
bertZH at GermEval 2019: Fine-Grained Classification of German
Offensive Language using Fine-Tuned BERT

Tim Graf
University of Zurich

Institute for Computational Linguistics
Andreasstrasse 15, 8050 Zrich

tim.graf@uzh.ch

Luca Salini
University of Zurich

Institute for Computational Linguistics
Andreasstrasse 15, 8050 Zrich
lucaelio.salini@uzh.ch

Abstract

The bertZH system for abusive tweet detec-
tion in the GermEval 2019 competition is
a neural classifier based on BERT (Devlin
et al., 2018). We describe our submission
runs for subtask 2 on fine-grained classifi-
cation of tweets. We used the pretrained
German language model from deepset.ai1

implemented in pytorch and fine-tuned
it to the data of the task, before then using
it to train on the classification task. We also
experimented with the pretrained multilin-
gual BERT model from Google Research
implemented in keras, but it resulted in a
worse score than with the German model.
We have found that a language-specific
BERT model outperforms a multilingual
model and that fine-tuning a BERT model
to the tasks domain achieves a small gain
in performance.

1 Introduction

It can be very useful for the user experience of a
social media platform to sort out abusive content.
But first one has to know what content can be de-
clared as abusive in order to avoid false-positives.
The goal of our deep neural network is to find this
abusive content.

We developed our models as a part of a Text
Mining course at the University of Zurich as a final
work. We are two Bachelor students in Computa-
tional Linguistics.

This paper is organized as follows: in section 2
we will explain the details of the competition, espe-
cially task 2. Then, in section 3 we provide some
details about the preprocessing of of our pipeline.
In the 4th section we present the architecture of our
deep neural network and the background of BERT.
In section 5 we describe the configuration of each

1https://deepset.ai/german-bert

submitted run in detail and we finally present our
results in section 6.

2 Competition Tasks

The GermEval 2019 Shared Task on the Identi-
fication of Offensive Language2 focused on clas-
sification of German tweets with respect to their
offensiveness. With the overwhelming amount of
social media posts everyday, systems that can reli-
ably detect profane language or harassment grow
more important in assisting human moderators.

• Subtask 1: Coarse grained classification. This
dataset was labelled with only two labels,
namely OFFENSIVE and OTHER, where
OTHER represents non-offensive tweets.

• Subtask 2: Fine grained classification. For
this task, each sample of the dataset (which is
the same as in subtask 1) is labelled with four
labels: INSULT, PROFANITY, ABUSE and
OTHER.

We only participate in subtask 2. The task is
a multi-class classification problem, which means
that each tweet is only labelled with a single label
(e.g. an abusive tweet that uses profane language is
only labelled ABUSE). The data is not uniformly
distributed as the class OTHER has a frequency of
67.8%, while the others are quite under-represented
(INSULT: 15.6%, ABUSE: 12.7%, PROFANITY:
3.8%). This usually makes it very difficult to learn
automatically how to predict the under-represented
classes - especially the class PROFANITY.

The evaluation metric is F1-score, hence it is im-
portant to have a good classification rate for every
single class.

3 Preprocessing

Since tweets contain a lot of colloquial language
and also hashtags or usernames or similar, we

2https://projects.fzai.h-da.de/iggsa

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

434

https://creativecommons.org/licenses/by-nc-sa/4.0/

Figure 1: Top-level overview of our pytorch architecture.

needed to filter or normalize such occurrences.
For that reason we used the German tokenizer
SoMaJo3 and added some extra cleaning steps:

• Normalizing character repetitions: We replace
characters which occur more than twice in a
row with two of them (”cooooool”→ ”cool”).

• Substituting usernames: Every username gets
replaced with ”@USER”. We didn’t cut out
the whole username because it could be impor-
tant for the classification if someone is men-
tioned.

• Removing special characters: We remove
characters such as hashtags, newlines, line-
breaks or underscores.

We also used scikit-learn (Pedregosa and
others, 2011) for the train-test split during develop-
ment.

4 Architecture

BERT (Devlin et al., 2018) has proven to be ex-
ceptionally effective in many downstream NLP-
tasks including sentence classification. It has
improved the state-of-the-art in several applica-
tions, and hence our goal was to implement BERT
for the fine-grained classification task. However,
training a BERT model from scratch is compu-
tationally very expensive and impossible to train
on a single consumer-grade GPU, so we had to
rely on the publicly available models. When
we first started the project, the only available
BERT model that was trained on German data
was bert multi cased L-12 H-768 A-12,
a BERT model released by Google Research on
GitHub4 that was trained on Wikipedia dumps in

3https://github.com/tsproisl/SoMaJo
4https://github.com/google-research/

bert

104 different languages, of which one was German.
In order to use the model in keras (Chollet and
others, 2015), we followed Jacob Zweig’s blogpost
BERT in Keras with Tensorflow hub5. With this
implementation, we could fine-tune the last n lay-
ers of the BERT transformer while connecting a
256-units Feed-Forward layer with dropout to the
first generated token by BERT. This [CLS] token
is a representation of the whole sequence and is
the only component of BERT’s output we use to
perform the classification task (Devlin et al., 2018).

Later on in the project, we found that
deepset released a BERT model to the public
that was trained on German data exclusively
(bert-base-german-cased)6, which was
promising better results on several German tasks
than the multilingual model by Google Research,
including the GermEval 2018 Shared Task on the
Identification of Offensive Language (Wiegand et
al., 2018). The implementation in keras we de-
scribed in the preceding paragraph relied on the
model being available as a module on TensorFlow
Hub, which was not the case for this model. Hence,
we used the well-known pytorch (Paszke et al.,
2017) implementation of BERT by the Hugging-
Face team7 and followed the blogpost A Simple
Guide On Using BERT for Binary Text Classifica-
tion8 by Thilina Rajapakse to be able to use the
German model, and modified the code to suit the
multiclass classification task. With the implemen-
tation by HuggingFace we were able to fine-tune
the German model on to the tasks dataset using
BERT’s original language modeling tasks MLM

5https://towardsdatascience.com/bert-
in-keras-with-tensorflow-hub-76bcbc9417b

6https://deepset.ai/german-bert
7https://github.com/huggingface/

pytorch-transformers
8https://medium.com/swlh/a-simple-

guide-on-using-bert-for-text-
classification-bbf041ac8d04

435

(masked language modeling) and next sentence
prediction before we trained the model to actu-
ally perform classification (Devlin et al., 2018).
For classification, we then used the already pro-
vided BertForSequenceClassification
model architecture without modifying it at all. We
conducted some informal experiments on the fol-
lowing hyperparameters:

• Number of layers to fine-tune BERT (keras-
implementation)

• rate of dropout (keras-implementation)

• Learning rate (both implementations)

• Number of epochs

5 Submitted Runs

5.1 Run 1
Run 1 was a submission that was trained on 11536
samples and evaluated on 1000 samples. It used
the pytorch-implementation with the German
BERT model and the following Hyperparameters:

Hyperparameter Size
Learning rate 0.00002
of epochs 5

Table 1: Set Hyperparameters of run 1.

5.2 Run 2
Run 2 was a blind submission, which we trained on
all of the available 12536 samples, which means we
did not know how well the system would actually
perform. It was a pytorch-implementation using
the German BERT model as well and used the
following Hyperparameters:

Hyperparameter Size
Learning rate 0.00002
of epochs 5

Table 2: Set Hyperparameters of run 2.

5.3 Run 3
Our third submission was made with the keras-
implementation and Google-Research’s multilin-
gual model. Even though we were observing sig-
nificantly worse performance using this model, we

were interested in how well this model would per-
form. This submission was trained with the follow-
ing Hyperparameters:

Hyperparameter Size
Learning rate 0.00002
of epochs 3
of fine-tuned layers 3
Dropout 0.5

Table 3: Set Hyperparameters of run 3.

5.4 Training Times

All of our experiments were conducted on a sin-
gle RTX 2080ti GPU. The fine-tuning of the Ger-
man BERT model took around 60 minutes for 3
epochs, and the training of the classification tasks
for runs 1 and 2 took around 15 minutes. The
keras-implementation of run 3 finished in 6 min-
utes. It is very impressive that using such powerful
and large models is possible within very reason-
able time-frames on consumer grade GPUs, and
the practice of open-sourcing these large pretrained
models should be applauded.

6 Results

We pre-calculated the F1-score for our different
systems:

Features F1 Diff
run 2: with all data - -
run 1: German BERT + fine-tuning 0.65 -
(no submission): German BERT 0.63 -0.02
run 3: multilingual BERT 0.53 -0.12

Table 4: Pre-calculated F1-scores of the models.

Features F1 Diff
run 2: with all data 0.53 -
run 1: German BERT + fine-tuning 0.52 -0.01
(no submission): German BERT 0.50 -0.03
run 3: multilingual BERT 0.43 -0.1

Table 5: Final F1-scores of the models.

From these results it is obvious that a language
specific BERT model improves the performance of
a system. This should hold for any language. We
also assume that our models are not yet saturated
and that more training data would help achieve

436

Class F1
OTHER 0.87
ABUSE 0.59
INSULT 0.54
PROFANITY 0.56

Table 6: F1-score distribution of the different
classes for run 1: German BERT with fine-tuning.

an even higher score without any modification to
the model, especially because more samples from
the underrepresented classes should help the BERT
model to get a better grasp of what for example
makes a tweet an INSULT and not an abusive tweet.
Another observation to point out is that fine-tuning
a BERT model to task-specific data seems to im-
prove the score even further. Hence, given enough
training examples, BERT might be all you need.

7 Conclusion

After BERT has revolutionized the NLP-
Community, we have applied it to the task of
German offensive language detection. A common
problem with neural approaches is that they usually
require a larger amount of training data than more
traditional machine learning approaches. However,
large, pre-trained language models seem to model
a language well enough so that even with a rather
small dataset of 12536 they can be used to achieve
impressive results. It was also very impressive
to see that, even though PROFANITY made up
only 3.8% of the training data, without any further
data augmentation or oversampling, the BERT
model did not face the problem of not predicting
PROFANITY at all. Hence, our submission shows
that relatively good results can be achieved without
spending many resources on feature engineering
or training large models, as fine-tuning existing
released models does not take a lot of time.

Acknowledgments

We would like to thank deepset.ai and Google for
making their BERT models available to the pub-
lic. Furthermore, we thank our instructor Simon
Clematide for his support and inputs.

References
François Chollet et al. 2015. Keras. https://
keras.io.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.
In NIPS Autodiff Workshop.

Fabian Pedregosa et al. 2011. Scikit-learn: Machine
learning in Python. Journal of Machine Learning
Research, 12:2825–2830.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the germeval 2018 shared
task on the identification of offensive language.

437

