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Abstract

This paper describes an entry of two systems
for Task 1 of GermEval 2019. Task 1 con-
sists of classifying labels of genres for Ger-
man books based on short advertisement text
blurbs. It is split into Subtask A, a multi-label
classification task with 8 classes and Subtask
B a hierarchical multi-label classification task
with 343 different classes. The submitted sys-
tems were used for both subtasks and com-
bined Logistic Regression and Naive Bayes to
build a classifier. To reach the final systems,
different models and combinations of hyperpa-
rameters were explored empirically. The best
submitted system reached micro-averaged F1-
scores of 0.82 and 0.62 for the two subtasks
respectively.

1 Introduction

Hierarchical multi-label classification (HMC) of
blurbs is the task of classifying multiple labels
for a short descriptive text, where each label is
part of an underlying hierarchy of categories. The
increasing amount of available digital documents
and the need for more and finer grained categories
calls for new, more robust and sophisticated text
classification methods. Large datasets often incor-
porate a hierarchy which can be used to catego-
rize information of documents on different levels
of specificity. The traditional multi-class text clas-
sifcation approach is thoroughly researched, how-
ever, with the increase of available data and the ne-
cessity of more specific hierarchies and since tra-
ditional approaches fail to generalize adequately,
the need for more robust and sophisticated classi-
fication methods increases (Remus et al., 2019).

To advance the state of the art in HMC, Task 1
of GermEval 2019 was launched. Task 1 consists
of classifying labels of genres for German books
based on short advertisement text blurbs. It is split
into Subtask A, a multi-label classification task

with 8 classes and Subtask B a hierarchical multi-
label classification task with 343 different classes.
For Subtask B, each label is part of an underlying
hierarchy of categories. This subtask is thus a Hi-
erarchical multi-label classification (HMC) prob-
lem.

HMC problems exist in a variety of domains
from text classification tasks to the prediction of
gene functions. The text classification research is
mostly focused on problems in English. Typically,
(deep) neural models are applied (Liu et al., 2017;
Gargiulo et al., 2019; Shimura et al., 2018; Cerri
et al., 2014). But there are also other approaches
like decision trees (Vens et al., 2008) or genetic
algorithms (Cerri et al., 2012; Gonçalves et al.,
2018). An overview of multi-label classification
algorithms can be found in (Sharma and Mehro-
tra, 2018).

To compete in GermEval 2019 and to contribute
to the state of the art in German HMC, two sys-
tems, that only vary in the n-grams that they used,
were submitted:

• HSHL LogisticRegression NaiveBayes1
(from here on out referred to as System 1)

• HSHL LogisticRegression NaiveBayes2
(from here on out referred to as System 2)

Apart from participating in GermEval 2019, the
intended use case for the submitted systems is to
serve as an introductory tool for machine learn-
ing in short talks or lectures and as a baseline for
more complex systems. As such, some additional
constraints were imposed on the systems that go
beyond the scope of the GermEval task:

• End-to-end runtime for Subtask A around 10
minutes.

• End-to-end runtime for Subtask B around 45
minutes.

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

347

https://creativecommons.org/licenses/by-nc-sa/4.0/


• No use of additional data.

• One system, no ensemble.

2 Data

The dataset (BGC-DE) was crawled from Random
House and provided by the organizers. It was split
into 70% training data, 10% validation data and
20% test data. The labels for the test data were not
given to the participants because this data served
as the means to judge the submissions. The dataset
contains information on German books in XML-
format.

Apart from the advertisement text blurbs and
genres, some additional metadata (title, author,
URL, date of publication) and the ISBN of the
book were provided. Some quantitative character-
istics of the dataset are summarized in table 1.

Number of samples 20,784
Average length of blurb 94.67
Total number of classes 343 (8, 93, 242)

Table 1: Characteristics of the BGC-DE dataset. The
343 classes form a hierarchy of 8 classes at the first
level, 93 classes at the second level and 242 classes at
the third level.

After an initial preparation phase in which a tiny
sample of data was provided to check the file for-
mat, the data was released in two phases. In phase
one, a validation set was released which consisted
of labeled training data and corresponding unla-
beled test data. After phase one ended, the labels
for the training data of the validation set were re-
leased and the validation set essentially became
the new training set for phase two with new un-
labeled training data provided for this phase.

3 Experimental Setup

To produce a submission for the task, the provided
data was first loaded, sanitized and converted to a
format that is suitable for the use in machine learn-
ing, namely a pands DataFrame (ETL). Because
some entries had no blurb, the book title was used
as a filler value. Additionally the genre names
were sanitized by lowercasing them and remov-
ing special characters and spaces so they could be
used as labels for the DataFrame. No additional
outside data was used.

To find a model and suitable hyperparame-
ters, the provided training data from phase one of

the competition was split into 80% training data
and 20% development data. Afterwards, differ-
ent models and hyperparameters were trained and
evaluated for Subtask A on this new split (Model
Search). This train-evaluate cycle was repeated it-
eratively until no further improvements could be
made (Model Freeze). The chosen model was used
to make the final predictions for both Subtask A
and Subtask B. The overall process is show in fig-
ure 1.

Figure 1: Overall process for the competition.

3.1 Technical Resources
All experiments were conducted in Jupyter Note-
books, version 4.0.2 (Kluyver et al., 2016) run-
ning a Python 3.5.0 (Python Software Foundation,
2019) kernel with the following libraries:

• pandas 0.23.4 (McKinney, 2010)

• NumPy 1.11.3 (Oliphant, 2006)

• scikit-learn 0.20 (Pedregosa et al., 2011)

• spaCy 2.0.12 (Honnibal and Montani, 2019)

A fixed seed was used for the random number
generators. All models were trained on an end of
2013 MacBook Pro with a 2 GHz Intel Core i7, 8
GB 1600 MHz DDR3 and an Intel Iris Pro 1536
MB GPU1.

4 Model Search

In order to find a model and suitable hyperparam-
eters, seven different models from the scikit-learn

1With this setup, the entire end-to-end training on the pro-
vided development set took 8:24 minutes for Subtask A and
46:55 minutes for Subtask B.
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library were trained and evaluated on Subtask A.
The selected models were Decision Tree, Ran-
dom Forest, Multinomial Naive Bayes, K-nearest
Neighbors (KNN), SVC, Linear SVC and Logis-
tic Regression. To get a baseline for each model,
the default values of the library were used. Af-
terwards, each model was optimized until no fur-
ther improvements could be made. All parameters
were found empirically by trying different com-
binations2. The chosen hyperparameters of the
optimized models are summarized in the follow-
ing chapters with a list of the used parameters in
Python Code for each model.

4.1 Decision Tree

For the decision tree, a random splitter was used
and the minimum number of samples was set to
15. The default ”Gini-criterion” yielded better re-
sults than the ”Entropy-criterion”. Balanced class
weights or changing the number of features for the
split to anything other than the total number of fea-
tures did not improve the results.

• splitter=’random’

• min samples split=15

4.2 Random Forest

For the random forest, 200 estimators were used
and the minimum number of samples required to
split an internal node was set to 5. Additionally, no
bootstrapping was used and balanced subsamples
were used for the class weights.

• n estimators=200

• min samples split=5

• bootstrap=False

• class weight=’balanced subsample’

4.3 Multinomial Naive Bayes

For Multinomial Naive Bayes, only the alpha
value for smoothing was tuned. An alpha value
of 0.08 yielded the best results. The default of
learning the class prior probabilities outperformed
using uniform priors.

• alpha=0.08
2The exact experiments that were conducted can be

found in the lab notes that accompany the code at
https://github.com/rother/germeval2019

4.4 K-nearest Neighbors

For KNN, a total of 9 neighbors were used.
Weighting points by the inverse of their distance
instead of weighting them equally (uniform) pro-
vided the best results.

• weights=’distance’

• n neighbors=9

4.5 Support Vector Machine - SVC

For the SVC, tuning the C value for regulariza-
tion proved most useful. Ultimately, it was set
to 15,900. Furthermore, balanced class weights
were used. No other experiments yielded improve-
ments.

• C=15900.0

• class weight=’balanced’

4.6 Support Vector Machine - Linear SVC

Due to technical problems3 the Linear SVC had
to be constructed by passing kernel=’linear’ and
probability=True to SVC instead of using Lin-
earSVC directly. The only optimization that
was performed was using balanced class weights,
which improved the overall results.

• kernel=’linear’

• probability=True

• class weight=’balanced’

4.7 Logistic Regression

For the logistic regression, a liblinear solver with
a maximum number of 1000 iterations, automatic
multiclass fitting and balanced class weights was
used. L2 regularization with C=40.0 was applied.
No dual formulation was used as the number of
samples was bigger than the number of features.

• C=40.0

• dual=False

• multi class=’auto’

• max iter=1000

• class weight=’balanced’
3Namely, that LinearSVC does not provide a pre-

dict probab() method.
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5 Results of the Model Search
experiments

The micro-averaged F1-scores for all optimized
models when evaluated on Subtask A are summa-
rized in table 2. The table is ordered in ascend-
ing order of F1-scores. The Logistic Regression
model performed best and was thus picked for the
competition.

# Model Default Optimized
1 Decision Tree 0.6049 0.6125
2 Random Forest 0.6125 0.6667
3 Naive Bayes 0.6253 0.7703
4 KNN 0.7164 0.7377
5 SVC 0.5127 0.7878
6 Linear SVC 0.7731 0.7882
7 Logistic Regression 0.6919 0.7883

Table 2: Overview of micro-averaged F1-scores for
the default configuration of models and optimized ver-
sions. Bold indicates the best model.

Additionally, one mixed soft-voting ensemble
that combined all models and ensembles that com-
bined the two or three best models were created4.
The ensembles that used the top models improved
upon the best F-score as summarized in table 3.
However, they were not used for the submission
as explained in the introduction.

# Ensemble Name Models F-score
1 All 1, 2, 3, 4, 7 0.7710
2 Top 2b 3, 7 0.7967
3 Top 3 3, 4, 7 0.7950
4 Top 2a 4, 7 0.8001

Table 3: Overview of ensembles with micro-averaged
F1-scores. Bold indicates improvements over the best
single model.

6 Model Freeze

Because the Logistic Regression model yielded
the best results during Model Search, it was used
for the submissions. Both submissions combined
this Logistic Regression model with a Naive Bayes
approach similar to (Wang and Manning, 2012)5

to classify the genres of German books from ad-

4Linear SVC and SVC were not included in these ensem-
bles due to technical problems.

5See also https://www.kaggle.com/jhoward/nb-svm-
strong-linear-baseline

vertisement text blurbs. spaCy was used as the to-
kenizer and unicode accents were stripped but the
casing was kept for both submissions. Both lem-
matiziation and stopwords lowered the results and
thus were not used. Empty blurbs were replaced
with the title of the book. The tokenization pa-
rameters are summarized in table 4.

Parameter Value
Tokenizer spaCy (German)
Accent Stripping Unicode
Lowercase No
Lemmatization No
Stopwords No
Replace-Empty Blurbs with Title

Table 4: Tokenization parameters.

For the term-frequency matrices, only words
that appeared in at least 4 documents were used
and words that appeared in more than 40% of
documents were ignored. Inverse document-
frequency-reweighting, sublinear term frequency
scaling and smoothing were applied. The parame-
ters are summarized in table 5. System 1 and Sys-
tem 2 only differ in the n-grams that were used to
construct the term-frequency matrices. For Sys-
tem 1, only unigrams were used and for System 2,
bigrams were used.

Parameter Value
Minimum Number of Documents 4
Maximum Frequency of Documents 40%
Inverse document-frequency-reweighting Yes
Sublinear Term Frequency Scaling Yes
Smoothing Yes

Table 5: Parameters for the term-frequency matrices.

For the logistic regression, the model from the
Model Search stage was used. The hyperparame-
ters are summarized in table 6.

Parameter Value
Solver liblinear
Maximum Iterations 1000
Multiclass Automatic
Class Weights Balanced
Dual Formulation No
Regularization L2
C 40.0

Table 6: Parameters for the logistic regression.
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7 Classification procedure

For Subtask A up to two labels were classified per
blurb, because using more than two labels lead to
worse results. For the second label a limit of 0.08
was found to be optimal. This limit means that
a second label is only classified, if the difference
between the probabilities of the top two predicted
labels is less than this value. This is depicted in
figure 2.

For Subtask B, the system started with the clas-
sified level 1 labels from Subtask A. Based on
these labels it moved up one level on the hierar-
chy and added exactly one additional level 2 label
per level 1 label if a cutoff value was met. Af-
terwards, the system once again moved up a level
on the hierarchy and added level 3 classifications.
This process is depicted as Algorithm 1. The exact
procedure is explained in more detail below.

Figure 2: Subtask A classification process.

On the second level, a list of all level 2 labels
that follow the classified level 1 labels on the hi-
erarchy was generated. The level 2 label with the
highest probability was picked and added as a clas-
sification if the probability was higher than a pro-
vided cutoff value. Note that on level 2, only upto
one label per level 1 label was picked.

For the third level, the level 2 classifications
were used as a basis. If there was a classified level
2 label, a list of all level 3 labels that follow the
classified level 2 label on the hierarchy was gen-
erated. If there was only one level 2 label (and
thus also only one level 1 label) the system added
as many level 3 labels as met the provided multi-
cutoff for level 3. If there was a second level 2
label (and thus also a second level 1 label) a single
level 3 label was added, if it met the provided cut-

Algorithm 1 Subtask B classification process.

Level1Labels← SubtaskA
for all Level1Labels do
Level2Probabilities← get from l1()
max l2← Level2Probabilities(0)
if max l2 > 0.09 then
Level2Labels← get label l2()

end if
end for
if len(Level2Labels) 6= empty then
ProbA← get from l2(Level2Labels(0))
ProbB ← get from l2(Level2Labels(1))
for all ProbA do

if probability > 0.15 then
Level3Labels.append(get label l3())

end if
end for
if ProbB 6= null then
max l3← ProbB(0)
if max l3 > 0.7 then
Level3Labels.append(get label l3())

end if
end if

end if

off value. This ensured that the lower confidence
prediction from the earlier level can get at most
one additional level 3 label.

The cutoff values were found empirically and
are summarized in table 7. On the third level, a
multi-cutoff value of 0.15 was used for the first
level 2 label and a cutoff of 0.7 was used if there
was a second level 2 label.

Level Cutoff Value Number of Labels
2 0.09 0 to 1 per level 1 label
3 0.15 / 0.7 0 to n per level 2 label

Table 7: Cutoff values and maximum number of labels
for the classification procedure.

8 Results

Unigrams (System 1) performed slightly better
than bigrams (System 2). Both systems partici-
pated in Subtask A and Subtask B of the compe-
tition. The final results are summarized in table 8
with the best results highlighted in bold.
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System F1-score A F1-score B
System 1 0.8201 0.6161
System 2 0.8163 0.6063

Table 8: Final results. F1-scores are micro-averaged.

9 Conclusion

This paper presented two submission (System 1
and System 2) that were entered for Task 1 at Ger-
mEval 2019.

Both submissions use a combined Logistic Re-
gression/Naive Bayes approach to classify genres
of German books from advertisement text blurbs.
spaCy was used as the tokenizer and unicode ac-
cents were stripped but the casing was kept for
both submissions. The first submission uses un-
igrams and the second submission uses bigrams.
The other hyperparameters are the same.

For the term-frequency matrices, only words
that appeared in at least 4 documents were used
and words that appeared in more than 40% of
documents were ignored. Inverse document-
frequency-reweighting, sublinear term frequency
scaling and smoothing were applied.

For the logistic regression, a liblinear solver
with a maximum number of 1000 iterations, auto-
matic multiclass fitting and balanced class weights
was used. L2 regularization with C=40.0 was ap-
plied. No dual formulation was used as the num-
ber of samples was bigger than the number of fea-
tures.

The cutoff values for the classification proce-
dure are summarized in table 7.

To facilitate the reproduction of the results, all
code is made available as a Jupyter Notebook at
one of the authors Github repositories6. Addi-
tional lab notes on the conducted experiments will
also be made available at the same repository.

The end-to-end execution time on a consumer
grade laptop was 8:24 minutes for Subtask A and
46:55 minutes for Subtask B and can be reduced
further by storing and reloading intermediate re-
sults.

The unigram version (System 1) performed best
and reached micro-averaged F1-scores of 0.82 and
0.62 for the two subtasks respectively. When
only the best entry for each teams is counted, this
means compared to the other participants rank 7 of
9 was reached for Subtask A and rank 5 of 6 was

6https://github.com/rother/germeval2019

reached for Subtask B. The winning scores were
0.87 and 0.68 for the two tasks respectively which
means that the submission was 5.75% worse than
the winning entry for Subtask A and 5.88% worse
than the winning entry for Subtask B.

As one of the intended use cases for the sub-
mitted systems was to serve as a baseline system
in the future it is worth noting that they outper-
formed the provided baseline by the organizers (a
linear SVN that scored 0.80 and 0.53 on the tasks)
for both tasks.
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