default search action
Mathieu Laurière
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
Journal Articles
- 2024
- [j15]Haoyang Cao, Xin Guo, Mathieu Laurière:
Connecting GANs, Mean-Field Games, and Optimal Transport. SIAM J. Appl. Math. 84(4): 1255-1287 (2024) - 2022
- [j14]Alexander Aurell, René Carmona, Gökçe Dayanikli, Mathieu Laurière:
Finite State Graphon Games with Applications to Epidemics. Dyn. Games Appl. 12(1): 49-81 (2022) - [j13]René Carmona, Gökçe Dayanikli, Mathieu Laurière:
Mean Field Models to Regulate Carbon Emissions in Electricity Production. Dyn. Games Appl. 12(3): 897-928 (2022) - [j12]Maximilien Germain, Mathieu Laurière, Huyên Pham, Xavier Warin:
DeepSets and Their Derivative Networks for Solving Symmetric PDEs. J. Sci. Comput. 91(2): 63 (2022) - [j11]Andrea Angiuli, Jean-Pierre Fouque, Mathieu Laurière:
Unified reinforcement Q-learning for mean field game and control problems. Math. Control. Signals Syst. 34(2): 217-271 (2022) - [j10]René Carmona, Daniel B. Cooney, Christy V. Graves, Mathieu Laurière:
Stochastic Graphon Games: I. The Static Case. Math. Oper. Res. 47(1): 750-778 (2022) - [j9]Alexander Aurell, René Carmona, Gökçe Dayanikli, Mathieu Laurière:
Optimal Incentives to Mitigate Epidemics: A Stackelberg Mean Field Game Approach. SIAM J. Control. Optim. 60(2): S294-S322 (2022) - [j8]Mathieu Laurière, Ludovic Tangpi:
Convergence of Large Population Games to Mean Field Games with Interaction Through the Controls. SIAM J. Math. Anal. 54(3): 3535-3574 (2022) - 2021
- [j7]René Carmona, Mathieu Laurière:
Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games I: The Ergodic Case. SIAM J. Numer. Anal. 59(3): 1455-1485 (2021) - 2020
- [j6]Titouan Carette, Mathieu Laurière, Frédéric Magniez:
Extended Learning Graphs for Triangle Finding. Algorithmica 82(4): 980-1005 (2020) - 2019
- [j5]Mathieu Laurière, Laurent Mertz:
Penalization of Nonsmooth Dynamical Systems with Noise: Ergodicity and Asymptotic Formulae for Threshold Crossings Probabilities. SIAM J. Appl. Dyn. Syst. 18(2): 853-880 (2019) - 2018
- [j4]Cyril Feau, Mathieu Laurière, Laurent Mertz:
Asymptotic formulae for the risk of failure related to an elasto-plastic problem with noise. Asymptot. Anal. 106(1): 47-60 (2018) - 2016
- [j3]Mathieu Laurière, Olivier Pironneau:
Dynamic Programming for Mean-Field Type Control. J. Optim. Theory Appl. 169(3): 902-924 (2016) - [j2]Iordanis Kerenidis, Mathieu Laurière, Francois Le Gall, Mathys Rennela:
Information cost of quantum communication protocols. Quantum Inf. Comput. 16(3&4): 181-196 (2016) - [j1]Lila Fontes, Rahul Jain, Iordanis Kerenidis, Sophie Laplante, Mathieu Laurière, Jérémie Roland:
Relative Discrepancy Does Not Separate Information and Communication Complexity. ACM Trans. Comput. Theory 9(1): 4:1-4:15 (2016)
Conference and Workshop Papers
- 2024
- [c25]Kai Cui, Gökçe Dayanikli, Mathieu Laurière, Matthieu Geist, Olivier Pietquin, Heinz Koeppl:
Learning Discrete-Time Major-Minor Mean Field Games. AAAI 2024: 9616-9625 - [c24]Gökçe Dayanikli, Mathieu Laurière:
Multi-population Mean Field Games with Multiple Major Players: Application to Carbon Emission Regulations. ACC 2024: 5075-5081 - [c23]Gökçe Dayanikli, Mathieu Laurière, Jiacheng Zhang:
Deep Learning for Population-Dependent Controls in Mean Field Control Problems with Common Noise. AAMAS 2024: 2231-2233 - [c22]Zida Wu, Mathieu Laurière, Samuel Jia Cong Chua, Matthieu Geist, Olivier Pietquin, Ankur Mehta:
Population-aware Online Mirror Descent for Mean-Field Games by Deep Reinforcement Learning. AAMAS 2024: 2561-2563 - [c21]Muhammad Aneeq uz Zaman, Mathieu Laurière, Alec Koppel, Tamer Basar:
Robust cooperative multi-agent reinforcement learning: A mean-field type game perspective. L4DC 2024: 770-783 - 2023
- [c20]Diogo Gomes, Julian Gutierrez, Mathieu Laurière:
Machine Learning Architectures for Price Formation Models with Common Noise. CDC 2023: 4345-4350 - [c19]Giorgia Ramponi, Pavel Kolev, Olivier Pietquin, Niao He, Mathieu Laurière, Matthieu Geist:
On Imitation in Mean-field Games. NeurIPS 2023 - [c18]Lila Fontes, Sophie Laplante, Mathieu Laurière, Alexandre Nolin:
The Communication Complexity of Functions with Large Outputs. SIROCCO 2023: 427-458 - 2022
- [c17]Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald Élie, Matthieu Geist, Olivier Pietquin:
Generalization in Mean Field Games by Learning Master Policies. AAAI 2022: 9413-9421 - [c16]Matthieu Geist, Julien Pérolat, Mathieu Laurière, Romuald Elie, Sarah Perrin, Olivier Bachem, Rémi Munos, Olivier Pietquin:
Concave Utility Reinforcement Learning: The Mean-field Game Viewpoint. AAMAS 2022: 489-497 - [c15]Paul Muller, Mark Rowland, Romuald Elie, Georgios Piliouras, Julien Pérolat, Mathieu Laurière, Raphaël Marinier, Olivier Pietquin, Karl Tuyls:
Learning Equilibria in Mean-Field Games: Introducing Mean-Field PSRO. AAMAS 2022: 926-934 - [c14]Julien Pérolat, Sarah Perrin, Romuald Elie, Mathieu Laurière, Georgios Piliouras, Matthieu Geist, Karl Tuyls, Olivier Pietquin:
Scaling Mean Field Games by Online Mirror Descent. AAMAS 2022: 1028-1037 - [c13]Theophile Cabannes, Mathieu Laurière, Julien Pérolat, Raphaël Marinier, Sertan Girgin, Sarah Perrin, Olivier Pietquin, Alexandre M. Bayen, Eric Goubault, Romuald Elie:
Solving N-Player Dynamic Routing Games with Congestion: A Mean-Field Approach. AAMAS 2022: 1557-1559 - [c12]Jimin Lin, Andrea Angiuli, Nils Detering, Jean-Pierre Fouque, Mathieu Laurière:
Reinforcement Learning for Intra-and-Inter-Bank Borrowing and Lending Mean Field Control Game. ICAIF 2022: 369-376 - [c11]Mathieu Laurière, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush Jain, Theophile Cabannes, Georgios Piliouras, Julien Pérolat, Romuald Elie, Olivier Pietquin, Matthieu Geist:
Scalable Deep Reinforcement Learning Algorithms for Mean Field Games. ICML 2022: 12078-12095 - 2021
- [c10]Sarah Perrin, Mathieu Laurière, Julien Pérolat, Matthieu Geist, Romuald Élie, Olivier Pietquin:
Mean Field Games Flock! The Reinforcement Learning Way. IJCAI 2021: 356-362 - 2020
- [c9]Romuald Elie, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Olivier Pietquin:
On the Convergence of Model Free Learning in Mean Field Games. AAAI 2020: 7143-7150 - [c8]René Carmona, Kenza Hamidouche, Mathieu Laurière, Zongjun Tan:
Policy Optimization for Linear-Quadratic Zero-Sum Mean-Field Type Games. CDC 2020: 1038-1043 - [c7]Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, Olivier Pietquin:
Fictitious Play for Mean Field Games: Continuous Time Analysis and Applications. NeurIPS 2020 - 2017
- [c6]Mathieu Laurière, Dave Touchette:
The Flow of Information in Interactive Quantum Protocols: the Cost of Forgetting. ITCS 2017: 47:1-47:1 - [c5]Titouan Carette, Mathieu Laurière, Frédéric Magniez:
Extended Learning Graphs for Triangle Finding. STACS 2017: 20:1-20:14 - 2016
- [c4]Charles Bascou, Valentin Emiya, Mathieu Laurière:
The problem of musical gesture continuation and a baseline system. ICMC 2016 - [c3]Sophie Laplante, Mathieu Laurière, Alexandre Nolin, Jérémie Roland, Gabriel Senno:
Robust Bell Inequalities from Communication Complexity. TQC 2016: 5:1-5:24 - 2015
- [c2]Lila Fontes, Rahul Jain, Iordanis Kerenidis, Sophie Laplante, Mathieu Laurière, Jérémie Roland:
Relative Discrepancy Does not Separate Information and Communication Complexity. ICALP (1) 2015: 506-516 - 2013
- [c1]Iordanis Kerenidis, Mathieu Laurière, David Xiao:
New Lower Bounds for Privacy in Communication Protocols. ICITS 2013: 69-89
Informal and Other Publications
- 2024
- [i48]Mathieu Laurière, Ludovic Tangpi, Xuchen Zhou:
A Deep Learning Method for Optimal Investment Under Relative Performance Criteria Among Heterogeneous Agents. CoRR abs/2402.07365 (2024) - [i47]Zida Wu, Mathieu Laurière, Samuel Jia Cong Chua, Matthieu Geist, Olivier Pietquin, Ankur Mehta:
Population-aware Online Mirror Descent for Mean-Field Games by Deep Reinforcement Learning. CoRR abs/2403.03552 (2024) - [i46]Muhammad Aneeq uz Zaman, Alec Koppel, Mathieu Laurière, Tamer Basar:
Independent RL for Cooperative-Competitive Agents: A Mean-Field Perspective. CoRR abs/2403.11345 (2024) - [i45]Andrea Angiuli, Jean-Pierre Fouque, Mathieu Laurière, Mengrui Zhang:
Analysis of Multiscale Reinforcement Q-Learning Algorithms for Mean Field Control Games. CoRR abs/2405.17017 (2024) - [i44]Zhouzhou Gu, Mathieu Laurière, Sebastian Merkel, Jonathan Payne:
Global Solutions to Master Equations for Continuous Time Heterogeneous Agent Macroeconomic Models. CoRR abs/2406.13726 (2024) - [i43]Muhammad Aneeq uz Zaman, Mathieu Laurière, Alec Koppel, Tamer Basar:
Robust Cooperative Multi-Agent Reinforcement Learning:A Mean-Field Type Game Perspective. CoRR abs/2406.13992 (2024) - [i42]Kai Shao, Jiacheng Shen, Chijie An, Mathieu Laurière:
Reinforcement Learning for Finite Space Mean-Field Type Games. CoRR abs/2409.18152 (2024) - 2023
- [i41]Sebastian Baudelet, Brieuc Frénais, Mathieu Laurière, Amal Machtalay, Yuchen Zhu:
Deep Learning for Mean Field Optimal Transport. CoRR abs/2302.14739 (2023) - [i40]Ruimeng Hu, Mathieu Laurière:
Recent Developments in Machine Learning Methods for Stochastic Control and Games. CoRR abs/2303.10257 (2023) - [i39]Lila Fontes, Sophie Laplante, Mathieu Laurière, Alexandre Nolin:
The communication complexity of functions with large outputs. CoRR abs/2304.00391 (2023) - [i38]Giorgia Ramponi, Pavel Kolev, Olivier Pietquin, Niao He, Mathieu Laurière, Matthieu Geist:
On Imitation in Mean-field Games. CoRR abs/2306.14799 (2023) - [i37]René A. Carmona, Gökçe Dayanikli, François Delarue, Mathieu Laurière:
From Nash Equilibrium to Social Optimum and vice versa: a Mean Field Perspective. CoRR abs/2312.10526 (2023) - [i36]Kai Cui, Gökçe Dayanikli, Mathieu Laurière, Matthieu Geist, Olivier Pietquin, Heinz Koeppl:
Learning Discrete-Time Major-Minor Mean Field Games. CoRR abs/2312.10787 (2023) - [i35]Lila Fontes, Sophie Laplante, Mathieu Laurière, Alexandre Nolin:
The communication complexity of functions with large outputs. Electron. Colloquium Comput. Complex. TR23 (2023) - 2022
- [i34]Mathieu Laurière, Sarah Perrin, Sertan Girgin, Paul Muller, Ayush Jain, Theophile Cabannes, Georgios Piliouras, Julien Pérolat, Romuald Élie, Olivier Pietquin, Matthieu Geist:
Scalable Deep Reinforcement Learning Algorithms for Mean Field Games. CoRR abs/2203.11973 (2022) - [i33]Mathieu Laurière, Sarah Perrin, Matthieu Geist, Olivier Pietquin:
Learning Mean Field Games: A Survey. CoRR abs/2205.12944 (2022) - [i32]Paul Muller, Romuald Elie, Mark Rowland, Mathieu Laurière, Julien Pérolat, Sarah Perrin, Matthieu Geist, Georgios Piliouras, Olivier Pietquin, Karl Tuyls:
Learning Correlated Equilibria in Mean-Field Games. CoRR abs/2208.10138 (2022) - 2021
- [i31]Julien Pérolat, Sarah Perrin, Romuald Elie, Mathieu Laurière, Georgios Piliouras, Matthieu Geist, Karl Tuyls, Olivier Pietquin:
Scaling up Mean Field Games with Online Mirror Descent. CoRR abs/2103.00623 (2021) - [i30]Sarah Perrin, Mathieu Laurière, Julien Pérolat, Matthieu Geist, Romuald Élie, Olivier Pietquin:
Mean Field Games Flock! The Reinforcement Learning Way. CoRR abs/2105.07933 (2021) - [i29]Matthieu Geist, Julien Pérolat, Mathieu Laurière, Romuald Elie, Sarah Perrin, Olivier Bachem, Rémi Munos, Olivier Pietquin:
Concave Utility Reinforcement Learning: the Mean-field Game viewpoint. CoRR abs/2106.03787 (2021) - [i28]Mathieu Laurière:
Numerical Methods for Mean Field Games and Mean Field Type Control. CoRR abs/2106.06231 (2021) - [i27]Andrea Angiuli, Jean-Pierre Fouque, Mathieu Laurière:
Reinforcement Learning for Mean Field Games, with Applications to Economics. CoRR abs/2106.13755 (2021) - [i26]René Carmona, Mathieu Laurière:
Deep Learning for Mean Field Games and Mean Field Control with Applications to Finance. CoRR abs/2107.04568 (2021) - [i25]Mathieu Laurière, Gilles Pagès, Olivier Pironneau:
Performance of a Markovian neural network versus dynamic programming on a fishing control problem. CoRR abs/2109.06856 (2021) - [i24]Sarah Perrin, Mathieu Laurière, Julien Pérolat, Romuald Élie, Matthieu Geist, Olivier Pietquin:
Generalization in Mean Field Games by Learning Master Policies. CoRR abs/2109.09717 (2021) - [i23]Mathieu Laurière, Jiahao Song, Qing Tang:
Policy iteration method for time-dependent Mean Field Games systems with non-separable Hamiltonians. CoRR abs/2110.02552 (2021) - [i22]Theophile Cabannes, Mathieu Laurière, Julien Pérolat, Raphaël Marinier, Sertan Girgin, Sarah Perrin, Olivier Pietquin, Alexandre M. Bayen, Éric Goubault, Romuald Elie:
Solving N-player dynamic routing games with congestion: a mean field approach. CoRR abs/2110.11943 (2021) - [i21]Paul Muller, Mark Rowland, Romuald Elie, Georgios Piliouras, Julien Pérolat, Mathieu Laurière, Raphaël Marinier, Olivier Pietquin, Karl Tuyls:
Learning Equilibria in Mean-Field Games: Introducing Mean-Field PSRO. CoRR abs/2111.08350 (2021) - 2020
- [i20]Haoyang Cao, Xin Guo, Mathieu Laurière:
Connecting GANs and MFGs. CoRR abs/2002.04112 (2020) - [i19]Yves Achdou, Mathieu Laurière:
Mean Field Games and Applications: Numerical Aspects. CoRR abs/2003.04444 (2020) - [i18]Arthur Charpentier, Romuald Elie, Mathieu Laurière, Viet Chi Tran:
COVID-19 pandemic control: balancing detection policy and lockdown intervention under ICU sustainability. CoRR abs/2005.06526 (2020) - [i17]Laura Leal, Mathieu Laurière, Charles-Albert Lehalle:
Learning a functional control for high-frequency finance. CoRR abs/2006.09611 (2020) - [i16]Andrea Angiuli, Jean-Pierre Fouque, Mathieu Laurière:
Unified Reinforcement Q-Learning for Mean Field Game and Control Problems. CoRR abs/2006.13912 (2020) - [i15]Sarah Perrin, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Romuald Elie, Olivier Pietquin:
Fictitious Play for Mean Field Games: Continuous Time Analysis and Applications. CoRR abs/2007.03458 (2020) - [i14]René Carmona, Kenza Hamidouche, Mathieu Laurière, Zongjun Tan:
Linear-Quadratic Zero-Sum Mean-Field Type Games: Optimality Conditions and Policy Optimization. CoRR abs/2009.00578 (2020) - [i13]René Carmona, Kenza Hamidouche, Mathieu Laurière, Zongjun Tan:
Policy Optimization for Linear-Quadratic Zero-Sum Mean-Field Type Games. CoRR abs/2009.02146 (2020) - 2019
- [i12]Romuald Elie, Julien Pérolat, Mathieu Laurière, Matthieu Geist, Olivier Pietquin:
Approximate Fictitious Play for Mean Field Games. CoRR abs/1907.02633 (2019) - [i11]René Carmona, Mathieu Laurière:
Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: I - The Ergodic Case. CoRR abs/1907.05980 (2019) - [i10]René Carmona, Mathieu Laurière:
Convergence Analysis of Machine Learning Algorithms for the Numerical Solution of Mean Field Control and Games: II - The Finite Horizon Case. CoRR abs/1908.01613 (2019) - [i9]René Carmona, Mathieu Laurière, Zongjun Tan:
Linear-Quadratic Mean-Field Reinforcement Learning: Convergence of Policy Gradient Methods. CoRR abs/1910.04295 (2019) - [i8]René Carmona, Mathieu Laurière, Zongjun Tan:
Model-Free Mean-Field Reinforcement Learning: Mean-Field MDP and Mean-Field Q-Learning. CoRR abs/1910.12802 (2019) - 2017
- [i7]Mathieu Laurière, Dave Touchette:
The Flow of Information in Interactive Quantum Protocols: the Cost of Forgetting. CoRR abs/1701.02062 (2017) - 2016
- [i6]Sophie Laplante, Mathieu Laurière, Alexandre Nolin, Jérémie Roland, Gabriel Senno:
Robust Bell inequalities from communication complexity. CoRR abs/1606.09514 (2016) - [i5]Titouan Carette, Mathieu Laurière, Frédéric Magniez:
Extended Learning Graphs for Triangle Finding. CoRR abs/1609.07786 (2016) - [i4]Yves Achdou, Mathieu Laurière:
Mean Field Type Control with Congestion (II): An Augmented Lagrangian Method. CoRR abs/1611.02023 (2016) - 2015
- [i3]Lila Fontes, Rahul Jain, Iordanis Kerenidis, Sophie Laplante, Mathieu Laurière, Jérémie Roland:
Relative Discrepancy does not separate Information and Communication Complexity. Electron. Colloquium Comput. Complex. TR15 (2015) - 2014
- [i2]Iordanis Kerenidis, Mathieu Laurière, François Le Gall, Mathys Rennela:
Privacy in Quantum Communication Complexity. CoRR abs/1409.8488 (2014) - 2013
- [i1]Iordanis Kerenidis, Mathieu Laurière, David Xiao:
New lower bounds for privacy in communication protocols. Electron. Colloquium Comput. Complex. TR13 (2013)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-18 19:29 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint