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Abstract

This paper presents the setup and outcome of
the GermEval-2019 Task 1: Hierarchical Clas-
sification of Blurbs. A blurb is a short, oc-
casionally advertorial, description of a book.
The shared task consists of two subtasks:
Task A) classification of blurbs exclusively
into the most general categories, which can
be considered to be a multi-label classifica-
tion task, and Task B) hierarchical classifica-
tion of blurbs into the entire hierarchy of cat-
egories, spanning a total of 343 different cate-
gories and sub-categories. During the test pe-
riod, ten teams submitted 17 valid system so-
lutions for Task A, and eight teams submitted
16 system solutions for Task B. For Task A,
the best submission achieved a micro-F1 score
of 0.867, and for Task B the best submission
achieved a micro-F1 score of 0.677.

1 Introduction

Text classification (TC), as a sub-discipline in nat-
ural language processing (NLP), is an established
task where many datasets for many target domains
and challenges exist. Spam classification is prob-
ably the most well-known application of text clas-
sification algorithms. Here, the task is to classify
messages (emails or short text messages) into two
classes: spam (advertisements or any kind of ha-
rassment messages), or ham (relevant messages;
Gómez Hidalgo et al., 20061). Due to the nature
of this task and the fact that this resolves to bi-
nary text classification, it can be considered being
solved with accuracy scores reaching 98+%, see
e.g. (Taheri and Javidan, 2017). However, as more
and more data become digitally available and peo-
ple’s time and convenience are growing in priority,

1http://dcomp.sor.ufscar.br/talmeida/
smsspamcollection/

the demand for more, and finer-grained categories
increases. Multi-class text classification gathered
attention in this space (e.g. with the 20 News-
groups dataset2), here the task is to classify an
email (text and metadata) into one of 20 possi-
ble categories. As a next step, the multi-class text
classification problem has been developed into a
multi-label text classification problem, where a
single sample can have one or multiple class la-
bels. One of the popular datasets in this domain is
the Reuters-21578 dataset3 (Lewis, 1992) which
was superseded by the RCV1 dataset4 (Reuters
Corpus Volume 1; Lewis et al., 2004), implement-
ing a hierarchical structure on the classes. In hi-
erarchical multi-label classification (HMC), labels
are organized in a structured hierarchy, i.e. cer-
tain label combinations are irrelevant and should
never be classified in conjunction (Silla and Fre-
itas, 2011).

Hierarchical multi-label classification is not an
entirely new challenge in the area of natural lan-
guage processing (Sun and Lim, 2001; Silla and
Freitas, 2011), but with the increase of available
data, especially on the web, the desire for more
specific and specialized hierarchies increases. To
cover this desire, and to foster research for al-
gorithms dealing with hierarchically organized
classes for the German Language in a real-world
scenario, we present the GermEval-2019 Task 1:
Hierarchical Classification of Blurbs, which in-
cludes two subtasks, where automatic systems
have to infer: A) the most general categories of
a book described by a blurb, and B) the entire

2http://qwone.com/˜jason/20Newsgroups/
3https://archive.ics.uci.edu/

ml/datasets/reuters-21578+text+
categorization+collection

4http://www.daviddlewis.com/resources/
testcollections/rcv1/
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Task A Task B

# Teams: 10 8
# Submissions: 17 16
Best Team: EricssonResearch TwistBytes
Best Micro-F1: 0.867 0.6767
Impr. over Baseline: 0.067 0.1428

Table 1: Quantitative details of submissions.

set of categories in the class hierarchy.5,6 Since
a sample can belong to multiple classes on the
same level, Task A can be considered as a standard
multi-label classification task and a sub-problem
of Task B, which is a hierarchical multi-label clas-
sification task. We compiled a hierarchical dataset
of German blurbs by crawling the web pages of
a major publisher and taking care of proper data
cleaning and preparation.7 The details of the en-
tire process, as well as various statistics, can be
found in Section 3. For the shared task, we al-
lowed three system submissions per team where
eventually ten teams submitted 17 valid system so-
lutions for Task A, and 16 valid system solutions
were submitted by eight teams for Task B. Quanti-
tative details of the test-phase submissions can be
found in Table 1.

2 Prior Work

Text Classification Datasets:
The probably most well-known dataset with a hier-
archical class label structure is the RCV1 (Reuters
Corpus Volume 1; Lewis et al., 2004) dataset.
It consists of roughly 800K documents catego-
rized into several hierarchically structured cate-
gory sets. However, the access to the dataset
is limited and not freely usable by e.g. compa-
nies due to licensing. Lewis et al. (2004) dis-
tribute a term-document matrix where it has been
ensured that the original data cannot be recon-
structed. Therefore, many different variations of
the original dataset have been created and used,
and despite the wide acceptance of the dataset and
extensive usage, it is difficult to directly compare

5GermEval is a series of shared task evaluation campaigns
that focus on Natural Language Processing for the German
language. The workshop is held in conjunction with the Con-
ference on Natural Language Processing KONVENS 2019 in
Erlangen/Nürnberg.

6https://competitions.codalab.org/
competitions/20139

7We crawled the websites with the consent of the Random
House publisher group.

results presented in scientific work due to the lack
of availability of the standardized version.

Kowsari et al. (2017) introduced a hierarchi-
cally structured dataset for English, with a max-
imum depth of two, called the Web of Sci-
ence Dataset: WOS-11967, WOS-46985 and
WOS-5736 with 35, 134 and 11 categories and 7, 7
and 3 top-level categories respectively. However,
in this dataset, every sample consists of exactly
one parent-child label, which ultimately results
in a single-label multi-class problem on the more
specific category. This highly limits the diversity
and complexity of the dataset and the underlying
hierarchy. Several other large-scale datasets have
been presented, e.g. (Kim et al., 2019; Mencı́a and
Fürnkranz, 2010; Partalas et al., 2015). Some of
these datasets consist of an extensive number of
classes, up to several thousand. The classification
of these datasets carry their very own challenges
and are thus not further discussed here. In spe-
cial application domains, such as the biomedical
domain, more and more works include hierarchi-
cal structures in their data: e.g. Baker et al. (2015)
introduced an annotated dataset based on the hall-
marks of cancer (Baker et al., 2017) with a total of
37 classes and a hierarchy depth of 3 levels; Lars-
son et al. (2017) compiled a dataset for chemical
risk assessment with a 32 classes and 5 levels.

Many freely accessible hierarchical datasets for
the German language exist, however, no bench-
mark dataset has been established. For example,
the OAI Protocol for Metadata Harvesting is a pro-
tocol designed to share metadata of catalogs and
publications. However, the minimal requirements
for expressing valid records are fairly loose and
the practices of metadata management wildly dif-
fer across repositories. Attempts have been made
to normalize OAI metadata records according to
the hierarchical library taxonomy (Waltinger et al.,
2009), called the Dewey Decimal Classification
system. Multiple datasets of German patent col-
lections have been created to classify these doc-
uments into the IPC taxonomy (Fall et al., 2004;
Tikk et al., 2005).

HMC Approaches:
In text classification without hierarchical struc-
tures, neural architectures, especially Convolu-
tional Neural Networks (CNNs) and different
types of Recurrent Neural Networks (RNNs)
(Goodfellow et al., 2016; Kim, 2014), most no-
tably long short-term memory units (LSTMs,
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Hochreiter and Schmidhuber, 1997) have shown to
be highly effective. Cerri et al. (2014) use concate-
nated multi-layer perceptrons (MLP), where each
MLP is associated with one level of the class hi-
erarchy. In contrast, classifier chains (Read et al.,
2011) employ binary classifiers for each category
and propagate their predictions as a feature to the
classifier for the child categories. However, this
method is computationally expensive. Kowsari
et al. (2017) use multiple concatenated deep learn-
ing architectures (CNN, LSTM, and MLP) for
the WOS dataset – with a very shallow hierarchy
and a fixed number of classes per example (one
class label for each of the two hierarchy levels).
Traditional classification approaches, such as e.g.
KNN, Naı̈ve Bayes or SVM, appear to fail to gen-
eralize adequately for large hierarchies (Kowsari
et al., 2017). Summarizing, hierarchical multi-
label classification brings research-worthy chal-
lenges, which motivated the conduction of this
shared task.8

3 Dataset

In the following, we describe the preparation steps
of the dataset, which are strongly in line with Aly
et al. (2019).

3.1 Compiling the Dataset
The dataset is compiled using the openly avail-
able data of the (Bertelsmann) Random House
(RH) webpage9. Random House is worldwide the
largest publisher group and thus hosts an enor-
mous body of books.

The German webpages of RH provide various
meta information of books, such as a short descrip-
tion (the blurb), authorship information, title of the
book, etc. (c.f. Figure 1). With the permission of
the German RH division, we crawled10 the book
listings, parsed the HTML code11 and collected
the following information that we considered to be
relevant:

• title

• author(s)
8The official webpage of the shared task and re-

spective data can be found at https://www.inf.
uni-hamburg.de/en/inst/ab/lt/resources/
data/germeval-2019-hmc.html.

9https://www.randomhouse.de/
10We crawled the webpages with Scrapy (https://

scrapy.org/).
11XPath and CSS where used to find and extract the neces-

sary information.

• URL

• ISBN

• date of publication

• genres, i.e. categories

• info text, i.e. the blurb content

Other information such as about the author, or
reader’s ratings were ignored. The blurb of a book
can be considered to be a short incentive descrip-
tion, which is occasionally advertorial (i.e. adver-
tising and editorial) and thus clearly distinctive to
a summary. Blurbs aim to bestir a potential reader
to buy and read the book, they are thus designed
to occasionally contain advertorial content. Each
collected blurb can be considered unique, how-
ever, they might appear in similar forms, e.g. for
books that are part of a series or are being re-
published as a new edition due to their success.
Due to the extraction process of the sometimes
noisy web data, anomalies such as missing au-
thor, missing blurb or incorrect publication date
occurred infrequently for about 1% of the col-
lected data and were thus accepted and kept in the
dataset.

3.2 Category Refinement
The per-book extracted categories are lists of gen-
res connected with their ancestor genres. Each
book is thus categorized into a hierarchy. Still, this
hierarchy contains ambiguities caused by the as-
signment of identical names to different categories
allowing the formation of cycles as well as chil-
dren to have multiple parents, e.g. Science Fan-
tasy occurs as a subcategory of Science Fiction
and Fantasy. Thus, we automatically renamed am-
biguous categories by concatenating the category
name to its parent’s category name, and manually
refined the extracted hierarchy further, which re-
sults in a tree-like categorical structure. Further,
we manually checked all relations and merged or
removed similar labels and removed categories
that capture properties that do not rely on content
but the shape or form of a book, e.g. categories
such as audiobook, ebook, hardcover, softcover,
etc. were removed. Finally, samples that have as-
signed category combinations that appear less than
five times were also removed from the dataset.

3.3 Dataset Properties
The dataset follows the requirements as described
in (Lewis et al., 2004): First, every book is as-
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Figure 1: Snippet of website the data was collected from. The specific parts are highlighted in red boxes. Numbers
indicate specific parts: 1 author name(s), 2 title, 3 blurb, 4 ISBN, 5 release date, 6 book’s categories,
displayed in a tree structure according to the underlying hierarchy. [The screenshot was taken in October 2018.]

Science Fiction

Science Fiction
Science Fantasy

Science Fiction
Sachbuch

Hard Science Fiction
Dystopie

Urban Fantasy

Historische Fantasy

Abenteuer-Fantasy
Fantasy
Science Fantasy

Fantasy

Figure 2: Excerpt of the hierarchy of categories. Col-
ors indicate different levels in the hierarchy. The full
hierarchy can be found in (Aly, 2018, p. 58).

signed at least one category, and second, every
parent category in the path to the most general cat-
egory of a book’s most specific category is transi-
tively assigned to it as well. In the dataset, the
specified labels and the transitively assigned la-
bels are distinguishable with the XML property
label (value = true for most the specific la-
bel). Note that the most specific category of a book
is not necessarily a leaf category in the hierarchy.
For instance, the most specific category of a book
could be Children’s Books, although further child
categories, such as Middle-Grade books, exist.

Figure 4 shows the frequency distribution of
unique category combinations sorted by frequency

Figure 3: Frequency of category combinations (y-axis)
in the entire dataset sorted by frequency rank (x-axis).

rank. As expected, few label combinations appear
often and many label combinations appear rarely.
The distribution of labels remains highly diverse
with a total of 484 unique category combinations.
Table 2 lists further important quantitative charac-
teristics of the collected data such as the number
of categories on each level of the hierarchy, etc.

283



1
3

10

30
50

100

300
500

1000

3000
5000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cardinality

N
um

be
r 

of
 S

am
pl

es
 in

 D
at

as
et

(lo
g−

sc
al

e)

Figure 4: Distribution of the category cardinality per
sample in the entire dataset.

For the task, we divided the dataset into three
subsets: 70% training, 10% development and 20%
test set (±0.2% respectively). The dataset was
split randomly with the constraint that every cat-
egory in the development and test set occurs at
least once in the training set. Additionally, max-
imally 2% of categories in the development and
test set occur less than three times in the train-
ing set. While the test set is only used for the fi-
nal evaluation of each system, the development set
was used for benchmarking during the first eval-
uation phase. During the entire runtime of the
task, participants were able to compare the perfor-
mances of their systems via the CodaLab leader-
board for the development set. For the final evalu-
ation phase, the development set labels have been
supplied to the participants to allow a larger train-
ing set, and the CodaLab leaderboard was disabled
for test set prediction submissions to avoid opti-
mization on the test set.

4 Task Definition

The shared task contains two subtasks:

Task A: The task is to classify German books
into one or multiple top-level categories. It can
thus be considered a standard multi-label classi-
fication task. In total, there are eight top-level
classes that can be assigned to a book: Lit-
eratur & Unterhaltung (Literature & Entertain-
ment), Ratgeber (Counsel), Kinderbuch & Jugend-
buch (Books for Children and Young Adult Read-
ers), Sachbuch (Nonfiction), Ganzheitliches Be-
wusstsein (Holistic Awareness), Glaube & Ethik
(Belief & Ethics), Künste (Arts), Architektur &
Garten (Architecture & Gardening). The label
distribution of these eight classes is highly imbal-
anced (cf. Figure 5).

# Samples 20, 784
Average blurb length in tokens 94.67
Total number of categories 343
# Categories on level:
1 8
2 93
3 242

# leaf nodes on level:
1 0
2 51
3 242

Average branching factor 6.7± 4.97
Average branching factor on level:
1 11.63± 6.39
2 5.76± 4.12

# Samples with labels of category on level:
1 20, 784
2 20, 406
3 11, 117

# Samples w/ cardinality (tlc*):
1 19, 422
2 1, 260
3 97
4 (maximum cardinality) 5

# Samples w/ cardinality:
see Figure 4 (maximum = 16)

Average cardinality (tlc*) 1.07± 0.28
Average cardinality 3.11± 1.37
# Distinct label combinations 484

Table 2: Quantitative characteristics of the dataset (*tlc:
top-level-categories).

Task B: The second task is a hierarchical multi-
label classification task where all categories of the
hierarchy have to be assigned to a book. In total,
343 different classes are hierarchically structured,
hence, not all combinations of categories are valid
as defined by the hierarchy.

Submission Setup: The entire submission pro-
cess was organized within the framework of a
CodaLab competition12. We limited the number of
system submissions to three per team. The data re-
lease cycle went in three phases: In the first phase
only a limited number of samples was released to
familiarize with the structure of the dataset; in the
second phase the training set with labels and the
development set without labels were released and
participants were able to submit their solutions for
the development set to the CodaLab website; the

12https://competitions.codalab.org/
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Figure 5: Top-level sample distribution.

third phase is the final test phase where the test set
samples without labels and the labels for the de-
velopment set samples were provided.

5 Systems

5.1 Organizer Systems

Baseline: SVM As a baseline method, we im-
plement a traditional, non-hierarchical classifier
using the local approach as described by Silla and
Freitas (2011). We chose to use a linear SVM
(Cortes and Vapnik, 1995) since it yielded good
results in preliminary experiments. We exclu-
sively use the blurb of a book to create features
for the SVM and decided on minimal preprocess-
ing, i.e. tokenization is performed using spaCy13

and stop words – as defined by spaCy – have been
filtered. We then created a bag-of-word represen-
tation of unigrams and bigrams. Since the SVM
is a binary classifier, we opted for a one-vs-all
multi-label classification scenario, which was im-
plemented using the scikit-learn library14. We use
the standard value for the hyperparameter C = 1
and did not fine-tune it. Because predictions by
independent classifiers do not necessarily lead to
valid combinations as defined by the underlying
hierarchy, we apply a post-processing step where
we add missing parents of each predicted child la-
bel – recap that every child has an unambiguous
parent. This process provides hierarchy-consistent
label combinations but might lead to incomplete
combinations because we do not add child labels

13https://spacy.io/
14https://scikit-learn.org

# Primary capsules 100
Convolution window size 50
Dimension of primary capsules 8
Dimension of class. capsules 8
Optimizer Adam (Kingma and Ba, 2014)
Learning rate 0.002
# Epochs 10

Table 3: Hyper-parameter settings of the capsule net-
work as found by non-exhaustive search.

for inner category nodes.

Contender: Capsule Networks Capsule net-
works have recently been shown to have advan-
tages over traditional neural networks when con-
fronted with structurally diverse categories and
complex label co-occurrences (Aly et al., 2019;
Zhao et al., 2018). For this reason, and the fact
that the dataset is inherently unbalanced (as il-
lustrated in Figure 3), we decided to employ a
capsule network architecture from our previous
work as a contender system for comparative rea-
sons and out-of-competition. For the input, we to-
kenize the fields containing texts (title, author, and
blurb) with spaCy and concatenate them. Tokens
that appear only once in the dataset are replaced
with a special unknown-token word. The sequence
length of has been limited to 100 tokens. We ini-
tialize an embedding layer with pre-trained fast-
Text embeddings15 provided by Bojanowski et al.
(2017) and adjust them during training. The struc-
ture of the capsule network follows tightly the im-
plementation by Aly et al. (2019): Similar to Cap-
sNet1 in (Xiao et al., 2018), our proposed system
consists of four layers and every category in the
hierarchy is associated with one class capsule in
the network. As a post-processing step, we apply
the same correction procedure as described above.
Further hyper-parameter settings can be found in
Table 3.

5.2 Submitted Systems
This section aims to give a quick overview of the
different approaches used by the various teams for
Task A and B, a short overview can be found in Ta-
ble 4. We observe that the applied approaches can
be grouped into two major groups, i.e. one focus-
ing on the local approach where each node of the
hierarchy is classified independently, here, mainly
traditional classifiers are used, and one using the
global approach where nodes are classified jointly

15https://fasttext.cc/docs/en/
pretrained-vectors.html

285



Team RA RB Classifier Approach Text Features Label (Post-)
processing

Additional Data Hierachical Model
Categorization

EricssonResearch
(Umaashankar and
Shanmugam S, 2019)

1 2 Conv Seq2Seq fastText random
oversampling

– global

TwistBytes
(Benites, 2019)

2 1 one-vs-all SVM TF-IDF n-grams +
char n-grams

LCA – local per parent

DFKI-SLT
(Ostendorff et al., 2019)

3 4 Transformer (BERT) BERT – Wikidata KG
Embeddings

global

Averbis
(Genc et al., 2019)

6 3 Global CNN fastText T Criterion – global

Raghavan
(K et al., 2019)

4 – one-vs-all SVM TF-IDF bi-grams label count
classifier

– –

Fosil-hsmw
(Bellmann et al., 2019)

5 – SVM chain GloVe + fastText – Author Database
from RH

–

HSHL
(Rother and Rettberg,
2019)

7 5 Logistic Regression
+ Naı̈ve Bayes

TF-IDF uni-grams limit by threshold – local

COMTRAVO-DS
(Batista and Lyra, 2019)

8 6 Local CNNs fastText – – local

HUIU
(Andresen et al., 2019)

9 – one-vs-all SVM BOW n-grams limit by threshold – –

Baseline – – one-vs-all-SVM BOW uni- & bi-grams root path completion – local
Contender – – capsule networks fastText root path completion – global

Table 4: Overview of submitted approaches.

in the same model, here traditional and neural net-
work classifiers are employed.

A variety of solution approaches have been
submitted, 4 teams used SVM classifiers, where
Fosil-hsmw opted for an RBF kernel and
TwistBytes, HUIU, and Raghavan used
a linear kernel function. HSHL decided to
use a combinded approach using Logistic Re-
gression and Naı̈ve Bayes, and 4 teams used
neural network approaches, whereas 3 teams
(EricssonResearch, COMTRAVO-DS, and
Averbis) included convolutional layers in their
architecture, and DFKI-SLT used an approach
based on the transformer architecture (Vaswani
et al., 2017), specifically BERT (Devlin et al.,
2019). Whereas most teams used standard to-
kenization approaches such as spaCy, NLTK16,
scikit-learn, etc., Raghavan use a Byte-Pair-
Encoding (BPE) approach for tokenization.
With those more general pieces of words, team
Raghavan can build a more general vocabulary
with reduced size. As text-representation within
the classifier architecture, 4 teams decided to used
traditional sparse representations in form of TF-
IDF feature vectors (TwistBytes, Raghavan,
HSHL) based on token-, POS-, or character
n-grams and varying n (mostly n = {1, 2}).
Fosil-hsmw, EricssonResearch,
DFKI-SLT, COMTRAVO-DS, and Averbis
relied on pre-trained embeddings, whereas
Fosil-hsmw and EricssonResearch also
trained embeddings on the provided blurbs.

16http://www.nltk.org/

fastText17 (Bojanowski et al., 2017) was mostly
selected as the embedding framework of choice
due to its ability to account for sub-word informa-
tion and thus better handling of out-of-vocabulary
words.

Other (provided) metadata processing, e.g.
the number of authors, age of a book, gender
of the author(s), ISBN-part splitting, etc., has
been employed by several teams: Fosil-hsmw,
EricssonResearch, DFKI-SLT, HUIU, and
Raghavan. Further, external data was used by
2 teams: DFKI-SLT used knowledge graph em-
beddings based on Wikidata18, and Fosil-hsmw
crawled the Random House website for additional
author information to set up an author database
and train task-specific embeddings.

Several teams studied the issue of label post-
processing, i.e. the coherence of the hierarchy
or more generally the number of labels to pre-
dict for a sample, by using several approaches:
TwistBytes used a technique called LCA (La-
bel Cardinality Adjustment; details can be found
in their paper) for limiting the number of labels to
predict, Averbis used a similar correction step
as described in Section 5.1 named T-Criterion in
order to correct non-connected child nodes, HSHL
and HUIU used a threshold mechanism for the
number of labels to predict (the threshold(s) were
treated as a hyperparameter and optimized accord-
ingly), and Raghavan used an independent pre-
diction model for the number of labels. Motivated
by the inherent imbalance of the sample size per

17https://fasttext.cc
18https://wikidata.org
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label, EricssonResearch used random over-
sampling as a technique to balance the dataset.

6 Results and Discussion

6.1 Evaluation Metrics
Several metrics have been introduced to evaluate
systems for hierarchical classification tasks, here,
we use micro-averaged recall, precision, and F1-
score and follow suggestions by Silla and Fre-
itas (2011) and Sorower (2010). While macro-
averaging, the respective scores are computed for
each label individually and then averaged to pro-
duce a final single score; micro-averaged scores
are computed globally for each metric over all in-
stances. Thus, more frequent labels have a higher
impact on the micro-averaged score, which essen-
tially affects more general labels, since they ap-
pear more frequently in the dataset. Hence, we
impose more importance on correct predictions on
higher levels believing this yields to a more real-
istic scenario. (Silla and Freitas, 2011) suggest
the use of micro-averaged scores for hierarchical
classification tasks and even refer to them as hier-
archical precision, recall, and F1. However, these
flat performance measures do not necessarily align
with hierarchical ones, as shown in (Brucker et al.,
2011), we thus additionally measure the hierarchi-
cal consistency score (HC) for Task B. This score
measures the ratio of predictions made by the sys-
tem that conform with the underlying label hier-
archy, i.e. that all ancestors of a label are also as-
signed to the sample.

We further employ the exact match ratio or
so-called subset accuracy (Acc) as described in
(Sorower, 2010) because it captures how well la-
bels are selected in relation to each other. In con-
trast to the F1-score, which takes partially correct
classifications into account, the subset accuracy
is a very strict metric as there is no distinction
between partially correct classification and com-
pletely incorrect classifications.

6.2 Quantitative evaluation
The extensive list of results during the test phase
and the post-evaluation phase is shown in the ap-
pendix A and B. The following analysis is based
only on the results of the best system submitted by
each team during the test phase.

Task A: Scores of the best system submission
from each team for Task A are listed in Ta-
ble 6. The best performing system achieved a

micro-F1 score of 0.867 and was submitted by
EricssonResearch19. Besides, this system
has also achieved the highest subset accuracy with
a significant margin to the second-highest score.

Further analysis of the scores for each
top-level category shows that the system by
EricssonResearch performed especially
well on categories with the fewest samples in the
dataset, i.e. Architektur & Garten (Architecture
and Gardening) and Künste (Arts) as can be
seen in Table 5. In contrast, our Baseline
system performs the worst for these classes and
lacks behind significantly to all submissions. For
categories with a high number of examples such
as Literatur & Unterhaltung (Literature & Enter-
tainment), all submitted systems perform equally,
which indicates that the main challenge for Task
A might be data sparsity. EriccsonResearch
was the only team that explicitly addressed this
issue by using random oversampling.

Task B: Results for Task B are listed in Ta-
ble 7. Team TwistBytes submitted the sys-
tem with the highest F1 score of 0.6767. The
subset accuracy score of 0.3791 of the system by
EricssonResearch (2nd rank) is particularly
interesting, outperforming all other teams by at
least 11%. Regarding hierarchy conformity (HC),
five out of six systems have a perfect score con-
cerning the inherent category hierarchy (HC). No-
tably, the system submitted by DFKI-SLT has an
almost perfect hierarchy consistency (HC) score
although they do not directly encode any hierar-
chy information within their model. Again, the
Baseline system was outperformed by a large
margin, scoring lowest of all systems in terms of
recall, but surprisingly also achieving the highest
precision score.

The capsule network (contender) performs in
the mid-range, while the only other global ap-
proach that outperforms the capsule network is by
EricssonResearch.

Further analysis of F1 scores on each hierarchy
level shows a performance decline throughout all
systems for categories on deeper, and thus sparser,
levels (c.f. Figure 6 (a) and (b)).

19Note that team Raghavan submitted improved results
in the post-evaluation phase that beat the best results of the
test phase.
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Team
Literatur &

Unterhaltung Sachbuch
Kinderbuch &

Jugendbuch Ratgeber
Ganzheitliches

Bewusstsein
Glaube &

Ethik
Architektur &

Garten Künste
EricssonResearch 0.93 0.75 0.88 0.79 0.78 0.75 0.77 0.85
twistbytes 0.92 0.76 0.87 0.79 0.80 0.78 0.71 0.74
DFKI-SLT 0.93 0.78 0.84 0.79 0.79 0.73 0.69 0.81
Raghavan 0.93 0.75 0.87 0.79 0.74 0.74 0.65 0.65
Fosil-hsmw 0.92 0.71 0.84 0.73 0.73 0.74 0.71 0.77
Averbis 0.92 0.71 0.82 0.73 0.77 0.74 0.56 0.68
HSHL 0.90 0.72 0.76 0.74 0.74 0.72 0.65 0.62
Comtravo-DS 0.90 0.71 0.78 0.76 0.74 0.73 0.65 0.67
HUIU 0.89 0.70 0.74 0.73 0.71 0.68 0.61 0.73
Contender 0.91 0.71 0.83 0.76 0.78 0.77 0.71 0.77
Baseline 0.90 0.68 0.69 0.72 0.69 0.63 0.34 0.45
# Samples in test set 2182 (49%) 650 (14%) 575 (13%) 536 (12%) 262 (6%) 183 (4%) 44 (1%) 38 (<1%)

Table 5: F1 scores for top-level categories for Task A.

Rank best System by Team Acc Precision Recall F1

1 EricssonResearch .84 .89 .84 .87
2 TwistBytes .79 .87 .86 .86
3 DFKI-SLT .82 .88 .85 .86
4 Raghavan .83 .88 .84 .86
5 Fosil-hsmw .79 .84 .83 .84
6 Averbis .79 .86 .81 .83
7 HSHL .77 .82 .82 .82
8 Comtravo-DS .72 .81 .83 .82
9 HUIU .76 .81 .81 .81

Contender .74 .82 .85 .84
Baseline .71 .86 .75 .80

Table 6: Results for Task A of participating teams.
Only the best performing system per team is listed.
Scores are micro-averaged.

Rank Model Acc Precision Recall F1 HC

1 Twistbytes .25 .71 .65 .68 1
2 EricssonResearch .38 .74 .62 .67 1
3 Averbis .27 .68 .61 .64 1
4 DFKI-SLT .21 .78 .52 .62 .97
5 HSHL .26 .72 .54 .62 1
6 Comstravo-DS .19 .70 .53 .60 1

Contender .25 .76 .56 .64 1
Baseline .15 .85 .39 .53 1

Table 7: Results for Task B of all participating systems.
Only the best performing system is listed. Illustrated
scores are micro-averaged.

7 Summary

We presented the summary report of the
GermEval-2019 Task 1: Hierarchical Classi-
fication of Blurbs which included two sub-tasks:
classification of categories of different granu-
larities. As part of this shared task, participants
were provided with a dataset consisting of blurbs
including metadata in German of around 20K
books. The shared task consisted of three phases:
the first phase was designed to familiarize with the
task and the data, the second phase provided the
training data and a platform to compare the perfor-
mance of submissions on the held-out validation
set, and the third phase provided access to the

(a) F1 scores on categories that are on the second level of the
label hierarchy.

(b) F1 scores on categories that are on the third level of the
label hierarchy.

Figure 6: Performance report on different levels of the
hierarchy.

validation data for additional training and disabled
performance comparisons on the held-out test set
for fairness purposes. System submissions cover
a variety of approaches to deal with the category
hierarchy: three systems (+ baseline) were de-
signed using the local approach, either by learning
one model (SVM or CNN) per parent node or
per level. Four (+ contender) systems employed
the global approach: three teams use CNNs
and one uses transformer networks with a linear
decoder on top. Most systems incorporated the
hierarchy directly into their system or employed a
post-processing step to adjust predictions. While
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some of the top-performing teams employed deep
neural network architectures either for learning a
representation of blurbs or for the classification
task itself, well adjusted and fine-tuned traditional
classifiers have shown competitive results.
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