
Label Frequency Transformation for Multi-Label Multi-Class Text
Classification

Raghavan A K
Global AI Accelerator, Ericsson / Chennai
k.raghavan.a@ericsson.com

Venkatesh Umaashankar
Ericsson Research / Chennai

venkatesh.u@ericsson.com

Gautham Krishna Gudur
Global AI Accelerator, Ericsson / Chennai

gautham.krishna.gudur@ericsson.com

Abstract

In this paper, we (Team Raghavan) describe
the system of our submission for GermEval
2019 Task 1 - Subtask (a) and Subtask (b),
which are multi-label multi-class classifica-
tion tasks. The goal is to classify short texts
describing German books into one or mul-
tiple classes, 8 generic categories for Sub-
task (a) and 343 specific categories for Sub-
task (b). Our system comprises of three
stages. (a) Transform multi-label multi-class
problem into single-label multi-class prob-
lem. Build a category model. (b) Build a
class count model to predict the number of
classes a given input belongs to. (c) Transform
single-label problem into multi-label prob-
lem back again by selecting the top-k predic-
tions from the category model, with the op-
timal k value predicted from the class count
model. Our approach utilizes a Support Vec-
tor Classification model on the extracted vec-
torized tf-idf features by leveraging the Byte-
Pair Token Encoding (BPE), and reaches f1-
micro scores of 0.857 in the test evalua-
tion phase and 0.878 in post evaluation phase
for Subtask (a), while 0.395 in post evalu-
ation phase for Subtask (b) of the competi-
tion. We have provided our solution code
in the following link: https://github.
com/oneraghavan/germeval-2019.

1 Introduction

Multi-label Multi-class Hierarchical Classification
tasks typically encompass multiple possible (one
or more) labels for each instance (not mutually
exclusive) across multiple possible classes (two
or more) with many levels of hierarchies, and
are widely used in domains like text classifica-
tion (Rousu et al., 2006), image classification
(Hsu et al., 2009) and bioinformatics (Barutcuoglu
et al., 2006), (Feng et al., 2017). In this paper, we
present our submission approach for Subtask (a)

and Subtask (b) in GermEval 2019 Task 1 (Remus
et al., 2019). Here, we convert our task into two
sub-problems: first, to predict the category; sec-
ond, to predict the class frequency corresponding
to the multi-label setting. Our approach can be
broadly split into three stages.

• Transform the multi-label multi-class prob-
lem into a single-label multi-class problem,
and build a category model.

• Build a class count predictor model to predict
the number of classes that a given input could
be categorized.

• Transform single-label problem back into a
multi-label problem by selecting the top k
predictions from the category model, with
the optimal k value predicted from the class
count model.

Conventionally, Natural Language Processing
(NLP), particularly text classification tasks have
been modeled using variants of Support Vec-
tor Machines (Joachims, 1998) and Naive Bayes
Classifiers (McCallum et al., 1998). With the
widespread adoption of deep learning models,
there has been considerable increase in efficien-
cies for such tasks, however they are still consid-
ered black box models, and it is extremely hard
to interpret them, in contrast to conventional Ma-
chine Learning algorithms. Moreover, the time
and computational resources required for training
deep neural networks are extremely higher than
conventional Machine Learning models.

Hence, in our approach, we utilize the tra-
ditional Support Vector Classification modeled
using tf-idf (term frequency - inverse document
frequency) feature vectors combined with class
count predictor, and we leverage the Byte-Pair
Encoding (BPE) compression tokenization mech-
anism. Experimental results from exploiting

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

341

https://creativecommons.org/licenses/by-nc-sa/4.0/


such simple model fusion approaches show that
in the post-evaluation phase, f1-micro scores of
0.878 on Subtask (a) and 0.395 on textitSubtask
(b) could be achieved. The overall modeling
pipeline/architecture of our approach can be found
in Figure 1.

Figure 1: Modeling Pipeline/Architecture for both Sub-
task (a) and Subtask (b)

The rest of the paper is organized as follows.
The characteristics of the dataset are described
in Section 2. In Section 3, the data extraction
and pre-processing techniques to obtain our fea-
ture vectors are discussed. Section 4 presents our
model architecture along with training and aggre-
gation phases. This is followed by systematic eval-
uation of our model’s results and submission in
Sections 5 and 6, and we finally conclude the pa-
per.

2 Data Description

The GermEval 2019 Task 1 dataset (Remus et al.,
2019) consists of German books crawled from
randomhouse.de, with the following attributes
– title, description, author name, ISBN and book
release date. Apart from date, most of the other
features available are in the form of text, where
title and description are very short texts. A total
of 343 categories are present across three levels of
hierarchy with 8, 93 and 242 categories in each
level, and multiple labels can be assigned to each
book.

The corpus has a very imbalanced label distri-
bution. Figure 2 shows the top-level label distri-
butions, while Figure 3 shows the top 30 label dis-
tributions, and it can be vividly inferred that the
label categories are highly skewed.

3 Data Extraction and Prepossessing

The corpus was presented as an XML file, with
XML tags for each feature. The XML files were
parsed using the Python library - BeautifulSoup,

Figure 2: Top-level Label Distribution

Figure 3: Label Distribution for top 30 classes with hi-
erarchies

and the columns given in the corpus such as ti-
tle, description, list of authors, date of publication,
ISBN were extracted from the XML format into
a CSV format. The corpus has hierarchy infor-
mation in the hierarchy.txt file, which was used to
validate and prepare the corpus for modelling.

From the extracted data, we initially filter out
the stop words and numbers from title and descrip-
tion for every book using the Natural Language
Toolkit (NLTK) library available in Python. We
then utilize Byte-Pair Encoding (BPE) (Heinzer-
ling and Strube, 2018) based tokenization to create
tokens from the titles and descriptions for various
texts. BPE tokenization, in this context, identifies
the most common consecutive bytes of German
words and replaces with a byte that does not occur
within the data. For instance, ’Ein Blick hinter die’
might be converted into ’ ein blick hinter

die’ after BPE with a vocabulary size of 25,000.
We utilize the BPEmb library for the same, which
utilizes pre-trained byte-pair embeddings, and re-
quire no tokenization, also being much shorter.

The German words are split into multiple
smaller sub-words, which would inherently en-

342



able better representations for each book’s Ti-
tle and Description, and provide more context
for the feature vectors which are learned. Sub-
words in BPEmb also enable effective guess-
ing of unknown/out-of-vocabulary words’ mean-
ing based on context. For instance, the suffix -
shire in Melfordshire indicates a location.

After tokenizing each title and description of
books using BPE, we create term frequency - in-
verse document frequency (tf-idf) vectors from
the tokens. tf-idf is a widely used statistical mea-
sure in domains of NLP, text mining and informa-
tion retrieval, which signifies the importance of a
word to a document in the whole corpus (Ramos,
2003).

We experimented with various contiguous se-
quences of n-grams – unigrams, bigrams and tri-
grams for creating tf-idf vectors, and observed that
bigram models yielded better results than the rest.
Each book can have multiple authors, so we treat
the authors’ data as a binomial attribute (creating
a Label Binarizer which returns 1 if the book was
authored by that author, else 0) across all authors.
We extract the year from the publication date, and
utilized it as a categorical feature. We also ex-
tracted the Group ID and Publisher ID from the
13-digit ISBN and represented them as categorical
features again.

We created two sets of target variables from the
extracted data – one with the categories as tar-
get labels, and other with the count of categories.
Hence, we also created and pipelined two differ-
ent models – class count model and category score
predictor model. For instance, for a given book
instance, if there are k categories, then that train-
ing sample has been duplicated k times with each
sample having one category. Adding all features,
a sparse feature matrix was created. The final fea-
ture matrix is of size (17783 x 594931) for both
class count model and category score predictor
model.

Labels Counts
Label 1 15549
Label 2 1004
Label 3 70
Label 4 4

Table 1: Class Count Frequencies

The class count model is a classification prob-
lem with labels 1, 2, 3 as class frequencies. While

there are book instances up-to 4 top-level observed
class frequencies, there are only 4 training samples
for category 4 which is extremely less (negligible),
hence we consider only 3 categories. The class
count distribution can observed in Table 1. The
categories are predicted based on an 8-class classi-
fication approach for top-level categories (Subtask
(a)), and a 343-class classification mechanism for
multi-level (Subtask (b)) categories.

4 Model Pipeline

Given the corpus has a heavy class imbalance
across all levels, we choose a Support Vector Ma-
chine (SVM) based model for the task. SVMs are
known to exhibit robustness and perform effec-
tively under class imbalance (Tang et al., 2009).

The Linear Support Vector Classifier (Lin-
earSVC) in a multi-class classification problem
utilizes a one vs rest scheme, wherein the objec-
tive is to return the best-fit hyperplane that cate-
gorizes the data in an n-dimensional space. Iden-
tifying the right hyperplane is primarily depen-
dent on the margin (maximized distance between
hyperplane and nearest data point), and the loss
function governing the margin. We utilize the
squared-hinge loss for the same, as it is widely
used for maximum-margin classification in SVMs
that penalizes the violated margins more strongly
(quadratically). The squared-hinge loss, l for Lin-
ear SVM is given by,

l(y) = max(0, 1− t · y)2

where y is the classifier score y = w.x + b, w, b
are the parameters of the hyperplane, x is the input
variable(s) and the intended output t = ±1.

We created two Linear SVC models, one for
predicting the count of classes a book could be-
long to, and the other for category score predic-
tor. Linear SVC was chosen as it uses the liblin-
ear framework and scales well with the increase
in the number of features (Fan et al., 2008). More-
over, it is computationally faster than most other
Linear SVM implementations, and utilizes many
other advanced optimization techniques. We uti-
lize the scikit-learn Python framework (Pedregosa
et al., 2011) to train and test the LinearSVC model,
which uses liblinear as its default implementation.
Also, this implementation offers flexibility in the
choice of penalties and loss function parameters,
and would inherently scale well to larger samples
of data.

343



In our case, use of tf-idf vectors to represent
words created a large number of feature vectors.
The tf-idf vector representation were very sparse
owing to the short text representations for each
book. Compressed sparse representation (CSR) of
the feature matrix was further utilized reduce the
size of the training set.

4.1 Model Parameters
After extensive parametric optimization for both
models – count classifier and category classifica-
tion using grid search, we arrived the following set
of final parameters to yield best efficiencies. The
optimal parameters for the LinearSVC model are
elucidated in Table 2.

Parameter Optimal Value
C 1.0

Tolerance for stopping 0.0001
Loss Squared Hinge Loss

Penalty L2
Optimization algorithm Dual

Max Iterations 3000

Table 2: Optimal Parameters for LinearSVC

For the top-level classifier, the following class
weights are also used to handle class imbalance.
We utilized grid search to fine tune the class
weights again, which can be observed in Table 3.

Category Class Weight
Kinderbuch & Jugendbuch 1.8

Ratgeber 3
Sachbuch 2

Glaube & Ethik 2
Künste 6

Architektur & Garten 6
Literatur & Unterhaltung 1

Ganzheitliches Bewusstsein 1

Table 3: Class Weights for Top-level Categories to han-
dle Class Imbalance in LinearSVC

The class weights might be conventionally per-
ceived that the categories with lower cardinality
might have higher class weights. However, the
model prioritizes and takes into account the con-
fusion between various classes than the imbalance
in classes alone. For instance, we could observe
that a lot of Sachbuch and Glaube get classified
as Literatur & Unterhaltung, hence giving more
weightage to the latter aids in higher efficiencies.

4.2 Model Fusion

We pipeline the class score predictor and class
count predictor models together for effective clas-
sification of categories. Since the input features
for both models remain the same, we train our
model with categories as target variables for the
class score predictor model, and with class counts
as target variables for class count predictor model.

In the class count model, we also add the scores
of output class predictions to the input feature
space. This is motivated by the inherent fact that
there is a high correlation between the number of
categories a book belongs to, and its correspond-
ing class with the highest score. While predicting
a book’s category, we first get the class scores for
all categories from the class score predictor model,
and then append those predictions with input data
to the class count classifier model. Once the class
count predicts number of possible categories k, we
find the top k category predictions from the class
category predictor (likelihood) model.

In this way, the class imbalanced multi-label
problem is split into two simple prediction prob-
lems. Also, by splitting the problem into smaller
chunks, we are able to train multiple models in
parallel, thus reducing the total training time of the
system. With the above setup, retraining the entire
set of models takes just under 2 minutes.

5 Evaluation

For building an end-to-end classifier system, we
build a Classifier Class extending the scikit-learn
Base estimator API, with the respective fit and pre-
dict functions. The constructor parameters passed,
are the hyperparameters for the class count predic-
tor and class likelihood predictor models. Inside
the constructor, we create two LinearSVC mod-
els. In the fit (training) phase, both the predic-
tors are trained with their respective target vari-
ables. We utilize a K-Fold Cross-validation strat-
egy (K = 4) and get the class scores to be used
in training for class count predictor. Once we have
the class scores, we retrain the class predictor with
the whole training data again. The class count pre-
dictor is then utilized for training along with the
class scores appended.

Similarly, in the predict phase, the class predic-
tion model is first used to obtain class prediction
scores, and further utilized by class count predic-
tor to get the class count distribution. We select
take k highest category predictions from the class

344



scores.
The micro-f1 scores for Subtask (a) and Subtask

(b) with CV=4 folds can be found in Table 4.

CV Fold Subtask (a) Subtask (b)
Fold 1 0.833 0.384
Fold 2 0.943 0.471
Fold 3 0.950 0.484
Fold 4 0.900 0.397

Table 4: k-fold Cross-Validation (k=4) on Subtask a
and Subtask b

The experimental setup (HW/SW configura-
tions) utilized for our solution are as follows:

(1) Intel R© Xeon R© Processor E5-2650 v4 30M
Cache, 2.20 GHz, 12 Cores, 24 Threads (2) 250
GB RAM (3) CentOS 7.

6 Submission and Results

With the above setup, the model was able to
achieve the results showcased in Table 5 in the test
phase.

Phase Subtask (a) Subtask (b)
Validation Phase 0.851 0.4098

Test Phase 0.857 -
Post Evaluation Phase 0.878 0.3947

Table 5: Evaluation Metrics (f1-micro scores) for Test
Data on Subtask a and Subtask b

Team Raghavan achieves rank 4 in Subtask (a)
during the test phase (f1-score of ∼0.86). How-
ever, in the post-evaluation phase, we achieve an
f1-score of 0.878, which secures us the first po-
sition in Subtask (a). The additional 0.02 gain
in micro-f1 score during post-evaluation phase fi-
nally was achieved by adding ISBN based features
– Group ID and Publisher ID.

7 Conclusion

In this paper, we have successfully demonstrated
that traditional approaches like Linear Support
Vector Machine Classifier, with a class count pre-
dictor model can effectively model Multi-label
Multi-class Hierarchical Text Classification of
German blurbs – GermEval Task 1. The model
designed by us was aimed for top-level categories,
i.e., Subtask (a), which implements flat classifica-
tion and doesn’t make use of much hierarchical

dependencies. That is one primary reason for Sub-
task (b) achieving relatively less efficiencies.

The authors would like to emphasize that con-
ventional machine learning solutions would help
in better interpretability, and when pipelined/fused
with the right set of techniques, can effectively
save a lot computational resources and time.

8 Credits

The authors would like to thank their colleagues
at Ericsson Research and Global AI Accelerator
(GAIA) at Ericsson during this competition. Also,
we would like to thank the scikit-learn developers
for actively developing and maintaining this awe-
some tool. Finally, we thank the GermEval com-
petition organizers for fostering a friendly and col-
laborative environment around this dataset and for
answering our questions throughout the competi-
tion.

References
Zafer Barutcuoglu, Robert E Schapire, and Olga G

Troyanskaya. 2006. Hierarchical multi-label predic-
tion of gene function. Bioinformatics, 22(7):830–
836.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of ma-
chine learning research, 9(Aug):1871–1874.

Shou Feng, Ping Fu, and Wenbin Zheng. 2017. A hier-
archical multi-label classification algorithm for gene
function prediction. Algorithms, 10(4):138.

Benjamin Heinzerling and Michael Strube. 2018.
BPEmb: Tokenization-free Pre-trained Subword
Embeddings in 275 Languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018). European
Language Resources Association (ELRA).

Daniel J Hsu, Sham M Kakade, John Langford, and
Tong Zhang. 2009. Multi-label prediction via com-
pressed sensing. In Advances in neural information
processing systems, pages 772–780.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In European conference on machine
learning, pages 137–142. Springer.

Andrew McCallum, Kamal Nigam, et al. 1998. A com-
parison of event models for naive bayes text classi-
fication. In AAAI-98 workshop on learning for text
categorization, pages 41–48. Citeseer.

345



F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Juan Ramos. 2003. Using tf-idf to determine word rel-
evance in document queries. In Proceedings of the
First Instructional Conference on Machine Learn-
ing, volume 242, pages 133–142.

Steffen Remus, Rami Aly, and Chris Biemann. 2019.
Germeval-2019 task 1: Shared task on hierarchical
classification of blurbs. In Proceedings of the Ger-
mEval 2019 Workshop. Erlangen, Germany.

Juho Rousu, Craig Saunders, Sandor Szedmak, and
John Shawe-Taylor. 2006. Kernel-based learning of
hierarchical multilabel classification models. Jour-
nal of Machine Learning Research, 7(Jul):1601–
1626.

Y. Tang, Y. Zhang, N. V. Chawla, and S. Krasser. 2009.
Svms modeling for highly imbalanced classification.
IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B (Cybernetics), 39(1):281–288.

346


