default search action
Amaury Habrard
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j29]Damien Robissout, Lilian Bossuet, Amaury Habrard:
Scoring the predictions: a way to improve profiling side-channel attacks. J. Cryptogr. Eng. 14(3): 513-535 (2024) - [j28]Paul Viallard, Pascal Germain, Amaury Habrard, Emilie Morvant:
A general framework for the practical disintegration of PAC-Bayesian bounds. Mach. Learn. 113(2): 519-604 (2024) - [c70]Paul Viallard, Rémi Emonet, Amaury Habrard, Emilie Morvant, Valentina Zantedeschi:
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures. AISTATS 2024: 3007-3015 - [c69]Volodimir Mitarchuk, Clara Lacroce, Rémi Eyraud, Rémi Emonet, Amaury Habrard, Guillaume Rabusseau:
Length independent PAC-Bayes bounds for Simple RNNs. AISTATS 2024: 3547-3555 - [c68]Jorge Azorín López, Marc Sebban, Nahuel E. Garcia-D'Urso, Amaury Habrard, Andrés Fuster Guilló:
Generative shape deformation with optimal transport using learned transformations. IJCNN 2024: 1-8 - [c67]Benjamin Girault, Rémi Emonet, Amaury Habrard, Jordan Patracone, Marc Sebban:
Approximation Error of Sobolev Regular Functions with Tanh Neural Networks: Theoretical Impact on PINNs. ECML/PKDD (4) 2024: 266-282 - [c66]Jordan Patracone, Paul Viallard, Emilie Morvant, Gilles Gasso, Amaury Habrard, Stéphane Canu:
A Theoretically Grounded Extension of Universal Attacks from the Attacker's Viewpoint. ECML/PKDD (4) 2024: 283-300 - [i40]Paul Viallard, Rémi Emonet, Amaury Habrard, Emilie Morvant, Valentina Zantedeschi:
Leveraging PAC-Bayes Theory and Gibbs Distributions for Generalization Bounds with Complexity Measures. CoRR abs/2402.13285 (2024) - [i39]Damien Robissout, Lilian Bossuet, Amaury Habrard:
Scoring the predictions: a way to improve profiling side-channel attacks. IACR Cryptol. ePrint Arch. 2024: 558 (2024) - 2023
- [j27]Gabriel Zaid, Lilian Bossuet, Mathieu Carbone, Amaury Habrard, Alexandre Venelli:
Conditional Variational AutoEncoder based on Stochastic Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2023(2): 310-357 (2023) - [c65]Quentin Bouniot, Romaric Audigier, Angélique Loesch, Amaury Habrard:
Proposal-Contrastive Pretraining for Object Detection from Fewer Data. ICLR 2023 - [c64]Eduardo Brandao, Stefan Duffner, Rémi Emonet, Amaury Habrard, François Jacquenet, Marc Sebban:
Is My Neural Net Driven by the MDL Principle? ECML/PKDD (2) 2023: 173-189 - [c63]Nahuel E. Garcia-D'Urso, Pablo Ramon Guevara, Jorge Azorín López, Marc Sebban, Amaury Habrard, Andrés Fuster Guilló:
Predictive Modeling of Body Shape Changes in Individuals on Dietetic Treatment Using Recurrent Networks. UCAmI (2) 2023: 100-111 - [c62]Quentin Bouniot, Angélique Loesch, Amaury Habrard, Romaric Audigier:
Towards Few-Annotation Learning for Object Detection: Are Transformer-based Models More Efficient? WACV 2023: 75-84 - [i38]Quentin Bouniot, Romaric Audigier, Angélique Loesch, Amaury Habrard:
Proposal-Contrastive Pretraining for Object Detection from Fewer Data. CoRR abs/2310.16835 (2023) - [i37]Quentin Bouniot, Angélique Loesch, Romaric Audigier, Amaury Habrard:
Towards Few-Annotation Learning for Object Detection: Are Transformer-based Models More Efficient ? CoRR abs/2310.19936 (2023) - 2022
- [j26]Eduardo Brandao, Jean-Philippe Colombier, Stefan Duffner, Rémi Emonet, Florence Garrelie, Amaury Habrard, François Jacquenet, Anthony Nakhoul, Marc Sebban:
Learning PDE to Model Self-Organization of Matter. Entropy 24(8): 1096 (2022) - [j25]Rémi Viola, Léo Gautheron, Amaury Habrard, Marc Sebban:
MetaAP: A meta-tree-based ranking algorithm optimizing the average precision from imbalanced data. Pattern Recognit. Lett. 161: 161-167 (2022) - [c61]Quentin Bouniot, Ievgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard:
Improving Few-Shot Learning Through Multi-task Representation Learning Theory. ECCV (20) 2022: 435-452 - [c60]Yacouba Kaloga, Pierre Borgnat, Amaury Habrard:
A Simple Way to Learn Metrics Between Attributed Graphs. LoG 2022: 25 - [i36]Yacouba Kaloga, Pierre Borgnat, Amaury Habrard:
A simple way to learn metrics between attributed graphs. CoRR abs/2209.12727 (2022) - [i35]Gabriel Zaid, Lilian Bossuet, Mathieu Carbone, Amaury Habrard, Alexandre Venelli:
Conditional Variational AutoEncoder based on Stochastic Attack. IACR Cryptol. ePrint Arch. 2022: 232 (2022) - 2021
- [j24]Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou, Marc Sebban:
A Nearest Neighbor Algorithm for Imbalanced Classification. Int. J. Artif. Intell. Tools 30(3): 2150013:1-2150013:27 (2021) - [j23]Damien Robissout, Lilian Bossuet, Amaury Habrard, Vincent Grosso:
Improving Deep Learning Networks for Profiled Side-channel Analysis Using Performance Improvement Techniques. ACM J. Emerg. Technol. Comput. Syst. 17(3): 41:1-41:30 (2021) - [j22]Jorge Azorín López, Marc Sebban, Andrés Fuster Guilló, Marcelo Saval-Calvo, Amaury Habrard:
Iterative multilinear optimization for planar model fitting under geometric constraints. PeerJ Comput. Sci. 7: e691 (2021) - [j21]Yacouba Kaloga, Pierre Borgnat, Sundeep Prabhakar Chepuri, Patrice Abry, Amaury Habrard:
Variational graph autoencoders for multiview canonical correlation analysis. Signal Process. 188: 108182 (2021) - [j20]Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard, Alexandre Venelli:
Ranking Loss: Maximizing the Success Rate in Deep Learning Side-Channel Analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(1): 25-55 (2021) - [j19]Gabriel Zaid, Lilian Bossuet, Amaury Habrard, Alexandre Venelli:
Efficiency through Diversity in Ensemble Models applied to Side-Channel Attacks - A Case Study on Public-Key Algorithms -. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(3): 60-96 (2021) - [c59]Yacouba Kaloga, Pierre Borgnat, Sundeep Prabhakar Chepuri, Patrice Abry, Amaury Habrard:
Multiview Variational Graph Autoencoders for Canonical Correlation Analysis. ICASSP 2021: 5320-5324 - [c58]Valentina Zantedeschi, Paul Viallard, Emilie Morvant, Rémi Emonet, Amaury Habrard, Pascal Germain, Benjamin Guedj:
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound. NeurIPS 2021: 455-467 - [c57]Paul Viallard, Guillaume Vidot, Amaury Habrard, Emilie Morvant:
A PAC-Bayes Analysis of Adversarial Robustness. NeurIPS 2021: 14421-14433 - [c56]Paul Viallard, Pascal Germain, Amaury Habrard, Emilie Morvant:
Self-bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-Bound. ECML/PKDD (2) 2021: 167-183 - [i34]Paul Viallard, Pascal Germain, Amaury Habrard, Emilie Morvant:
A General Framework for the Derandomization of PAC-Bayesian Bounds. CoRR abs/2102.08649 (2021) - [i33]Guillaume Vidot, Paul Viallard, Amaury Habrard, Emilie Morvant:
A PAC-Bayes Analysis of Adversarial Robustness. CoRR abs/2102.11069 (2021) - [i32]Paul Viallard, Pascal Germain, Amaury Habrard, Emilie Morvant:
Self-Bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-Bound. CoRR abs/2104.13626 (2021) - [i31]Valentina Zantedeschi, Paul Viallard, Emilie Morvant, Rémi Emonet, Amaury Habrard, Pascal Germain, Benjamin Guedj:
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound. CoRR abs/2106.12535 (2021) - [i30]Gabriel Zaid, Lilian Bossuet, Amaury Habrard, Alexandre Venelli:
Efficiency through Diversity in Ensemble Models applied to Side-Channel Attacks - A Case Study on Public-Key Algorithms -. IACR Cryptol. ePrint Arch. 2021: 909 (2021) - [i29]Damien Robissout, Lilian Bossuet, Amaury Habrard, Vincent Grosso:
Improving Deep Learning Networks for Profiled Side-Channel Analysis Using Performance Improvement Techniques. IACR Cryptol. ePrint Arch. 2021: 1546 (2021) - 2020
- [j18]Louis Béthune, Yacouba Kaloga, Pierre Borgnat, Aurélien Garivier, Amaury Habrard:
Hierarchical and Unsupervised Graph Representation Learning with Loukas's Coarsening. Algorithms 13(9): 206 (2020) - [j17]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
PAC-Bayes and domain adaptation. Neurocomputing 379: 379-397 (2020) - [j16]Léo Gautheron, Amaury Habrard, Emilie Morvant, Marc Sebban:
Metric Learning from Imbalanced Data with Generalization Guarantees. Pattern Recognit. Lett. 133: 298-304 (2020) - [j15]Gabriel Zaid, Lilian Bossuet, Amaury Habrard, Alexandre Venelli:
Methodology for Efficient CNN Architectures in Profiling Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1): 1-36 (2020) - [c55]Damien Robissout, Gabriel Zaid, Brice Colombier, Lilian Bossuet, Amaury Habrard:
Online Performance Evaluation of Deep Learning Networks for Profiled Side-Channel Analysis. COSADE 2020: 200-218 - [c54]Ayman Alazizi, Amaury Habrard, François Jacquenet, Liyun He-Guelton, Frédéric Oblé:
Dual Sequential Variational Autoencoders for Fraud Detection. IDA 2020: 14-26 - [c53]Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Marc Sebban:
Learning from Few Positives: a Provably Accurate Metric Learning Algorithm to Deal with Imbalanced Data. IJCAI 2020: 2155-2161 - [c52]Léo Gautheron, Pascal Germain, Amaury Habrard, Guillaume Metzler, Emilie Morvant, Marc Sebban, Valentina Zantedeschi:
Landmark-Based Ensemble Learning with Random Fourier Features and Gradient Boosting. ECML/PKDD (3) 2020: 141-157 - [i28]Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, Younès Bennani:
A survey on domain adaptation theory. CoRR abs/2004.11829 (2020) - [i27]Louis Béthune, Yacouba Kaloga, Pierre Borgnat, Aurélien Garivier, Amaury Habrard:
Hierarchical and Unsupervised Graph Representation Learning with Loukas's Coarsening. CoRR abs/2007.03373 (2020) - [i26]Quentin Bouniot, Ievgen Redko, Romaric Audigier, Angélique Loesch, Amaury Habrard:
Putting Theory to Work: From Learning Bounds to Meta-Learning Algorithms. CoRR abs/2010.01992 (2020) - [i25]Yacouba Kaloga, Pierre Borgnat, Sundeep Prabhakar Chepuri, Patrice Abry, Amaury Habrard:
Multiview Variational Graph Autoencoders for Canonical Correlation Analysis. CoRR abs/2010.16132 (2020) - [i24]Damien Robissout, Gabriel Zaid, Brice Colombier, Lilian Bossuet, Amaury Habrard:
Online Performance Evaluation of Deep Learning Networks for Side-Channel Analysis. IACR Cryptol. ePrint Arch. 2020: 39 (2020) - [i23]Gabriel Zaid, Lilian Bossuet, Amaury Habrard, Alexandre Venelli:
Understanding Methodology for Efficient CNN Architectures in Profiling Attacks. IACR Cryptol. ePrint Arch. 2020: 757 (2020) - [i22]Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard, Alexandre Venelli:
Ranking Loss: Maximizing the Success Rate in Deep Learning Side-Channel Analysis. IACR Cryptol. ePrint Arch. 2020: 872 (2020)
2010 – 2019
- 2019
- [j14]Ievgen Redko, Amaury Habrard, Marc Sebban:
On the analysis of adaptability in multi-source domain adaptation. Mach. Learn. 108(8-9): 1635-1652 (2019) - [j13]Tien-Nam Le, Amaury Habrard, Marc Sebban:
Deep multi-Wasserstein unsupervised domain adaptation. Pattern Recognit. Lett. 125: 249-255 (2019) - [c51]Julien Tissier, Christophe Gravier, Amaury Habrard:
Near-Lossless Binarization of Word Embeddings. AAAI 2019: 7104-7111 - [c50]Kevin Bascol, Rémi Emonet, Élisa Fromont, Amaury Habrard, Guillaume Metzler, Marc Sebban:
From Cost-Sensitive to Tight F-measure Bounds. AISTATS 2019: 1245-1253 - [c49]Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou, Marc Sebban:
An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data. ICTAI 2019: 243-250 - [c48]Léo Gautheron, Amaury Habrard, Emilie Morvant, Marc Sebban:
Metric Learning from Imbalanced Data. ICTAI 2019: 923-930 - [c47]Ayman Alazizi, Amaury Habrard, François Jacquenet, Liyun He-Guelton, Frédéric Oblé, Wissam Siblini:
Anomaly Detection, Consider Your Dataset First An Illustration on Fraud Detection. ICTAI 2019: 1351-1355 - [c46]Nam Lê Tien, Amaury Habrard, Marc Sebban:
Differentially Private Optimal Transport: Application to Domain Adaptation. IJCAI 2019: 2852-2858 - [i21]Léo Gautheron, Pascal Germain, Amaury Habrard, Emilie Morvant, Marc Sebban, Valentina Zantedeschi:
Learning Landmark-Based Ensembles with Random Fourier Features and Gradient Boosting. CoRR abs/1906.06203 (2019) - [i20]Rémi Viola, Rémi Emonet, Amaury Habrard, Guillaume Metzler, Sébastien Riou, Marc Sebban:
An Adjusted Nearest Neighbor Algorithm Maximizing the F-Measure from Imbalanced Data. CoRR abs/1909.00693 (2019) - [i19]Léo Gautheron, Emilie Morvant, Amaury Habrard, Marc Sebban:
Metric Learning from Imbalanced Data. CoRR abs/1909.01651 (2019) - [i18]Gabriel Zaid, Lilian Bossuet, Amaury Habrard, Alexandre Venelli:
Methodology for Efficient CNN Architectures in Profiling Attacks. IACR Cryptol. ePrint Arch. 2019: 803 (2019) - 2018
- [j12]Guillaume Metzler, Xavier Badiche, Brahim Belkasmi, Élisa Fromont, Amaury Habrard, Marc Sebban:
Learning maximum excluding ellipsoids from imbalanced data with theoretical guarantees. Pattern Recognit. Lett. 112: 310-316 (2018) - [c45]Jordan Fréry, Amaury Habrard, Marc Sebban, Olivier Caelen, Liyun He-Guelton:
Online Non-linear Gradient Boosting in Multi-latent Spaces. IDA 2018: 99-110 - [c44]Guillaume Metzler, Xavier Badiche, Brahim Belkasmi, Élisa Fromont, Amaury Habrard, Marc Sebban:
Tree-Based Cost Sensitive Methods for Fraud Detection in Imbalanced Data. IDA 2018: 213-224 - [c43]Jordan Fréry, Amaury Habrard, Marc Sebban, Liyun He-Guelton:
Non-Linear Gradient Boosting for Class-Imbalance Learning. LIDTA@ECML/PKDD 2018: 38-51 - [i17]Julien Tissier, Amaury Habrard, Christophe Gravier:
Near-lossless Binarization of Word Embeddings. CoRR abs/1803.09065 (2018) - 2017
- [c42]Julien Tissier, Christophe Gravier, Amaury Habrard:
Dict2vec : Learning Word Embeddings using Lexical Dictionaries. EMNLP 2017: 254-263 - [c41]Nicolas Courty, Rémi Flamary, Amaury Habrard, Alain Rakotomamonjy:
Joint distribution optimal transportation for domain adaptation. NIPS 2017: 3730-3739 - [c40]Jordan Fréry, Amaury Habrard, Marc Sebban, Olivier Caelen, Liyun He-Guelton:
Efficient Top Rank Optimization with Gradient Boosting for Supervised Anomaly Detection. ECML/PKDD (1) 2017: 20-35 - [c39]Ievgen Redko, Amaury Habrard, Marc Sebban:
Theoretical Analysis of Domain Adaptation with Optimal Transport. ECML/PKDD (2) 2017: 737-753 - [p1]Basura Fernando, Rahaf Aljundi, Rémi Emonet, Amaury Habrard, Marc Sebban, Tinne Tuytelaars:
Unsupervised Domain Adaptation Based on Subspace Alignment. Domain Adaptation in Computer Vision Applications 2017: 81-94 - [i16]Nicolas Courty, Rémi Flamary, Amaury Habrard, Alain Rakotomamonjy:
Joint Distribution Optimal Transportation for Domain Adaptation. CoRR abs/1705.08848 (2017) - 2016
- [j11]Aurélien Bellet, José Francisco Bernabeu, Amaury Habrard, Marc Sebban:
Learning discriminative tree edit similarities for linear classification - Application to melody recognition. Neurocomputing 214: 155-161 (2016) - [j10]François Denis, Mattias Gybels, Amaury Habrard:
Dimension-free Concentration Bounds on Hankel Matrices for Spectral Learning. J. Mach. Learn. Res. 17: 31:1-31:32 (2016) - [j9]Amaury Habrard, Jean-Philippe Peyrache, Marc Sebban:
A new boosting algorithm for provably accurate unsupervised domain adaptation. Knowl. Inf. Syst. 47(1): 45-73 (2016) - [c38]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
A New PAC-Bayesian Perspective on Domain Adaptation. ICML 2016: 859-868 - [c37]Michaël Perrot, Nicolas Courty, Rémi Flamary, Amaury Habrard:
Mapping Estimation for Discrete Optimal Transport. NIPS 2016: 4197-4205 - [i15]Ievgen Redko, Amaury Habrard, Marc Sebban:
Theoretical Analysis of Domain Adaptation with Optimal Transport. CoRR abs/1610.04420 (2016) - [i14]Maria-Irina Nicolae, Éric Gaussier, Amaury Habrard, Marc Sebban:
Similarity Learning for Time Series Classification. CoRR abs/1610.04783 (2016) - 2015
- [b1]Aurélien Bellet, Amaury Habrard, Marc Sebban:
Metric Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers 2015, ISBN 978-3-031-00444-5 - [j8]Aurélien Bellet, Amaury Habrard:
Robustness and generalization for metric learning. Neurocomputing 151: 259-267 (2015) - [c36]Michaël Perrot, Amaury Habrard:
A Theoretical Analysis of Metric Hypothesis Transfer Learning. ICML 2015: 1708-1717 - [c35]Maria-Irina Nicolae, Marc Sebban, Amaury Habrard, Éric Gaussier, Massih-Reza Amini:
Algorithmic Robustness for Semi-Supervised (ε, γ, τ) -Good Metric Learning. ICONIP (1) 2015: 253-263 - [c34]Michaël Perrot, Amaury Habrard:
Regressive Virtual Metric Learning. NIPS 2015: 1810-1818 - [c33]Maria-Irina Nicolae, Éric Gaussier, Amaury Habrard, Marc Sebban:
Joint Semi-supervised Similarity Learning for Linear Classification. ECML/PKDD (1) 2015: 594-609 - [c32]Maria-Irina Nicolae, Marc Sebban, Amaury Habrard, Éric Gaussier, Massih-Reza Amini:
Algorithmic Robustness for Semi-Supervised (ε, γ, τ)-Good Metric Learning. ICLR (Workshop) 2015 - [i13]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
An Improvement to the Domain Adaptation Bound in a PAC-Bayesian context. CoRR abs/1501.03002 (2015) - [i12]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
PAC-Bayesian Theorems for Domain Adaptation with Specialization to Linear Classifiers. CoRR abs/1503.06944 (2015) - [i11]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
A New PAC-Bayesian Perspective on Domain Adaptation. CoRR abs/1506.04573 (2015) - 2014
- [j7]Aurélien Bellet, Amaury Habrard, Emilie Morvant, Marc Sebban:
Learning a priori constrained weighted majority votes. Mach. Learn. 97(1-2): 129-154 (2014) - [c31]Michaël Perrot, Amaury Habrard, Damien Muselet, Marc Sebban:
Modeling Perceptual Color Differences by Local Metric Learning. ECCV (5) 2014: 96-111 - [c30]Mattias Gybels, François Denis, Amaury Habrard:
Some improvements of the spectral learning approach for probabilistic grammatical inference. ICGI 2014: 64-78 - [c29]François Denis, Mattias Gybels, Amaury Habrard:
Dimension-free Concentration Bounds on Hankel Matrices for Spectral Learning. ICML 2014: 449-457 - [c28]Emilie Morvant, Amaury Habrard, Stéphane Ayache:
Majority Vote of Diverse Classifiers for Late Fusion. S+SSPR 2014: 153-162 - [i10]Emilie Morvant, Amaury Habrard, Stéphane Ayache:
Majority Vote of Diverse Classifiers for Late Fusion. CoRR abs/1404.7796 (2014) - [i9]Basura Fernando, Amaury Habrard, Marc Sebban, Tinne Tuytelaars:
Subspace Alignment For Domain Adaptation. CoRR abs/1409.5241 (2014) - 2013
- [j6]Amaury Habrard, Jean-Philippe Peyrache, Marc Sebban:
Iterative Self-Labeling Domain Adaptation for Linear Structured Image Classification. Int. J. Artif. Intell. Tools 22(5) (2013) - [c27]Basura Fernando, Amaury Habrard, Marc Sebban, Tinne Tuytelaars:
Unsupervised Visual Domain Adaptation Using Subspace Alignment. ICCV 2013: 2960-2967 - [c26]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers. ICML (3) 2013: 738-746 - [c25]Amaury Habrard, Jean-Philippe Peyrache, Marc Sebban:
Boosting for Unsupervised Domain Adaptation. ECML/PKDD (2) 2013: 433-448 - [i8]Aurélien Bellet, Amaury Habrard, Marc Sebban:
A Survey on Metric Learning for Feature Vectors and Structured Data. CoRR abs/1306.6709 (2013) - [i7]François Denis, Mattias Gybels, Amaury Habrard:
Dimension-free Concentration Bounds on Hankel Matrices for Spectral Learning. CoRR abs/1312.6282 (2013) - 2012
- [j5]Emilie Morvant, Amaury Habrard, Stéphane Ayache:
Parsimonious unsupervised and semi-supervised domain adaptation with good similarity functions. Knowl. Inf. Syst. 33(2): 309-349 (2012) - [j4]Aurélien Bellet, Amaury Habrard, Marc Sebban:
Good edit similarity learning by loss minimization. Mach. Learn. 89(1-2): 5-35 (2012) - [c24]Aurélien Bellet, Amaury Habrard, Marc Sebban:
Similarity Learning for Provably Accurate Sparse Linear Classification. ICML 2012 - [c23]Leonor Becerra-Bonache, Élisa Fromont, Amaury Habrard, Michaël Perrot, Marc Sebban:
Speeding Up Syntactic Learning Using Contextual Information. ICGI 2012: 49-53 - [i6]Emilie Morvant, Amaury Habrard, Stéphane Ayache:
PAC-Bayesian Majority Vote for Late Classifier Fusion. CoRR abs/1207.1019 (2012) - [i5]Aurélien Bellet, Amaury Habrard:
Robustness and Generalization for Metric Learning. CoRR abs/1209.1086 (2012) - [i4]Pascal Germain, Amaury Habrard, François Laviolette, Emilie Morvant:
PAC-Bayesian Learning and Domain Adaptation. CoRR abs/1212.2340 (2012) - 2011
- [c22]Emilie Morvant, Amaury Habrard, Stéphane Ayache:
Sparse Domain Adaptation in Projection Spaces Based on Good Similarity Functions. ICDM 2011: 457-466 - [c21]Aurélien Bellet, Marc Sebban, Amaury Habrard:
An Experimental Study on Learning with Good Edit Similarity Functions. ICTAI 2011: 126-133 - [c20]Amaury Habrard, Jean-Philippe Peyrache, Marc Sebban:
Domain Adaptation with Good Edit Similarities: A Sparse Way to Deal with Scaling and Rotation Problems in Image Classification. ICTAI 2011: 181-188 - [c19]Aurélien Bellet, Amaury Habrard, Marc Sebban:
Learning Good Edit Similarities with Generalization Guarantees. ECML/PKDD (1) 2011: 188-203 - [c18]Emilie Morvant, Amaury Habrard, Stéphane Ayache:
On the Usefulness of Similarity Based Projection Spaces for Transfer Learning. SIMBAD 2011: 1-16 - [c17]Emilie Morvant, Stéphane Ayache, Amaury Habrard, Miriam Redi, Claudiu Tanase, Bernard Mérialdo, Bahjat Safadi, Franck Thollard, Nadia Derbas, Georges Quénot:
VideoSense at TRECVID 2011: Semantic Indexing from Light Similarity Functions-based Domain Adaptation with Stacking. TRECVID 2011 - 2010
- [j3]Alexander Clark, Rémi Eyraud, Amaury Habrard:
Using Contextual Representations to Efficiently Learn Context-Free Languages. J. Mach. Learn. Res. 11: 2707-2744 (2010) - [c16]Raphaël Bailly, Amaury Habrard, François Denis:
A Spectral Approach for Probabilistic Grammatical Inference on Trees. ALT 2010: 74-88
2000 – 2009
- 2009
- [c15]Laurent Boyer, Olivier Gandrillon, Amaury Habrard, Mathilde Pellerin, Marc Sebban:
Learning Constrained Edit State Machines. ICTAI 2009: 734-741 - 2008
- [j2]Marc Bernard, Laurent Boyer, Amaury Habrard, Marc Sebban:
Learning probabilistic models of tree edit distance. Pattern Recognit. 41(8): 2611-2629 (2008) - [c14]Alexander Clark, Rémi Eyraud, Amaury Habrard:
A Polynomial Algorithm for the Inference of Context Free Languages. ICGI 2008: 29-42 - [c13]François Denis, Édouard Gilbert, Amaury Habrard, Faissal Ouardi, Marc Tommasi:
Relevant Representations for the Inference of Rational Stochastic Tree Languages. ICGI 2008: 57-70 - [c12]Laurent Boyer, Yann Esposito, Amaury Habrard, José Oncina, Marc Sebban:
SEDiL: Software for Edit Distance Learning. ECML/PKDD (2) 2008: 672-677 - [c11]Amaury Habrard, José Manuel Iñesta Quereda, David Rizo, Marc Sebban:
Melody Recognition with Learned Edit Distances. SSPR/SPR 2008: 86-96 - [i3]François Denis, Amaury Habrard, Rémi Gilleron, Marc Tommasi, Édouard Gilbert:
On Probability Distributions for Trees: Representations, Inference and Learning. CoRR abs/0807.2983 (2008) - 2007
- [c10]François Denis, Amaury Habrard:
Learning Rational Stochastic Tree Languages. ALT 2007: 242-256 - [c9]Laurent Boyer, Amaury Habrard, Marc Sebban:
Learning Metrics Between Tree Structured Data: Application to Image Recognition. ECML 2007: 54-66 - 2006
- [c8]François Denis, Yann Esposito, Amaury Habrard:
Learning Rational Stochastic Languages. COLT 2006: 274-288 - [c7]Marc Bernard, Amaury Habrard, Marc Sebban:
Learning Stochastic Tree Edit Distance. ECML 2006: 42-53 - [c6]Amaury Habrard, François Denis, Yann Esposito:
Using Pseudo-stochastic Rational Languages in Probabilistic Grammatical Inference. ICGI 2006: 112-124 - [c5]Amaury Habrard, José Oncina:
Learning Multiplicity Tree Automata. ICGI 2006: 268-280 - [i2]François Denis, Yann Esposito, Amaury Habrard:
Learning rational stochastic languages. CoRR abs/cs/0602062 (2006) - [i1]Amaury Habrard, François Denis, Yann Esposito:
Using Pseudo-Stochastic Rational Languages in Probabilistic Grammatical Inference. CoRR abs/cs/0607085 (2006) - 2005
- [j1]Amaury Habrard, Marc Bernard, Marc Sebban:
Detecting Irrelevant Subtrees to Improve Probabilistic Learning from Tree-structured Data. Fundam. Informaticae 66(1-2): 103-130 (2005) - [c4]Amaury Habrard, Marc Bernard, Marc Sebban:
Correction of Uniformly Noisy Distributions to Improve Probabilistic Grammatical Inference Algorithms. FLAIRS 2005: 493-498 - 2003
- [c3]Amaury Habrard, Marc Bernard, François Jacquenet:
Multi-relational Data Mining in Medical Databases. AIME 2003: 365-374 - [c2]Amaury Habrard, Marc Bernard, Marc Sebban:
Improvement of the State Merging Rule on Noisy Data in Probabilistic Grammatical Inference. ECML 2003: 169-180 - 2002
- [c1]Amaury Habrard, Marc Bernard, François Jacquenet:
Generalized Stochastic Tree Automata for Multi-relational Data Mining. ICGI 2002: 120-133
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-09-26 00:52 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint