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Abstract

It is not always easy to keep track of what
tools are currently available for a particular
annotation task, nor is it obvious how the
provided models will perform on a given
data set. In this contribution, we provide an
overview of the tools available for the auto-
matic annotation of German-language text.
We evaluate fifteen free and open source
NLP tools for the linguistic annotation of
German, looking at the fundamental NLP
tasks of sentence segmentation, tokeniza-
tion, POS tagging, morphological analy-
sis, lemmatization, and dependency pars-
ing. To get an idea of how the systems’
performance will generalize to various do-
mains, we compiled our test corpus from
various non-standard domains. All of the
systems in our study are evaluated not only
with respect to accuracy, but also the com-
putational resources required.

1 Introduction

An extensive number of NLP tools are available
nowadays for the automatic analysis of natural lan-
guage data. The vast majority of these tools have
been developed for English, though, and often take
advantage of specific properties of the English lan-
guage, such as the fact that English sentences show
a rather fixed word order (so Markov models work
well), or that English does not have a rich inflec-
tional morphology (so lemmatizers are not a major
concern). As a result, it is often not clear to what ex-
tent these tools are applicable to further languages,
and often no pre-trained models are provided for
languages other than English.

Similarly, these tools are mostly evaluated only
on English language data, but the results for En-
glish may not be transferable to other languages.
Depending on the language, different kinds of an-

notations can be necessary, which are not relevant
for English.

Moreover, most tools are trained and tested on
standard (newspaper) language, but different regis-
ters of a language can differ significantly, e.g. with
respect to syntax or lexicon (Biber and Conrad,
2009). Performance of tools trained on standard
language drops considerably when these tools are
applied to data from other registers, such as social
media data.

And finally, the efficiency of many freely avail-
able systems, i.e. the time and computing resources
they require for the annotation task, can become a
problem in the context of practical applications or
if large amounts of text need to be analyzed.

The goals of this work are, first, to determine
what freely-available systems exist for the linguis-
tic analysis of German texts. Second, we want to
assess the accuracy of their output in various non-
standard domains, including formal (Wikipedia),
semi-formal (sermons), and informal (movie sub-
titles) contexts. We will evaluate the systems in
the fundamental NLP tasks of sentence segmenta-
tion, tokenization, part-of-speech (POS) tagging,
morphological analysis, lemmatization, and depen-
dency parsing, and we will provide an overview of
the computational resources each system requires
for these tasks.

The remainder of this paper is structured as fol-
lows: Section 2 gives an overview of related work.
Section 3 introduces the data used in the study
and the gold standard annotation. The NLP tools
tested in this study are introduced in Section 4. In
Section 5, we describe our experimental setup for
the evaluation of the selected systems with respect
to both accuracy and speed. We conclude with a
discussion of the results in Section 6 and 7.

2 Related Work

The Association for Computational Linguistics
(ACL) provides state-of-the-art results for a range
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of NLP tasks, such as POS tagging, named entity
recognition, parsing, paraphrase identification, or
question answering.1 However, the majority of
results reported here are based on English data
only, and even for common tasks like POS tagging,
only results for English and French are available.
This, of course, does not mean that POS tagging
has not been evaluated for other languages as well.
It shows, though, that results for other languages
are scattered across numerous publications and not
readily available. Moreover, even results of the
same target language are not easily comparable to
each other because evaluations often use different
data sets.

While most evaluations are confined to news-
paper texts, there are some exceptions. Gadde et
al. (2011) evaluate and adapt a POS tagger trained
on standard English data (the WSJ corpus) to SMS
data. Gimpel et al. (2011) and Owoputi et al. (2012)
develop POS taggers for Twitter data, with accura-
cies of around 90% (best version: 92.80%). Choi
et al. (2015) evaluate statistical dependency parsers
on the English part of OntoNotes 5, with data from
different genres, which they specify as broadcast-
ing conversation, broadcasting news, news maga-
zine, newswire, pivot text, telephone conversation,
and web text. In their study, the best overall accu-
racies are reached by the ClearNLP and the Mate
parser with about 90%, while they found the spaCy
parser (version 1.x) to be the fastest parser annotat-
ing 755 sentences or 13,963 tokens per second.

For German, Giesbrecht and Evert (2009) evalu-
ate POS taggers on web data and show that accu-
racy values drop significantly for non-standard data,
especially for posts from online forums, which
were tagged with accuracies < 90%. Similarly,
Neunerdt et al. (2013) evaluate and compare tag-
gers trained on standard data with taggers retrained
on comments in German from different online
forums. Standard taggers achieve accuracies of
> 87%, retrained taggers of > 93%. Beißwenger
et al. (2016) show that these results hold true sev-
eral years later, as they find similar results for the
annotation of computer-mediated communication
(CMC) and web data. While the best systems reach
F1-Scores > 99% for tokenization, the best tagger
only achieved a tagging accuracy of 90%.

1https://aclweb.org/aclwiki/State_of_
the_art

3 Data

As already mentioned, language varieties differ
considerably on all linguistic levels, e.g. syntax
or lexicon (Biber and Conrad, 2009), and pose
different challenges to automatic annotation tools.
Since most available models are trained on stan-
dard (newspaper) language, their accuracy might
drop when they are applied to non-standard data
like informal written communication. By using
data from various domains, ranging from formal
to informal contexts, we can evaluate whether the
application of pre-trained models is limited to a
restricted language domain or if they can be used
for other language varieties as well.

For the evaluation, we used data from five dif-
ferent registers representing large resources of raw
texts: encyclopedic text (Wikipedia)2, literary text
(Novelette)3, Christian sermons (Sermon)4, pre-
pared but freely-performed talks (TED)5 and movie
subtitles (Movie)6. Table 1 gives an impression of
the selected text types and their particularities.

For each register, a random sample of approx-
imately 1,500 tokens was selected, resulting in a
total of 559 sentences with 7,642 tokens (2,649
types). Table 2 gives an overview of the data.

Gold Standard For all annotations we manually
created a gold standard. The annotation of sentence
boundaries7 and tokenization was carried out in
text files, and all other annotations were done with
WebAnno (de Castilho et al., 2016)8.

We use the Stuttgart–Tübingen tagset (or STTS,
Schiller et al. (1999))9 for POS tagging, and the

2Sample wpd15_sample.i5.xml from the
Wikipedia subcorpus of DeReKo (http://corpora.
ids-mannheim.de/pub/wikipedia-deutsch/
2015/wpd15_sample.i5.xml.bz2).

3Texts of the genre ‘novelette’ from GutenbergDE cor-
pus, edition 14 (http://gutenberg.spiegel.de/),
which were published after 1900.

4Automatically downloaded from the SermonOnline
database (http://www.sermon-online.de)

5German translations of English talks, automatically down-
loaded from the official website https://www.ted.com/
talks?language=de.

6German subtitles for movies tagged as “Action, Adven-
ture, Drama” or “Comedy, Drama” from the OpenSubtitles
corpus (http://www.opensubtitles.org/), down-
loaded at http://opus.nlpl.eu/download.php?
f=OpenSubtitles/v2018/raw/de.zip

7For Wikipedia and Movie subtitles, sentence boundaries
were already present in the data and only corrected as neces-
sary.

8Version 3.4.6 (https://webanno.github.io/
webanno/

9STTS is the de facto standard POS tagset for German
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Subcorpus Example Sentence

Wikipedia Das 6. Kanadische Kabinett (engl. 6th Canadian Ministry, franz. 6e conseil des
ministres du Canada) regierte Kanada vom 21. Dezember 1894 bis zum 27. April
1896.

Novelette Zwischen dem roten Rausch der Pelargonien und seinem Damaskus lag eine Fülle
engbeschriebener Tagebuchblätter, jedes mit der zierlich-säuberlichen Unterschrift
»Erich Friese, Kandidat« versehen.

Sermon Wenn ihr aber zu Christus gehört, seid ihr auch Abrahams Nachkommen und
bekommt das Erbe, das Gott Abraham versprochen hat. (Gal 3,29)

TED Im Himalaya, der drittgrössten Eismasse, sehen Sie oben neue Seen, die vor ein paar
Jahren Gletscher waren.

Movie - Dad, das reicht!

Table 1: Example sentences from each register.

Subcorpus Register #Tok #Sent #Doc

Wikipedia written, encyclopedic 1,514 96 12
Novelette written, prose 1,588 69 12
Sermon spoken, planned 1,520 90 16
TED spoken, planned 1,506 101 17
Movie spoken 1,514 203 21

Total 7,642 559 78

Table 2: Overview of the data from the five subcor-
pora used in the study.

TIGER annotation scheme (Crysmann et al., 2005)
for morphological annotations, which can be con-
sidered an extension and improvement upon the
original ‘large’ STTS. We also performed lemma-
tization on the texts, also according to the TIGER
annotation scheme, albeit with some modifications:
nominalizations are treated like normal nouns, and
personal and reflexive pronouns are annotated with
their nominative form (e.g. ich, du, etc.) except
where this is not possible, as is the case for sich.
For tokens that are not annotated with a lemma in
the TIGER scheme, such as interjections, foreign
words, punctuation, we use the surface form as its
lemma.

For dependencies, we annotated only arguments,
which should be reliably comparable across annota-
tion schemes, and not modifiers, which are handled
quite differently in different schemes, e.g. with re-
gard to attachment site or label name.10 For this
paper, we consider subjects, direct and indirect ob-

data. Morphological tagsets and lemmatization is less well
standardized for German but most corpora use schemes that
are based on or similar to the TIGER schemes we use.

10In order to be able to compare diverging annotation for-
mats, we also annotated auxiliaries and prepositions within
predicatives (cf. Section 5).

Annotation #Tokens #Types #Ambig

POS 7,642 53 114
Lemma 7,642 2,077 27
Morphology 4,331 233 323

Table 3: Overview of the gold standard dataset.

jects, clausal subjects and objects, predicatives, and
expletives to be arguments. We excluded preposi-
tional objects because it is often difficult to deter-
mine when they are acting as arguments or adjuncts.
All texts were annotated independently by one to
five student annotators and checked manually after-
wards by one of the authors.

Table 3 provides an overview of the gold data.
The table shows the number of tokens with a partic-
ular type of annotation (which varies since words
that cannot be inflected are not annotated for mor-
phology), the number of annotated types, and the
number of ambiguous word forms (e.g. the word
form gehört, could either represent a present tense
form of the lemma gehören ‘belong’ or a participle
form of the lemma hören ‘hear’). Figure 1 shows
the distribution of dependency relations in the gold
data.

4 NLP Tools

For the evaluation in this paper, we selected sys-
tems that are freely available, i.e. open source, and
for which pre-trained models for German are pro-
vided. Of course, the selection of tools we test
here is not comprehensive, but we will make our
data and evaluation scripts publicly available so
further systems can be added and compared with
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Figure 1: Distribution of dependency relations in the gold data. The numbers on top of the columns
indicate the total frequencies of the seven relations considered in the evaluation and, in parentheses, the
corresponding percentage (e.g. in the Wikipedia subcorpus, 163 tokens, which correspond to 10.77% of
all tokens, have been annotated with one of the seven relations).

the systems described here.
Most prominently, there are those systems which

provide a full range of annotations from tokeniza-
tion to dependency parsing: CoreNLP (Manning et
al., 2014), which combines rule-based tokenization
with statistical tagging and dependency parsing,
spaCy v2.1.3 (Honnibal and Montani, 2017),11 and
the Python-based StanfordNLP (Qi et al., 2018).

We also test a few dedicated tokenizers: NLTK
(Bird et al., 2009), comprising a regular expression–
based word tokenizer and the Punkt tokenizer (Kiss
and Strunk, 2006) for sentence segmentation, So-
MaJo (Proisl and Uhrig, 2016), and Syntok (Leit-
ner, 2019). We evaluate both the rule-based sen-
tencizer included in the spaCy pipeline as well
as the sentence boundaries derived from spaCy’s
dependency analysis, which is the usual way of de-
termining sentence boundaries with spaCy. These
results are listed under ‘spaCy parser’ in Table 4.

Some tools only perform lemmatization, such as
IWNLP (Liebeck and Conrad, 2015), which makes
use of a word form to lemma mapping extracted
from the German Wiktionary, and GermaLemma
(Konrad, 2019) (with the Pattern extensions12 en-

11https://github.com/explosion/spaCy/
releases/tag/v2.1.3

12Smedt and Daelemans (2012), https://www.clips.
uantwerpen.be/pages/pattern.

abled), based on the TIGER corpus.
Since GermaLemma only lemmatizes words

from a restricted set of POS (N*, V*, ADJ* and
ADV*), i.e. content words, we combined this sys-
tem with another tool that also lemmatizes function
words (spaCy) and added a few special rules for
pronouns. This ensemble lemmatizer is included
in the study as GermaLemma++.13

Many of the tools we test provide some combina-
tion of word-level annotations. SoMeWeTa (Proisl,
2018) produces STTS tags (small tagset) only,
whereas RFTagger (Schmid and Laws, 2008)14 and
Clevertagger (Sennrich et al., 2013) use a modified
version of the large STTS that includes morpholog-
ical features. TreeTagger (Schmid, 1994; Schmid,
1995) provides just STTS and lemmas.

We also test ParZu (Sennrich et al., 2009), which
is a parser that combines a hand-written grammar
with statistical approaches.

Of the selected tools, RNNTagger (Schmid,
2019) and StanfordNLP (Qi et al., 2018) are both
neural network–based systems implemented in the
PyTorch framework. SpaCy uses convolutional

13https://github.com/rubcompling/
germalemmaplusplus

14Specifically the Java interface RFTJ (Ziai and Ott, 2014),
which offers easier production of STTS tags, improved lemma-
tization, as well as finer control over model loading.
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neural network models for tagging and parsing, but
does not need a GPU or significant resources for
annotation or training.

5 Evaluation

In this study we evaluate the NLP tools with respect
to both accuracy and speed. Section 5.1 describes
the performance evaluation, i.e. annotation speed
of the selected systems. In Section 5.2, the compar-
ison of the different annotations, as produced by
the systems, with the gold standard annotation is
explained.

5.1 Computational Efficiency

We are interested not only in the annotations that
the systems we test produce, but also in the com-
putational resources they require to produce them.
This is particularly a concern in the context of prac-
tical applications where timely results are critical.

We wanted to measure the resources each sys-
tem requires to produce each level of annotations,
but the production of each type of annotation is
not always separable from the others, e.g. morphol-
ogy and/or lemma annotations are often produced
together with POS tags (and though there are some-
times options regarding whether or not they are out-
put, this doesn’t necessarily mean that they aren’t
computed). Also, sentence segmentation and word
tokenization are sometimes dependent on one an-
other, but in different directions. CoreNLP requires
sentence boundaries before tokenization, and oth-
ers, like Syntok, do this the other way round.

For each annotation step, we separated model
loading from actual annotation time required. We
measure the time the various systems require
to complete three roughly-comparable annotation
steps: (1) tokenization (sentence segmentation,
word tokenization), (2) word-level annotations
(POS, morphology, lemmas), and (3) dependen-
cies. Systems that only perform lemmatization are
run separately, since they also require POS annota-
tions as an input, all other systems produce lemmas
and POS annotation simultaneously.

The annotation time for each step was measured
as CPU time across five trials for each of the subcor-
pora, using a measure of seconds per thousand to-
kens, which represents the computational resources
required by a particular system for a particular task.
All trials were performed on a Linux workstation
equipped with an Intel Core i7-5820K processor,
15 GB of RAM, and an Nvidia GeForce GTX 980

graphics card with 4 GB of memory.

5.2 Accuracy

For the accuracy evaluation, the systems were pro-
vided with gold annotations from the previous an-
notation steps, as detailed here:

Input (Gold) Output
Tokenization Plain text → Sentences,

Tokens
Word-level Sentences,

Tokens
→ POS,

Morph,
Lemmas

Lemmatization POS → Lemmas
Dependencies POS → Dependencies

Of course this approach is not a realistic sce-
nario, as manually created, i.e. completely correct,
annotations are normally not available, so these
results are to be interpreted as an upper bound.

Tokenization In the Universal Dependencies
Treebank for German,15 on which the StanfordNLP
model was trained, multi-word tokens (APPRART
in the STTS) are split into separate words. To en-
able the comparison of the system’s output with the
gold standard, we suppressed these splits during
tokenization.

POS The deviating tokenization of multi-word
tokens also affects the other annotation levels, as
the corresponding models expect the tokens to
be split for them to be annotated correctly. We
therefore accepted split multi-word tokens for the
concerned systems (StanfordNLP) for all word-
level annotations and used rules to check if the
system’s annotation (APPR + ART) matches the
gold-standard annotation (APPRART).

Morphology The morphology annotations of the
systems follow different naming conventions for
the morphological features (e.g. Sg vs. Sing
for ‘singular’), so, in order to compare them, we
mapped all annotations to the TIGER tagset (Crys-
mann et al., 2005). Some systems also annotate
further morphological features, which we ignored
either because they are not present in the TIGER
tagset (features like definiteness) or because they
are already included in the POS tags (e.g. finite-
ness).

15UD German GSD (https://
universaldependencies.org/treebanks/
de_gsd/index.html)
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Morphology tags are composed of multiple fea-
tures, e.g. 3.Pl.Pres.Ind, which we evaluate
individually. Features that are only present in the
system output are ignored. The overall accuracy
is calculated token-wise as the average percentage
of morphological features in the gold standard that
were present and correct in the system output.

Lemmas The NLP tools included in this study
follow different guidelines for the annotation of
lemmas, so we allow for a degree of variation in this
regard, so long as it is clear that the analysis a given
lemma variant suggests is correct. For instance,
most prominently, some use the masculine form
of the definite article as its lemma, dem → der,
whereas others might use the feminine form die.
For words tagged as PPER, the surface form is
accepted as its lemma. Reflexive pronouns may
be lemmatized as sich, and words tagged as ART,
PDS or PRELS may be lemmatized as eine as well
as ein or die as well as der. We also consider <ß>
and <ss> to be equivalent throughout.

Furthermore, we accept some special lemmas
used by certain systems. For example, since RFTag-
ger lemmatizes all numbers to a common symbol,
either <card> or <ord>, we consider these sym-
bols equivalent to the token’s surface form, since
this is how we lemmatized numbers in our gold-
standard dataset. Similarly, TreeTagger lemmatizes
multi-word tokens tagged as APPRART with the
lemmas of the constituent prepositions and articles,
as in zu+die for zur instead of zu, as in our
dataset. We also accept these forms as correct.

In general, all comparisons of lemmas are case-
insensitive and wherever a tool does not produce
a lemma for a given token, we take the surface
form of that token as its lemma. If a tool outputs
more than one alternative lemma for a word, as is
the case for StanfordNLP, IWNLP, RFTagger and
TreeTagger, we evaluate the first one.

Dependencies For the dependency evaluation,
we only consider the relevant argument relations
(subj, obj, iobj, vsubj, vobj, pred, expl). The four
parsers compared in the study follow three different
guidelines for dependency annotation and each of
them uses a different scheme. In order to account
for differing naming conventions, we accept a num-
ber of alternative labels for each relation, which we
consider to be equivalent. To capture the structural
differences between guidelines we use a set of rules
to allow for certain mismatches between the sys-

tem outputs and the gold standard. In particular, the
head of a relation may be the main verb, as in the
gold standard, or an accompanying finite auxiliary
as annotated by the parsers. Similarly, the head of
a predicative phrase may be the noun, as is the case
in the gold standard, or the preposition (for ParZu
and spaCy). We also cover the copula analysis of
CoreNLP and StanfordNLP, which according to
the Universal Dependencies guidelines,16 analyse
the predicative phrase as the head of a copula con-
struction. Finally, there are certain constructions
in German for which the subject is difficult to de-
termine (also theoretically). These constructions
involve certain predicatives and expletives (e.g. as
in Das ist es ‘that’s it’). To address this, we con-
sider it correct if the system switches the subject
and the predicative phrase, and similarly, if the sys-
tem analyses expletives as subjects (or objects, in
rare cases) and vice versa. The StanfordNLP parser
performs much better when Universal POS tags are
present, so we add these to the data provided to this
parser using the mapping provided by the Universal
Dependencies project.17

6 Results and Discussion

In this section, we examine the most impor-
tant results of our experiments. All of the
scripts we used and detailed results (including
per-register results) can be found in this pa-
per’s repository at https://github.com/
rubcompling/konvens2019.

6.1 Computational Efficiency
Figure 2 shows the results of run time evalua-
tion. Overall, the annotation speed of most systems
does not differ substantially. The word-level Stan-
fordNLP component, encompassing POS tagging,
morphological analysis, and lemmatization, is an
outlier, with much longer run times, on average,
than the other systems. The RNNTagger, another
neural network–based system, is also on the upper
end of the scale among the systems we tested. This
is indicative of the large computational resources
such systems require.

Though the CoreNLP dependency parser is the
slowest of those we tested, CoreNLP is the fastest
system for word-level annotations (which is prob-
ably related to the fact that it only produces POS

16https://universaldependencies.org/
guidelines.html

17https://universaldependencies.org/
tagset-conversion/de-stts-uposf.html
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Figure 2: Process time required by the systems according to task, measured in seconds per thousand
tokens.

annotations in this step), though this appears to
come at the cost of accuracy. As was the case in
Choi et al. (2015), spaCy is capable of the fastest
dependency parsing.

The fastest system for tokenization is Syntok (an-
other outlier) requiring only 0.000004 seconds per
1,000 tokens. It doesn’t seem to use any linguistic
models as such – just a few well-selected regex-
based heuristics. Despite the minimal computa-
tional resources required, Syntok is still the second
most accurate sentence segmenter we tested.

6.2 Accuracy

Table 4 shows the results of the accuracy evaluation
for all systems and annotations.18

Tokenization For sentence segmentation and to-
kenization, we calculated F1-scores for all systems.
The results show that sentence segmentation is
more challenging than word tokenization which
can be considered a solved task.

A closer look at the system output shows that
many of the systems have difficulty recognizing ab-
breviations, ordinal numbers (e.g. in dates), ellipsis
dots, and dashes that are used to indicate speaker
changes in movie dialogues. Further problems are
caused by direct speech, especially as regards the

18As the formulation of sensible baselines for several of the
annotation steps, e.g. morphology and dependencies, can be
quite complex, we don’t include them in our analysis here.

use of inward-pointing angle quotes (as in »exam-
ple text«) which are typical for German literary
texts but appear to be unexpected for some of the
systems. Also the data contains some sentences
which are not marked with punctuation marks and
can only be recognized as sentences based on the
content.

POS The results for POS tagging are similar to
the findings of Giesbrecht and Evert (2009) and
Beißwenger et al. (2016) with tagging accuracies
ranging from 88.2% to 94.3%. However, there
are only slight differences between the selected
registers. Most taggers perform best on the TED
talk transcripts while the lowest accuracy values
can be observed for movie subtitles.

The most frequent errors for all taggers include
the common confusions of nouns and proper names,
adverbs and adverbial adjectives, and of different
verb forms. It is striking that all of the tools also
tag sentence internal punctuation incorrectly, e.g.
as numbers, names, adjectives, etc., which is the
most frequent error for half of the taggers reducing
their accuracy by up to 1.6 percentage points.

Morphology The accuracy values for morphol-
ogy annotation differ substantially between sys-
tems with results varying by 10 percentage points.

Depending on their POS, words have different
morphological features. Following the TIGER
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Tokens Sents POS Morph Lemmas Deps

Clevertagger – – 0.8818 0.8338 – –
CoreNLP 0.9965 0.8909 0.9074 – – 0.5316
GermaLemma++ – – – – 0.9541 –
GermaLemma – – – – 0.8786 –
IWNLP – – – – 0.8650 –
NLTK 0.9961 0.9177 – – – –
ParZu – – – 0.8359 0.9431 0.7744
RFTagger – – 0.9310 0.8903 0.9377 –
RNNTagger – – 0.9346 0.9248 0.9751 –
SoMaJo 0.9964 0.8480 – – – –
SoMeWeTa – – 0.9403 – – –
spaCy 0.9955 0.8410 0.9250 – 0.8913 0.6687
spaCy parser – 0.8940 – – – –
StanfordNLP 0.9920 0.8989 0.9427 0.8235 0.9415 0.7217
Syntok 0.9912 0.9125 – – – –
TreeTagger – – 0.9210 – 0.9605 –

Table 4: Overall F1-scores (for tokens and sentences) or accuracy (for POS, morphology, lemmas and
dependencies) for all systems at all annotation levels.

scheme (Crysmann et al., 2005), we evaluate seven
features: gender, case, person, number, tense,
mood, and degree. Table 5 provides detailed re-
sults for all features.

As morphology annotation depends on correct
POS tags, it is possible that errors on this annota-
tion level are the result of error propagation from
the POS level, e.g. adjectives that are tagged as
adverbs do not receive a degree annotation, finite
verbs that are recognized as infinitives are not an-
notated at all. Sometimes the systems also indi-
cate that they cannot assign a unique value to an
attribute although this is possible for human anno-
tators based on the given context.

While no clear differences between registers can
be observed, there are some morphological fea-
tures that generally seem to be harder than others.
Overall, the most difficult features are gender and
case with error rates of 10% or more for all sys-
tems. The annotation of gender is most difficult for
proper names and pronouns, while error rates are
low for nouns and articles.

It should also be noted that StanfordNLP does
not annotate the degree feature for adjectives,
which occurs with 10% of the annotated tokens
and makes up 3% of the annotated features overall.
This explains, in part, the system’s poor result in
this annotation task.

Lemmas Most of the lemmatizers achieve accu-
racy values well above 90%. Always choosing a
given word form as its lemma results in an accuracy
of 70.7%. In general, there are no significant dif-
ferences in lemmatization between registers. How-
ever, all of the systems do perform slightly worse
on the Novelette subcorpus than on the other sub-
corpora.

We observe frequent deviations from the gold
standard for demonstrative and indefinite pronouns,
which can likely be attributed to further differences
between lemmatization guidelines. Some systems
also produce stems instead of lemmas for some
words, e.g. StanfordNLP and TreeTagger annotate
the stem jen instead of possible lemmas jener or
jene. Furthermore, some systems do not lemmatize
certain words or word classes at all, for instance
content words in the case of GermaLemma, which
results in a lower accuracy as well.

Dependencies The evaluation shows that depen-
dency annotation is clearly the most difficult of the
six annotation tasks. All four parsers we tested
achieve accuracies for the annotation of arguments
below 78%. A closer look at the results shows
that the most difficult relations seem to be clausal
subjects, clausal objects and expletives.

The spaCy parser produces the largest number of
false positives, i.e. argument relations that are not
present in the gold standard (mostly object clauses).
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Case Degree Gender Mood Number Person Tense

Clevertagger 0.8385 0.9217 0.6537 0.9009 0.9261 0.9108 0.8803
ParZu 0.8104 0.8733 0.7913 0.6744 0.8870 0.9388 0.9743
RFTagger 0.8858 0.9447 0.7734 0.9537 0.9522 0.9492 0.9550
RNNTagger 0.9094 0.9401 0.8770 0.9730 0.9547 0.9713 0.9717
StanfordNLP 0.8563 – 0.7634 0.9189 0.9527 0.8954 0.9408

Table 5: Overall accuracy per morphological feature.

This may in part result from differences in handling
coordination: While spaCy tends to annotate the af-
fected relation once per coordinated element, other
guidelines use a special coordination relation for
this.

CoreNLP has the second highest number of false
positives. It also makes the most mistakes of the
four parsers and has the highest error rates for al-
most all relations, resulting in an accuracy value
only just above 50%.

StanfordNLP and ParZu both reach accuracies
above 70%. ParZu achieves the best result of all
parsers overall and produces much fewer false pos-
itives.

However, it often annotates multiple roots per
sentence and/or annotates subjects, objects or
clausal objects as root of the sentence. It also seems
to have a slightly different definition of predica-
tives and annotates expletives worse than the other
systems (although no system annotates expletives
particularly well).

7 Conclusions and Future Work

Though we would like to directly relate accuracies
to run times and provide some concrete measure
of efficiency, this is difficult in practice, since run
times pertain to multiple accuracy dimensions: the
run time of the POS annotation step sometimes
covers just POS, morphological annotations, and/or
lemmatization, depending on what a given system
provides, which makes it difficult to say what the
relationship is between run time and accuracy ex-
actly. Nevertheless, we will attempt to take the
systems’ run times into account when comparing
the accuracies achieved.

Though the F1-scores above 0.99 for all tested
tokenizers suggest that tokenization can be consid-
ered a solved task, there is some degree of differ-
ence in how the tools handle sentence segmentation.
Overall, NLTK provides some of the best token and
sentence boundaries, while being one of the fastest

systems we tested. Syntok is even faster and only
slightly less accurate.

RNNTagger offers high accuracy across all word-
level annotations and is relatively fast, especially
as compared with taggers offering similar levels of
accuracy. Though the StanfordNLP tagger seems
to be a bit more accurate at POS tagging, it does so
at the cost of requiring much greater computational
resources. If you have POS annotations and just
need lemmas, then GermaLemma++ provides the
best accuracy with only a modest increase in the
computing resources required, in comparison to
standard GermaLemma.

SpaCy offers relatively good performance, but
requires especially little computational resources
and can annotate large volumes of data quickly.
However, where accuracy is most important, ParZu
might provide better results while still being rela-
tively fast.

Future work could include retraining the systems
for each domain and observing the degree to which
these domain-specific models improve the accuracy
of the systems’ output. Furthermore, one could
use these results to construct a pipeline from the
appropriate systems for a particular situation and
have an easy-to-use and effective NLP pipeline for
the standard linguistic annotations. It would also
be interesting to evaluate in future work how well
such a pipeline (in which each stage depends on
system output, as opposed to gold-standard anno-
tations) would compare to the upper bound results
described here.
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