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Abstract

In this paper, we present three general-
purpose neural network models for sen-
tence boundary detection. We report on
a series of experiments with long short-
term memory (LSTM), bidirectional long
short-term memory (BiLSTM) and con-
volutional neural network (CNN) for sen-
tence boundary detection. We show that
these neural networks architectures outper-
form the popular framework of OpenNLP,
which is based on a maximum entropy
model. Hereby, we achieve state-of-the-art
results both on multi-lingual benchmarks
for 12 different languages and on a zero-
shot scenario, thus concluding that our
trained models can be used for building
a robust, language-independent sentence
boundary detection system.

1 Introduction

The task of sentence boundary detection is to iden-
tify sentences within a text. Many natural language
processing (NLP) tasks take a sentence as an in-
put unit, such as part-of-speech tagging (Manning,
2011), dependency parsing (Yu and Vu, 2017),
named entity recognition or machine translation.
Thus, this foundational task stands at the begin-
ning of various NLP processes and decisively de-
termines their downstream-performance.

Sentence boundary detection is a nontrivial
task, because of the ambiguity of the period sign
“”, which has several functions (Grefenstette and
Tapanainen, 1994), e.g.:

End of sentence
Abbreviation

Acronyms and initialism
Mathematical numbers

A sentence boundary detection system has to re-
solve the use of ambiguous punctuation characters
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to determine if the punctuation character is a true
end-of-sentence marker!.

In the present work, we train different deep ar-
chitectures of neural networks, such as long short-
term memory (LSTM), bidirectional long short-
term memory (BiLSTM) and convolutional neu-
ral network (CNN), and compare the results with
OpenNLP?. OpenNLP is a state-of-the-art tool and
uses a maximum entropy model for sentence bound-
ary detection. To test the robustness of our models,
we use the Europarl corpus for German and En-
glish, the SETimes corpus for nine different Balkan
languages, and the Leipzig corpus (Goldhahn et
al., 2012) for one Semitic language, namely Ara-
bic. This makes our model language-independent,
in which further languages can be used, given the
associated training resources are available.

Additionally, we use a zero-shot scenario to test
our model on unseen abbreviations. We show that
our models outperform OpenNLP both for each
language and on the zero-shot learning task. There-
fore, we conclude that our trained models can be
used for building a robust, language-independent
state-of-the-art sentence boundary detection sys-
tem.

The remainder of the paper is organized as fol-
lows: Section 2 reviews related work. Section 3
presents a sketch of the underlying neural models
and the choice of hyperparameters. Section 4 de-
scribes the text data and its preprocessing for our
twofold experimental setup of a) mono-lingual, and
b) zero-shot training. Section 5 reports our results,
and, finally, Section 6 discusses our results and
draws a conclusion.

2 Related Work

Various approaches have been employed to achieve
sentence boundary detection in different languages.

UIn this paper, we define “?!:;” as potential end-of sentence
markers.
20penNLP 1.8.4: https://opennlp.apache.org
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Recent research in sentence boundary detection
focus on machine learning techniques, such as hid-
den Markov models (Mikheev, 2002), maximum
entropy (Reynar and Ratnaparkhi, 1997), condi-
tional random fields (Tomanek et al., 2007), de-
cision tree (Wong et al., 2014) and neural net-
works (Palmer and Hearst, 1997). Kiss and Strunk
(2006) use an unsupervised sentence detection sys-
tem called Punkt, which does not depend on any
additional resources. The system use collocation
information as evidence from unannotated corpora
to detect e.g. abbreviations or ordinal numbers.

The sentence boundary detection task can be
treated as a classification problem. Our work is
similar to the SATZ system, proposed by Palmer
and Hearst (1997), which uses a fully-connected
feed-forward neural network. The SATZ system
disambiguates a punctuation mark given a context
of k surrounding words. This is different to our
approach, as we use a char-based context window
instead of a word-based context window.

Further high-performers such as Elephant
(Evang et al., 2013) or Cutter (Graén et al., 2018)
follow a sequence labeling approach. However,
they require a prior language-dependent tokeniza-
tion of the input text. In contrast to these works,
we construct an end-to-end approach which does
not depend on the performance of any tokenization
method, thus making our Deep End-Of-Sentence
detector (Deep-EOS) more robust to multi-lingual
settings.

3 Model

We use three different architectures of neural net-
works: long short-term memory (LSTM), bidirec-
tional long short-term memory (BiLSTM) and con-
volutional neural network (CNN). All three models
capture information at the character level. Our mod-
els disambiguate potential end-of-sentence mark-
ers followed by a whitespace or line break given
a context of k surrounding characters. The poten-
tial end-of-sentence marker is also included in the
context window. Table 1 shows an example of a
sentence and its extracted contexts: left context,
middle context and right context. We also include
the whitespace or line break after a potential end-
of-sentence marker.

LSTM We use a standard LSTM (Hochreiter and
Schmidhuber, 1997; Gers et al., 2000) network
with an embedding size of 128. The number of
hidden states is 256. We apply dropout with proba-
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Input sentence Left | Middle | Right

I go to Mr. Pete Tong | to Mr Pete

Table 1: Example for input sentence and extracted
context of window size 5.

bility of 0.2 after the hidden layer during training.
We apply a sigmoid non-linearity before the predic-
tion layer.

BILSTM Our bidirectional LSTM network uses
an embedding size of 128 and 256 hidden states.
We apply dropout with a probability of 0.2 after
the hidden layer during training, and we apply a
sigmoid non-linearity before the prediction layer.

CNN For the convolutional neural network we
use a 1D convolution layer with 6 filters and a
stride size of 1 (Waibel et al., 1989). The output of
the convolution filter is fed through a global max
pooling layer and the pooling output is concate-
nated to represent the context. We apply one 250-
dimensional hidden layer with ReLLU non-linearity
before the prediction layer. We apply dropout with
a probability of 0.2 during training.

Other Hyperparameters Our  proposed
character-based model disambiguates a punc-
tuation mark given a context of k£ surrounding
characters. In our experiments we found that a
context size of 5 surrounding characters gives the
best results. We found that it is very important
to include the end-of-sentence marker in the
context, as this increases the Fl-score of 2%.
All models are trained with averaged stochastic
gradient descent with a learning rate of 0.001 and
mini-batch size of 32. We use Adam for first-order
gradient-based optimization. = We use binary
cross-entropy as loss function. We do not tune
hyperparameters for each language. Instead, we
tune hyperparameters for one language (English)
and use them across languages. Table 2 shows the
number of trainable parameters for each model.

Model # Parameters
LSTM 420,097
BiLSTM 814,593
CNN 33,751

Table 2: Number of trainable parameters for LSTM,
bidirectional LSTM and CNN.



4 Experimental Setup

Data Similar to Wong et al. (2014) we use the Eu-
roparl corpus (Koehn, 2005) for our experiments.
The Europarl parallel corpus is extracted from the
proceedings of the European Parliament and is orig-
inally created for the research of statistical machine
translation systems. We only use German and En-
glish from Europarl. Wong et al. (2014) does
not mention that the Europarl corpus is not fully
sentence-segmented. The Furoparl corpus has a
one-sentence per line data format. Unfortunately,
in some cases one or more sentences appear in
a line. Thus, we define the Europarl corpus as
“quasi”-sentence segmented corpus. We use the
SETimes corpus (Tyers and Alperen, 2010) as a
second corpus for our experiments. The SETimes
corpus is based on the content published on the SE-
Times.com news portal and contains parallel texts
in ten languages. Aside from English the languages
contained in the SETimes corpus fall into several
linguistic groups: Turkic (Turkish), Slavic (Bul-
garian, Croatian, Macedonian and Serbian), Hel-
lenic (Greek), Romance (Romanian) and Albanic
(Albanian). The SETimes corpus is also a “quasi’-
sentence segmented corpus. For our experiments
we use all the mentioned languages except English,
as we use an English corpus from Europarl. We
do not use any additional data like abbreviation
lists. We use the Leipzig corpus as the third and
final corpus to include the non-European language
Arabic into the scope of our investigations. For a
zero-shot scenario we extracted 80 German abbre-
viations including their context in a sentence from
Wikipedia. These abbreviations do not exist in the
German Europarl corpus.

Preprocessing All corpora are not tokenized.
Text tokenization (or, equivalently, segmentation)
is highly non-trivial for many languages (Schiitze,
2017). It is problematic even for English as word
tokenizers are either manually designed or trained.
For our proposed sentence boundary detection sys-
tem we use a similar idea from Lee et al. (2017).
They use a character-based approach without ex-
plicit segmentation for neural machine translation.
We also use a character-based context window, so
no explicit segmentation of input text is necessary.

For all corpora we use the following preprocess-
ing steps: (a) we remove duplicate sentences, (b)
we extract only sentences with ends with a poten-
tial end-of-sentence marker. Each text collection
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Language # Train # Dev # Test
German 1,476,653 | 184,580 | 184,580
English 1,474,819 | 184,352 | 184,351
Arabic 1,647,906 | 274,737 | 276,172
Bulgarian 148,919 18,615 | 18,614
Bosnian 97,080 12,135 | 12,134
Greek 159,000 19,875 | 19,874
Croatian 143,817 17,977 17,976
Macedonian | 144,631 18,079 | 18,078
Romanian 148,924 18,615 18,615
Albanian 159,323 19,915 | 19,915
Serbian 158,507 19,813 | 19,812
Turkish 144,585 18,073 | 18,072

Table 3: Number of sentences in Europarl, SE-
Times and Leipzig corpus for each language for
training, development and test set.

for a language is split into train, dev and test sets.
Table 3 shows a detailed summary of the training,
development and test sets used for each language.

Tasks In the first task we train our different mod-
els on the Europarl, SETimes and Leipzig corpus.
The second task is to perform zero-shot sentence
boundary detection. For the zero-shot scenario the
trained models for the German Europarl corpus are
used.

Setup We evaluate our different models on our
three corpora. We measure Fl-score for each
model. As baseline to our models, we use
OpenNLP. OpenNLP uses a maximum entropy
model. OpenNLP comes with pretrained models
for German and English, but to ensure a fair com-
parison between our models and OpenNLP, we
do not use them. Instead, we train a model from
scratch for each language with the recommended
hyperparameters from the documentation. For the
zero-shot scenario we use our trained LSTM, BiL-
STM and CNN models on the German Europarl
corpus and the trained model with OpenNLP to
perform a zero-shot sentence boundary detection
on the crawled abbreviations.

5 Results

We train a maximum of 10 epochs for each model.
For the German and English corpus (Europarl)
the time per epoch is 55 minutes for the BILSTM
model, 28 minutes for the LSTM model and 5 min-
utes for the CNN model. For each language from
the SETimes corpus the time per epoch is 5 minutes



Lang. LSTM | BiLSTM | CNN | OP

German | 97.59 97.59 97.50 | 97.38
English | 98.61 98.62 98.55 | 98.40
Arabic 99.86 99.83 81.97 | 99.76
Bulg. 99.22 99.27 99.22 | 98.87
Bosn. 99.58 99.52 99.53 | 99.25
Greek 99.67 99.70 99.66 | 99.25
Croat. 99.46 99.44 99.44 | 99.07
Maced. | 98.04 98.09 97.94 | 97.86
Roman. | 99.05 99.05 99.06 | 98.89
Alban. 99.52 99.51 99.47 | 99.34
Serbian | 98.72 98.76 98.73 | 98.32
Turkish | 98.56 98.58 98.54 | 98.08

Table 4: Results on test set for Europarl, SETimes
and Leipzig corpus against OpenNLP (OP). The
highest F1-score for each task on each language is
marked in bold face.

for the Bi-LSMT model, 3 minutes for the LSTM
model and 20 seconds for the CNN model. Timings
are performed on a server machine with a single
Nvidia Tesla K20Xm and Intel Xeon E5-2630.

The results on test set on the SETimes corpus are
shown in Table 4. For each language the best neural
network model outperforms OpenNLP. On average,
the best neural network model is 0.38% better than
OpenNLP. The worst neural network model also
outperforms OpenNLP for each language. On av-
erage, the worst neural network model is 0.33%
better than OpenNLP. In half of the cases the bi-
directional LSTM model is the best model. In
almost all cases the CNN model performs worse
than the LSTM and bi-directional LSTM model,
but it still achieves better results than the OpenNLP
model. This suggests that the CNN model still
needs more hyperparameter tuning.

The first two rows in Table 4 show the results on
test set on the Europarl corpus. For both German
and English the best neural network model outper-
forms OpenNLP. The CNN model performs worse
than the LSTM and bi-directional LSTM model
but still achieves better results than OpenNLP.
The bi-directional LSTM model is the best model
and achieves the best results for German and En-
glish. On average, the best neural network model
is 0.22% better than OpenNLP, whereas the worst
neural network model is still 0.14% better than
OpenNLP.

Table 5 shows the results for the zero-shot sce-
nario. The CNN model outperforms OpenNLP by
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Model Precision | Recall | F1

LSTM 56.62 96.25 | 71.29
BiLSTM 60.00 97.50 | 74.29
CNN 61.90 97.50 | 75.12
OpenNLP 54.60 96.25 | 69.68

Table 5: Results on the zero-shot scenario for un-
seen German abbreviations.

a large margin and is 6% better than OpenNLP.
The CNN model also outperforms all other neu-
ral network models. Interestingly, the CNN model
performs better in a zero-shot scenario than in the
previous tasks (Europarl and SETimes). That sug-
gests that the CNN model generalizes better than
LSTM or BiLSTM for unseen abbreviations. The
worst neural network model (LSTM model) still
performs 1,6% better than OpenNLP.

6 Discussion & Conclusion

In this paper, we propose a general-purpose sys-
tem for sentence boundary detection using different
architectures of neural networks. We use the Eu-
roparl, SETimes and Leipzig corpus and compare
our proposed models with OpenNLP. We achieve
state-of-the-art results.

The results on the three corpora show that the
trained neural network models perform well for
all languages. We tune hyperparameters just for
one language (English) and share these hyperpa-
rameter settings across other languages. This sug-
gests that the proposed neural network models can
adopt other languages as well, which makes them
language-independent. Our character-based con-
text approach requires no explicit text segmentation
and is robust against unknown words.

In a zero-shot scenario, in which no manifesta-
tion of the test abbreviations is observed during
training, our system is also robust against unseen
abbreviations. It shows that our proposed neural
network models can detect abbreviations “on the
fly”, after the model has already been trained.

The fact that our proposed neural network mod-
els perform well on different languages and on a
zero-shot scenario leads us to the conclusion that
Deep-EOS is a general-purpose system>. Our sys-
tem can be used for a wide variety of practical use
cases, e.g. in the scope of the BIOfid project where
unstructured OCR text data on biodiversity has to

3https://github.com/stefan-it/deep-eos



be processed for the task of biological Named Enti-
tiy Recognition (Ahmed and Mehler, 2018; Ahmed
etal., 2019).
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