
HAU at the GermEval 2019 Shared Task on the Identification of Offensive
Language in Microposts: System Description of Word List, Statistical and

Hybrid Approaches

Johannes Schäfer1, Tom De Smedt2, and Sylvia Jaki3

1 Institute for Information Science and Natural Language Processing, University of Hildesheim
2 Computational Linguistics Research Group, University of Antwerp

3 Department of Translation and Specialized Communication, University of Hildesheim

johannes.schaefer@uni-hildesheim.de, tom.desmedt@uantwerpen.be,
jakisy@uni-hildesheim.de

Abstract
This paper presents our contribution (HAU)
for the three subtasks of GermEval 2019
Task 2. To detect offensive microp-
osts, we have experimented with differ-
ent approaches and a combination thereof,
namely, a Convolutional Neural Network
(CNN), a Random Forest, and a lexicon-
based approach. In this paper, we report
our methodology, demonstrate how it in-
cludes insights from GermEval 2018, and
compare the different approaches for the
different subtasks in view of future direc-
tions in the detection of offensive language
and hate speech online.

1 Introduction

This year’s Terrorism Situation and Trend Report
from Europol (2019) again notes the increase of
far-right incidents in Germany, including attacks
against immigrants and mosques, the rioting in
Chemnitz, the fatal stabbing of a pro-migrant politi-
cian, and in particular mentions the instigators’
affinity with weapons. It is becoming difficult to
ignore the role of unmoderated social media plat-
forms like Gab, 4chan and 8chan in radicalization
processes and the proliferation of hatred. This in
itself justifies organizing a second GermEval task
on offensive language (or other shared tasks such
as OffensEval 2019 (Zampieri et al., 2019) and Hat-
Eval 2019 (Basile et al., 2019)), encouraging the
scientific community to investigate hateful online
discourse, for example to help develop better con-
tent moderation tools, or early warning systems for
illegal content.

HAU1 is our best submission: a CNN with ex-
tensive feature engineering. HAU2 is a lexicon

of offensive words and manually-annotated word
scores; our main interest here is to observe how
well it does compared to other techniques. HAU3
is a Random Forest trained on character trigrams
and word unigrams, which we used as a baseline
for the other two. The choice of the techniques is
based on last year’s GermEval, where CNNs and
Random Forests were among the best-performing
systems (see Wiegand et al., 2018), and where we
also demonstrated that competitive results can be
achieved with lexicons.

In the following sections, we present our three
approaches, with the main emphasis on the CNN
in Section 2. The Random Forest is discussed in
Section 3, and our new “POW” lexicon in Section
4, followed by a discussion of the systems’ perfor-
mance in the three subtasks in Section 5.

2 HAU1: CNN

In this section, we describe our neural network
model developed for the identification of offensive
language in microposts. The overall network struc-
ture is based on the approach described in detail in
Schäfer (2018) where text, metadata and linguistic
features are handled by parallel sub-networks. We
use a variant that yielded the best results in pre-
vious experiments, and which considers only text-
based and metadata features. We elaborate on a few
choices for the structure and hyperparametrization
in Section 2.3, based on early experiments on the
given GermEval 2019 training dataset.

2.1 Model Description

In the following, we list the differences of our
model in comparison to the approach described
in Schäfer (2018), firstly, the changes to the model

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

391

https://creativecommons.org/licenses/by-nc-sa/4.0/


architecture, and, subsequently, the changes to the
training procedure.

Model architecture: The original system used
a recurrent neural network (RNN) with long short-
term memory (LSTM) units for encoding the text-
based features. However, during experiments we
observed an improved performance when replac-
ing this encoder by a CNN. Our new CNN model
is based on the architecture given in Schäfer and
Burtenshaw (2019), where multiple sequences of
convolution, dropout and max pooling are com-
bined in parallel in a text encoder. This encoder
operates on a word embedding of the input text
sequence (both in GermEval 2018 and 2019). The
parallel structure was specifically designed for the
detection of offensive language. Each branch in
the CNN is trained to identify those n-grams (with
n from 1 to 6) from the text which are significant
for the classification task. Based on that, different
types of offensive expressions can be captured and
also mentions of targets (proper names) or other
multi-word features.

The sub-network with metadata features
has remained unchanged in comparison to
Schäfer (2018). It considers a variety of numerical
features calculated on the input text, by using
rule-based formulas and partially counting matches
in pre-defined word lists. The list of 27 basic
metadata features1 is given in the referenced paper.

Model training procedure: We briefly men-
tion two commonly used methods for training a
neural network, which were not considered in
Schäfer (2018) but included in the system at hand.
First, the label ratio in the given dataset is imbal-
anced: about 1:2 in the binary classification task,
or 1 offensive comment per 2 non-offensive. When
trying to optimize all labels equally (which is con-
sidered by the macro-average F1-score evaluation
metric of the shared task), it is beneficial to use
class weights during the training process. By doing
so, we can, for example, boost the importance of
the more infrequent label OFFENSE in the binary
classification task. We give our exact class weights
used for the submitted system runs for the differ-
ent tasks computed on the entire training dataset in
Section 2.3.

Second, as we train the model by iterating over
the training data multiple times, a stopping point
has to be determined, early enough to avoid over-
fitting to the given training data. To automatically

1Text length, number of proper names, hashtags, etc.

determine a suitable number of training epochs, we
use early stopping as follows. About 5% of the
training data is retained as a validation set. Then,
after each epoch over the training data, the perfor-
mance of the resulting model is evaluated on this
validation set. If the performance did not improve
in the last few epochs, the weights of the model
that resulted in the best score on the validation set
are loaded, and this model is then finally returned.
Since we optimize on fewer training data instances
during cross-validation - in comparison to the en-
tire training dataset for the final prediction of the
shared task test dataset - it is crucial to automate
this process by adjusting the number of training
epochs depending on a validation set performance.
In our experiments, early stopping was usually exe-
cuted after 7 to 15 epochs on the training dataset.

2.2 Model Features

In this section we discuss the integration of fea-
tures from our new POW lexicon (Section 4) into
the neural network. We expected the lexicon to
provide additional guiding features for offensive
language detection, and we experimented with dif-
ferent ways of considering those features as input
for the neural network. Computing additional fea-
tures on the tweet as well as on the word level
proved to be beneficial. Furthermore, in our overall
network architecture, features based on the lexicon
led to performance improvements when including
them directly in the text-based sub-network, as well
as in the parallel metadata sub-network. We imple-
mented this as follows:

Tweet-level features: For each tweet, we check
for each word from the lexicon if it is contained in
the tweet (untokenized string). If we find a match,
we add 10 feature values to the tweet: one for the
word’s manually annotated intensity score (0-4) in
the lexicon, and nine more for each fine-grained
category in the lexicon (0 or 1). If multiple words
from the lexicon are matched in a tweet, the val-
ues are summed up. For example, a tweet with
features [6, 0, 1, 2, 0, 0, 0, 0, 0, 0] might con-
tain 2 words from the lexicon, where each of these
has an intensity score of 3, both of them have the
RIDICULE label (forth position in the vector), and
one has the DEHUMANIZATION label (third posi-
tion in the vector). Note that it could also be ben-
eficial to only use the score of the matched word
with the highest values (instead of the sum); a con-
figuration which we did not test. Since the task

392



of offensive language detection is formulated as a
classification task where we need to identify text
that “contains” offensive language, one highly of-
fensive word should be enough to lead to a high
prediction score. In our model, we include these
10 features for each tweet as additional metadata
features in the parallel sub-network, which then
considers a total of 37 features.

Word-level features: In a similar way to the
tweet-level features we calculate additional fea-
tures on word-level. We also apply the above-
mentioned procedure on words in a loop on the
tokenized tweet, thus resulting in 10 additional
features for each word in a tweet. We add these
features into the text encoder by stacking them
directly on top of the word embeddings. Subse-
quently, these augmented word embeddings (which
are hybrid features containing the distributional se-
mantics of words as well as direct lexicon-based
features) are fed into the CNN. The special prop-
erty of this method is that any generic pre-trained
word embeddings can be used, while a task-specific
augmentation is included.

Integration into the CNN: Figure 1 displays
the architecture of the overall network. The addi-
tional tweet-level features are included in the input
layer for metadata features on the top right (see
Input Metawith dimension 37 for the in total 27
+ 10 features). The additional word-level features
are given as input in the layer Input POW-meta
next to the text input layer (see on top in the mid-
dle; last dimension 10 for the 10 features for each
word). The 10 dimensions of the additional word-
level features are added to the (here: 200) dimen-
sions of the word embedding layer, resulting in
augmented word embeddings (see the output of the
Concatenate layer, last dimension 210).

2.3 Hyperparametrization & Test Results

In this section we give explanations for our choice
of parameters and the structure of our final neu-
ral network architecture, which was optimized in
a 3-fold cross-validation on the GermEval 2019
training dataset. The given numbers are averages
over the 3 folds of macro-average F1-scores for of-
fensive language detection (i.e., Subtask 1, binary
classification). The performance of the basic CNN
model without any additional metadata features in
the configuration of Schäfer (2018) was 71.98%.
Including the basic 27 metadata features in an ad-
ditional sub-network then resulted in 72.84%. To

measure the effect of using our POW lexicon fea-
tures, we evaluated different configurations:

• CCN (augmented embeddings) + meta (27
basic features): 73.56%,

• CCN (basic embeddings) + meta (27 basic
features + 10 POW): 75.17%,

• CCN (augmented embeddings) + meta (27
basic features + 10 POW): 75.46%.

We can see that both additions seem to be bene-
ficial when activating individual feature categories,
while the best results are achieved when we in-
clude the lexicon features both on word level as
well as on tweet level. A clear improvement can
be observed when adding the features on the tweet
level, perhaps because the separate sub-network
has the capability of learning to identify different
types of offensive language than the text encoder
sub-network, which could possibly be captured by
the lexicon.

We mostly followed the text preprocessing steps
described in Schäfer (2018), but we had to make
changes to the normalization technique as we ran
into a considerable amount of out-of-vocabulary
words with the GermEval 2019 dataset. It is impor-
tant when using word embeddings to have a low
number of unknown words, as all such words get
assigned a dummy embedding and are basically
ignored. We defined our vocabulary as words from
the training dataset with a frequency of occurrence
greater than 1. This method can be problematic
when applied to social media data, due to the high
amount of spelling errors, variants or neologisms.
Thus, an extensive normalization technique is re-
quired.

We attempted to use compound splitting, rule-
based/statistical lemmatization, and using the fur-
ther training data to enrich the vocabulary. How-
ever, the best performance was achieved by using
a fallback based on Levenshtein-similarity for un-
known words. When a word is not in the vocab-
ulary, we select the word with the most similar
string (i.e., lowest Levenshtein distance) instead.
This approach is questionable, and in a real-world
application we would not suggest it, since it ba-
sically guesses unknown words. Nevertheless, it
seemed to work here, as it leads to a 1% perfor-
mance improvement in the given dataset. A proper
solution would be to use more training data, which
did not work in our evaluation, probably because
the training and test sets are too similar. For a

393



Figure 1: Neural network model structure for binary classification. The blocks correspond to layers,
and those marked with * consist of sub-networks (for the exact structures refer to Schäfer and Burten-
shaw (2019) for the CNN and to Schäfer (2018) for the Meta Encoder). Each block contains the
name and type of the layer with the dimensions of its input and output. The first value of the dimensions
corresponds to the batch size and is given as None in the figure (64 in our experiments).

real-world application it might also be advisable to
evaluate on multiple datasets from different sources
when developing a system.

For hyperparametrization in general, we found
that setting the number of filters of each convolu-
tional layer to 8 leads to the best results. In our
final model, we mainly optimized the values for
the class weights specifically for each classifica-
tion task. First, we automatically calculated class
weights based on the distribution of the different
labels in the training dataset and then optimized
these using a smoothing factor.

Class weights: To predict binary labels for
offensive language in Subtask 1, we used full
weights with the values for OTHER: 1.24, and
OFFENSE: 2.05. With 3-fold cross-validation on
the training dataset, this leads to a macro-average
F1-score of 76.37%. For Subtask 2 (fine grained
classification) we found a smoothing factor of 5 ap-
plied to the class weights to be optimal. This leads
to the weights for OTHER: 1.10, ABUSE: 2.37,
INSULT: 2.08, and PROFANITY: 6.06. This
means that we try to boost the scores for the in-
frequent classes, but not as much as their inverse
frequency would suggest, since having too many
different classes might be detrimental to the over-
all performance. We achieve a macro-average F1-
score of 58.06% using 3-fold cross-validation. For
Subtask 3, we found it most optimal to use a

smoothing factor 0.5, increasing the values sug-
gested by the inverse frequency of the labels in
the dataset, which might be justified by the highly
skewed distribution of the two labels. The re-
sulting class weights are EXPLICIT: 1.30, and
IMPLICIT: 14.12. With 3-fold cross-validation,
this leads to a macro-average F1-score of 64.79%.

Final neural network: Our final neural network
(variant for Subtask 1) is shown in Figure 1. The
network takes three inputs: Input Text is the
tokenized/normalized tweet, Input POW-meta
are the additional word-level features from our
POW lexicon, and Input Meta are the tweet-
level metadata features (37 in total: 27 basic + 10
from the lexicon).

To explain the sequence input of the tokenized
data into the network, it should be noted that these
sequences are all set to a fixed length (49 here, see
the 2nd dimension size of the first 2 input layers
in the figure). We calculated a suited maximum se-
quence length of the normalized input tweets to be
49 based on the given training dataset. This value
is set so that a maximum of 5% of the tweets has
to be cut off, i.e., 95% of the tweets have less than
than or equal to 49 words after our normalization
(such shorter sequences are (pre-)padded). The in-
put sequence (tokenized and normalized tweet) is
then transformed into numerical values using the
augmented word embeddings (as described above)

394



and further encoded using a CNN with 6 parallel
branches. The (flat) output of the text encoder (see
output of the layer CNN; 384 dimensions) is then
concatenated with the output of the metadata sub-
network (see output of the Meta Encoder; 128
dimensions) resulting in 512 encoded feature val-
ues, on which the final layer produces a value that
we can interpret as a binary prediction. We under-
stand the decision-making process of this neural
network to be based on two main criteria:

• n-grams of words that hint at the use of offen-
sive language, which the CNN is constructed
to identify,

• predefined metadata features based on rules
and lexicons (metadata sub-network).

3 HAU3: Random Forest

This model was only trained on this year’s training
data, where each message was mapped to a vec-
tor of (lowercase) character trigrams features, e.g.,
scheiß = {sch, che, hei, eiß}, and word unigram
features. All features are binary (i.e., weight 1 if
present in message, weight 0 if not). We used the
Random Forest algorithm with the following hy-
perparameters: a 100 trees, each with a random
subset of no more than 750 features, and a mini-
mum leaf node size of 3. The algorithm was writ-
ten from scratch; an additional incentive was to
test its performance in a real-world task and check
whether it is eligible for inclusion in our new open
source NLP & ML toolkit for the Python program-
ming language, Grasp.py.2 This is a smaller, faster
and easier-to-use version of our Pattern toolkit (De
Smedt and Daelemans, 2012).

In general, the performance of the model is un-
remarkable: an average F1-score of 69.75% for
Subtask 1, with a poor recall for OFFENSE tweets
(43.71%) and a good recall for OTHER tweets
(90.34%). To freshen up, recall and precision can
be understood intuitively as follows: suppose we
create a dashboard of today’s offensive messages
on Twitter. The dashboard shows a 100 messages,
which are all offensive, so precision (cf. quality)
is 100%. If the list also shows irrelevant messages
(false positives) then precision will be lower. Now
suppose that in reality there were a 1,000 offensive
messages today. This means that the dashboard
missed out on 900 (false negatives) and has a low
recall (cf. quantity) of only 10%.

2https://github.com/textgain/grasp

In this light, in our approach a lot of offensive
messages slip through undetected, but few non-
offensive messages are misclassified. Arguably,
this could still make the classifier useful in real-life,
since, from a user experience standpoint, under-
blocking (more offensive content slips through) is
better than over-blocking (more users are falsely
accused of being offensive). A human moderator
equipped with a dashboard built on top of our clas-
sifier would see about half of the daily offensive
content, in a list where he or she would have to
ignore about 1/3 of irrelevant results (68.06% pre-
cision).

4 HAU2: POW lexicon

This system is based on a lexicon of 2,850 Ger-
man words that express profanity and offense, with
manually-annotated intensity scores. The Profan-
ity & Offensive Word list (POW) originates from
our work in last year’s GermEval (see De Smedt
and Jaki, 2018), where we used 50 handpicked,
high-precision “seed” words to automatically ex-
tract 1,250 similar words from the German Twit-
ter Embeddings (Ruppenhofer, 2018). During the
past year, the list was further expanded and anno-
tated for intensity (0-4, e.g., radikal ‘radical’ = 1,
schwein ‘pig’ = 3, abschaum ‘scum’ = 4) by four
annotators at the University of Hildesheim. Each
entry in the list also has an English translation,
extracted from Google Translate and manually
reviewed, and up to 9 fine-grained tags such as
PROFANITY, DEHUMANIZATION, RIDICULE,
SEXISM, RACISM and/or EXTREMISM, added by
the annotators. The set of tags is an open and
growing collection. The current tags were chosen
intuitively based on prior studies in online German
right-wing extremism (Jaki and De Smedt, submit-
ted), misogyny (Jaki et al., 2019), and jihadism
(De Smedt et al., 2018). The advantage of such a
richly-annotated resource is that offensive words
can easily be highlighted (e.g., in a dashboard),
making it a useful and explainable support tool for
real-world applications where human moderators
have the final say.

The classification algorithm is a rule-based script
that takes a given message as input, scans which of
its words are also in the lexicon, and then returns
whether or not it is OFFENSE as output, based on
a weighting scheme tweaked by trial-and-error for
each variable (i.e., intensity scores + tags). As it
turns out, this heuristic approach achieves is not

395



outperformed a lot by the Random Forest classi-
fier: an average F1-score of 68.13% for coarse-
grained Subtask 1. Its main weakness is a low re-
call for OFFENSE (37.11%), which in theory could
be overcome by expanding the lexicon with more
entries, which is a cost-effective solution when stu-
dent assistants are available. This is a task that we
have planned for future work. For example, our
Dutch counterpart lexicon currently has 10,000 en-
tries. Again, moderators of such tools will miss out
on half of the offensive content, but it is often more
desirable to review 1,000 messages of which 2/3
are really offensive than to wade through 10,000
without any prior warning system.

Interestingly, this approach has a better precision
(cf. quality) in the fine-grained task for predicting
INSULT (48.28%) than our best CNN (35.56%),
presumably because it can depend on handcrafted
insights from the PROFANITY + RIDICULE tags.
This begs the question what other tags can be useful
for future work, with THREAT and ILLEGAL on
top of our list.

In related research on political debate (Jaki et
al. 2019), we have also used the lexicon to detect
offensive content on the Facebook pages of the ma-
jor political parties in the German federal elections
2017 and their leading candidates. Employing the
POW list, we showed that the female candidate’s
pages displayed a higher proportion of offensive
content, for example.

5 Discussion

In this section, we sum up the HAU results for the
different subtasks and discuss their implications.

In GermEval 2018, we have focused primar-
ily on the coarse-grained classification task, with
first attempts in the fine-grained classification task
(Schäfer, 2018). This year, Subtask 1 (binary clas-
sification) was tackled by employing the three mod-
els described in Sections 2 to 4, and Subtask 2
(fine-grained classification) with the first and last
models (CNN and lexicon). We assumed that the
most difficult task to solve computationally might
be Subtask 3 (implicit vs. explicit offense) as un-
derstanding implicit offense often involves inferral
processes that involve a high amount of contextual
knowledge. As a consequence, implicit offense is
often hard to pin down on the text level.

As the best results were yielded for Subtask 1
in GermEval 2018 (Wiegand et al., 2018), it is lit-
tle surprising that the models achieved our best

results for the binary classification task in 2019: a
macro-average F1 score of 70.46% for the CNN,
69.75% for the Random Forest, and 68.13% for
the POW lexicon. Surprisingly however, the over-
all performance in Subtask 3 was higher than in
Subtask 2, which means that the identification of
different types of offense turned out more difficult
to solve (macro-average F1 score of 45.34% for
the CNN and 40.8% for the POW lexicon) than the
identification of implicit offense (macro-average
F1 score of 69.3% for the CNN).

The general conclusions we can draw from our
submission are the following: Firstly, it is very
difficult to outperform CNNs in the detection of
offensive language, especially if they have been
extensively enriched by a multitude of additional
features. Secondly, although even a very substan-
tial lexicon will not outperform more up-to-date
approaches, it can still achieve surprisingly good
results, in so far as word lists do not necessarily
entirely fall behind in comparison to CNNs and
Random Forests. This is particularly important
to know because there are many real-life scenar-
ios where lexicon-based approaches could be em-
ployed as a simple, but useful aid in the detection of
offensive speech, with the advantage of bringing a
maximum of transparency to the identification pro-
cess. Thirdly, the integration of lexicons like POW
into CNNs can help to trigger better overall results.
This shows that we should not exclusively rely on
statistical approaches for solving the problem in
future work, but recognize the value of thorough
qualitative preparation work (such as the result of
the annotation process).

References
Valerio Basile, Cristina Bosco, Elisabetta Fersini, Deb-

ora Nozza, Viviana Patti, Francisco Manuel Rangel
Pardo, Paolo Rosso, and Manuela Sanguinetti. 2019.
Semeval-2019 task 5: Multilingual detection of hate
speech against immigrants and women in twitter. In
Proceedings of the 13th International Workshop on
Semantic Evaluation, pp. 54-63.

Tom De Smedt and Walter Daelemans. 2012. Pattern
for Python. JMLR, 13:20632067.

Tom De Smedt, Guy De Pauw, and Pieter Van Ostaeyen.
2018. Automatic detection of online jihadist hate
speech. CLiPS CTRS, 7:130.

Tom De Smedt and Sylvia Jaki. 2018. Challenges of
Automatically Detecting Offensive Language Online:
Participation Paper for the Germeval Shared Task

396



2018 (HaUA). In Proceedings of GermEval 2018,
2732.

Europol. 2019. European Union Terrorism Sit-
uation and Trend Report. European Union
Agency for Law Enforcement Cooperation.
https://w019_final.pdfww.europol.
europa.eu/sites/default/files/
documents/tesat_2.

Sylvia Jaki and Tom De Smedt. 2018, submitted.
Right-wing German hate speech on Twitter: analy-
sis and automatic detection.

Sylvia Jaki, Tom De Smedt, Maja Gwóźdź, Rudresh
Panchal, Alexander Rossa, and Guy De Pauw. 2019.
Online hatred of women in the Incels.me forum: Lin-
guistic analysis and automatic detection. Journal of
Language Aggression and Conflict. http://doi.
org/10.1075/jlac.00026.jak.

Sylvia Jaki, Wolf Schünemann, Tom De Smedt, and
Stefan Steiger. 2019. Who is polluting the debate?
Unpublished conference paper.

Josef Ruppenhofer. 2018. German Twit-
ter Embeddings. http://www.cl.
uni-heidelberg.de/english/
research/downloads/resource_
pages/GermanTwitterEmbeddings/
GermanTwitterEmbeddings_data.shtml.

Johannes Schäfer. 2018. HIIwiStJS at GermEval-2018.
Integrating Linguistic Features in an Neural Net-
work for the Identification of Offensive Language
in Microposts. In Proceedings of GermEval 2018,
104112.

Johannes Schäfer and Ben Burtenshaw. 2019. Offence
in Dialogues: A Corpus-Based Study. In Proceed-
ings of Recent Advances in Natural Language Pro-
cessing (RANLP 2019), pages 1085-1093, Varna,
Bulgaria, Sep 2-4 2019.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval 2018, 110.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Semeval-2019 task 6: Identifying and cate-
gorizing offensive language in social media (offen-
seval). arXiv preprint arXiv:1903.08983.

397


