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SUMMARY

Muscle atrophy occurs in many pathological
states and results primarily from accelerated
protein degradation and activation of the ubiq-
uitin-proteasome pathway. However, the im-
portance of lysosomes in muscle atrophy has
received little attention. Activation of FoxO tran-
scription factors is essential for the atrophy in-
duced by denervation or fasting, and activated
FoxO3 by itself causes marked atrophy of mus-
cles and myotubes. Here, we report that FoxO3
does so by stimulating overall protein degrada-
tion and coordinately activating both lysosomal
and proteasomal pathways. Surprisingly, in
C2C12 myotubes, most of this increased pro-
teolysis is mediated by lysosomes. Activated
FoxO3 stimulates lysosomal proteolysis in mus-
cle (and other cell types) by activating autoph-
agy. FoxO3 also induces the expression of
many autophagy-related genes, which are in-
duced similarly in mouse muscles atrophying
due to denervation or fasting. These studies in-
dicate that decreased IGF-1-PI3K-Akt signaling
activates autophagy not only through mTOR
but also more slowly by a transcription-depen-
dent mechanism involving FoxO3.

INTRODUCTION

Muscle atrophy is a debilitating process that leads to rapid

loss of strength and endurance. It occurs in specific mus-

cles with inactivity and denervation and systematically in

fasting and many diseases, including cancer, diabetes,

sepsis, and renal failure (Kandarian and Jackman, 2006;

Lecker et al., 2006). In these various conditions, the rapid

loss of muscle mass occurs primarily through an activa-

tion of protein breakdown. We have previously identified
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a set of atrophy-specific genes or ‘‘atrogenes’’ that are

up- or downregulated similarly in muscles in these diverse

types of atrophy (Lecker et al., 2004; Sacheck et al., 2007).

These observations indicate that common transcriptional

adaptations occur in various types of atrophy leading to

accelerated protein degradation.

Proteasomes and lysosomes comprise the two major

intracellular proteolytic systems in mammalian cells and

have generally been assumed to be regulated indepen-

dently and to serve distinct functions. The ubiquitin-pro-

teasome pathway degrades both cytosolic and nuclear

proteins (Glickman and Ciechanover, 2002), as well as

myofibrillar proteins (Solomon and Goldberg, 1996), which

comprise most of the protein in adult skeletal muscle. The

acid hydrolases in lysosomes degrade most membrane

and extracellular proteins taken up by endocytosis, as

well as cytoplasmic proteins and organelles through au-

tophagy (Scott and Klionsky, 1998). In diverse types of

muscle wasting, the ubiquitin-proteasome pathway is ac-

tivated, as shown by increased sensitivity to proteasome

inhibitors; increased levels of ubiquitin conjugates; en-

hanced rates of ubiquitin conjugation; and induction of

genes for ubiquitin, several proteasomal subunits, and

two critical ubiquitin ligases (E3s), atrogin-1/MAFbx and

MuRF1 (Bodine et al., 2001; Lecker et al., 2004). Induction

of these muscle-specific E3s is essential for rapid atrophy

(Bodine et al., 2001). Because inhibitors of lysosomal func-

tion fail to block the degradation of myofibrillar components

in atrophying muscles (Furuno et al., 1990), the possible

contributions of lysosomes to atrophy have not attracted

much attention. However, an increased capacity for lyso-

somal proteolysis has been demonstrated in various types

of atrophy (Bechet et al., 2005; Furuno et al., 1990).

Our prior work showed that activation of FoxO tran-

scription factors is essential for fiber atrophy and atro-

gin-1 induction upon denervation, fasting, and glucocorti-

coid treatment (Sandri et al., 2004, 2006). Moreover,

expression of constitutively active FoxO3 (ca-FoxO3)

induces expression of multiple atrogenes, including the

critical E3 atrogin-1, and causes dramatic atrophy of

mouse muscles and myotubes (Sandri et al., 2004). The
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Figure 1. FoxO3 Induces Atrophy and

Stimulates Proteolysis in C2C12Myotubes

(A) Constitutively active FoxO3 (ca-FoxO3) in-

duces marked atrophy. Myotubes were infected

with control (top panel, expressing only GFP) or

ca-FoxO3 (bottom panel, expressing ca-FoxO3

and GFP) adenoviruses. Cells expressing GFP

are shown 48 hr after infection.

(B) ca-FoxO3 stimulates proteolysis. Myotubes

were incubated with [3H]tyrosine for 20 hr and

then washed with chase medium for 2 hr. New

chase media containing control, ca-FoxO3, or

wild-type FoxO3 (wt-FoxO3) adenoviruses

were added, and media samples were collected

over 36 hr. The released radioactivity (indicating

proteins degraded) was plotted as a percentage

of total [3H]tyrosine incorporated into cell pro-

teins. The rates of proteolysis (calculated from

the linear slopes between 20 and 32 hr) are

also shown. Levels of FoxO3 protein at different

times after infection were analyzed by western

blot. Error bars represent SEM.
phosphorylation of FoxO transcription factors by Akt leads

to their inactivation through binding to 14-3-3 proteins in

the cytosol (Tran et al., 2003), but in ca-FoxO3, the three

Akt phosphorylation sites are mutated to alanines, allow-

ing free entry into the nucleus. Through activation of the

PI3K-Akt pathway, IGF-1 stimulates protein synthesis

and can induce hypertrophy of skeletal muscle (Glass,

2005). In addition, IGF-1/insulin inhibits overall protein

breakdown, degradation of myofibrillar proteins (Sacheck

et al., 2004), and expression of atrogin-1 and MuRF1

(Sacheck et al., 2004; Stitt et al., 2004). This reduced pro-

teolysis appears to contribute to muscle growth and to re-

sult from the inactivation of FoxO by Akt phosphorylation

(Sacheck et al., 2004; Stitt et al., 2004), while the acceler-

ated degradation in atrophying cells has been attributed to

FoxO-dependent induction of key E3s (Bodine et al., 2001;

Sandri et al., 2004). The present studies were undertaken

to analyze how FoxO3 affects protein degradation and to

assess the contributions of lysosomal and proteasomal

pathways to the loss of muscle protein during atrophy.

We demonstrate here a marked ability of FoxO3 to stimu-

late lysosomal proteolysis by activating autophagy via

a transcriptional mechanism in muscle cells (as well as

in hepatocytes and neuronal cells). In muscle, this process

is activated coordinately with the proteasomal pathway

and contributes importantly to atrophy.

RESULTS

FoxO3 Causes Atrophy by Stimulating Proteolysis
To determine the effects of FoxO3 on protein degrada-

tion, we infected C2C12 myotubes with an adenovirus

expressing ca-FoxO3, which within 2 days caused a dra-

matic reduction in myotube diameter (Figure 1A) and

a reduction in the protein:DNA ratio (data not shown) to

a level below that observed in control cells infected

with an adenovirus expressing GFP only. Thus, viral ex-

pression of ca-FoxO3 in myotubes mimics the effects
Cell Me
of FoxO3 overexpression in adult muscle (Sandri et al.,

2004, 2006).

To measure overall rates of protein degradation, the

majority of the myotube proteins were labeled by a 20 hr

exposure to [3H]tyrosine prior to viral infection. After infec-

tion, overall rates of protein degradation were determined

by measuring [3H]tyrosine release from the prelabeled

proteins into the medium, which contained a large excess

of nonradioactive tyrosine to prevent reincorporation

(Gronostajski et al., 1984). After 16 hr exposure to the

ca-FoxO3-expressing adenovirus, the overall rate of pro-

tein degradation in the myotubes was significantly in-

creased (Figure 1B, p < 0.01), and by 24 hr, the rate was

at least 50% greater than in cells infected with control

adenovirus (Figure 1B and Figure 2A). If maintained, this

enhancement of proteolysis is sufficient to cause marked

atrophy in 2 days. When expressed at a level similar to

ca-FoxO3, wild-type FoxO3 (wt-FoxO3) increased the rate

of proteolysis by only 15% (Figure 1B, p < 0.01), presum-

ably because most of the wt-FoxO3 was phosphorylated

by Akt and inactive (Brunet et al., 1999; Sandri et al., 2004).

FoxO3-Induced Increase in Proteolysis
in Myotubes Is Mediated Mainly by Lysosomes
To determine to what extent proteasomes contribute to

FoxO3-induced proteolysis, we used two specific protea-

some inhibitors, Velcade (PS-341) and lactacystin (Kisse-

lev and Goldberg, 2001). To evaluate the contributions of

lysosomes, we used a specific inhibitor of the lysosomal

proton pump, concanamycin A (Woo et al., 1992), or chlo-

roquine and NH4Cl, which accumulate in lysosomes and

raise intralysosomal pH (Seglen, 1983). At concentrations

used, the inhibitors caused maximal inhibition of proteoly-

sis, and residual rates of degradation were linear for up to

5 hr with no detectable cell death. The actual contribution

of proteasomes or lysosomes was then determined as the

amount of proteolysis sensitive to the proteasomal or lyso-

somal inhibitors, by subtracting the rates of proteolysis in
tabolism 6, 472–483, December 2007 ª2007 Elsevier Inc. 473
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Figure 2. Effects of FoxO3 on Proteaso-

mal and Lysosomal Proteolysis

(A) ca-FoxO3 stimulates both lysosomal and

proteasomal proteolysis in myotubes. Top

panel: overall rates of proteolysis in control or

ca-FoxO3-expressing cells after proteasomal

or lysosomal inhibition. Myotubes were labeled

and infected with ca-FoxO3 as in Figure 1B.

Twenty-four hours after infection, new medium

containing proteasomal or lysosomal inhib-

itors (1 mM Velcade, 8 mM lactacystin [Lactac],

0.1 mM concanamycin A [ConcA], 50 mM chlo-

roquine [Chloroq], or 10 mM NH4Cl) was

added, and the rates of proteolysis were

determined. Middle panel: proteasomal or

lysosomal proteolysis was calculated as in Ex-

perimental Procedures. Bottom panel: FoxO3-

induced increase in proteolysis is mediated

mainly by lysosomes. The ca-FoxO3-induced

increases in proteasomal and lysosomal prote-

olysis were plotted as a percentage of the in-

crease in total proteolysis.

(B) ca-FoxO3 increases lysosomal proteolysis,

but not proteasomal proteolysis, in H4IIE and

PC12 cells. Both types of cells were labeled

and infected with ca-FoxO3 adenovirus as in

(A). *p < 0.05, **p < 0.01 by two-tailed t test.

Error bars represent SEM.
cells treated with inhibitors from that in untreated cells

(Figure 2A, middle panel). Similar rates were found using

the two proteasome inhibitors or the three inhibitors of

lysosomal acidification (Figure 2A). In control myotubes,

breakdown of long-lived proteins appeared to be �50%

proteasomal and �40% lysosomal (Figure 2A, top panel).

This large contribution of lysosomes to total proteolysis is

much higher than that estimated previously in well-nour-

ished HeLa cells (Rock et al., 1994) and nutrient-deprived

rodent muscles (Furuno et al., 1990).

By 24 hr after infection in cells expressing ca-FoxO3,

overall rates of degradation increased by 66%. Surpris-

ingly, this increase was reduced only modestly after treat-

ment with proteasome inhibitors but was markedly in-

hibited by the lysosomal inhibitors (Figure 2A, top panel).

In fact, approximately 70% of the increase in proteolysis

required lysosomal function, while only 20% required pro-

teasomal activity (Figure 2A, bottom panel). Thus, FoxO3

stimulates both degradative pathways coordinately but

has a substantially greater effect on lysosomal proteolysis

in C2C12 myotubes. This increase in lysosomal proteoly-

sis is independent of proteasomal activity, since similar in-

creases were seen in cells pretreated with Velcade for 4 hr

(see Figure S1 in the Supplemental Data available with this

article online), and is also independent of atrogin-1. In pri-

mary muscle cultures derived from wild-type or atrogin-1-

deficient mice, ca-FoxO3 expression caused similar large
474 Cell Metabolism 6, 472–483, December 2007 ª2007 Elsevie
increases in overall proteolysis, and most of this increase

was lysosomal (Figure S2).

Evidence has been presented that caspases (Du et al.,

2004) and/or calpains (Kramerova et al., 2005) might

also play an essential role in enhancing muscle proteolysis

during atrophy by promoting conversion of myofibrillar

proteins to forms easily digested by the ubiquitin-protea-

some pathway. However, addition of both proteasomal

and lysosomal inhibitors gave about 90% inhibition of total

proteolysis (data not shown). Thus, if caspases or cal-

pains, which are not affected by these inhibitors, do con-

tribute to overall proteolysis in myotubes, their contribu-

tions must be minor. Furthermore, treatment with the

general caspase inhibitors DEVD-CHO or cpm-VAD-

CHO did not significantly reduce overall proteolysis or

proteasomal proteolysis in either control or ca-FoxO3-

expressing myotubes (Figure S3). Thus, the great majority

of the protein degradation by proteasomes is independent

of caspases in these cells.

In Other Cell Types, FoxO3 Enhances Lysosomal
but Not Proteasomal Proteolysis
Additional experiments tested whether the stimulation of

lysosomal and proteasomal proteolysis by FoxO3 is spe-

cific to muscle cells. ca-FoxO3 expression using the

same adenovirus in H4IIE rat hepatoma cells and PC12

rat pheochromocytoma cells also caused an increase in
r Inc.
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Figure 3. FoxO3 Activates Autophagy in Myotubes

(A) Most of the ca-FoxO3-induced increase in lysosomal proteolysis is sensitive to 3-methyladenine. After labeling cell proteins and adenoviral infec-

tion, myotubes were treated with 10 mM 3-methyladenine for 1 hr and concanamycin A for another 1 hr before measurement of lysosomal proteolysis.

Error bars represent SEM.

(B) ca-FoxO3 induces lipidation of LC3 and increases Gabarapl1 protein levels. LC3, Gabarapl1, and beclin1 protein levels were determined by west-

ern blot over 36 hr after infection. b-actin was used as a loading control.

(C) ca-FoxO3 enhances lysosomal degradation of LC3 and Gabarapl1 proteins. Myotubes were infected with control or ca-FoxO3 viruses for 22 hr

and then treated with concanamycin A or Velcade for an additional 6 hr before lysis and western blotting. Quantified protein levels of LC3 and

Gabarapl1 (relative to b-actin) were plotted. Values shown are the means of duplicates.
lysosomal proteolysis (Figure 2B). However, in these cells,

the rates of proteasomal degradation were unchanged,

presumably because these nonmuscle cells do not ex-

press the FoxO-induced ubiquitin ligases and do not con-

tain a pool of myofibrillar proteins. These results also indi-

cate that the activation of these two proteolytic processes

by FoxO3 is not necessarily linked.

FoxO3 Activates Autophagy
The major route for delivery of cytoplasmic proteins or

organelles into lysosomes is by macroautophagy, which

involves de novo formation of autophagosomes. These

vesicles sequester cytoplasmic constituents and then

fuse with lysosomes (Levine and Klionsky, 2004; Ohsumi,

2001). Changes in macroautophagy have long been

known to correlate with rates of proteolysis in liver (Morti-

more et al., 1983) and cultured cells (Knecht et al., 1984),

and rapid changes in macroautophagy occur in response

to changes in nutrient supply, mTOR, and insulin (Meijer

and Codogno, 2006). To test whether FoxO3 increases

lysosomal proteolysis by activating macroautophagy, we

used the macroautophagy inhibitor 3-methyladenine

(Seglen and Gordon, 1982). This agent reduced basal ly-

sosomal proteolysis by 0.14% ± 0.03%/hr in control cells
Cell Me
but caused a much larger decrease (0.50% ± 0.08%/hr) in

the lysosomal proteolysis in ca-FoxO3-expressing cells

(Figure 3A), strongly suggesting a marked activation of

macroautophagy. This inhibition by 3-methyladenine ap-

pears to result from its capacity to block class III PI3-

kinase (Petiot et al., 2000) since LY294002, an inhibitor

of both class I and class III PI3-kinases, failed to inhibit

and actually enhanced lysosomal and total proteolysis in

these cells (Sacheck et al., 2004). Another mode of deliv-

ery of cytosolic proteins to lysosomes is chaperone-medi-

ated autophagy (Dice, 2007), which is not sensitive to

3-methyladenine. ca-FoxO3 does not seem to activate

chaperone-mediated autophagy under these conditions

since it did not affect the expression of Lamp2a

(Figure S4), a marker for chaperone-mediated autophagy

(Cuervo and Dice, 2000), although ca-FoxO3 induced

many autophagy-related genes (see below). Another pos-

sible source of substrates for lysosomal degradation

could be endocytosis of membrane components, but

they cannot account for the large fraction of cell proteins

digested by lysosomes in the atrophying myotubes. These

findings suggest that macroautophagy (hereafter referred

to as autophagy) is required for most of the increased

lysosomal proteolysis by ca-FoxO3.
tabolism 6, 472–483, December 2007 ª2007 Elsevier Inc. 475



Cell Metabolism

FoxO3 Stimulates Autophagy in Atrophying Muscle
To confirm the activation of autophagy, we performed

western blots for LC3, the homolog of yeast Atg8, which

is cleaved and conjugated to phosphatidylethanolamine

during autophagic vacuole formation to generate

a faster-migrating form, LC3-II (Ohsumi, 2001). Expression

of ca-FoxO3 was associated with a shift of some LC3-I to

LC3-II that began 16 hr after infection (Figure 3B), the same

time that protein degradation increased (Figure 1B). In ad-

dition, the level of Gabarapl1 protein (another homolog of

yeast Atg8) was increased by ca-FoxO3, but without any

change in its migration on SDS-PAGE (Figure 3B).

To confirm that these changes in lysosomal proteolysis

are due largely to changes in autophagy, we used mouse

embryonic fibroblasts (MEFs) that lack the Atg5 gene and

are therefore defective in autophagy (Mizushima et al.,

2001). When we applied a variety of agents or conditions

known to activate autophagy, including rapamycin (an

inhibitor of mTOR), API-2 (an inhibitor of Akt), LY294002

(an inhibitor of PI3K), or serum deprivation, all stimulated

lysosomal proteolysis in wild-type MEFs, as in myotubes

(see below). However, in Atg5-deficient MEFs, these

treatments had little effect on lysosomal proteolysis

(Figure S5). Thus, these measurements of change in lyso-

somal proteolysis provide a sensitive and quantitative

measure of change in autophagic activity.

FoxO3 Increases Expression of Many
Autophagy-Related Genes in Myotubes
Studies in yeast have identified many autophagy-related

(Atg) genes, most of which have counterparts in higher eu-

karyotes (Klionsky et al., 2003), but regulation of their ex-

pression has not been demonstrated in either system. To

clarify how FoxO3 might stimulate autophagy, we tested

whether FoxO3 alters the expression in myotubes of the

Atg genes LC3b, Atg12l, Atg4b, and Beclin1 (homolog of

yeast Atg6) as well as Ulk2 (possible homolog of yeast

Atg1), Gabarapl1 (homolog of yeast Atg8), and PI3KIII (ho-

molog of yeast Vps34, which is required for autophagy).

Previously, we found that LC3 and Gabarapl1 are induced

in muscles in diverse types of atrophy (Lecker et al., 2004).

Using quantitative real-time PCR, we demonstrated that

these seven genes are induced by the expression of

ca-FoxO3 (Figure 4A). mRNAs for LC3b, Gabarapl1,

Vps34, Ulk2, and Atg12l were clearly increased by 20 hr

after infection with the FoxO3 adenovirus. Those for

Atg4b and Beclin1 increased less, and did so more slowly.

FoxO transcription factors share a characteristic DNA-

binding domain that recognizes the specific consensus

sequence (C/G)(A/T)AAA(C/A)A in the promoters of target

genes (Barthel et al., 2005). To determine whether FoxO3

binds directly to the promoters of Atg genes or whether it

might activate their transcription by an indirect mechanism,

we performed chromatin immunoprecipitation (ChIP) to

test whether ca-FoxO3 associates with the putative

FoxO-binding sites in the proximal promoter regions of

the three most induced genes, LC3b, Gabarapl1, and

Atg12l. We analyzed five consensus sequences within

the 5 kb genomic region upstream of the LC3b coding se-

quence, six for Gabarapl1, and four for Atg12l. From the
476 Cell Metabolism 6, 472–483, December 2007 ª2007 Elsev
ca-FoxO3 immunoprecipitates, we were able to enrich

DNA fragments that cover three of these consensus se-

quences in the promoter of LC3b (L1, L2, and L4), three

for Gabarapl1 (G2, G3, and G4), and two for Atg12l (A2

and A4) (Figure 4B). These results thus demonstrate that

FoxO3 binds directly to these promoters and also allow

us to identify its specific binding sites.

After expression of ca-FoxO3, no increase in the levels

of beclin1 and LC3 proteins was evident on western blots,

unlike Gabarapl1 protein, which increased up to 30 hr after

infection (Figure 3B). Interestingly, in ca-FoxO3-express-

ing cells, LC3 and Gabarapl1 proteins declined 30 hr after

infection (Figure 3B). Most likely, FoxO3 enhances the

production and also degradation of these proteins, since

when these cells were exposed to concanamycin A to

block lysosomal proteolysis, both proteins accumulated

to higher levels in FoxO3-expressing myotubes than in

controls (Figure 3C), indicating enhanced lysosomal deg-

radation. Thus, FoxO3, through direct binding to the LC3b

and Gabarapl1 promoters, increases the production of

these Atg8 homologs, which are then consumed by lyso-

somal proteolysis.

FoxO3 Increases Autophagosome Formation
in Isolated Adult Mouse Muscle Fibers
Several findings indicate that this FoxO-dependent induc-

tion of autophagy and autophagy-related genes alsooccurs

during muscle atrophy in vivo. Long before FoxOs were dis-

covered or shown to be necessary for muscle wasting, in-

creased autophagy (Schiaffino and Hanzlikova, 1972) and

a greater capacity for lysosomal proteolysis (Furuno et al.,

1990) were reported indenervation atrophy.Also, increased

formation of autophagosomes labeled by GFP-LC3 has re-

cently been demonstrated in mouse muscles upon fasting

(Mizushima et al., 2004) and denervation (Mammucari

et al., 2007 [this issue of Cell Metabolism]). To determine

whether these responses might be due to FoxO3, we exam-

ined whether overexpression of ca-FoxO3 activates au-

tophagy in adult muscle fibers. To monitor autophagosome

formation, we delivered a GFP-LC3 plasmid together with

a control or ca-FoxO3 construct into isolated mouse flexor

digitorum brevis (FDB) fibers by electroporation. Two days

later, we measured the number of GFP-positive puncta.

The fibers expressing ca-FoxO3 had 6-fold more puncta

than the control fibers, indicating much greater autophago-

some formation (Figure 5A). By this approach, we also dem-

onstrated that the activation of autophagy upon starvation

of the muscle requires FoxO3. When the isolated GFP-

LC3-expressing fibers were deprived of nutrients and se-

rum, they showed a dramatic increase in the formation of

GFP-positive puncta. However, in fibers where FoxO3

was knocked down by electroporation of RNAi for FoxO3,

there was a much smaller increase in these GFP-tagged

autophagosomes (Figure 5B).

Induction of Autophagy-Related Genes
in Atrophying Mouse Muscles
In prior work, we found that LC3, Gabarapl1, and the

lysosomal protease cathepsin L are among the set of
ier Inc.
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Figure 4. FoxO3 Induces Autophagy-Related Genes in Myotubes

(A) ca-FoxO3 increases mRNA levels for many autophagy-related genes in myotubes (as shown by real-time PCR). Error bars represent SEM.

(B) ca-FoxO3 directly binds to the promoters of LC3b, Gabarapl1, and Atg12l. Five consensus (C/G)(A/T)AAA(C/A)A sequences for FoxO3 were iden-

tified in the 5 kb promoter region of LC3b, six for Gabarapl1, and four for Atg12l. Myotubes were infected with control or ca-FoxO3 adenoviruses for

12 hr, chromatin immunoprecipitation was performed using an anti-HA antibody (ca-FoxO3 is HA tagged), and pairs of primers that cover these sites

were used to amplify the related DNA fragments from the immunoprecipitates by PCR. We were unable to amplify the DNA fragments that cover

the two tentative sites between G1 and G2 in the promoter of Gabarapl1. Asterisks indicate tentative sites that are positive for binding of

ca-FoxO3 in ChIP assays.
atrogenes that are induced similarly in muscles atrophy-

ing due to fasting, renal failure, diabetes, or cancer

(Lecker et al., 2004). Therefore, we examined by real-

time PCR whether all of the autophagy-related genes

induced by ca-FoxO3 in myotubes (Figure 4A) are also

induced in mouse muscles after denervation or food dep-

rivation, where FoxO3 appears to be activated. Indeed,

these genes were induced in both types of atrophy (ex-

cept Ulk2 and Beclin1, which were not induced in fasting)

(Figures 6A and 6B). LC3b and Gabarapl1 showed the

greatest induction (6- to 8-fold 1 week after denervation),

while Beclin1, which has been viewed as a key regulator

of autophagy (Liang et al., 1999), was induced least. Ad-

ditionally, the Atg mRNAs induced most by FoxO3 in the

myotubes also changed most in atrophying muscles. Sur-
Cell Me
prisingly, although autophagy is activated in muscle upon

food deprivation (Mizushima et al., 2004), the induction of

these genes in muscle of animals fasted for 1 day was

consistently less than following denervation. Presumably,

the enhancement of autophagy in muscle of fasted ani-

mals occurs largely via a nontranscriptional mechanism

(perhaps decreased mTOR activity), unlike that in disuse

atrophy, where there is no nutrient deficiency. Thus, acti-

vation of autophagy and induction of many autophagy-

related genes occur in multiple types of atrophy, although

it is unclear from these experiments whether these

FoxO3-dependent transcriptional changes drive the en-

hanced lysosomal proteolysis or only support the mainte-

nance of this process by replacing components con-

sumed during autophagy (e.g., LC3 and Gabarapl1).
tabolism 6, 472–483, December 2007 ª2007 Elsevier Inc. 477
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Two Distinct Mechanisms for Regulating
Autophagy via the PI3K-Akt Pathway
IGF-1 or insulin can rapidly inhibit proteolysis in muscle

and other cells, and this effect is generally assumed to re-

sult from an inhibition of autophagy by the PI3K-Akt-mTOR

pathway. Accordingly, treatment of C2C12 myotubes with

IGF-1 for 2 hr decreased overall proteolysis, while treat-

ment with the Akt inhibitor API-2 (Yang et al., 2004) stimu-

lated this process, and these rapid responses reflected

mainly changes in the lysosomal pathway (Figure 7B).

mTOR is a kinase downstream of Akt that can inhibit au-

tophagy in most cells (Levine and Klionsky, 2004). In yeast,

Figure 5. FoxO3 Induces Autophagosome Formation in Adult

Muscle Fibers

(A) Flexor digitorum brevis (FDB) muscle fibers were transfected by

electroporation with a GFP-LC3 construct together with a control or

ca-FoxO3 construct. Two days later, autophagosomes (i.e., GFP-pos-

itive puncta) were examined by confocal microscopy and counted.

(B) Induction of autophagosome formation by nutrient and serum dep-

rivation is blocked by RNAi for FoxO3. FDB fibers were cotransfected

with GFP-LC3 and pSUPER vectors expressing shRNA for FoxO3 or

control vector. Two days later, the fibers were incubated in PBS for

24 hr and analyzed for autophagosome formation by confocal micros-

copy. Quantification was expressed as the percentage of fibers

containing more than 13 3 104 GFP-positive vesicles/area, the level

of autophagosomes in fed control fibers.

Error bars represent SEM.
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mTOR has been reported to phosphorylate Atg13, thus

inactivating the Atg1 complex (Levine and Klionsky,

2004). The mTOR inhibitor rapamycin stimulates autoph-

agy, although in C2C12 myotubes, rapamycin at maximally

effective concentrations caused only a small but consis-

tent increase (10%–12%, p < 0.05) in lysosomal proteoly-

sis. This response was much smaller than the 50% in-

crease (p < 0.01) in this process induced by API-2

(Figure 7C). Therefore, the inhibition of Akt must stimulate

autophagy by an additional mTOR-independent mecha-

nism. Since most of the effect of API-2 is not through

mTOR, it most likely occurs through FoxO-dependent

transcriptional events. Accordingly, this exposure to API-2

activated FoxO transcription factors in the myotubes, as

shown by dephosphorylation of FoxO3 and induction of

atrogin-1 expression (Figure 7A).

To test the importance of transcription for this enhance-

ment of autophagy, we blocked mRNA synthesis with ac-

tinomycin D. This treatment did not reduce, but rather

seemed to enhance, the increase in lysosomal proteolysis

caused by rapamycin or its rapid decrease caused by

IGF-1, but inhibiting RNA synthesis blocked most of the

increase in this process caused by API-2 (Figure 7C).

Thus, activation of lysosomal proteolysis by API-2 re-

quires gene transcription either for the autophagy-related

genes described here or perhaps for some unidentified

activators of this process. Another clear difference in the

Figure 6. Autophagy-RelatedGenes Are Upregulated inMouse

Muscles after Denervation or Fasting

Autophagy-related genes that are induced by ca-FoxO3 in cultured my-

otubes are also upregulated in muscles from denervated and fasted

adult CD-1 mice. For denervation, a 2–4 mm section of the sciatic nerve

was removed from one hindlimb. After 3 or 7 days, tibialis anterior mus-

cles from both hindlimbs were dissected. For food deprivation, all food

was removed in the late afternoon, but water was provided. Muscles

were collected 24 hr later. mRNA levels of these seven genes in tibialis

anterior muscles following denervation (A) or food deprivation (B) were

analyzed by real-time PCR. Error bars represent SEM.
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Figure 7. Increase in Lysosomal Proteolysis by Akt Inhibition Is Transcription Dependent

(A) API-2 treatment results in rapid dephosphorylation of Akt and FoxO3 proteins (by western blot) and an increase in mRNA levels of atrogin-1 (by

real-time PCR). Myotubes were treated with 1 mM API-2 for the indicated times.

(B) API-2 stimulates, while IGF-1 suppresses, overall proteolysis in myotubes mainly by affecting lysosomal proteolysis. Myotubes were incubated

with [3H]tyrosine for 20 hr and switched to chase medium for 2 hr. These cells were then treated with 1 mM API-2, 10 ng/ml IGF-1, or vehicle for an

additional 2 hr before proteolysis measurement.

(C) Increase in lysosomal proteolysis induced by API-2 requires transcription, unlike that induced by rapamycin. Experiments were performed as

above, but myotubes were pretreated with actinomycin D (10 mg/ml) for 1 hr before the addition of 1 mM API-2, 0.3 mM rapamycin, or 10 ng/ml IGF.

(D) API-2, but not rapamycin, induces mRNAs for LC3b and Gabarapl1 within 4 hr in myotubes. *p < 0.05, **p < 0.01 by two-tailed t test.

(E) Effects of API-2 and rapamycin on lysosomal proteolysis in control and ca-FoxO3-expressing myotubes. Experiments were performed as in

Figure 2A, but 22 hr after infection, cells were treated with API-2 or rapamycin for 2 hr before lysosomal proteolysis was determined.

(F) Expression of constitutively active Akt (ca-Akt) reduces both proteasomal and lysosomal proteolysis in myotubes. Myotubes were infected with

adenovirus expressing ca-Akt for 24 hr before proteolysis measurement.

(G) Rapamycin treatment prevents the specific phosphorylation of S6K and 4E-BP1, while expression of ca-FoxO3 has no apparent effects on their

phosphorylation or that of mTOR. Antibodies indicated were used for western blotting.

(H) Schematic of two different mechanisms of regulating autophagy downstream of PI3K-Akt signaling.

Error bars represent SEM.
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activation of autophagy by ca-FoxO3 is that it had no ap-

parent effects on the specific phosphorylation of mTOR or

that of mTORC1’s substrates, S6K and 4E-BP1. In con-

trast, rapamycin rapidly and completely abolished the

specific phosphorylation of S6K and 4E-BP1 (Figure 7G).

Thus, a reduction in the activity of the PI3K-Akt signaling

pathway can activate autophagy by two mechanisms: (1)

a rapid transcription-independent mechanism through

mTOR, and (2) a slower mechanism independent of

mTOR and requiring gene expression, apparently medi-

ated by FoxO3 (Figure 7H). Accordingly, API-2 increased

the transcription of Gabarapl1 and to a lesser extent

LC3b within 4 hr, but rapamycin did not (Figure 7D),

even though both rapamycin and API-2 increased the lip-

idation of LC3 (Figure S6). Another indication that blocking

Akt in myotubes activates autophagy via FoxO3 is that

treatment with API-2 caused a much greater increase in ly-

sosomal proteolysis in control cells (0.41% ± 0.03%/hr)

than in ca-FoxO3-expressing cells (0.13% ± 0.04%/hr),

where activation of autophagy by FoxO3 is maximal and

independent of Akt. By contrast, rapamycin, which does

not act through FoxOs, caused similar effects in both

types of cells (0.11% ± 0.02%/hr versus 0.17% ±

0.03%/hr) (Figure 7E). These findings indicate that IGF-1

or insulin can reduce protein degradation rapidly by sup-

pressing autophagy via mTOR activation and with time can

also suppress this process by inactivating FoxOs, which

also inhibits proteasomal degradation through the reduc-

tion of atrogin-1 and MuRF1 transcription (Sacheck et al.,

2004). Accordingly, overproduction of Akt by adenoviral

expression of constitutively active Akt (ca-Akt) in C2C12

myotubes for 24 hr led to a reduction in overall proteolysis

(as was noted previously in HT29 cells [Arico et al., 2001]),

and this effect involved coordinate inhibition of both lyso-

somal and proteasomal processes (Figure 7F).

DISCUSSION

The present studies demonstrate that FoxO3-dependent

transcription enhances the cell’s capacity for autophagy

and thus that in muscle, the lysosomal and proteasomal

pathways for protein degradation are coordinately regu-

lated. These results can account for our earlier findings

(Furuno et al., 1990) that atrophying muscle shows an in-

creased capacity for lysosomal proteolysis together with

a large increase in nonlysosomal ATP-dependent proteol-

ysis (i.e., the ubiquitin-proteasome pathway). While serv-

ing complementary functions in promoting protein loss,

activation of these two processes seems to result from

the coordinate transcription of key genes rather than

crosstalk between the two systems since inhibition of ei-

ther process for many hours (or loss of atrogin-1) did not

alter the rate of the remaining degradative process. It

has been reported that inhibition of proteasomes leads

to a compensatory increase in autophagy (Iwata et al.,

2005), but no such change was observed in our studies.

Interestingly, this simultaneous activation of the two

proteolytic processes was restricted to muscle cells. In

hepatic (H4IIE) cells or neuronal (PC12) cultures, FoxO3
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stimulated lysosomal proteolysis but not the proteasomal

process, presumably because these cells lack the mus-

cle-specific ubiquitin ligases atrogin-1 and MuRF1 that

are induced during atrophy. In muscle, protein degrada-

tion serves a physiological role distinct from proteolysis

in other tissues since muscle components, especially

myofibrillar proteins, are the major amino acid reservoir

in the organism. The stimulation of muscle proteolysis is

therefore critical in fasting and disease to mobilize amino

acids for hepatic gluconeogenesis. In atrophying muscles,

these two pathways catalyze the degradation of different

cellular components. While proteasomes degrade myofi-

brillar and most soluble proteins (Solomon and Goldberg,

1996), organelles (especially mitochondria) are degraded

primarily in lysosomes (Scott and Klionsky, 1998). The si-

multaneous activation of these two proteolytic pathways

by FoxO3 presumably ensures that the loss of different

cell components is coordinated upon fasting or disuse

and leaves the muscle with relatively normal composition,

though reduced in strength due to loss of myofibrillar com-

ponents and in endurance due to loss of mitochondria.

Because of the importance of the ubiquitin-proteasome

pathway in degrading myofibrillar proteins, there has been

appreciable interest in developing inhibitors of the atro-

phy-specific ubiquitin ligases or the proteasome to retard

muscle atrophy and cachexia (Beehler et al., 2006; Glass,

2005). Our findings argue that such approaches would not

prevent the loss of those muscle components digested by

lysosomes. Unlike in adult muscle, in which they comprise

60%–70% of cell protein, in cultured myotubes, myofibrils

comprise only a small fraction of total protein. This differ-

ence probably explains why proteasome-dependent pro-

teolysis comprises only a small fraction of the FoxO3-

induced proteolysis in myotubes, while this system

accounts for most of the accelerated proteolysis in normal

and atrophying adult muscles (Lecker et al., 2006).

The present findings that FoxO3 induces the expression

of many autophagy-related genes in culture and that sim-

ilar changes in their expression occur upon denervation

and fasting in mice are in agreement with our previous

finding that FoxO activation is essential for muscle wast-

ing upon denervation and fasting (Sandri et al., 2004). In

adult muscle, in which FoxO3 causes profound atrophy,

it also induces these same genes and causes a large

increase in the number of autophagic vacuoles (Figure 5A),

as also occurs in mouse muscles atrophying due to food

deprivation (Mizushima et al., 2004) or denervation (Mam-

mucari et al., 2007). These in vivo responses appear to

depend on FoxO3 since RNAi against FoxO3 blocked

the enhanced autophagy induced by starvation of isolated

muscle fibers (Figure 5B).

Elucidation of the pathway for autophagy in yeast has

greatly advanced our knowledge of this process in mam-

malian tissues, but how autophagy in specific tissues is

regulated is still poorly understood. For example, mTOR,

the major nutrient sensor in eukaryotic cells, is an impor-

tant regulator of autophagy, and its inhibitor rapamycin

is widely used to activate this process, although how it

stimulates autophagy remains unclear. In myotubes,
r Inc.
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rapamycin induces only a small increase in lysosomal pro-

teolysis (<15%), less than that induced in myotubes by the

Akt inhibitor API-2. Thus, most of Akt’s effects on lyso-

somal proteolysis must be through an mTOR-independent

mechanism, as has been suggested previously (Sarkar

et al., 2007; Tassa et al., 2003; Yamamoto et al., 2006).

The activation of autophagy by FoxO3 provides an addi-

tional mechanism by which the cell’s capacity for autoph-

agy can be enhanced. In muscle, FoxO3 causes transcrip-

tion of a large number of autophagy-related genes, seven

of which were found to be increased in these studies.

FoxO3 seems to directly activate their transcription since

ca-FoxO3 was shown to bind directly to the promoters of

LC3b, Gabarapl1, and Atg12l (Figure 4B).

These studies, however, have not resolved precisely

how FoxO3 activates autophagy or the consequences

of enhanced expression of Atg genes. Possibly the

increased levels of multiple Atg proteins per se lead to

greater autophagy if the levels of one or more of them

are rate limiting for formation of autophagic vacuoles.

Alternatively, FoxO3 may also induce one or more other

proteins to enhance this process. Surprisingly, expression

of Beclin1, which had been proposed to be critical in the

activation of autophagy in other cells, changes much

less than expression of other autophagy-related genes

in response to ca-FoxO3 and denervation in mouse mus-

cle. Possibly, the FoxO3-dependent expression of many

autophagy-related genes may be important not for the

enhancement of autophagy but to enable high levels of

autophagy to be maintained for extended periods. The

need for such increased production of LC3 and Gabarapl1

was clearly evident in these experiments, where both pro-

teins were found to be destroyed by lysosomes during

FoxO-induced autophagy and their increased production

could only be demonstrated when lysosomal proteolysis

was blocked (Figure 3C). It is also noteworthy that al-

though rapamycin stimulated autophagy rapidly without

altering transcription, after 7 hr of treatment, an increase

in the expression of some Atg genes was seen (data not

shown), perhaps to allow maintenance of this response.

These transcriptional and nontranscriptional mecha-

nisms for regulation of autophagy by the IGF-1/insulin-

PI3K-Akt pathway must function together in the suppres-

sion of proteolysis during growth (as shown here when Akt

was overexpressed) and also in enhancing protein loss in

nutrient- or insulin-deficient conditions (as shown here

when Akt was inhibited). It is noteworthy that in myotubes,

the increase in lysosomal proteolysis seen with the Akt

inhibitor was severalfold larger than that seen with rapa-

mycin. Presumably, in atrophying muscle, both modes

of activating autophagy function together with the en-

hancement of the ubiquitin-proteasome pathway to cause

protein loss.

The capacity of FoxO3 to stimulate autophagy in muscle

cells is likely to be important in other physiological or path-

ological processes and other cell types (e.g., hepatic

H4IIE and neuronal PC12 cells). Accordingly, it was re-

cently reported that Drosophila FoxO is required for star-

vation-induced autophagy in fat bodies (Juhasz et al.,
Cell M
2007). In many cells, autophagy is activated during apo-

ptosis, which is often triggered by FoxOs (Tran et al.,

2003). Additionally, FoxO-induced autophagy may be im-

portant in the extension of life span induced by the reduc-

tion in the PI3K-Akt signaling pathway in worms and flies.

In such mutants (daf-2) in C. elegans, the prolonged life

span requires the FoxO ortholog (daf-16) or an Atg gene

(Beclin1), and cells exhibit enhanced autophagy (Melen-

dez et al., 2003). Autophagy also helps protect cells by en-

hancing their capacity to destroy toxic protein aggregates,

viruses, or intracellular bacteria. Therefore, activation of

FoxO3, like treatment with rapamycin, may offer promise

as a strategy to stimulate autophagy and help cells with-

stand such threats to their viability.

EXPERIMENTAL PROCEDURES

Cell Culture and Materials

C2C12 myoblasts were maintained and differentiated to myotubes as

described previously (Sacheck et al., 2004). Adenoviral infection was

conducted on the sixth or seventh day of differentiation. Adenoviruses

expressing ca-FoxO3, wt-FoxO3, and ca-Akt were described previ-

ously (Sandri et al., 2004). Wild-type and Atg5-deficient MEFs were

provided by Y. Ohsumi (National Institute for Basic Biology, Okazaki,

Japan). Velcade (bortezomib) was provided by Millennium Pharma-

ceuticals. Lactacystin, API-2, rapamycin, and actinomycin D were pur-

chased from Calbiochem. Concanamycin A, 3-methyladenine, IGF-1,

and chloroquine were from Sigma-Aldrich.

Determination of Proteasomal and Lysosomal Proteolysis

C2C12 myotubes were incubated with [3H]tyrosine (5 mCi/ml) for 20 hr

to label cell proteins and then switched to chase medium (containing

2 mM unlabeled tyrosine to prevent reincorporation of [3H]tyrosine)

for 2 hr. Fresh chase medium containing proteasomal or lysosomal

inhibitors (1 mM Velcade, 8 mM lactacystin, 0.1 mM concanamycin A,

50 mM chloroquine, or 10 mM NH4Cl) was added. Starting 1 hr after

addition of these inhibitors, medium samples were collected for

3–4 hr and combined with 10% TCA (final concentration) to precipitate

proteins. The acid-soluble radioactivity reflects the amount of prela-

beled, long-lived proteins degraded at different times and was ex-

pressed relative to the total radioactivity initially incorporated. Plotting

these values versus time gave the total rates of proteolysis. Proteaso-

mal or lysosomal proteolysis was determined by subtracting the rates

of proteolysis in cells treated with proteasomal or lysosomal inhibitors

from that in untreated cells. When the inhibitors used are not indicated,

proteasomal and lysosomal proteolysis were determined with Velcade

and concanamycin A, respectively. All measurements were performed

in triplicate.

RNA Extraction, Reverse Transcription, and Quantitative

Real-Time PCR

Total RNA was isolated with TRIzol (Invitrogen). Reverse transcription

was performed using TaqMan reverse transcription reagents (Applied

Biosystems). Mouse gene-specific primers were selected with Primer

3 software. PCR reactions were performed using a DyNAmo HS SYBR

Green qPCR kit (Finnzymes) and an ABI 7900HT Fast Real-Time PCR

system (Applied Biosystems). Genes were quantified as described

previously (Sacheck et al., 2004), using GAPDH as the internal control.

Primers for Lamp2a were provided by A.M. Cuervo (Albert Einstein

College of Medicine, New York). Sequences of primers used for real-

time PCR are listed in Table S1.

Western Blotting

Cells were solubilized in lysis buffer (1% Triton X-100, 10 mM Tris [pH

7.6], 50 mM NaCl, 30 mM sodium pyrophosphate, 50 mM NaF, 5 mM
etabolism 6, 472–483, December 2007 ª2007 Elsevier Inc. 481
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EDTA, 0.1 mM Na3VO4, and protease inhibitor cocktail [Roche]). Thirty

micrograms of total proteins was separated by SDS-PAGE, trans-

ferred to PVDF membranes, and analyzed by western blot using the

ECL method (Amersham). We used polyclonal antibodies against

FoxO3, p-FoxO3(Thr32) (Upstate), 4E-BP1, S6K, p-S6K(Thr389),

mTOR, p-mTOR(Ser2448) (Cell Signaling), b-actin (Abcam), LC3, be-

clin1 (Santa Cruz), Gabarapl1 (Proteintech Group, Inc.). Protein levels

were quantified by using Quantity One software.

Chromatin Immunoprecipitation Assay

Myotubes were infected with control or ca-FoxO3 adenoviruses for

12 hr before analysis using the chromatin immunoprecipitation (ChIP)

assay kit (Upstate). Cellular chromatin was crosslinked by formalde-

hyde and then sheared by sonication. The soluble chromatin was im-

munoprecipitated with an anti-HA polyclonal antibody (Santa Cruz).

After decrosslinking, the immunoprecipitates were subjected to

PCR. Primers used are listed in Table S2.

Generation of atrogin-1-Deficient Mice and Primary Muscle

Cultures

atrogin-1 knockout mice (Bodine et al., 2001) were provided by Regen-

eron. Myoblasts were isolated using the procedure of Rando and Blau

(1994). Muscles were removed from the hindlimbs of 2-week-old mice.

After treatment with 0.1% collagenase D and dispase II (Roche), the

isolated cells were plated on collagen-coated dishes. Myoblasts

were cultured in F-10 nutrient medium with 20% fetal calf serum,

2.5 ng/ml basic fibroblast growth factor (Invitrogen). Myotubes

were induced by switching to differentiation medium. All media

contained Primocin (InvivoGen). Cultures were used on the third day

in differentiation medium, when myotubes formed.

Single-Fiber Analyses of Adult Mouse Muscle

Flexor digitorum brevis muscles from adult mice were digested in type

I collagenase at 4�C for 1 hr, at 37�C for 2 hr, and dissociated into

single fibers. The fibers were electroporated using a BTX porator

(50 volts/4 mm, 3 pulses, 200 ms intervals) to transfer plasmid DNA

and then plated on glass coverslips coated with laminin and cultured

in Tyrode’s salt solution (pH 7.3) containing 10% fetal bovine serum,

50 U/ml penicillin, 50 mg/ml streptomycin, and 5% CO2 (37�C). The

shRNA construct used for knocking down FoxO3 was described pre-

viously (Sandri et al., 2004). The specific sequence used against

FoxO3 was 50-GGATAAGGGCGACAGCAAC-30.

Supplemental Data

Supplemental Data include six figures and two tables and can be found

with this article online at http://www.cellmetabolism.org/cgi/content/

full/6/6/472/DC1/.
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