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In this paper, we give a characterization of the class of rings which have 
the property that the existence of a solution of any system of linear 
equations is equivalent to the equality of the determinantal ideals of the 
coefficient matrix and the augmented matrix of the system. When one only 
considers domains, this characterization is equivalent to that given in [S]; 
however, the techniques used by the authors of this quoted paper are dif- 
ferent from those we use below. Our main technique is the fact that the 
existence of a solution for a system of equations becomes a local property. 

I. BASIC RESULTS 

Thoughout this paper, R will denote a commutative ring with unit. We 
shall consider a system of linear equations with coefficients in R given by 

(S): Ax = b, 

where A = (a,) is a (m x n)-matrix with entries in R and x = (x, ,..., x,,)’ and 
h = (6, ,..., b,)’ are column vectors with coordinates in R. We shall denote 
by (A 16) the augmented matrix of the system; this is, the m x (n + l)- 
matrix obtained from A by adding the column matrix h. 

For any prime ideal p c R, the system of equations over R, obtained 
from (S) by replacing each coefficient by its image in R, via the 
homomorphism R + R, will be denoted by (S,). Thus, (S,) is given by 

where A, = (adl) and bfl = (b,/l,..., 6,/l)‘. 
The following result shows that the existence of a solution for (S) is a 

local property. 
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PROPOSITION 1. The following statements are equivalent: 

(i) The system (S) has a solution (in R). 
(ii) For every prime ideal #i in R, the system (S,) has a solution (in 

R/z). 
(iii) For every maximal ideal m in R, the system (S,) has a solution 

(in R,). 

Proof: (i) 3 (ii) * (iii) is evident. We shall see that (iii)*(i). Assume 
that for every maximal m in R the system (S,) has a solution given by 

a.(m) xi(m) = I 
s(m) ’ 

1 <j<n. 

Note that there is no loss of generality in the assumption that 
xi(m),..., x,(m) have the same denominator s(m) 4 m. 

Then for every PX one has 

So there exists an element ti(m) 4 m such that 

ti(**)(~la,OLi(m))=t;(~).s(-).bi, l<i<m; 

whence setting t(m) = ny= I ti(m) one obtains 

Now, since t(m) * S(M) $ HZ, the ideal generated by the elements 
t(m). s(m), when m ranges over the set of maximal ideals of R, is not con- 
tained in any m and so it is R. It follows that there exist finitely many 
maximal ideals m ,,..., mP and elements 2, ,..., 1, in R such that 

1= i n,t(wz,).S(mk). 
k=l 

Finally, the elements x, ,..., x, given by 

xj = f Ak t(mk) aj(mk), 1 <j<n, 
k=l 

are a solution of the system (S). 
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For each integer i > 0, the ith order determinantal ideal of the matrix C, 
i.e., the ideal of R generated by all the (ix :)-minors of the matrix C, will be 
denoted by 9$(C). For i = 0 set eO( C) = R. 

In the sequel we be concerned only with the matrices A, (A 1 h), A, 
involved in a system of linear equations as above. The following properties 
are immediate consequences of the definitions: 

(i) 0&0(A)I%r(A)2 *.. 2%i(A)z .... 
(ii) If +Z is a prime ideal in R then for any i, 

:‘l&(Ap) =%,(A)* R,. 

(iii) If (S) has a solution then for any i, “aj(i(A) =4!~(,4 lb). 

~OPOSITION 2. Let R be u local ring and (S): Ax = 4 a system of linear 
equations aver R, The system (S) has a solution in R tf the following 
statements hold for every i 2 0: 

(i) %i(A)=%!i(A]b). 
(ii) Either ??&(A) = (0) or ei’)t,(A) is an ideal generated by a non- 

zerad~vis~r of R. 

ProoJ: Let r be the integer such that %!,(A) # (0) and er+,(A)= (0). 
Since “/1,(A) is generated by the (r x r)-minors of A and by the hypothesis 
(ii) it is a principal ideal generated by a non-zerodivisor in the local ring R, 
it follows from Nakayama’s lemma that %,(A) is in fact generated by an 
(rx r)-minor. Without loss of generality, one can assume that this 
generator is the determinant I of the matrix 

ar2 .. . arr 

Now consider the system (S’) given by 

,c, aiixi=bi, 1 <idi-. 

By multiplying on the left the matrix of (s’) by the cofactor matrix (Ak,i) of 
A’ one obtains the system given by 

(1) 
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where Aki is the cofactor of the entry ski of A’. Equations (1) can be also 
written in the form 

a,, ... n-r a,,,- I al,,+, u1,it I ... a,, 

Ax;+ c i X ,+I 
r=l a rl ... a,,;-1 Qr,r+, a,,;+1 ... a,, 

a,, ... a,,i-I bl aLi+ ... a,, 

= . 

a,, ... a,;- I b, Qr,i+l .‘. arr 

Since A generates the ideal 4!Zr(A) = 42JA 1 h), it follows from this last 
expresion that the system (9) has a solution. 

To prove the proposition, is suffices to check that the solutions of (S’) 
are also solutions of (S). For this, we shall show that for 1 < s < n - r the 
solutions of (S’) satisfy the equation 

~r+s,,x,+ ... +a,+s,,x,=b,+,, 
or equivalently, since A is a non-zerodivisor, they satisfy the equation 

i Aa,+,y,iXi= J-b,+,. 
j=l 

Substituting Ix; by its value given by Eq. (1) the solutions of (S’) satisfy 

f ia r+sjXj= i ar+sj 
j=l j=l 

(- nfr ( i A,,ok,,,,) x,+,+ i A,bk) 
f=l k=l k=l 

znf’( i a,+,.(- ~,Akja,.+~)+ia,+.~,~+~)x.,, 
r=1 j=l 

+~,‘~+G(~, Akjbk). 

For 1~ t < n - r in this expresion the coefficient of x,+, is zero as it coin- 
cides with the determinant of the (r + 1) x (r + 1)-submatrix of A obtained 
by adding to A’ the appropriate parts of the (r + t) column and the (r + s) 
row of A. So 
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On the other hand, since “II,+ ,(A Ih)= (0), the determinant of the 
(v+ 1 )x (Y + 1) submatrix of (A lb) obtained by adding to A’ the 
appropriate parts of the (r+s)-row and the column h is zero, one as 

By comparing the two last expresions, one concludes that the solutions 
of (S’) are also solutions of (S) as desired. 

Note that, in the above proof of the proposition, the hypothesis on R to 
be a local ring is used in the fact that if a,,..., a, is a set of generators of a 
principal ideal I of a local ring, then I is generated by some aj. However, 
the result can be generalized to the nonlocal case by using the concept of 
flat ideal of a ring. Recall that a finitely generated ideal I of R is flat if and 
only if for any prime ideal +Z of R the ideal I, of R, is either (0) or 
generated by a non-zerodivisor. 

COROLLARY 3. Let (S): Ax = b a system of linear equations over the ring 
R. The system (S) has a solution in R if the following statements hold for 
every i>O: 

0) %@)=%!,(A lb). 
(ii) gj(A) is aflat ideal of R. 

Proof: By the property (ii) of the determinantal ideals, the system (S,) 
satisfies the hipothesis of the Proposition 2, so it has a solution. Now by 
Proposition 1, (S) has a solution in R. 

2. THE CHARACTERIZATION THEOREM 

DEFINITION 4. A ring R is said to be a Priifer ring if every finitely 
generated ideal is flat. 

When R is a domain, there exist several characterizations for the Pri.ifer 
condition [4, p. 5591. One of them is that R is a Priifer domain if and only 
if the localization of R at every prime ideal is a valuation ring. We shall 
note that when R is not a domain, several definitions of Priifer rings are 
used in the literature which are not equivalent among them, and in par- 
ticular not equivalent to the above one [3, p. 271. 

We state below some properties of Priifer rings which will be used in the 
sequel, and whose proofs follow from definitions and the quoted references: 

(i) R is a Pri.ifer local ring if and only if R is a valuation ring. 
[4, p. 137, 559; 7, p. 961. 
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(ii) R is a Priifer ring if and only if for every prime ideal fi of R the 
ring R, is a Priifer local ring (i.e., R is a valuation ring) [ 1, p. 411. 

(iii) If {Ri}l<i<h are Priifer rings then n:= 1 Ri is also a Priifer ring. 
In particular if n is a square-free integer, then Z/nZ is a Priifer ring. 
[2, p. 1421. 

The following lemma will be used in the main result in this paper stated 
below. 

LEMMA 5. Zf R is a local domain which is not a valuation ring, then there 
exist finitely generated ideals a', d’, c’ with a' # 0, 8’ Q! c’ such that 
al. el c al. cr. 

Proof. If the domain R is not a valuation ring then it follows from 
[4, p. 559] that either R is not integrally closed or there exist finitely 
generated fractional ideals a”, &‘, C” with d” # C” and a” . d” = a”. c”. 

If R is not integrally closed then by [4, p. 5461 there exists a finitely 
generated ideal a' of R such that (a’: a’) # R. SO there exist x, y E R with 
x # ( y) such that (x/y) a’ c a’. Hence a’.(x) G a’. ( y). 

If there exist finitely generated fractional ideals a”, e”, C” with b” ZC” 
and a” .&’ = a” * c”, then take d E R, d # 0, such that da" = a’, d&” = 8’ and 
dc” = C’ are ideals of R. It is clear that the ideals a’, b’, C’ are finitely 
generated and satisfy the requirements in the lemma. 

THEOREM 6. For a commutative ring with unit R the following statements 
are equivalent. 

(i) A system of linear equations over R, (S): Ax = b, has a solution in 
R if and only tffor all i one has 

qi( A) = ei( A ( b). 

(ii) R is a Priifer ring. 

Proof. (ii) =S (i) Let (S): AX = h a system of linear equations over R. If 
(S) has a solution in R then ei(A) = si(A 1 h) for all i. Conversely, since R 
is Prtifer ring, the ideals ei(A) are flat and consequently if %$(A) = ai(A 1 b) 
from Corollary 3 it follows that (S) has a solution in R. 

(i) * (ii) We shall prove that if R is not a Priifer ring then there exists 
a system (S): Ax = h which has no solution in R but for which 
%$(A) = %$(A ( h) for all i. If R is not a Priifer ring note that by property (ii) 
of Priifer rings one of the two following possibilities holds for R: 
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(1) There is a prime ideal fiO of R such that R,,, is not a domain. 
(2) For every prime ideal fi of R the ring R, is a domain but for 

SOme j% R,,, is not a Pri.ifer ring. 
In the case (l), since R,, is not a domain, there are two elements U, t’ in 

R such that u/l, a/l are non zero in R,, and (u/l ) . (r/l ) = 0 or equivalently 
suu=O for some s$!,,. Now consider the system of linear equations: 

(0 
i 

ux = 0, 

sux = su. 

For (S) one has 

@,(A) = @,(A I h) = (4 su), 

%~(A) = 4&(‘4 1 h) = (0). 

But the system (S,,) has no solution in R,,. In fact, for such a solution 1 
one would have (u/l ). A= 0. So i - 1 is a unit in R,,. On the other hand, 
(s/l ). (u/l ). A= su/l would imply su/l = 0 and hence u/l = 0, which is con- 
tradictory. By Proposition 1 the system (S) has no solution in R and it is 
the required system in case (1). 

In the case (2) we shall construct the system (S) by a similar procedure 
to that given in [S]. Since R,, is not Prtifer, by applying Lemma 5, there 
exist finitely generated ideals a’, e’, C’ of R,, such that 

a’ .6’ c af . CI) et d ct. (2) 

If 6’ E 8, b’ $ C’ and a’ E a’, a’ # 0, then one has 

a’. (u’ . b’) G a’. (u’ . c’), (a’. b’) q? (a’. c’), 

and so we can assume without loss of generality that in Eq. (2) the ideal 4’ 
is a principal ideal contained in a’. 

Now take finitely generated ideals a,, &, , C, of R whose extensions to 
R,, are, respectively, a’, &, C’ and such that 8, is a principal ideal. There 
exist s,, s2$fi0 such that 

and that, moreover, the ideal s2. 6, is not contained in c1 (otherwise one 
would have G’ c C’ since s2 I# &). On the other hand, since 4’ c a’, there 
exist s3 E R, sj $ +&, such that 
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Denoting by a, 8, c the ideals S, . a 1, sj * s2 * G, and s3 * cl, respectively, G 
is a principal ideal one has 

If a, ,...) a, are generators for LA, b is a generator for d and c,,..., c, are 
generators for C, then the linear system over R given by 

(s): (4;, + a2x2 + . . . + a,x, = 0 
,,+,+ ... +c,x,+,=b, 

has no solution in R since b B C. However one has 

a!r,(A)=@!,(Alb)=a+c, 

%*(A) = %Y2(A 1 h) = a. c. 

This completes the proof of case (2) and hence the theorem. 
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