default search action
Thomas Demeester
Person information
- affiliation: Ghent University, Belgium
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j23]Yiwei Jiang, Maarten De Raedt, Johannes Deleu, Thomas Demeester, Chris Develder:
Few-shot out-of-scope intent classification: analyzing the robustness of prompt-based learning. Appl. Intell. 54(2): 1474-1496 (2024) - [j22]Maarten De Raedt, Fréderic Godin, Chris Develder, Thomas Demeester:
Revisiting clustering for efficient unsupervised dialogue structure induction. Appl. Intell. 54(7): 5278-5305 (2024) - [j21]François Remy, Kris Demuynck, Thomas Demeester:
BioLORD-2023: semantic textual representations fusing large language models and clinical knowledge graph insights. J. Am. Medical Informatics Assoc. 31(9): 1844-1855 (2024) - [j20]Sofie Labat, Thomas Demeester, Véronique Hoste:
EmoTwiCS: a corpus for modelling emotion trajectories in Dutch customer service dialogues on Twitter. Lang. Resour. Evaluation 58(2): 505-546 (2024) - [j19]Semere Kiros Bitew, Amir Hadifar, Lucas Sterckx, Johannes Deleu, Chris Develder, Thomas Demeester:
Learning to Reuse Distractors to Support Multiple-Choice Question Generation in Education. IEEE Trans. Learn. Technol. 17: 375-390 (2024) - [c65]Paloma Rabaey, Johannes Deleu, Stefan Heytens, Thomas Demeester:
Clinical Reasoning over Tabular Data and Text with Bayesian Networks. AIME (1) 2024: 229-250 - [c64]Eva Verhelst, Ruben Janssens, Thomas Demeester, Tony Belpaeme:
Adaptive Second Language Tutoring Using Generative AI and a Social Robot. HRI (Companion) 2024: 1080-1084 - [i68]Karel D'Oosterlinck, Omar Khattab, François Remy, Thomas Demeester, Chris Develder, Christopher Potts:
In-Context Learning for Extreme Multi-Label Classification. CoRR abs/2401.12178 (2024) - [i67]Henri Arno, Klaas Mulier, Joke Baeck, Thomas Demeester:
From Numbers to Words: Multi-Modal Bankruptcy Prediction Using the ECL Dataset. CoRR abs/2401.12652 (2024) - [i66]Paloma Rabaey, Johannes Deleu, Stefan Heytens, Thomas Demeester:
Clinical Reasoning over Tabular Data and Text with Bayesian Networks. CoRR abs/2403.09481 (2024) - [i65]François Remy, Pieter Delobelle, Hayastan Avetisyan, Alfiya Khabibullina, Miryam de Lhoneux, Thomas Demeester:
Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP. CoRR abs/2408.04303 (2024) - [i64]Karel D'Oosterlinck, Winnie Xu, Chris Develder, Thomas Demeester, Amanpreet Singh, Christopher Potts, Douwe Kiela, Shikib Mehri:
Anchored Preference Optimization and Contrastive Revisions: Addressing Underspecification in Alignment. CoRR abs/2408.06266 (2024) - [i63]Paloma Rabaey, Henri Arno, Stefan Heytens, Thomas Demeester:
SynSUM - Synthetic Benchmark with Structured and Unstructured Medical Records. CoRR abs/2409.08936 (2024) - [i62]Henri Arno, Paloma Rabaey, Thomas Demeester:
From Text to Treatment Effects: A Meta-Learning Approach to Handling Text-Based Confounding. CoRR abs/2409.15503 (2024) - 2023
- [j18]Amir Hadifar, Semere Kiros Bitew, Johannes Deleu, Chris Develder, Thomas Demeester:
EduQG: A Multi-Format Multiple-Choice Dataset for the Educational Domain. IEEE Access 11: 20885-20896 (2023) - [j17]Yiwei Jiang, Klim Zaporojets, Johannes Deleu, Thomas Demeester, Chris Develder:
CookDial: a dataset for task-oriented dialogs grounded in procedural documents. Appl. Intell. 53(4): 4748-4766 (2023) - [c63]Semere Kiros Bitew, Johannes Deleu, A. Seza Dogruöz, Chris Develder, Thomas Demeester:
Learning from Partially Annotated Data: Example-aware Creation of Gap-filling Exercises for Language Learning. BEA@ACL 2023: 598-609 - [c62]François Remy, Kris Demuynck, Thomas Demeester:
Automatic Glossary of Clinical Terminology: a Large-Scale Dictionary of Biomedical Definitions Generated from Ontological Knowledge. BioNLP@ACL 2023: 265-272 - [c61]Amir Hadifar, Semere Kiros Bitew, Johannes Deleu, Véronique Hoste, Chris Develder, Thomas Demeester:
Diverse Content Selection for Educational Question Generation. EACL (Student Research Workshop) 2023: 123-133 - [c60]Karel D'Oosterlinck, François Remy, Johannes Deleu, Thomas Demeester, Chris Develder, Klim Zaporojets, Aneiss Ghodsi, Simon Ellershaw, Jack Collins, Christopher Potts:
BioDEX: Large-Scale Biomedical Adverse Drug Event Extraction for Real-World Pharmacovigilance. EMNLP (Findings) 2023: 13425-13454 - [c59]Jens-Joris Decorte, Jeroen Van Hautte, Johannes Deleu, Chris Develder, Thomas Demeester:
Career Path Prediction using Resume Representation Learning and Skill-based Matching. HR@RecSys 2023 - [c58]François Remy, Alfiya Khabibullina, Thomas Demeester:
Detecting Idiomatic Multiword Expressions in Clinical Terminology using Definition-Based Representation Learning. MWE@EACL 2023: 73-80 - [c57]Quanqi Du, Sofie Labat, Thomas Demeester, Véronique Hoste:
Unimodalities Count as Perspectives in Multimodal Emotion Annotation. NLPerspectives@ECAI 2023 - [i61]Klim Zaporojets, Lucie-Aimée Kaffee, Johannes Deleu, Thomas Demeester, Chris Develder, Isabelle Augenstein:
TempEL: Linking Dynamically Evolving and Newly Emerging Entities. CoRR abs/2302.02500 (2023) - [i60]François Remy, Alfiya Khabibullina, Thomas Demeester:
Detecting Idiomatic Multiword Expressions in Clinical Terminology using Definition-Based Representation Learning. CoRR abs/2305.06801 (2023) - [i59]Karel D'Oosterlinck, François Remy, Johannes Deleu, Thomas Demeester, Chris Develder, Klim Zaporojets, Aneiss Ghodsi, Simon Ellershaw, Jack Collins, Christopher Potts:
BioDEX: Large-Scale Biomedical Adverse Drug Event Extraction for Real-World Pharmacovigilance. CoRR abs/2305.13395 (2023) - [i58]Maarten De Raedt, Fréderic Godin, Thomas Demeester, Chris Develder:
IDAS: Intent Discovery with Abstractive Summarization. CoRR abs/2305.19783 (2023) - [i57]François Remy, Thomas Demeester:
Automatic Glossary of Clinical Terminology: a Large-Scale Dictionary of Biomedical Definitions Generated from Ontological Knowledge. CoRR abs/2306.00665 (2023) - [i56]Semere Kiros Bitew, Johannes Deleu, A. Seza Dogruöz, Chris Develder, Thomas Demeester:
Learning from Partially Annotated Data: Example-aware Creation of Gap-filling Exercises for Language Learning. CoRR abs/2306.01584 (2023) - [i55]Jens-Joris Decorte, Severine Verlinden, Jeroen Van Hautte, Johannes Deleu, Chris Develder, Thomas Demeester:
Extreme Multi-Label Skill Extraction Training using Large Language Models. CoRR abs/2307.10778 (2023) - [i54]Semere Kiros Bitew, Johannes Deleu, Chris Develder, Thomas Demeester:
Distractor generation for multiple-choice questions with predictive prompting and large language models. CoRR abs/2307.16338 (2023) - [i53]François Remy, Pieter Delobelle, Bettina Berendt, Kris Demuynck, Thomas Demeester:
Tik-to-Tok: Translating Language Models One Token at a Time: An Embedding Initialization Strategy for Efficient Language Adaptation. CoRR abs/2310.03477 (2023) - [i52]Karel D'Oosterlinck, Semere Kiros Bitew, Brandon Papineau, Christopher Potts, Thomas Demeester, Chris Develder:
CAW-coref: Conjunction-Aware Word-level Coreference Resolution. CoRR abs/2310.06165 (2023) - [i51]Sofie Labat, Thomas Demeester, Véronique Hoste:
EmoTwiCS: A Corpus for Modelling Emotion Trajectories in Dutch Customer Service Dialogues on Twitter. CoRR abs/2310.06536 (2023) - [i50]Jens-Joris Decorte, Jeroen Van Hautte, Johannes Deleu, Chris Develder, Thomas Demeester:
Career Path Prediction using Resume Representation Learning and Skill-based Matching. CoRR abs/2310.15636 (2023) - [i49]Maarten De Raedt, Semere Kiros Bitew, Fréderic Godin, Thomas Demeester, Chris Develder:
Zero-Shot Cross-Lingual Sentiment Classification under Distribution Shift: an Exploratory Study. CoRR abs/2311.06549 (2023) - [i48]Karel D'Oosterlinck, Thomas Demeester, Chris Develder, Christopher Potts:
Flexible Model Interpretability through Natural Language Model Editing. CoRR abs/2311.10905 (2023) - [i47]Tom Van Der Meersch, Johannes Deleu, Thomas Demeester:
Training a Hopfield Variational Autoencoder with Equilibrium Propagation. CoRR abs/2311.15047 (2023) - [i46]Cédric Goemaere, Johannes Deleu, Thomas Demeester:
Accelerating Hierarchical Associative Memory: A Deep Equilibrium Approach. CoRR abs/2311.15673 (2023) - [i45]François Remy, Kris Demuynck, Thomas Demeester:
BioLORD-2023: Semantic Textual Representations Fusing LLM and Clinical Knowledge Graph Insights. CoRR abs/2311.16075 (2023) - [i44]Felix Koulischer, Cédric Goemaere, Tom Van Der Meersch, Johannes Deleu, Thomas Demeester:
Exploring the Temperature-Dependent Phase Transition in Modern Hopfield Networks. CoRR abs/2311.18434 (2023) - [i43]Alexander Decruyenaere, Heidelinde Dehaene, Paloma Rabaey, Christiaan Polet, Johan Decruyenaere, Stijn Vansteelandt, Thomas Demeester:
Synthetic Data: Can We Trust Statistical Estimators? CoRR abs/2312.07837 (2023) - 2022
- [c56]Klim Zaporojets, Johannes Deleu, Yiwei Jiang, Thomas Demeester, Chris Develder:
Towards Consistent Document-level Entity Linking: Joint Models for Entity Linking and Coreference Resolution. ACL (2) 2022: 778-784 - [c55]Yiwei Jiang, Amir Hadifar, Johannes Deleu, Thomas Demeester, Chris Develder:
UGent-T2K at the 2nd DialDoc Shared Task: A Retrieval-Focused Dialog System Grounded in Multiple Documents. DialDoc@ACL 2022: 115-122 - [c54]Sofie Labat, Amir Hadifar, Thomas Demeester, Véronique Hoste:
An Emotional Journey: Detecting Emotion Trajectories in Dutch Customer Service Dialogues. W-NUT@COLING 2022: 106-112 - [c53]François Remy, Kris Demuynck, Thomas Demeester:
BioLORD: Learning Ontological Representations from Definitions for Biomedical Concepts and their Textual Descriptions. EMNLP (Findings) 2022: 1454-1465 - [c52]Maarten De Raedt, Fréderic Godin, Chris Develder, Thomas Demeester:
Robustifying Sentiment Classification by Maximally Exploiting Few Counterfactuals. EMNLP 2022: 11386-11400 - [c51]Jens-Joris Decorte, Jeroen Van Hautte, Johannes Deleu, Chris Develder, Thomas Demeester:
Design of Negative Sampling Strategies for Distantly Supervised Skill Extraction. HR@RecSys 2022 - [c50]Ruben Janssens, Pieter Wolfert, Thomas Demeester, Tony Belpaeme:
"Cool glasses, where did you get them?": Generating Visually Grounded Conversation Starters for Human-Robot Dialogue. HRI 2022: 821-825 - [c49]Yoan Antonio López Rodríguez, Hector Raúl González Diez, Orlando Grabiel Toledano-López, Yusniel Hidalgo-Delgado, Erik Mannens, Thomas Demeester:
DLIME-Graphs: A DLIME Extension Based on Triple Embedding for Graphs. KGSWC 2022: 76-89 - [c48]Sofie Labat, Naomi Ackaert, Thomas Demeester, Véronique Hoste:
Variation in the Expression and Annotation of Emotions: A Wizard of Oz Pilot Study. NLPerspectives@LREC 2022: 66-72 - [c47]Klim Zaporojets, Lucie-Aimée Kaffee, Johannes Deleu, Thomas Demeester, Chris Develder, Isabelle Augenstein:
TempEL: Linking Dynamically Evolving and Newly Emerging Entities. NeurIPS 2022 - [c46]Orlando Grabiel Toledano-López, Julio Madera, Héctor R. Gonzalez, Alfredo Simón-Cuevas, Thomas Demeester, Erik Mannens:
Fine-tuning mT5-based Transformer via CMA-ES for Sentiment Analysis. IberLEF@SEPLN 2022 - [d1]Semere Kiros Bitew, Amir Hadifar, Lucas Sterckx, Johannes Deleu, Chris Develder, Thomas Demeester:
Distractor Retrieval Dataset. IEEE DataPort, 2022 - [i42]Yiwei Jiang, Klim Zaporojets, Johannes Deleu, Thomas Demeester, Chris Develder:
CookDial: A dataset for task-oriented dialogs grounded in procedural documents. CoRR abs/2206.08723 (2022) - [i41]Henri Arno, Klaas Mulier, Joke Baeck, Thomas Demeester:
Next-Year Bankruptcy Prediction from Textual Data: Benchmark and Baselines. CoRR abs/2208.11334 (2022) - [i40]Jens-Joris Decorte, Jeroen Van Hautte, Johannes Deleu, Chris Develder, Thomas Demeester:
Design of Negative Sampling Strategies for Distantly Supervised Skill Extraction. CoRR abs/2209.05987 (2022) - [i39]Amir Hadifar, Semere Kiros Bitew, Johannes Deleu, Chris Develder, Thomas Demeester:
EduQG: A Multi-format Multiple Choice Dataset for the Educational Domain. CoRR abs/2210.06104 (2022) - [i38]Maarten De Raedt, Fréderic Godin, Chris Develder, Thomas Demeester:
Robustifying Sentiment Classification by Maximally Exploiting Few Counterfactuals. CoRR abs/2210.11805 (2022) - [i37]François Remy, Kris Demuynck, Thomas Demeester:
BioLORD: Learning Ontological Representations from Definitions (for Biomedical Concepts and their Textual Descriptions). CoRR abs/2210.11892 (2022) - [i36]Semere Kiros Bitew, Amir Hadifar, Lucas Sterckx, Johannes Deleu, Chris Develder, Thomas Demeester:
Learning to Reuse Distractors to support Multiple Choice Question Generation in Education. CoRR abs/2210.13964 (2022) - [i35]Paloma Rabaey, Cedric De Boom, Thomas Demeester:
Neural Bayesian Network Understudy. CoRR abs/2211.08243 (2022) - 2021
- [j16]Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt:
Neural probabilistic logic programming in DeepProbLog. Artif. Intell. 298: 103504 (2021) - [j15]Gilles Vandewiele, Isabelle Dehaene, György Kovács, Lucas Sterckx, Olivier Janssens, Femke Ongenae, Femke De Backere, Filip De Turck, Kristien Roelens, Johan Decruyenaere, Sofie Van Hoecke, Thomas Demeester:
Overly optimistic prediction results on imbalanced data: a case study of flaws and benefits when applying over-sampling. Artif. Intell. Medicine 111: 101987 (2021) - [j14]Klim Zaporojets, Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
Solving arithmetic word problems by scoring equations with recursive neural networks. Expert Syst. Appl. 174: 114704 (2021) - [j13]Klim Zaporojets, Johannes Deleu, Chris Develder, Thomas Demeester:
DWIE: An entity-centric dataset for multi-task document-level information extraction. Inf. Process. Manag. 58(4): 102563 (2021) - [j12]Amir Hadifar, Johannes Deleu, Chris Develder, Thomas Demeester:
Exploration of block-wise dynamic sparseness. Pattern Recognit. Lett. 151: 187-192 (2021) - [c45]Severine Verlinden, Klim Zaporojets, Johannes Deleu, Thomas Demeester, Chris Develder:
Injecting Knowledge Base Information into End-to-End Joint Entity and Relation Extraction and Coreference Resolution. ACL/IJCNLP (Findings) 2021: 1952-1957 - [c44]Maarten De Raedt, Fréderic Godin, Pieter Buteneers, Chris Develder, Thomas Demeester:
A Simple Geometric Method for Cross-Lingual Linguistic Transformations with Pre-trained Autoencoders. EMNLP (1) 2021: 10108-10114 - [c43]Amir Hadifar, Sofie Labat, Véronique Hoste, Chris Develder, Thomas Demeester:
A Million Tweets Are Worth a Few Points: Tuning Transformers for Customer Service Tasks. NAACL-HLT 2021: 220-225 - [p1]Robin Manhaeve, Giuseppe Marra, Thomas Demeester, Sebastijan Dumancic, Angelika Kimmig, Luc De Raedt:
Neuro-Symbolic AI = Neural + Logical + Probabilistic AI. Neuro-Symbolic Artificial Intelligence 2021: 173-191 - [i34]Maarten De Raedt, Fréderic Godin, Pieter Buteneers, Chris Develder, Thomas Demeester:
A Simple Geometric Method for Cross-Lingual Linguistic Transformations with Pre-trained Autoencoders. CoRR abs/2104.03630 (2021) - [i33]Amir Hadifar, Sofie Labat, Véronique Hoste, Chris Develder, Thomas Demeester:
A Million Tweets Are Worth a Few Points: Tuning Transformers for Customer Service Tasks. CoRR abs/2104.07944 (2021) - [i32]Severine Verlinden, Klim Zaporojets, Johannes Deleu, Thomas Demeester, Chris Develder:
Injecting Knowledge Base Information into End-to-End Joint Entity and Relation Extraction and Coreference Resolution. CoRR abs/2107.02286 (2021) - [i31]Klim Zaporojets, Johannes Deleu, Thomas Demeester, Chris Develder:
Towards Consistent Document-level Entity Linking: Joint Models for Entity Linking and Coreference Resolution. CoRR abs/2108.13530 (2021) - [i30]Jens-Joris Decorte, Jeroen Van Hautte, Thomas Demeester, Chris Develder:
JobBERT: Understanding Job Titles through Skills. CoRR abs/2109.09605 (2021) - 2020
- [j11]Lucas Sterckx, Gilles Vandewiele, Isabelle Dehaene, Olivier Janssens, Femke Ongenae, Femke De Backere, Filip De Turck, Kristien Roelens, Johan Decruyenaere, Sofie Van Hoecke, Thomas Demeester:
Clinical information extraction for preterm birth risk prediction. J. Biomed. Informatics 110: 103544 (2020) - [c42]Thomas Demeester:
System Identification with Time-Aware Neural Sequence Models. AAAI 2020: 3757-3764 - [c41]Yiwei Jiang, Klim Zaporojets, Johannes Deleu, Thomas Demeester, Chris Develder:
Recipe Instruction Semantics Corpus (RISeC): Resolving Semantic Structure and Zero Anaphora in Recipes. AACL/IJCNLP 2020: 821-826 - [i29]Amir Hadifar, Johannes Deleu, Chris Develder, Thomas Demeester:
Block-wise Dynamic Sparseness. CoRR abs/2001.04686 (2020) - [i28]Gilles Vandewiele, Isabelle Dehaene, György Kovács, Lucas Sterckx, Olivier Janssens, Femke Ongenae, Femke De Backere, Filip De Turck, Kristien Roelens, Johan Decruyenaere, Sofie Van Hoecke, Thomas Demeester:
Overly Optimistic Prediction Results on Imbalanced Data: Flaws and Benefits of Applying Over-sampling. CoRR abs/2001.06296 (2020) - [i27]Klim Zaporojets, Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
Solving Math Word Problems by Scoring Equations with Recursive Neural Networks. CoRR abs/2009.05639 (2020) - [i26]Klim Zaporojets, Johannes Deleu, Chris Develder, Thomas Demeester:
DWIE: an entity-centric dataset for multi-task document-level information extraction. CoRR abs/2009.12626 (2020)
2010 – 2019
- 2019
- [j10]Cedric De Boom, Thomas Demeester, Bart Dhoedt:
Character-level recurrent neural networks in practice: comparing training and sampling schemes. Neural Comput. Appl. 31(8): 4001-4017 (2019) - [c40]Gilles Vandewiele, Isabelle Dehaene, Olivier Janssens, Femke Ongenae, Femke De Backere, Filip De Turck, Kristien Roelens, Sofie Van Hoecke, Thomas Demeester:
Time-to-Birth Prediction Models and the Influence of Expert Opinions. AIME 2019: 286-291 - [c39]Gilles Vandewiele, Isabelle Dehaene, Olivier Janssens, Femke Ongenae, Femke De Backere, Filip De Turck, Kristien Roelens, Sofie Van Hoecke, Thomas Demeester:
A Critical Look at Studies Applying Over-Sampling on the TPEHGDB Dataset. AIME 2019: 355-364 - [c38]Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
Adversarial Perturbations for Joint Entity and Relation Extraction. BNAIC/BENELEARN 2019 - [c37]Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt:
DeepProbLog: Neural Probabilistic Logic Programming. BNAIC/BENELEARN 2019 - [c36]Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
Sub-event detection from twitter streams as a sequence labeling problem. NAACL-HLT (1) 2019: 745-750 - [c35]Luc De Raedt, Robin Manhaeve, Sebastijan Dumancic, Thomas Demeester, Angelika Kimmig:
Neuro-Symbolic = Neural + Logical + Probabilistic. NeSy@IJCAI 2019 - [c34]Amir Hadifar, Lucas Sterckx, Thomas Demeester, Chris Develder:
A Self-Training Approach for Short Text Clustering. RepL4NLP@ACL 2019: 194-199 - [i25]Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
Sub-event detection from Twitter streams as a sequence labeling problem. CoRR abs/1903.05396 (2019) - [i24]Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt:
DeepProbLog: Neural Probabilistic Logic Programming. CoRR abs/1907.08194 (2019) - [i23]Thomas Demeester:
System Identification with Time-Aware Neural Sequence Models. CoRR abs/1911.09431 (2019) - 2018
- [j9]Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
An attentive neural architecture for joint segmentation and parsing and its application to real estate ads. Expert Syst. Appl. 102: 100-112 (2018) - [j8]Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
Joint entity recognition and relation extraction as a multi-head selection problem. Expert Syst. Appl. 114: 34-45 (2018) - [j7]Lucas Sterckx, Thomas Demeester, Johannes Deleu, Chris Develder:
Creation and evaluation of large keyphrase extraction collections with multiple opinions. Lang. Resour. Evaluation 52(2): 503-532 (2018) - [j6]Steven Van Canneyt, Philip Leroux, Bart Dhoedt, Thomas Demeester:
Modeling and predicting the popularity of online news based on temporal and content-related features. Multim. Tools Appl. 77(1): 1409-1436 (2018) - [j5]Cedric De Boom, Rohan Agrawal, Samantha Hansen, Esh Kumar, Romain Yon, Ching-Wei Chen, Thomas Demeester, Bart Dhoedt:
Large-scale user modeling with recurrent neural networks for music discovery on multiple time scales. Multim. Tools Appl. 77(12): 15385-15407 (2018) - [c33]Dirk Weissenborn, Pasquale Minervini, Isabelle Augenstein, Johannes Welbl, Tim Rocktäschel, Matko Bosnjak, Jeff Mitchell, Thomas Demeester, Tim Dettmers, Pontus Stenetorp, Sebastian Riedel:
Jack the Reader - A Machine Reading Framework. ACL (4) 2018: 25-30 - [c32]Klim Zaporojets, Lucas Sterckx, Johannes Deleu, Thomas Demeester, Chris Develder:
Predicting Psychological Health from Childhood Essays. The UGent-IDLab CLPsych 2018 Shared Task System. CLPsych@NAACL-HTL 2018: 119-125 - [c31]Thomas Demeester, Johannes Deleu, Fréderic Godin, Chris Develder:
Predefined Sparseness in Recurrent Sequence Models. CoNLL 2018: 324-333 - [c30]Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
Adversarial training for multi-context joint entity and relation extraction. EMNLP 2018: 2830-2836 - [c29]Fréderic Godin, Kris Demuynck, Joni Dambre, Wesley De Neve, Thomas Demeester:
Explaining Character-Aware Neural Networks for Word-Level Prediction: Do They Discover Linguistic Rules? EMNLP 2018: 3275-3284 - [c28]Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt:
DeepProbLog: Neural Probabilistic Logic Programming. NeurIPS 2018: 3753-3763 - [i22]Cedric De Boom, Thomas Demeester, Bart Dhoedt:
Character-level Recurrent Neural Networks in Practice: Comparing Training and Sampling Schemes. CoRR abs/1801.00632 (2018) - [i21]Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
Joint entity recognition and relation extraction as a multi-head selection problem. CoRR abs/1804.07847 (2018) - [i20]Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt:
DeepProbLog: Neural Probabilistic Logic Programming. CoRR abs/1805.10872 (2018) - [i19]Dirk Weissenborn, Pasquale Minervini, Tim Dettmers, Isabelle Augenstein, Johannes Welbl, Tim Rocktäschel, Matko Bosnjak, Jeff Mitchell, Thomas Demeester, Pontus Stenetorp, Sebastian Riedel:
Jack the Reader - A Machine Reading Framework. CoRR abs/1806.08727 (2018) - [i18]Lucas Sterckx, Johannes Deleu, Chris Develder, Thomas Demeester:
Prior Attention for Style-aware Sequence-to-Sequence Models. CoRR abs/1806.09439 (2018) - [i17]Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
Adversarial training for multi-context joint entity and relation extraction. CoRR abs/1808.06876 (2018) - [i16]Thomas Demeester, Johannes Deleu, Fréderic Godin, Chris Develder:
Predefined Sparseness in Recurrent Sequence Models. CoRR abs/1808.08720 (2018) - [i15]Fréderic Godin, Kris Demuynck, Joni Dambre, Wesley De Neve, Thomas Demeester:
Explaining Character-Aware Neural Networks for Word-Level Prediction: Do They Discover Linguistic Rules? CoRR abs/1808.09551 (2018) - 2017
- [c27]Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
Reconstructing the house from the ad: Structured prediction on real estate classifieds. EACL (2) 2017: 274-279 - [c26]Lucas Sterckx, Jason Naradowsky, Bill Byrne, Thomas Demeester, Chris Develder:
Break it Down for Me: A Study in Automated Lyric Annotation. EMNLP 2017: 2074-2080 - [c25]Pasquale Minervini, Thomas Demeester, Tim Rocktäschel, Sebastian Riedel:
Adversarial Sets for Regularising Neural Link Predictors. UAI 2017 - [i14]Pasquale Minervini, Thomas Demeester, Tim Rocktäschel, Sebastian Riedel:
Adversarial Sets for Regularising Neural Link Predictors. CoRR abs/1707.07596 (2017) - [i13]Lucas Sterckx, Jason Naradowsky, Bill Byrne, Thomas Demeester, Chris Develder:
Break it Down for Me: A Study in Automated Lyric Annotation. CoRR abs/1708.03492 (2017) - [i12]Cedric De Boom, Rohan Agrawal, Samantha Hansen, Esh Kumar, Romain Yon, Ching-Wei Chen, Thomas Demeester, Bart Dhoedt:
Large-Scale User Modeling with Recurrent Neural Networks for Music Discovery on Multiple Time Scales. CoRR abs/1708.06520 (2017) - [i11]Giannis Bekoulis, Johannes Deleu, Thomas Demeester, Chris Develder:
An attentive neural architecture for joint segmentation and parsing and its application to real estate ads. CoRR abs/1709.09590 (2017) - 2016
- [j4]Thomas Demeester, Robin Aly, Djoerd Hiemstra, Dong Nguyen, Chris Develder:
Predicting relevance based on assessor disagreement: analysis and practical applications for search evaluation. Inf. Retr. J. 19(3): 284-312 (2016) - [j3]Lucas Sterckx, Thomas Demeester, Johannes Deleu, Chris Develder:
Knowledge base population using semantic label propagation. Knowl. Based Syst. 108: 79-91 (2016) - [j2]Cedric De Boom, Steven Van Canneyt, Thomas Demeester, Bart Dhoedt:
Representation learning for very short texts using weighted word embedding aggregation. Pattern Recognit. Lett. 80: 150-156 (2016) - [c24]Thomas Demeester, Tim Rocktäschel, Sebastian Riedel:
Regularizing Relation Representations by First-order Implications. AKBC@NAACL-HLT 2016: 75-80 - [c23]Thomas Demeester, Tim Rocktäschel, Sebastian Riedel:
Lifted Rule Injection for Relation Embeddings. EMNLP 2016: 1389-1399 - [c22]Lucas Sterckx, Cornelia Caragea, Thomas Demeester, Chris Develder:
Supervised Keyphrase Extraction as Positive Unlabeled Learning. EMNLP 2016: 1924-1929 - [c21]Baptist Vandersmissen, Lucas Sterckx, Thomas Demeester, Azarakhsh Jalalvand, Wesley De Neve, Rik Van de Walle:
An Automated End-To-End Pipeline for Fine-Grained Video Annotation using Deep Neural Networks. ICMR 2016: 409-412 - [i10]Cedric De Boom, Sam Leroux, Steven Bohez, Pieter Simoens, Thomas Demeester, Bart Dhoedt:
Efficiency Evaluation of Character-level RNN Training Schedules. CoRR abs/1605.02486 (2016) - [i9]Thomas Demeester, Tim Rocktäschel, Sebastian Riedel:
Lifted Rule Injection for Relation Embeddings. CoRR abs/1606.08359 (2016) - [i8]Cedric De Boom, Steven Van Canneyt, Thomas Demeester, Bart Dhoedt:
Representation learning for very short texts using weighted word embedding aggregation. CoRR abs/1607.00570 (2016) - [i7]Dong Nguyen, Thomas Demeester, Dolf Trieschnigg, Djoerd Hiemstra:
Resource Selection for Federated Search on the Web. CoRR abs/1609.04556 (2016) - 2015
- [c20]Cedric De Boom, Steven Van Canneyt, Steven Bohez, Thomas Demeester, Bart Dhoedt:
Learning Semantic Similarity for Very Short Texts. ICDM Workshops 2015: 1229-1234 - [c19]Thomas Demeester, Dolf Trieschnigg, Dong Nguyen, Djoerd Hiemstra, Ke Zhou:
FedWeb Greatest Hits: Presenting the New Test Collection for Federated Web Search. WWW (Companion Volume) 2015: 27-28 - [c18]Lucas Sterckx, Thomas Demeester, Johannes Deleu, Chris Develder:
Topical Word Importance for Fast Keyphrase Extraction. WWW (Companion Volume) 2015: 121-122 - [c17]Lucas Sterckx, Thomas Demeester, Johannes Deleu, Chris Develder:
When Topic Models Disagree: Keyphrase Extraction with Multiple Topic Models. WWW (Companion Volume) 2015: 123-124 - [i6]Lucas Sterckx, Thomas Demeester, Johannes Deleu, Chris Develder:
Ghent University - IBCN Participation in the TAC KBP 2015 Cold Start Slot Filling task. TAC 2015 - [i5]Lucas Sterckx, Thomas Demeester, Johannes Deleu, Chris Develder:
Knowledge Base Population using Semantic Label Propagation. CoRR abs/1511.06219 (2015) - [i4]Thomas Demeester, Robin Aly, Djoerd Hiemstra, Dong Nguyen, Chris Develder:
Predicting Relevance based on Assessor Disagreement: Analysis and Practical Applications for Search Evaluation. CoRR abs/1511.07237 (2015) - [i3]Cedric De Boom, Steven Van Canneyt, Steven Bohez, Thomas Demeester, Bart Dhoedt:
Learning Semantic Similarity for Very Short Texts. CoRR abs/1512.00765 (2015) - 2014
- [j1]Robin Aly, Thomas Demeester, Stephen Robertson:
Probabilistic models in IR and their relationships. Inf. Retr. 17(2): 177-201 (2014) - [c16]Ke Zhou, Thomas Demeester, Dong Nguyen, Djoerd Hiemstra, Dolf Trieschnigg:
Aligning Vertical Collection Relevance with User Intent. CIKM 2014: 1915-1918 - [c15]Lucas Sterckx, Thomas Demeester, Johannes Deleu, Laurent Mertens, Chris Develder:
Assessing Quality of Unsupervised Topics in Song Lyrics. ECIR 2014: 547-552 - [c14]Laurent Mertens, Thomas Demeester, Johannes Deleu, Matthias Feys, Chris Develder:
Entity Linking: Test Collections Revisited. FIRE 2014: 134-137 - [c13]Matthias Feys, Thomas Demeester, Blaz Fortuna, Johannes Deleu, Chris Develder:
On the robustness of event detection evaluation: a case study. FIRE 2014: 138-141 - [c12]Thomas Demeester, Dolf Trieschnigg, Dong Nguyen, Djoerd Hiemstra, Ke Zhou:
Overview of the TREC 2014 Federated Web Search Track. TREC 2014 - [c11]Thomas Demeester, Robin Aly, Djoerd Hiemstra, Dong Nguyen, Dolf Trieschnigg, Chris Develder:
Exploiting user disagreement for web search evaluation: an experimental approach. WSDM 2014: 33-42 - [c10]Steven Van Canneyt, Matthias Feys, Steven Schockaert, Thomas Demeester, Chris Develder, Bart Dhoedt:
Detecting Newsworthy Topics in Twitter. SNOW-DC@WWW 2014: 25-32 - 2013
- [c9]Thomas Demeester, Dong Nguyen, Dolf Trieschnigg, Chris Develder, Djoerd Hiemstra:
What Snippets Say About Pages. DIR 2013: 34-35 - [c8]Thomas Demeester, Dong Nguyen, Dolf Trieschnigg, Chris Develder, Djoerd Hiemstra:
Snippet-Based Relevance Predictions for Federated Web Search. ECIR 2013: 697-700 - [c7]Robin Aly, Djoerd Hiemstra, Thomas Demeester:
Taily: shard selection using the tail of score distributions. SIGIR 2013: 673-682 - [c6]Robin Aly, Djoerd Hiemstra, Dolf Trieschnigg, Thomas Demeester:
Mirex and Taily at TREC 2013. TREC 2013 - [c5]Thomas Demeester, Dolf Trieschnigg, Dong Nguyen, Djoerd Hiemstra:
Overview of the TREC 2013 Federated Web Search Track. TREC 2013 - [i2]Laurent Mertens, Thomas Demeester, Johannes Deleu, Chris Develder:
UGent Participation in the TAC 2013 Entity-Linking Task. TAC 2013 - 2012
- [c4]Thomas Demeester, Dong Nguyen, Dolf Trieschnigg, Chris Develder, Djoerd Hiemstra:
What Snippets Say about Pages in Federated Web Search. AIRS 2012: 250-261 - [c3]Dong Nguyen, Thomas Demeester, Dolf Trieschnigg, Djoerd Hiemstra:
Federated search in the wild: the combined power of over a hundred search engines. CIKM 2012: 1874-1878 - [c2]Thong Hoang Van Duc, Thomas Demeester, Johannes Deleu, Piet Demeester, Chris Develder:
UGent Participation in the Microblog Track 2012. TREC 2012 - [i1]Laurent Mertens, Thomas Demeester, Johannes Deleu, Chris Develder, Piet Demeester:
UGent Participation in the TAC 2012 Entity-Linking Task. TAC 2012 - 2011
- [c1]Robin Aly, Thomas Demeester:
Towards a Better Understanding of the Relationship between Probabilistic Models in IR. ICTIR 2011: 164-175
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-17 20:32 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint