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Abstract

The Semi-supervised learning (SSL) is an
important research area in machine learn-
ing where both labeled and unlabeled data
is used to build a model. One of the
big advantages of semi-supervised meth-
ods is that they are transparent and easy to
comprehend for humans, unlike most deep
learning techniques which are black box. In
this paper, we design a graph-based semi-
supervised learning framework to detect
sentiment polarity in word vectors trained
on a German corpus. We study theoretical
aspects of the task, empirically analyze a
seminal label propagation algorithm (Zhu
and Ghahramani, 2002) and suggest vari-
ants to improve classification performance.
Additionally, we review the literature of
graph construction for SSL and propose
new methods to avoid hubs, i.e., vertices of
high degree, which are harmful as outlined
by Ozaki et al. (2011).

1 Introduction

Among the most ubiquitous techniques for label
enrichment and transfer learning in sentiment anal-
ysis, in particular for classification tasks, are sen-
timent lexica and word vectors. The use of such
lexica is a classical approach which has been used
for several decades before the advent of deep learn-
ing (Taboada et al., 2011). The training of word
vectors from large unlabeled text corpora is a com-
paratively more recent method dating back to the
seminal paper by Mikolov et al. (2013).

For sentiment analysis, it is common to focus on
supervised methods (Gamon, 2004; Matsumoto et
al., 2005; Pang et al., 2002; dos Santos and Gatti,
2014). Usually, large unlabeled text corpora are
easily available, whereas labeled lexica are harder
to come by and often involve exorbitant labeling

costs. Thus, given an unlabeled dataset at the outset,
this approach is expensive as it takes both time and
labor to annotate a sufficiently large training set.
Typically, word vectors have a vocabulary of size
O(106) (Mikolov et al., 2013) while lexica contain
O(104) (Waltinger, 2010a) words, thus resulting in
a poor ratio of labeled to unlabeled points.

In recent years, semi-supervised learning (SSL)
methods, particularly graph-based approaches
based on label propagation (Zhu and Ghahramani,
2002) attracted attention (Goldberg and Zhu, 2006;
Rao and Ravichandran, 2009; Ren et al., 2012). As
a consequence, graph construction for these meth-
ods emerged as a relevant field of study (Ozaki
et al., 2011; de Sousa et al., 2013; Vega-Oliveros
et al., 2014) as well as approaches minimizing a
cost function derived from such a graph (Ravi and
Diao, 2016). Note that label propagation and its
variations are equivalent to certain minimization
problems (Bengio et al., 2006).

Giulianelli (2017) used SSL on a word embed-
ding obtained via a layer of a long short term mem-
ory (LSTM) recurrent network instead of using
word vectors. However, training an LSTM is a
supervised task, i.e. the method requires a large
amount of labeled data in the first place, which
defeats the purpose and is going against the main
motivation behind SSL techniques.

A major challenge with high dimensional data
is the curse of dimensionality, a well-known phe-
nomenon particularly affecting methods based
on nearest neighbour graphs. Radovanović et
al. (2010) and subsequently Ozaki et al. (2011)
showed that hubs, i.e. vertices of high degree, have
a negative effect on classification results due to the
fact that they are among the nearest neighbours of
a large subset of the dataset.

We introduce the k nearest neighbor (kNN)
graph, consider different variants of it and propose
a trimming and a normalization procedure in order
to combat hubs.
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2 Contributions

To the best of our knowledge, there is no previ-
ous work carrying out a detailed theoretical and
empirical study of SSL as described above, that is
label propagation of a German sentiment lexicon
on word vectors trained on a German corpus.

Our contributions are as follows:
• A study of theoretical challenges of label prop-

agation on a polarity lexicon of word vectors.
• Benchmarking the performance of label prop-

agation on different word vector models of
varying dimensionality, including contextual
language models.
• Extensive experiments to study the perfor-

mance of label propagation empirically with a
variety of parameter configurations and graph
construction techniques.
• Proposition of 2 new methods to avoid the

negative effect of hubs during label propaga-
tion.

The rest of this paper is organized in the fol-
lowing way. We introduce the SSL setting, label
propagation and its problems in section 3. Our
new methods for graph regularization are explained
in section 4. Further motivation, analysis of the
dataset used, the set-up and the results of our ex-
periments are given in section 5. We conclude with
section 6.

3 Graph-based SSL

We begin with a definition of SSL, then define the
similarity function. Afterwards, we move on to
graph construction and label propagation before
discussing the challenges faced by these methods.

3.1 Similarity and Semi-Supervised Learning

Assuming the data is already given as a finite set of
points in Rd , d ∈ N, let l ∈ N denote the number
of labeled points, u ∈ N the number of unlabeled
points and n = l+u the total number of points. We
are considering L = {x1, . . . ,xl} ⊆ Rd , the set of
labeled points, and U = {xl+1, . . . ,xn} ⊆ Rd , the
set of unlabeled points, where xi 6= x j for every
i 6= j, i.e. the points are pairwise distinct. The label
of xi is denoted by yi ∈ {0, . . . ,ρ}, ρ ∈ N. In this
paper, we study binary classification, i.e. ρ = 1.
Given {y1, . . . ,yl}, the goal of SSL is to predict
{yl+1, . . . ,yn} as accurately as possible.

The similarity function is a map

σ : L ∪U ×L ∪U −→ R+,(x,x′) 7→ σ(x,x′),

for instance

σγ(x,x′) = fγ(x− x′),

where

fγ : Rd −→ R+, x 7→ e
− ‖x‖

2
2

2γ2

denotes the radial basis function and γ > 0.
Another example makes use of the k nearest

neighbors of x in L ∪U , defined as follows. Let
k ∈ {1, . . . ,n− 1}, x ∈ Rd and x(1), . . . ,x(n) be a
reordering of L ∪U such that

∥∥x(1)− x
∥∥

2 ≤ ·· · ≤
∥∥x(n)− x

∥∥
2.

Then the k nearest neighbors of x in L ∪U are

kNN(x,L ∪U ) = {x(1), . . . ,x(k)}.

Now, we can define

σk(x,x′) =

{
1 x′ ∈ kNN(x,L ∪U )

0 otherwise
. (∗)

Note that for every i ∈ {1, . . . ,n} and every k we
have that xi ∈ kNN(xi,L ∪U ). To avoid this, one
can define kNN(x,L ∪U ) = {x(2), . . . ,x(k+1)}. In-
cluding the distance of x and x′ is possible by using

σk,γ(x,x′) =

{
fγ(x− x′) x′ ∈ kNN(x,L ∪U )

0 otherwise
.

3.2 Construction of the Underlying Graph

The vertices of the underlying graph are given by
L ∪U . Consider the adjacency matrix A ∈ Rn×n

which is derived from the similarity matrix defined
as W = (σ(xi,x j))1≤i, j≤n.

The easiest choice for A is W itself, where σ =
σγ yields a dense, undirected and weighted graph.
As A is usually heavily involved in the classification
of U it is desirable to use a sparse matrix to save
computation time. In particular, a sparse adjacency
matrix results in higher classification accuracy as
noise and spurious relationships are reduced (Zhu,
2008; Ozaki et al., 2011).

Taking σ = σk leads to a sparse, directed and
unweighted graph, σ = σk,γ to a sparse, directed
and weighted graph known as a kNN graph. Usu-
ally, it is transformed into an undirected graph by
choosing the adjacency matrix

Wmax = (max(σ(xi,x j)),σ(x j,xi)))1≤i, j≤n.
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Figure 1: 5NN graph on UCI glass data set, where
vertices with degree larger than 5 are drawn red
and accordingly bigger.

Ozaki et al. (2011) study the mutual kNN graph
which is given by the adjacency matrix

Wmin = (min(σ(xi,x j)),σ(x j,xi)))1≤i, j≤n.

Note that Wmax and particularly Wmin may yield to
a disconnected graph, harming the classification if
there are connected components with few or abso-
lutely no labeled points.

In any case, the use of σk results in self-loops
as σk(xi,xi) = 1 for every i ∈ {1, . . . ,n}. These
can be removed by using the modified version
of kNN mentioned below (∗). Note further that
σk,γ(x,x) = 0 for every x ∈ Rd , i.e. for fixed
i ∈ {1, . . . ,n} there are not k, but k− 1 non-zero
entries in (σk,γ(xi,x j))1≤ j≤n. Again, the modified
version of kNN prevents this behaviour.

3.3 Label Propagation
For the moment, let us assume yi ∈ {−1,1}, i.e.
we replace the label 0 by −1. Given an adjacency
matrix A, the algorithm is given as follows (Bengio
et al., 2006).

Algorithm 1 Label Propagation
Compute A
Compute diagonal D by Dii← ∑n

j=1 Ai j

Initialize Y (0)← (y1, . . . ,yl,0, . . . ,0)
Iterate

1. Y (t+1)← D−1AY (t)

2. Y (t+1)
i ← yi for 1≤ i≤ l

until convergence criterion is satisfied
Denote the result by Y (∞)

Set yi = sgn(Y (∞)
i )

Consequently, the algorithm propagates the in-
formation along the edges of the underlying graph,

Figure 2: Trimmed version of Figure 1, α = 5.

typically until an equilibrium state is reached. The
nodes initially labeled serve as the source of infor-
mation.

A classical assumption in SSL is the cluster as-
sumption: if points are in the same cluster, they
are likely to be of the same class (Chapelle et al.,
2009). Of course, for high-dimensional data, it is
hard to check if this assumption is fulfilled, espe-
cially given that only a small proportion of the data
is labeled. Strictly speaking, this problem should
be overcome by the word embedding algorithm,
not the label propagation algorithm.

4 Improvements to the Graph

Let us now consider the undirected unweighted
kNN graph without self-loops, that is, the graph
G = (L ∪U ,Wmax) with similarity function σk
using the modifed version of kNN.

4.1 ε-Sparsification

Let ε > 0. The ε-sparsification of G is the graph Gε

which is obtained by deleting every edge {xi,x j}
in G where

∥∥xi− x j
∥∥

2 > ε . Therefore, using Gε

instead of G reduces the influence of outliers on
the classification.

4.2 Edge Normalization

Firstly, we propose to transform G into a weighted
graph Gn by performing edge normalization, i.e.
by assigning every edge {u,v} in G the weight

wu,v = (degG(u)+degG(v))
−1.

Note that wu,v is small if u and v have high de-
gree and vice versa, thus counterbalancing the high
amount of edges between vertices with high degree.

Let NG(u) denote the set of neighbors of u in G.
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For every vertex u ∈ G, we have

0 < ∑
v∈NG(u)

wu,v

≤ ∑
v∈NG(u)

(degG(u)+ min
v∈NG(u)

degG(v))
−1

=
degG(u)

degG(u)+minv∈NG(u) degG(v)
< 1,

i.e. the weighted degree in Gn is concentrated on
the unit interval (0,1).

4.3 Edge Trimming
Secondly, one can apply edge trimming to G in
order to obtain Gt , i.e. one deletes edges in G by
the procedure given as follows:

1. Choose a threshold α ≥ k and define
H = {u ∈ G | degG(u)> α}

2. For every u in H , let vu
1, . . . ,v

u
degG(u)

be a reordering of NG(u) such that
degG(v

u
1)≥ ·· · ≥ degG(v

u
degG(u)

)

3. For every u in H remove the edges
{u,vu

1}, . . . ,{u,vu
l } from G (if possible) where

l = degG(u)−bk logk(degG(u))c
Figures 1 and 2 illustrate the usefulness of trim-

ming for the regularization of kNN graphs using
the UCI glass data set (Dua and Graff, 2017).

4.4 Computational Efficiency
Jebara et al. (2009) and Ozaki et al. (2011) reported
that so-called b-matching graphs, a special case of
b-regular graphs, achieve higher classification ac-
curacy than kNN graphs. However, constructing
the b-matching graph takes O(bn3) time (Huang
and Jebara, 2007) which is too long to be useful in
practice when having large amounts of data. There-
fore, regularizing G within a reasonable amount of
time is desirable.

Fredman and Tarjan (1987) showed that the com-
plexity of building G is O(n2 + kn logn). As the
number of edges in G is bounded by kn, the con-
struction time of Gε , Gn or Gt given G is O(kn).
Hence the overall construction time is dominated
by the term O(n2 + kn logn).

Note that approximate kNN graphs can be con-
structed in O(kn) time (Beygelzimer et al., 2006;
Chen et al., 2009; Ram et al., 2009; Tabei et al.,
2010). Combining these with the modifications dis-
cussed above yields a graph construction algorithm
having time complexity O(kn).

NN VV AD Other Total

polar 4028 1810 3621 102 9561
neutral 642 253 254 61 1210

Table 1: Absolute frequencies of POS-tags among
the labeled word vectors.

Figure 3: T-SNE plot (perplexity = 40) of the neu-
tral (green), polar (blue) and unlabeled (red) word
vectors. For sake of clarity, only 20000 red dots
are shown.

Figure 4: Figure 3 rotated around the x-axis.
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Figure 5: Balanced accuracy for label propagation
on the kNN graph.

5 Experiments

In this paper, we use the lemmatized sentiment lex-
ica introduced in (Waltinger, 2010a) and (Waltinger,
2010b) and label propagation for word-level polar-
ity lexicon expansion.

We compare the label propagation algorithm
given above on various graphs in a sentiment po-
larity detection task. More precisely, we consider
G as in section 4 and its modifications as well as
the undirected weighted kNN graph without self-
loops, i.e. the graph Gγ = (L ∪U ,Wmax) with
similarity function σk,γ using the modified version
of kNN. The convergence criterion is given by∥∥Y (t+1)−Y (t)

∥∥
1 < 0.001.

5.1 Dataset and Resources

As there was no public FastText model (Bo-
janowski et al., 2016; Joulin et al., 2016) trained
on a proprietary German news corpus, we trained
our own model. The resulting vocabulary size was
196972 word vectors of dimension 60. The reason
for choosing FastText was the ability of the trained
model to deal with out of vocabulary (OOV) words,
as it is using subword character information.

The labeled word vectors are given by the lem-
matized dictionaries used in (Waltinger, 2010a;
Waltinger, 2010b). We assign the label 1 to the
words annotated positive or negative, i.e. polar,
and 0 to the words annotated neutral, where we
removed the digits and the punctuation symbols
from the neutral dictionary.

We prefer this lexicon over SentiWS (Remus et
al., 2010) and PolArt (Klenner et al., 2009) as it is
the largest one - 10771 words compared to approx-
imately 3450 and 9380, respectively. Furthermore,
SentiWS measures sentiment using the full interval
[−1,1], i.e. first, one has to categorise the senti-
ment value before one can apply label propagation.

In particular, polarity is sparsely embedded in

language, i.e. a model accurately determining po-
larity can be used to extend sentiment dictionaries.

We choose to learn neutral vs. polar as the usu-
ally treated three-way case is significantly harder
on word-level. For instance, the sentiment of ’rise’
is polar, but the precise value depends heavily on
the context (e.g. compare wealth is rising and
poverty is rising).

5.2 Description of Dataset
The ability to embed OOV words is an integral part
of our method as the labeled words are not necessar-
ily contained in the corpus mentioned above. Fig-
ures 3 and 4 show a three-dimensional t-SNE plot
(Maaten and Hinton, 2008; Van Der Maaten, 2014)
of the word vectors, indicating that the dataset is
lying on a low-dimensional manifold.

In total, we have 9561 data points with label
1 and 1210 data points with label 0. Only 163
(≈ 1.5%) of these words have a Part-Of-Speech-
tag (POS-tag) that is not noun (NN), verb (VV) or
adjective (AD) (see Table 1). Therefore we only
consider unlabeled words whose POS-tag is one
of these three, reducing the amount of unlabeled
points to 85759.

We randomly draw a test set of 3000 words from
the set of unlabeled points. The test set is labeled
by one of the authors. 362 words (≈ 12.1%) were
assigned “polar”.

Comparing with an independent annotator, we
have an inter-annotator agreement of Cohen’s κ =
0.4682 showing that word-level sentiment analysis
is a very hard to perform task, even for humans.
Consequently, one cannot expect a model predict-
ing sentiment to be performing as well as prediction
models in different areas of Machine Learning.

This is probably due to the fact that sentiment is
subjective and thus influenced by the emotional as-
sociation of words to experiences of the individual
annotator. There are even studies that suggests that
the voice and audio signal is as important as the text
for semantic purposes. A more fundamental fact is
that sentiment in human language is better identi-
fied given the context, thus rendering the analysis
of word-level sentiment even harder.

5.3 Dimensionality and Information Content
of the Embedded Data

Given the ever increasing dimensionality of em-
beddings, from about 300 in the early Word2Vec
models to more than 3000 in the most recent con-
textualized embeddings like ELMo (Peters et al.,
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Figure 6: Distribution of degree in G.

Figure 7: Distribution of degree in Gt , α = 13.

2018), we study the cumulative explained variation
of the word embeddings given by Principal Compo-
nent Analysis (PCA) (Pearson, 1901) and examine
it for decreasing dimension of the target space.

In every case, there is a decay starting out slowly,
followed by a very sharp drop suggesting that most
of the critical information content of the given word
embedding is lying on a low-dimensional manifold.

5.4 Class Balancing and Parameters

Instead of transforming our labels to −1 and 1
(recall section 3.3), we normalized the labels by
class size, i.e. we used −1/1210 for the neutral

Figure 8: Cumulative explained variation of PCA
on our data embedded using GloVe.

Figure 9: Cumulative explained variation of PCA
on our data embedded using ELMo.

words and 1/9561 for the polar words.
For all experiments, we use the same 9NN graph

G as k = 9 maximizes the balanced accuracy (see
Figure 5). Given the near linear time complexity
of modifying G, we obtained an optimal parameter
configuration using binary search.

Note that word vector models trained on a very
large vocabulary, OOV words almost never occur.
Hence, we also compare our self-trained embed-
ding with different pre-trained ones.

5.5 Comparison of Word Vector Embeddings
and Classification Results

Training a word vector model on the corpus at hand
is usually an expensive and rewarding step at the
same time. We compare our model with three pre-
trained word embeddings:
• FastText,
• ELMo and
• GloVe (Pennington et al., 2014).

Note that ELMo is a contextualized representation
model embedding a word within its sentence. As
we are working on word-level, each sentence is the
word itself. The results are shown in table 2.

Despite being the lowest-dimensional, our self-
trained model captures the nuances of our corpus
better than the other pretrained models. Further,
we can see that ELMo, one of the most recent con-
textualized word embedding models, clearly out-
performs FastText and GloVe, whereas the latter
two roughly score the same.

Table 3 shows the result for Gγ , G and its modi-
fications using the parameters maximizing the F1
score. We can see that Gγ is performing worse than
G and its modifications. In particular, removing
hubs via edge normalization or trimming is improv-
ing classification performance.
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Embedding Dimension F1 Recall Precision Bal. Acc.

FastText (self-trained) 60 000...333444000555 0.6381 000...222333222222 000...666777444333
GloVe 96 0.2084 0.4199 0.1386 0.5308

FastText (pre-trained) 300 0.2016 0.2376 0.1752 0.5420
ELMo 3072 0.2602 000...666444999222 0.1627 0.5954

Table 2: F1 score and balanced accuracy for G with different word embeddings to transform our data into
high-dimensional vectors.

Underlying Graph F1 Recall Precision Bal. Acc.

Gγ , γ = 14 0.3317 0.6630 0.2212 0.6713

G 0.3405 0.6381 0.2322 0.6743
Gε , ε = 110 0.3410 0.6381 0.2326 0.6746

Gn 0.3437 0.6575 0.2326 0.6799
(Gε)n, ε = 110 000...333444444999 0.6602 000...222333333444 0.6813

Gt , α = 13 0.3428 0.6685 0.2305 0.6811
(Gε)t , ε = 120,α = 12 0.3437 000...666777444000 0.2306 000...666888222777

Table 3: F1 score and balanced accuracy for Gγ , G and G with different combinations of the modifications
discussed in section 4. (Gε)n indicates that edge normalization was applied after ε-sparsification.

Figure 10: Distribution of weighted degree in Gn.

5.6 Improvement of Graph Construction

In Figure 6 we can see that G not only contains
vertices of degree 9, but also of degree 20 times
as large. After trimming the edges, the graph is
close to a 9- or 10-regular graph (see Figure 7). In
particular, the maximum degree is 22, a little more
than twice the most frequent degree arising in Gt .

Figure 10 shows the distribution of the weighted
degree in Gn, the normalized version of G. Again,
the maximum degree is a little more than twice
the most frequent degree arising, whereas the mini-
mum degree is comparatively small, i.e. the graph
is not close to a regular weighted graph. However,
the shape of the distribution is quite similar to the
shape seen in Figure 7.

Figure 11 shows the balanced accuracy for Gt

Figure 11: Balanced accuracy for Gt , 9≤ α ≤ 224.
The dotted line shows the balanced accuracy for G.

where α is ranging from 9, the minimum degree in
G, to 224, the maximum degree. For small α , Gt is
close to a regular graph, i.e. hubs were successfully
eliminated yielding a good result. Furthermore, for
large α , Gt is very similar to G and hence the result
is approximately the same. However, there is a no-
table global minimum around α = 35, suggesting
that hub removal should be done either completely
or not at all.

5.7 Towards the Fully Connected Graph

Due to the high amount of memory needed, we can-
not construct the fully connected weighted graph
proposed by Zhu and Ghahramani (2002), that is
the graph given by taking the similarity matrix W
along with the similarity function σγ as adjacency
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Figure 12: Bal. Accuracy for Gγ , 1≤ γ
2 ≤ 10, and

multiple values for k.

matrix A. However, the weighted kNN graph Gγ
with large k is a good approximation as σγ(xi,x j)
is strictly decreasing in

∥∥xi− x j
∥∥

2 and hence, only
the edges having small weight are missing.

As an example, Figure 12 shows the balanced
accuracy for k ∈ {9,99,199,499} (k = 499 is very
close to the maximum value possible on our hard-
ware). We can see that large k harms the clas-
sification, thus confirming the results on sparse
adjacency matrices mentioned in section 3.2.

We do not rule out the fact that there could be a
state change as k ≈ n where the information flow
improves drastically and causes the SSL classifi-
cation performance to spike. We leave this as an
open question for future work.

6 Conclusion

In this paper, we study label propagation for senti-
ment detection on word vectors obtained by train-
ing a FastText model as well as by using pre-trained
models, which clearly perform worse. We showed
empirically that the unweighted 9NN graph per-
forms better on the given task than its weighted
counterpart and the approximation of the fully con-
nected weighted graph.

Furthermore, we propose improvements to state-
of-the-art methods for the construction of the un-
derlying graph. and show that properly chosen anti-
hub routines and mild ε-sparsification improves
the result. In particular, edge trimming is a fast
algorithm to transform a kNN graph into a more
regular one.

7 Future Work

Possible directions for future research include the
development of an online label propagation algo-
rithm based on entropy and data quantization (in
the spirit of (Valko et al., 2012)). The goal is to

improve classification performance for situations
where the word vector embedding of the given data
does not fulfill the cluster assumption perfectly.
Furthermore, the ability of being able to deal with
streaming data is a highly attractive add-on for
practical applications of SSL models.

Another interesting idea is the search for metrics
quantifying the cluster assumption for the embed-
ded data, as discussed above. This can be sup-
plemented by an analysis of the performance of
label propagation conditioned on the scores pro-
vided by the metrics found above and hence, by the
relevance of the word embedding.

Datasets which can be used to examine the per-
formance of the given SSL algorithm include the
annotations on polarity shifters by (Schulder et al.,
2018) and the domain-specific corpora for compu-
tational social science by (Hamilton et al., 2016).
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