN. We estimated subjects' long-term diet using the National
Cancer Institute’s Diet History Questionnaire II2 (DHQ). We used the DHQ to quantify
subjects' annual diet intake, decomposed into 176 nutritional categories. Subjects completed
the yearly, serving size-included version of the DHQ online using their personal computers.
We parsed the survey's results using the Diet*Calc software (version 1.5; Risk Factor
Monitoring and Methods Branch, NCI) and its supplied 'Food and Nutrient Database', and
'dhqweb.yearly.withserv.2010.qdd' QDD file.

There was good agreement between subjects’ diets as measured by CalorieKing, the NDSR,
and the DHQ: 18 of 20 nutritional comparisons between pairs of databases showed
significant correlations (Supplementary Table 3). Unless specified, nutritional data presented
in this manuscript reflect CalorieKing measurements.

16S rRNA gene sequencing and processing
Temporal patterns of microbial community structure were analyzed from daily fecal samples
collected across each diet (Extended Data Fig. 1). Samples were kept at −80°C until DNA
extraction with the PowerSoil bacterial DNA extraction kit (MoBio, Carlsbad CA). The V4
region of the 16S rRNA gene was PCR amplified in triplicate, and the resulting amplicons
were cleaned, quantified, and sequenced on the Illumina HiSeq platform according to
published protocols3,4 and using custom barcoded primers (Supplementary Table 6). Raw
sequences were processed using the QIIME software package (Quantitative Insights Into
Microbial Ecology)5. Only full-length, high-quality reads (−r=0) were used for analysis.
Operational taxonomic units (OTUs) were picked at 97% similarity against the Greengenes
database6 (constructed by the nested_gg_workflow.py QiimeUtils script on 4 Feb 2011),
which we trimmed to span only the 16S rRNA region flanked by our sequencing primers
(positions 521–773). In total, we characterized an average of 43,589±1,826 16S rRNA
sequences for 235 samples (an average of 0.78 samples per person per study day;
Supplementary Table 6). Most of the subsequent analysis of 16S rRNA data, including
calculations of α- and β-diversity, were performed using custom Python scripts, the SciPy
Python library7, and the Pandas Data Analysis Library8. Correction for multiple hypothesis
testing utilized the fdrtool9 R library, except in the case of small test numbers, in which case
the Bonferroni correction was used.

OTU clustering
We used clustering to simplify the dynamics of thousands of OTUs into a limited number of
variables that could be more easily visualized and manually inspected. Clustering was
performed on normalized OTU abundances. Such abundances are traditionally computed by
scaling each sample's reads to sum to a fixed value (e.g. unity); this technique is intended to
account for varying sequencing depth between samples. However, this standard technique
may cause false relationships to be inferred between microbial taxa, as increases in the
abundance of one microbial group will cause decreases in the fractional abundance of other
microbes (this artifact is known as a “compositional” effect10). To avoid compositional
biases, we employed an alternative normalization approach, which instead assumes that no
more than half of the OTUs held in common between two microbial samples change in
abundance. This method uses a robust (outlier-resistant) regression to estimate the median
OTU fold-change between communities, by which it subsequently rescales all OTUs.
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To further simplify community dynamics, we only included in our clustering model OTUs
that comprised 95% of total reads (after ranking by normalized abundance). Abundances for
each included OTU were then converted to log-space and mediancentered.

We computed OTU pairwise distances using the Pearson correlation (OTU abundances
across all subjects and time points were used). The resulting distance matrix was
subsequently input into Scipy's hierarchical clustering function ('fcluster'). Default
parameters were used for fcluster, with the exception of the clustering criterion, which was
set to 'distance', and the clustering threshold, which was set to '0.7'. These parameters were
selected manually so that cluster boundaries visually agreed with the correlation patterns
plotted in a matrix of pairwise OTU distances.

Statistics on cluster abundance during baseline and diet periods were computed by taking
median values across date ranges. Baseline date ranges were the 4 days preceding each diet
arm (i.e. days −4 through −1). Date ranges for the diet arms were chosen so as to capture the
full effects of each diet. These ranges were not expected to perfectly overlap with the diet
arms themselves, due to the effects of diet transit time. We therefore chose diet arm date
ranges that accounted for transit time (as measured by food dye; Extended Data Fig. 3a),
picking ranges that began 1 day after foods reached the gut, and ended 1 day before the last
diet arm meal reached the gut. These criteria led microbial abundance measurements on the
plant-based diet to span days 2–4 of that study arm, and animal-based diet measurements to
span days 2–5 of that diet arm.

RNA-Seq sample preparation and sequencing
In order to test if the observed changes in community structure were accompanied by
changes to the active subset of the human gut microbiome, we measured communitywide
gene expression using meta-transcriptomics11–14 (RNA sequencing, RNA-Seq;
Supplementary Table 12). Samples were selected based on our prior 16S rRNA gene
sequencing-based analysis, representing 3 baseline days and 2 timepoints on each diet (n=5–
10 samples/timepoint; Extended Data Fig. 1). Microbial cells were lysed by a bead beater
(BioSpec Products, Bartlesville, OK), total RNA was extracted with
phenol:chloroform:isoamyl alcohol (pH 4.5, 125:24:1, Ambion 9720) and purified using
Ambion MEGAClear columns (Life Technologies, Grand Island, NY), and rRNA was
depleted via Ambion MICROBExpress subtractive hybridization (Life Technologies, Grand
Island, NY) and custom depletion oligos. The presence of genomic DNA contamination was
assessed by PCR with universal 16S rRNA gene primers. cDNA was synthesized using
SuperScript II and random hexamers ordered from Invitrogen (Life Technologies, Grand
Island, NY), followed by second strand synthesis with RNaseH and E.coli DNA polymerase
(New England Biolabs, Ipswich, MA). Samples were prepared for sequencing with an
Illumina HiSeq instrument after enzymatic fragmentation (NEBE6040L/M0348S). Libraries
were quantified by quantitative reverse transcriptase PCR (qRT-PCR) according to the
Illumina protocol. qRT-PCR assays were run using ABsoluteTM QPCR SYBR® Green
ROX Mix (Thermo Scientific, Waltham, MA) on a Mx3000P QPCR System instrument
(Stratagene, La Jolla, CA). The size distribution of each library was quantified on an Agilent
HS-DNA chip. Libraries were sequenced using the Illumina HiSeq platform.

Functional analysis of RNA-Seq data
We used a custom reference database of bacterial genomes to perform functional analysis of
the RNA-Seq data12. This reference included 538 draft and finished bacterial genomes
obtained from human-associated microbial isolates15, and the Eggerthella lenta DSM2243
reference genome. All predicted proteins from the reference genome database were
annotated with KEGG16 orthologous groups (KOs) using the KEGG database (version 52;
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BLASTX e-value<10–5, Bit score>50, and >50% identity). for query genes with multiple
matches, the annotated reference gene with the lowest evalue was used. When multiple
annotated genes with an identical e-value were encountered after a BLAST query, we
included all KOs assigned to those genes. Genes from the database with significant
homology (BLASTN e-value<10–20) to non-coding transcripts from the 539 microbial
genomes were excluded from subsequent analysis. High-quality reads (see Supplementary
Table 12 for sequencing statistics) were mapped using SSAHA217, to our reference bacterial
database and the Illumina adaptor sequences (SSAHA2 parameters: “-best 1 -score 20 -
solexa”). The number of transcripts assigned to each gene was then tallied and normalized to
reads per kilobase per million mapped reads (RPKM). To account for genes that were not
detected due to limited sequencing depth, a pseudocount of 0.01 was added to all samples.
Samples were clustered in Matlab (version 7.10.0) using a Spearman distance matrix
(commands: pdist, linkage, and dendrogram). Genes were grouped by taxa, genomes, and
KEGG orthologous groups (KOs) by calculating the cumulative RPKM for each sample.
HUMAnN18 was used for metabolic reconstruction from metagenomic data followed by
LefSe19 analysis to identify significant biomarkers. A modified version of the “SConstruct”
file was used to input KEGG orthologous group counts into the HUMAnN pipeline for each
RNA-Seq dataset. We then ran LefSe on the resulting KEGG module abundance file using
the “-o 1000000” flag.

Taxonomic analysis of RNA-Seq data
We used Bowtie 2 read alignment program20 and the Integrated Microbial Genomes (IMG;
version 3.5) database21 to map RNA-Seq reads to a comprehensive reference survey of
prokaryotic, eukaryotic, and viral genomes. Our reference survey included all 2,809 viral
genomes in IMG (as of version 3.5), a set of 1,813 bacterial and archaeal genomes selected
to minimize strain redundancy22, and 66 genomes spanning the Eukarya except for the
plants and non-nematode Bilateria. Reads were mapped to reference genomes using Bowtie,
which was configured to analyze mated paired-end reads, and return fragments with a
minimum length of 150bp and a maximum length of 600bp. All other parameters were left
to their default values. The number of base pairs in the reference genome dataset exceeded
Bowtie's reference size limit, so we split the reference genomes into four subsets. Each read
was mapped to each of these four subreference datasets, and the results were merged by
picking the highest-scoring match across the sub-references. We settled tied scores by
randomly choosing one of the best-scoring matches. To more precisely measure the presence
or absence of specific taxa, we next filtered out reads that mapped to more than reference
sequence. Raw read counts were computed for each reference genome by counting the
number of reads that mapped to coding sequences according to the IMG annotations; these
counts were subsequently normalized using RPKM scaling. Our analysis pipeline associated
several sequences with marine algae, which are unlikely to colonize the human gut. We also
detected a fungal pathogen exclusively in samples from subjects consuming the animal-
based diet (Neosartorya fischeri); this taxon was suspected of being a misidentified cheese
fungus, due to its relatedness to Penicillium. We thus reanalysed protist and N. fischeri reads
associated with potentially mis-annotated taxa using BLAST searches against the NCBI
non-redundant database, and we assigned taxonomy manually based on the most common
resulting hits (Extended Data Fig. 8).

Quantitative PCR
Community DNA was isolated with the PowerSoil bacterial DNA extraction kit (MoBio,
Carlsbad CA). To determine the presence of hydrogen consumers, PCR was performed on
fecal DNA using the following primer sets: (i) Sulfite reductase23 (dsrA), F-5’-
CCAACATGCACGGYT CCA-3’, R-5’-CGTCGAACTTGAACTTGAACTTGTAGG-3’;
and (ii) Sulfate reduction24,25 (aps reductase), F-5’-TGGCAGATMATGATYMACGG-3’,
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R-5’- GGGCCGTAACCGTCCTTGAA-3’. qPCR assays were run using ABsoluteTM
QPCR SYBR® Green ROX Mix (Thermo Scientific, Waltham, MA) on a Mx3000P QPCR
System instrument (Stratagene, La Jolla, CA). Fold-changes were calculated relative to the
16S rRNA gene using the 2-ΔΔCt method and the same primers used for 16S rRNA gene
sequencing.

Short-chain fatty acid measurements
Fecal SCFA content was determined by gas chromatography. Chromatographic analysis was
carried out using a Shimadzu GC14-A system with a flame ionization detector (FID)
(Shimadzu Corp, Kyoto, Japan). Fused silica capillary columns 30m × 0.25 mm coated with
0.25um film thickness were used (Nukol™ for the volatile acids and SPB™-1000 for the
nonvolatile acids (Supelco Analytical, Bellefonte, PA). Nitrogen was used as the carrier gas.
The oven temperature was 170°C and the FID and injection port was set to 225°C. The
injected sample volume was 2 µL and the run time for each analysis was 10 minutes. The
chromatograms and data integration was carried out using a Shimadzu C-R5A Chromatopac.
A volatile acid mix containing 10 mM of acetic, propionic, isobutyric, butyric, isovaleric,
valeric, isocaproic, caproic, and heptanoic acids was used (Matreya, Pleasant Gap, PA). A
non-volatile acid mix containing 10 mM of pyruvic and lactic and 5 mM of oxalacetic,
oxalic, methy malonic, malonic, fumaric, and succinic was used (Matreya, Pleasant Gap,
PA). A standard stock solution containing 1% 2-methyl pentanoic acid (Sigma-Aldrich, St.
Louis, MO) was prepared as an internal standard control for the volatile acid extractions. A
standard stock solution containing 50 mM benzoic acid (Sigma-Aldrich, St. Louis, MO) was
prepared as an internal standard control for the non-volatile acid extractions.

Samples were kept frozen at −80°C until analysis. The samples were removed from the
freezer and 1,200µL of water was added to each thawed sample. The samples were vortexed
for 1 minute until the material was homogenized. The pH of the suspension was adjusted to
2–3 by adding 50 µL of 50% sulfuric acid. The acidified samples were kept at room
temperature for 5 minutes and vortexed briefly every minute. The samples were centrifuged
for 10 minutes at 5,000g. 500 µL of the clear supernatant was transferred into two tubes for
further processing. For the volatile extraction 50 µL of the internal standard (1% 2-methyl
pentanoic acid solution) and 500 µL of ethyl ether anhydrous were added. The tubes were
vortexed for 30 seconds and then centrifuged at 5,000g for 10 minutes. 1 µL of the upper
ether layer was injected into the chromatogram for analysis. For the nonvolatile extraction
50 µL of the internal standard (50 mM benzoic acid solution) and 500 µL of boron
trifluoride-methanol solution (Sigma-Aldrich St. Louis, MO) were added to each tube.
These tubes were incubated overnight at room temperature. 1 mL of water and 500 µL of
chloroform were added to each tube. The tubes were vortexed for 30 seconds and then
centrifuged at 5,000g for 10 minutes. 1 µL of the lower chloroform layer was injected into
the chromatogram for analysis. 500 µL of each standard mix was used and the extracts
prepared as described for the samples. The retention times and peak heights of the acids in
the standard mix were used as references for the sample unknowns. These acids were
identified by their specific retention times and the concentrations determined and expressed
as mM concentrations per gram of sample.

Bulk bile acid quantification
Fecal bile acid concentration was measured as described previously26. 100 mg of
lyophilized stool was heated to 195°C in 1 mL of ethylene glycol KOH for 2 hours,
neutralized with 1 mL of saline and 0.2 mL of concentrated HCl, and extracted into 6 mL of
diethyl ether 3 times. After evaporation of the ether, the sample residues were dissolved in 6
mL of methanol and subjected to enzymatic analysis. Enzymatic reaction mixtures consisted
of 66.5 mmol/L Tris, 0.33 mmol/L EDTA, 0.33 mol/L hydrazine hydrate, 0.77 mmol/L
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NAD (N 7004, Sigma-Aldrich, St. Louis, MO), 0.033U/mL 3〈- hydroxysteroid
dehydrogenase (Sigma-Aldrich, St. Louis, MO) and either sample or standard (taurocholic
acid; Sigma-Aldrich, St. Louis, MO) dissolved in methanol. After 90 minutes of incubation
at 37°C, absorbance was measured at 340 nm.

Measurement of primary and secondary bile acids
Profiling of fecal primary and secondary bile acids was performed using a modified version
of a method described previously27. To a suspension of ~100 mg of stool and 0.25 mL of
water in a 1 dram Teflon-capped glass vial was added 200 mg of glass beads. The
suspension was homogenized by vortexing for 60–90 seconds. Ethanol (1.8 mL) was added,
and the suspension was heated with stirring in a heating block at 80°C for 1.5 h. The sample
was cooled, transferred to a 2 mL Eppendorf tube, and centrifuged at 13500 rpm for 1–2
min. The supernatant was removed and retained. The pellet was resuspended in 1.8 mL of
80% aqueous ethanol, transferred to the original vial, and heated to 80°C for 1.5 h. The
sample was centrifuged again, and the supernatant was removed and added to the first
extraction supernatant. The pellet was resuspended in 1.8 mL of chloroform:methanol (1:1
v/v) and refluxed for 30–60 min. The sample was centrifuged, and the supernatant removed
and concentrated to dryness on a rotary evaporator. The ethanolic supernatants were added
to the same flask, the pH was adjusted to neutrality by adding aqueous 0.01N HCl, and the
combined extracts were evaporated to dryness. The dried extract was resuspended in 1 mL
of 0.01N aqueous HCl by sonication for 30 min. A BIO-RAD Poly-Prep chromatography
column (0.8×4cm) was loaded with Lipidex 1000 as a slurry in MeOH, allowed to pack
under gravity to a final volume of 1.1 mL, and washed with 10 mL of distilled water. The
suspension was filtered through the bed of Lipidex 1000 and the effluent was discarded. The
flask was washed with 3 × 1 mL of 0.01N HCl, the washings were passed through the gel,
and the bed was washed with 4 mL of distilled water. Bile acids and sterols were recovered
by elution of the Lipidex gel bed with 8 mL of methanol. A BIO-RAD Poly-Prep
chromatography column (0.8×4cm) was loaded with washed SP-Sephadex as a slurry in
72% aqueous MeOH to a final volume of 1.1 mL. The methanolic extract was passed
through the SP-Sephadex column, and the column was washed with 4 mL of 72% aqueous
methanol. The extract and wash were combined, and the pH was brought to neutral with
0.04N aqueous NaOH. A BIO-RAD Poly-Prep chromatography column (0.8×4cm) was
loaded with Lipidex-DEAP, prepared in the acetate form, as a slurry in 72% aqueous MeOH
to a final volume of 1.1 mL. The combined neutralized effluent was applied to the column,
and the solution was eluted using air gas pressure (flow rate ~25 mL/h). The flask and
column were washed with 2 × 2 mL of 72% aqueous ethanol, and the sample and washings
were combined to give a fraction of neutral compounds including sterols. Unconjugated bile
acids were eluted using 4 mL of 0.1 M acetic acid in 72% (v/v) aqueous ethanol that had
been adjusted to pH 4.0 by addition of concentrated ammonium hydroxide. The fraction
containing bile acids was concentrated zto dryness on a rotary evaporator.

The bile acids were converted to their corresponding methyl ester derivatives by the addition
of 0.6 mL of MeOH followed by 40 µL of a 2.0 M solution of (trimethylsilyl)diazomethane
in diethyl ether. The solution was divided in half, and each half of the sample was
concentrated to dryness on a rotary evaporator. The bile acids in the first half of the sample
were converted to their corresponding trimethylsilyl ether derivatives by the addition of 35
µL of a 2:1 solution of N,Obis(trimethylsilyl)trifluoroacetamide and chlorotrimethylsilane
and analyzed by GC-MS. The identities of individual bile acids were determined by
comparison of retention time and fragmentation pattern to known standards. Both the ratio
of cholest-3-ene to deoxycholic acid in the sample and the amount of internal standard to be
added were determined by integrating peak areas. A known amount of the internal standard,
5®- cholestane-3®-ol (5®-coprostanol), was added to the second half of the sample (0.003–
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0.07 mmol). The bile acids in the second half of the sample were converted to their
corresponding trimethylsilyl ether derivatives by the addition of 35 µL of a 2:1 solution of
N,O-bis(trimethylsilyl)trifluoroacetamide and chlorotrimethylsilane and analyzed by
GCMS. Amounts of individual bile acids were determined by dividing integrated bile acid
peak area by the internal standard peak area, multiplying by the amount of internal standard
added, and then dividing by half of the mass of fecal matter extracted. In the event that the
first half of the sample contained cholest-3-ene, the coprostanol peak area in the second half
of the sample was corrected by subtracting the area of the cholest-3-ene peak, determined by
applying the cholest-3-ene:deoxycholic acid ratio calculated from the first half of the
sample.

ITS sequencing
Fungal amplicon libraries were constructed with primers that target the internal transcribed
spacer (ITS), a region of the nuclear ribosomal RNA cistron shown to promote successful
identification across a broad range of fungal taxa28. We selected primers (ITS1f29 and
ITS230) focused on the ITS1 region because it provided the best discrimination between
common cheese-associated fungi in preliminary in silico tests. Multiplex capability was
achieved by adding Golay barcodes to the ITS2 primer. Due to relatively low
concentrations, fungal DNA was amplified in three serial PCR reactions, with the first
reaction using 1 ul of the PowerSoil DNA extract, and the subsequent two reactions using 1
ul of the preceding PCR product as the template. In each round of PCR, sample reactions
were performed in triplicate and then combined. Barcoded amplicons were cleaned,
quantified and pooled to achieve approximately equal amounts of DNA from each sample
using methods identical to those used for 16S. We gel purified the pool, targeting amplicons
between 150 bp and 500 bp in size, and submitted it for Illumina sequencing.

Preliminary taxonomic assignments of ITS reads using the 12_11 UNITE OTUs ITS
database (see http://qiime.org) resulted in many unassigned reads. To improve the
percentage of reads assigned, we created our own custom database of ITS1 sequences. We
extracted ITS sequences from GenBank by targeting specific collections of reliable ITS
sequences (e.g. AFTOL, Fungal Barcoding Consortium) and by searching for sequences of
yeasts and filamentous fungi that have been previously isolated from dairy and other food
ecosystems. We also retrieved a wider range of fungi for our database by searching
GenBank with the query internal transcribed spacer[All Fields] AND fungi NOT
‘uncultured’. Sequences that did not contain the full ITS1 were removed. We also included
reference OTUs that were identified as widespread cheese fungi in a survey of cheese rinds
(Wolfe, Button, and Dutton, unpublished data), but were not in public databases.

Microbial culturing
Fecal samples were cultured under conditions permissive for growth of food-derived
microbes. Fecal samples were suspended in a volume of phosphate-buffered saline (PBS)
equivalent to ten times their weight. Serial dilutions were prepared and plated on brain heart
infusion agar (BD Biosciences, San Jose, CA), supplemented with 100ug/ml cycloheximide,
an antifungal agent, and plate count agar with milk and salt (per liter: 5g tryptone, 2.5g yeast
extract, 1g dextrose, 1g whole milk powder, 30g NaCl, 15g agar) supplemented with 50ug/
ml chloramphenicol, an antibacterial agent. Plates were incubated under aerobic conditions
at room temperature for 7 days. Plates supplemented with chloramphenicol which yielded
significant growth of bacteria, as determined by colony morphology, were excluded from
further analysis. Plates were examined by eye for bacterial colonies or fungal foci whose
morphological characteristics were similar to previously characterized food-derived
microbes. Candidate food-derived microbes were isolated and identified by Sanger
sequencing of the 16S rRNA gene (for bacteria; primers used were 27f, 5-
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AGAGTTTGATCCTGGCTCAG, and 1492r, 5-GGTTACCTTGTTACGACTT) or ITS
region (for fungi; primers used were ITS1f, 5-CTTGGTCATTTAGAGGAAGTAA, and
ITS4, 5-TCCTCCGCTTATTGATATGC). After select colonies had been picked for
isolation, the surface of each plate was scraped with a razor blade to collect all remaining
colonies, and material was suspended in PBS. Dilutions were pooled, and DNA was
extracted from the resulting pooled material using a PowerSoil kit (MoBio, Carlsbad, CA).
The remaining pooled material was stocked in 20% glycerol and stored at −80°C.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Short-term diet alters the gut microbiota
Ten subjects were tracked across each diet arm. (A) Fiber intake on the plant-based diet rose
from a median baseline value of 9.3±2.1 to 25.6±1.1 g/1,000kcal (p=0.007; two-sided
Wilcoxon signed-rank test), but was negligible on the animal-based diet (p=0.005). (B)
Daily fat intake doubled on the animal-based diet from a baseline of 32.5±2.2% to
69.5±0.4% kcal (p=0.005), but dropped on the plant-based diet to 22.1±1.7% (p=0.02). (C)
Protein intake rose on the animal-based diet to 30.1±0.5% kcal from a baseline level of
16.2±1.3% (p=0.005) and decreased on the plant-based diet to 10.0±0.3% (p=0.005). (D)
Within-sample species diversity (α-diversity, Shannon’s Diversity Index), did not
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significantly change during either diet. (E) The similarity of each individual’s gut
microbiota to their baseline communities (β-diversity, Jensen-Shannon distance) decreased
on the animal-based diet (dates with q<0.05 identified with asterisks; Bonferroni-corrected,
two-sided Mann-Whitney U test). Community differences were apparent one day after a
tracing dye showed the animal-based diet reached the gut (blue arrows depict appearance of
food dyes added to first and last diet day meals; Extended Data Fig. 3a).
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Fig. 2. Bacterial cluster responses to diet arms
Cluster log2 fold-changes on each diet arm were computed relative to baseline samples
across all subjects and are drawn as circles. Clusters with significant fold-changes on the
animal-based diet are colored in red, and clusters with significant fold-changes on both the
plant- and animal-based diets are colored in both red and green. Uncolored clusters
exhibited no significant fold-change on either the animal or plant-based diet (q<0.05, two-
sided Wilcoxon signed-rank test). Bacterial membership in the clusters with the three largest
positive and negative fold-changes on the animal-based diet are also displayed and colored
by phylum: Firmicutes (purple), Bacteroidetes (blue), Proteobacteria (green), Tenericutes
(red), and Verrucomicrobia (gray). Multiple OTUs with the same name are counted in
parentheses.
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Fig. 3. Diet alters microbial activity and gene expression
Fecal concentrations of SCFAs from (A) carbohydrate and (B) amino acid fermentation
(*p<0.05, two-sided Mann-Whitney U test; n=9–11 fecal samples/diet arm; Supplementary
Table 11). The animal-based diet was associated with significant increases in gene
expression (normalized to reads per kilobase per million mapped, or RPKM; n=13–21
datasets/diet arm) among (C) glutamine amidotransferases (K08681, vitamin B6
metabolism), (D) methyltransferases (K00599, polycyclic aromatic hydrocarbon
degradation), and (E) beta-lactamases (K01467). (F) Hierarchical clustering of gut microbial
gene expression profiles collected on the animal-based (red) and plant-based (green) diets.
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Expression profile similarity was significantly associated with diet (p<0.003; two-sided
Fisher’s exact test excluding replicate samples), despite inter-individual variation that
preceded the diet (Extended Data Figs. 6a,b). Enrichment on animal-based diet (red) and
plant-based diet (green) for expression of genes involved in (G) amino acid metabolism and
(H) central metabolism. Numbers indicate the mean fold-change between the two diets for
each KEGG orthologous group assigned to a given enzymatic reaction (Supplementary
Table 17). Enrichment patterns on the animal- and plant-based diets agree perfectly with
patterns observed in carnivorous and herbivorous mammals, respectively2 (p<0.001,
Binomial test). Note: Pyr Cx is represented by two groups, which showed divergent fold-
changes. Asterisks in panels C-E and G,H indicate p<0.05, Student’s t test. Values in panels
A-E are mean±sem. Abbreviations: glutamate dehydrogenase (GDH), glutamate
decarboxylase (Glu Dx), succinate-semialdehyde dehydrogenase (SSADH),
phosphoenolpyruvate carboxylase (PEPCx), pyruvate carboxylase (Pyr Cx),
phosphotransferase system (PTS), PEP carboxykinase (PEPCk), oxaloacetate decarboxylase
(ODx), pyruvate, orthophosphate dikinase (PPDk).
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Fig. 4. Foodborne microbes are detectable in the distal gut
(A) Common bacteria and fungi associated with the animal-based diet menu items, as
measured by 16S rRNA and ITS gene sequencing, respectively. Taxa are identified on the
genus (g) and species (s) level. A full list of foodborne fungi and bacteria on the animal-
based diet can be found in Supplementary Table 21. Foods on the plant-based diet were
dominated by matches to the Streptophyta, which derive from chloroplasts within plant
matter (Extended Data Fig. 7a). (B-E). Fecal RNA transcripts were significantly enriched
(q<0.1, Kruskal-Wallis test; n=6–10 samples/diet arm) for several food-associated microbes
on the animal-based diet relative to baseline (BL) periods, including (B) Lactococcus lactis,
(C) Staphylococcus carnosus, (D) Pediococcus acidilactici, and (E) a Penicillium sp. A
complete table of taxa with significant expression differences can be found in
Supplementary Table 22. (F) Fungal concentrations in feces before and 1–2 days after the
animal-based diet were also measured using culture media selective for fungal growth (plate
count agar with milk, salt, and chloramphenicol). Post-diet fecal samples exhibit
significantly higher fungal concentrations than baseline samples (p<0.02; two-sided Mann-
Whitney U test; n=7–10 samples/diet arm). (G) Increased RNA transcripts from the plant-
derived Rubus chlorotic mottle virus transcripts increase on the plant-based diet (q<0.1,
Kruskal-Wallis test; n=6–10 samples/diet arm). Barplots (B-G) all display mean±sem.
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Fig. 5. Changes in the fecal concentration of bile acids and biomarkers for Bilophila on the
animal-based diet
(A) Deoxycholic acid, a secondary bile acid known to promote DNA damage and hepatic
carcinomas26, accumulates significantly on the animal-based diet (p<0.01, two-sided
Wilcoxon signed-rank test; see Supplementary Table 23 for the diet response of other
secondary bile acids). (B) RNA-Seq data also supports increased microbial metabolism of
bile acids on the animal-based diet, as we observe significantly increased expression of
microbial bile salt hydrolases (K01442) during that diet arm (q<0.05, Kruskal-Wallis test;
normalized to reads per kilobase per million mapped, or RPKM; n=8–21 samples/diet arm).
(C) Total fecal bile acid concentrations also increase significantly on the animal-based diet,
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relative to the preceding baseline period (p<0.05, two-sided Wilcoxon signed-rank test), but
do not change on the plant-based diet (Extended Data Fig. 9). Bile acids have been shown to
cause IBD in mice by stimulating the growth of the bacterium Bilophila6, which is known to
reduce sulfite to hydrogen sulfide via the sulfite reductase enzyme (dsrA; Extended Data
Fig. 10). (D) Quantitative PCR showed a significant increase in microbial DNA coding for
dsrA on the animal-based diet (p<0.05; two-sided Wilcoxon signed-rank test), and (E)
RNA-Seq identified a significant increase in sulfite reductase expression (q<0.05, Kruskal-
Wallis test; n=8–21 samples/diet arm). Barplots (B,E) display mean±sem.
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