default search action
John V. Guttag
Person information
- affiliation: MIT, Cambridge, USA
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c105]Marianne Rakic, Hallee E. Wong, Jose Javier Gonzalez Ortiz, Beth A. Cimini, John V. Guttag, Adrian V. Dalca:
Tyche: Stochastic in-Context Learning for Medical Image Segmentation. CVPR 2024: 11159-11173 - [c104]Jose Javier Gonzalez Ortiz, John V. Guttag, Adrian V. Dalca:
Magnitude Invariant Parametrizations Improve Hypernetwork Learning. ICLR 2024 - [i48]Marianne Rakic, Hallee E. Wong, Jose Javier Gonzalez Ortiz, Beth A. Cimini, John V. Guttag, Adrian V. Dalca:
Tyche: Stochastic In-Context Learning for Medical Image Segmentation. CoRR abs/2401.13650 (2024) - 2023
- [c103]Harini Suresh, Divya Shanmugam, Tiffany Chen, Annie G. Bryan, Alexander D'Amour, John V. Guttag, Arvind Satyanarayan:
Kaleidoscope: Semantically-grounded, context-specific ML model evaluation. CHI 2023: 775:1-775:13 - [c102]Katie Matton, Robert Lewis, John V. Guttag, Rosalind W. Picard:
Contrastive Learning of Electrodermal Activity Representations for Stress Detection. CHIL 2023: 410-426 - [c101]Angie W. Boggust, Harini Suresh, Hendrik Strobelt, John V. Guttag, Arvind Satyanarayan:
Saliency Cards: A Framework to Characterize and Compare Saliency Methods. FAccT 2023: 285-296 - [c100]Victor Ion Butoi, Jose Javier Gonzalez Ortiz, Tianyu Ma, Mert R. Sabuncu, John V. Guttag, Adrian V. Dalca:
UniverSeg: Universal Medical Image Segmentation. ICCV 2023: 21381-21394 - [c99]Aniruddh Raghu, Payal Chandak, Ridwan Alam, John V. Guttag, Collin M. Stultz:
Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series. ICML 2023: 28531-28548 - [c98]Rajiv Movva, Divya Shanmugam, Kaihua Hou, Priya Pathak, John V. Guttag, Nikhil Garg, Emma Pierson:
Coarse race data conceals disparities in clinical risk score performance. MLHC 2023: 443-472 - [c97]Jose Javier Gonzalez Ortiz, John V. Guttag, Adrian V. Dalca:
Scale-Space Hypernetworks for Efficient Biomedical Image Analysis. NeurIPS 2023 - [i47]Jose Javier Gonzalez Ortiz, John V. Guttag, Adrian V. Dalca:
Amortized Learning of Dynamic Feature Scaling for Image Segmentation. CoRR abs/2304.05448 (2023) - [i46]Victor Ion Butoi, Jose Javier Gonzalez Ortiz, Tianyu Ma, Mert R. Sabuncu, John V. Guttag, Adrian V. Dalca:
UniverSeg: Universal Medical Image Segmentation. CoRR abs/2304.06131 (2023) - [i45]Jose Javier Gonzalez Ortiz, John V. Guttag, Adrian V. Dalca:
Non-Proportional Parametrizations for Stable Hypernetwork Learning. CoRR abs/2304.07645 (2023) - [i44]Rajiv Movva, Divya Shanmugam, Kaihua Hou, Priya Pathak, John V. Guttag, Nikhil Garg, Emma Pierson:
Coarse race data conceals disparities in clinical risk score performance. CoRR abs/2304.09270 (2023) - [i43]Emily Mu, John V. Guttag, Maggie Makar:
Multi-Similarity Contrastive Learning. CoRR abs/2307.02712 (2023) - [i42]Aniruddh Raghu, Payal Chandak, Ridwan Alam, John V. Guttag, Collin M. Stultz:
Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series. CoRR abs/2307.10923 (2023) - [i41]Emily Mu, Kathleen M. Lewis, Adrian V. Dalca, John V. Guttag:
Generating Image-Specific Text Improves Fine-grained Image Classification. CoRR abs/2307.11315 (2023) - [i40]Hallee E. Wong, Marianne Rakic, John V. Guttag, Adrian V. Dalca:
ScribblePrompt: Fast and Flexible Interactive Segmentation for Any Medical Image. CoRR abs/2312.07381 (2023) - 2022
- [c96]Aniruddh Raghu, Divya Shanmugam, Eugene Pomerantsev, John V. Guttag, Collin M. Stultz:
Data Augmentation for Electrocardiograms. CHIL 2022: 282-310 - [c95]Harini Suresh, Kathleen M. Lewis, John V. Guttag, Arvind Satyanarayan:
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs. IUI 2022: 767-781 - [i39]Andrew Hoopes, Malte Hoffmann, Douglas N. Greve, Bruce Fischl, John V. Guttag, Adrian V. Dalca:
Learning the Effect of Registration Hyperparameters with HyperMorph. CoRR abs/2203.16680 (2022) - [i38]Aniruddh Raghu, Divya Shanmugam, Eugene Pomerantsev, John V. Guttag, Collin M. Stultz:
Data Augmentation for Electrocardiograms. CoRR abs/2204.04360 (2022) - [i37]Angie W. Boggust, Harini Suresh, Hendrik Strobelt, John V. Guttag, Arvind Satyanarayan:
Beyond Faithfulness: A Framework to Characterize and Compare Saliency Methods. CoRR abs/2206.02958 (2022) - [i36]Helen Lu, Divya Shanmugam, Harini Suresh, John V. Guttag:
Improved Text Classification via Test-Time Augmentation. CoRR abs/2206.13607 (2022) - [i35]Divya Shanmugam, Katie Lewis, Jose Javier Gonzalez Ortiz, Agnieszka Kurant, John V. Guttag:
At the Intersection of Deep Learning and Conceptual Art: The End of Signature. CoRR abs/2207.04312 (2022) - [i34]Kathleen M. Lewis, John V. Guttag:
SizeGAN: Improving Size Representation in Clothing Catalogs. CoRR abs/2211.02892 (2022) - 2021
- [j40]Susanne Gaube, Harini Suresh, Martina Raue, Alexander Merritt, Seth J. Berkowitz, Eva Lermer, Joseph F. Coughlin, John V. Guttag, Errol Colak, Marzyeh Ghassemi:
Do as AI say: susceptibility in deployment of clinical decision-aids. npj Digit. Medicine 4 (2021) - [c94]Aniruddh Raghu, John V. Guttag, Katherine Young, Eugene Pomerantsev, Adrian V. Dalca, Collin M. Stultz:
Learning to predict with supporting evidence: applications to clinical risk prediction. CHIL 2021: 95-104 - [c93]Harini Suresh, John V. Guttag:
A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle. EAAMO 2021: 17:1-17:9 - [c92]Divya Shanmugam, Davis W. Blalock, Guha Balakrishnan, John V. Guttag:
Better Aggregation in Test-Time Augmentation. ICCV 2021: 1194-1203 - [c91]Davis W. Blalock, John V. Guttag:
Multiplying Matrices Without Multiplying. ICML 2021: 992-1004 - [c90]Maggie Makar, Lauren West, David Hooper, Eric Horvitz, Erica Shenoy, John V. Guttag:
Exploiting structured data for learning contagious diseases under incomplete testing. ICML 2021: 7348-7357 - [c89]Andrew Hoopes, Malte Hoffmann, Bruce Fischl, John V. Guttag, Adrian V. Dalca:
HyperMorph: Amortized Hyperparameter Learning for Image Registration. IPMI 2021: 3-17 - [i33]Andrew Hoopes, Malte Hoffmann, Bruce Fischl, John V. Guttag, Adrian V. Dalca:
HyperMorph: Amortized Hyperparameter Learning for Image Registration. CoRR abs/2101.01035 (2021) - [i32]Harini Suresh, Kathleen M. Lewis, John V. Guttag, Arvind Satyanarayan:
Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model Inputs. CoRR abs/2102.08540 (2021) - [i31]Aniruddh Raghu, John V. Guttag, Katherine Young, Eugene Pomerantsev, Adrian V. Dalca, Collin M. Stultz:
Learning to Predict with Supporting Evidence: Applications to Clinical Risk Prediction. CoRR abs/2103.02768 (2021) - [i30]Davis W. Blalock, John V. Guttag:
Multiplying Matrices Without Multiplying. CoRR abs/2106.10860 (2021) - 2020
- [c88]Kathleen M. Lewis, Natalia S. Rost, John V. Guttag, Adrian V. Dalca:
Fast learning-based registration of sparse 3D clinical images. CHIL 2020: 90-98 - [c87]Amy Zhao, Guha Balakrishnan, Kathleen M. Lewis, Frédo Durand, John V. Guttag, Adrian V. Dalca:
Painting Many Pasts: Synthesizing Time Lapse Videos of Paintings. CVPR 2020: 8432-8442 - [c86]Maggie Makar, Fredrik D. Johansson, John V. Guttag, David A. Sontag:
Estimation of Bounds on Potential Outcomes For Decision Making. ICML 2020: 6661-6671 - [c85]Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, John V. Guttag:
What is the State of Neural Network Pruning? MLSys 2020 - [i29]Amy Zhao, Guha Balakrishnan, Kathleen M. Lewis, Frédo Durand, John V. Guttag, Adrian V. Dalca:
Painting Many Pasts: Synthesizing Time Lapse Videos of Paintings. CoRR abs/2001.01026 (2020) - [i28]Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, John V. Guttag:
What is the State of Neural Network Pruning? CoRR abs/2003.03033 (2020) - [i27]Marianne Rakic, John V. Guttag, Adrian V. Dalca:
Anatomical Predictions using Subject-Specific Medical Data. CoRR abs/2006.00090 (2020) - [i26]Roshni Sahoo, Divya Shanmugam, John V. Guttag:
Unsupervised Domain Adaptation in the Absence of Source Data. CoRR abs/2007.10233 (2020) - [i25]Divya Shanmugam, Davis W. Blalock, Guha Balakrishnan, John V. Guttag:
When and Why Test-Time Augmentation Works. CoRR abs/2011.11156 (2020)
2010 – 2019
- 2019
- [j39]Adrian V. Dalca, Guha Balakrishnan, John V. Guttag, Mert R. Sabuncu:
Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Medical Image Anal. 57: 226-236 (2019) - [j38]Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John V. Guttag, Adrian V. Dalca:
VoxelMorph: A Learning Framework for Deformable Medical Image Registration. IEEE Trans. Medical Imaging 38(8): 1788-1800 (2019) - [c84]Amy Zhao, Guha Balakrishnan, Frédo Durand, John V. Guttag, Adrian V. Dalca:
Data Augmentation Using Learned Transformations for One-Shot Medical Image Segmentation. CVPR 2019: 8543-8553 - [c83]Guha Balakrishnan, Adrian V. Dalca, Amy Zhao, John V. Guttag, Frédo Durand, William T. Freeman:
Visual Deprojection: Probabilistic Recovery of Collapsed Dimensions. ICCV 2019: 171-180 - [c82]Divya Shanmugam, Davis W. Blalock, John V. Guttag:
Multiple Instance Learning for ECG Risk Stratification. MLHC 2019: 124-139 - [c81]Jose Javier Gonzalez Ortiz, Daryush D. Mehta, Jarrad H. Van Stan, Robert E. Hillman, John V. Guttag, Marzyeh Ghassemi:
Learning from Few Subjects with Large Amounts of Voice Monitoring Data. MLHC 2019: 704-720 - [c80]Adrian V. Dalca, Marianne Rakic, John V. Guttag, Mert R. Sabuncu:
Learning Conditional Deformable Templates with Convolutional Networks. NeurIPS 2019: 804-816 - [i24]Harini Suresh, John V. Guttag:
A Framework for Understanding Unintended Consequences of Machine Learning. CoRR abs/1901.10002 (2019) - [i23]Amy Zhao, Guha Balakrishnan, Frédo Durand, John V. Guttag, Adrian V. Dalca:
Data augmentation using learned transforms for one-shot medical image segmentation. CoRR abs/1902.09383 (2019) - [i22]Adrian V. Dalca, John V. Guttag, Mert R. Sabuncu:
Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation. CoRR abs/1903.03148 (2019) - [i21]Adrian V. Dalca, John V. Guttag, Mert R. Sabuncu:
Unsupervised Data Imputation via Variational Inference of Deep Subspaces. CoRR abs/1903.03503 (2019) - [i20]Adrian V. Dalca, Guha Balakrishnan, John V. Guttag, Mert R. Sabuncu:
Unsupervised Learning of Probabilistic Diffeomorphic Registration for Images and Surfaces. CoRR abs/1903.03545 (2019) - [i19]Adrian V. Dalca, Marianne Rakic, John V. Guttag, Mert R. Sabuncu:
Learning Conditional Deformable Templates with Convolutional Networks. CoRR abs/1908.02738 (2019) - [i18]Guha Balakrishnan, Adrian V. Dalca, Amy Zhao, John V. Guttag, Frédo Durand, William T. Freeman:
Visual Deprojection: Probabilistic Recovery of Collapsed Dimensions. CoRR abs/1909.00475 (2019) - [i17]Maggie Makar, Fredrik D. Johansson, John V. Guttag, David A. Sontag:
Estimation of Utility-Maximizing Bounds on Potential Outcomes. CoRR abs/1910.04817 (2019) - [i16]Ava P. Soleimany, Harini Suresh, Jose Javier Gonzalez Ortiz, Divya Shanmugam, Nil Gural, John V. Guttag, Sangeeta N. Bhatia:
Image segmentation of liver stage malaria infection with spatial uncertainty sampling. CoRR abs/1912.00262 (2019) - 2018
- [j37]Davis W. Blalock, Samuel Madden, John V. Guttag:
Sprintz: Time Series Compression for the Internet of Things. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(3): 93:1-93:23 (2018) - [c79]Maggie Makar, John V. Guttag, Jenna Wiens:
Learning the Probability of Activation in the Presence of Latent Spreaders. AAAI 2018: 134-141 - [c78]Guha Balakrishnan, Amy Zhao, Adrian V. Dalca, Frédo Durand, John V. Guttag:
Synthesizing Images of Humans in Unseen Poses. CVPR 2018: 8340-8348 - [c77]Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John V. Guttag, Adrian V. Dalca:
An Unsupervised Learning Model for Deformable Medical Image Registration. CVPR 2018: 9252-9260 - [c76]Adrian V. Dalca, John V. Guttag, Mert R. Sabuncu:
Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation. CVPR 2018: 9290-9299 - [c75]Harini Suresh, Jen J. Gong, John V. Guttag:
Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU. KDD 2018: 802-810 - [c74]Adrian V. Dalca, Guha Balakrishnan, John V. Guttag, Mert R. Sabuncu:
Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration. MICCAI (1) 2018: 729-738 - [c73]Jen J. Gong, John V. Guttag:
Learning to Summarize Electronic Health Records Using Cross-Modality Correspondences. MLHC 2018: 551-570 - [i15]Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John V. Guttag, Adrian V. Dalca:
An Unsupervised Learning Model for Deformable Medical Image Registration. CoRR abs/1802.02604 (2018) - [i14]Guha Balakrishnan, Amy Zhao, Adrian V. Dalca, Frédo Durand, John V. Guttag:
Synthesizing Images of Humans in Unseen Poses. CoRR abs/1804.07739 (2018) - [i13]Adrian V. Dalca, Guha Balakrishnan, John V. Guttag, Mert R. Sabuncu:
Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration. CoRR abs/1805.04605 (2018) - [i12]Dina Levy-Lambert, Jen J. Gong, Tristan Naumann, Tom J. Pollard, John V. Guttag:
Visualizing Patient Timelines in the Intensive Care Unit. CoRR abs/1806.00397 (2018) - [i11]Harini Suresh, Jen J. Gong, John V. Guttag:
Learning Tasks for Multitask Learning: Heterogenous Patient Populations in the ICU. CoRR abs/1806.02878 (2018) - [i10]Davis W. Blalock, Samuel Madden, John V. Guttag:
Sprintz: Time Series Compression for the Internet of Things. CoRR abs/1808.02515 (2018) - [i9]Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John V. Guttag, Adrian V. Dalca:
VoxelMorph: A Learning Framework for Deformable Medical Image Registration. CoRR abs/1809.05231 (2018) - [i8]Divya Shanmugam, Davis W. Blalock, Jen J. Gong, John V. Guttag:
Multiple Instance Learning for ECG Risk Stratification. CoRR abs/1812.00475 (2018) - [i7]Kathleen M. Lewis, Guha Balakrishnan, Natalia S. Rost, John V. Guttag, Adrian V. Dalca:
Fast Learning-based Registration of Sparse Clinical Images. CoRR abs/1812.06932 (2018) - 2017
- [j36]Neal Wadhwa, Hao-Yu Wu, Abe Davis, Michael Rubinstein, Eugene Shih, Gautham J. Mysore, Justin G. Chen, Oral Büyüköztürk, John V. Guttag, William T. Freeman, Frédo Durand:
Eulerian video magnification and analysis. Commun. ACM 60(1): 87-95 (2017) - [c72]Davis W. Blalock, John V. Guttag:
Bolt: Accelerated Data Mining with Fast Vector Compression. KDD 2017: 727-735 - [c71]Jen J. Gong, Tristan Naumann, Peter Szolovits, John V. Guttag:
Predicting Clinical Outcomes Across Changing Electronic Health Record Systems. KDD 2017: 1497-1505 - [c70]Ronnachai Jaroensri, Amy Zhao, Guha Balakrishnan, Derek Lo, Jeremy D. Schmahmann, Frédo Durand, John V. Guttag:
A Video-Based Method for Automatically Rating Ataxia. MLHC 2017: 204-216 - [i6]Davis W. Blalock, John V. Guttag:
Bolt: Accelerated Data Mining with Fast Vector Compression. CoRR abs/1706.10283 (2017) - [i5]Maggie Makar, John V. Guttag, Jenna Wiens:
Learning the Probability of Activation in the Presence of Latent Spreaders. CoRR abs/1712.00643 (2017) - 2016
- [j35]Jenna Wiens, John V. Guttag, Eric Horvitz:
Patient Risk Stratification with Time-Varying Parameters: A Multitask Learning Approach. J. Mach. Learn. Res. 17: 79:1-79:23 (2016) - [j34]Joel Brooks, Matthew Kerr, John V. Guttag:
Using machine learning to draw inferences from pass location data in soccer. Stat. Anal. Data Min. 9(5): 338-349 (2016) - [c69]Davis W. Blalock, John V. Guttag:
EXTRACT: Strong Examples from Weakly-Labeled Sensor Data. ICDM 2016: 799-804 - [c68]Jen J. Gong, Maryann Gong, Dina Levy-Lambert, Jordan R. Green, Tiffany P. Hogan, John V. Guttag:
Towards an Automated Screening Tool for Developmental Speech and Language Impairments. INTERSPEECH 2016: 112-116 - [c67]Joel Brooks, Matthew Kerr, John V. Guttag:
Developing a Data-Driven Player Ranking in Soccer Using Predictive Model Weights. KDD 2016: 49-55 - [c66]Yun Liu, Collin M. Stultz, John V. Guttag, Kun-Ta Chuang, Fu-Wen Liang, Huey-Jen Su:
Transferring Knowledge from Text to Predict Disease Onset. MLHC 2016: 150-163 - [c65]Marzyeh Ghassemi, Zeeshan Syed, Daryush D. Mehta, Jarrad H. Van Stan, Robert E. Hillman, John V. Guttag:
Uncovering Voice Misuse Using Symbolic Mismatch. MLHC 2016: 239-252 - [i4]Yun Liu, Kun-Ta Chuang, Fu-Wen Liang, Huey-Jen Su, Collin M. Stultz, John V. Guttag:
Transferring Knowledge from Text to Predict Disease Onset. CoRR abs/1608.02071 (2016) - [i3]Marzyeh Ghassemi, Zeeshan Syed, Daryush D. Mehta, Jarrad H. Van Stan, Robert E. Hillman, John V. Guttag:
Uncovering Voice Misuse Using Symbolic Mismatch. CoRR abs/1608.02301 (2016) - [i2]Davis W. Blalock, John V. Guttag:
EXTRACT: Strong Examples from Weakly-Labeled Sensor Data. CoRR abs/1609.09196 (2016) - [i1]Ronnachai Jaroensri, Amy Zhao, Guha Balakrishnan, Derek Lo, Jeremy D. Schmahmann, John V. Guttag, Frédo Durand:
A Video-Based Method for Objectively Rating Ataxia. CoRR abs/1612.04007 (2016) - 2015
- [j33]Anima Singh, Girish N. Nadkarni, Omri Gottesman, Stephen B. Ellis, Erwin P. Bottinger, John V. Guttag:
Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration. J. Biomed. Informatics 53: 220-228 (2015) - [j32]Marzyeh Ghassemi, Jarrad H. Van Stan, Daryush D. Mehta, Matías Zanartu, Harold A. Cheyne II, Robert E. Hillman, John V. Guttag:
Corrections to "Learning to Detect Vocal Hyperfunction From Ambulatory Neck-Surface Acceleration Features: Initial Results For Vocal Fold Nodules". IEEE Trans. Biomed. Eng. 62(10): 2544 (2015) - [j31]Guha Balakrishnan, Frédo Durand, John V. Guttag:
Video diff: highlighting differences between similar actions in videos. ACM Trans. Graph. 34(6): 194:1-194:10 (2015) - [c64]Amy Zhao, Frédo Durand, John V. Guttag:
Estimating a Small Signal in the Presence of Large Noise. ICCV Workshops 2015: 671-676 - [c63]Jen J. Gong, Thoralf M. Sundt, James D. Rawn, John V. Guttag:
Instance Weighting for Patient-Specific Risk Stratification Models. KDD 2015: 369-378 - 2014
- [j30]Jenna Wiens, John V. Guttag, Eric Horvitz:
A study in transfer learning: leveraging data from multiple hospitals to enhance hospital-specific predictions. J. Am. Medical Informatics Assoc. 21(4): 699-706 (2014) - [j29]Marzyeh Ghassemi, Jarrad H. Van Stan, Daryush D. Mehta, Matías Zanartu, Harold A. Cheyne II, Robert E. Hillman, John V. Guttag:
Learning to Detect Vocal Hyperfunction From Ambulatory Neck-Surface Acceleration Features: Initial Results for Vocal Fold Nodules. IEEE Trans. Biomed. Eng. 61(6): 1668-1675 (2014) - [c62]Anima Singh, Girish N. Nadkarni, John V. Guttag, Erwin P. Bottinger:
Leveraging hierarchy in medical codes for predictive modeling. BCB 2014: 96-103 - 2013
- [c61]Anima Singh, John V. Guttag:
Collaborative Filtering for Identifying Prescription Omissions in an ICU. HEALTHINF 2013: 58-64 - [c60]Guha Balakrishnan, Frédo Durand, John V. Guttag:
Detecting Pulse from Head Motions in Video. CVPR 2013: 3430-3437 - [c59]Gartheeban Ganeshapillai, John V. Guttag, Andrew Lo:
Learning Connections in Financial Time Series. ICML (2) 2013: 109-117 - [c58]Gartheeban Ganeshapillai, John V. Guttag:
A data-driven method for in-game decision making in MLB: when to pull a starting pitcher. KDD 2013: 973-979 - 2012
- [j28]Gartheeban Ganeshapillai, John V. Guttag:
Real Time Reconstruction of Multi Parameter Physiological Signals. EURASIP J. Adv. Signal Process. 2012: 173 (2012) - [j27]Hao-Yu Wu, Michael Rubinstein, Eugene Shih, John V. Guttag, Frédo Durand, William T. Freeman:
Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 31(4): 65:1-65:8 (2012) - [c57]Jenna Wiens, John V. Guttag, Eric Horvitz:
Patient Risk Stratification for Hospital-Associated C. diff as a Time-Series Classification Task. NIPS 2012: 476-484 - 2011
- [j26]Zeeshan Syed, John V. Guttag:
Unsupervised Similarity-Based Risk Stratification for Cardiovascular Events Using Long-Term Time-Series Data. J. Mach. Learn. Res. 12: 999-1024 (2011) - [c56]Gartheeban Ganeshapillai, John V. Guttag:
Weighted Time Warping for Temporal Segmentation of Multi-parameter Physiological Signals. BIOSIGNALS 2011: 125-131 - [c55]Anima Singh, John V. Guttag:
A comparison of non-symmetric entropy-based classification trees and support vector machine for cardiovascular risk stratification. EMBC 2011: 79-82 - [c54]Ali H. Shoeb, Alaa Kharbouch, Jacqueline Soegaard, Steven Schachter, John V. Guttag:
An algorithm for detecting seizure termination in scalp EEG. EMBC 2011: 1443-1446 - [c53]Gartheeban Ganeshapillai, Jessica F. Liu, John V. Guttag:
Reconstruction of ECG signals in presence of corruption. EMBC 2011: 3764-3767 - [c52]Jenna Wiens, John V. Guttag:
Patient-specific ventricular beat classification without patient-specific expert knowledge: A transfer learning approach. EMBC 2011: 5876-5879 - 2010
- [j25]Naveen Verma, Ali H. Shoeb, Jose L. Bohorquez, Joel L. Dawson, John V. Guttag, Anantha P. Chandrakasan:
A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System. IEEE J. Solid State Circuits 45(4): 804-816 (2010) - [j24]Zeeshan Syed, Collin M. Stultz, Manolis Kellis, Piotr Indyk, John V. Guttag:
Motif discovery in physiological datasets: A methodology for inferring predictive elements. ACM Trans. Knowl. Discov. Data 4(1): 2:1-2:23 (2010) - [c51]Ali H. Shoeb, John V. Guttag:
Application of Machine Learning To Epileptic Seizure Detection. ICML 2010: 975-982 - [c50]Zeeshan Syed, John V. Guttag:
Identifying Patients at Risk of Major Adverse Cardiovascular Events Using Symbolic Mismatch. NIPS 2010: 2262-2270 - [c49]Jenna Wiens, John V. Guttag:
Active Learning Applied to Patient-Adaptive Heartbeat Classification. NIPS 2010: 2442-2450
2000 – 2009
- 2009
- [j23]Ali H. Shoeb, Trudy Pang, John V. Guttag, Steven Schachter:
Non-Invasive Computerized System for Automatically Initiating Vagus Nerve Stimulation Following Patient-Specific Detection of Seizures or epileptiform discharges. Int. J. Neural Syst. 19(3): 157-172 (2009) - [j22]Dorothy Curtis, Jacob Bailey, Esteban J. Pino, Thomas O. Stair, Staal Amund Vinterbo, Jason Waterman, Eugene Shih, John V. Guttag, Robert A. Greenes, Lucila Ohno-Machado:
Using ambient intelligence for physiological monitoring. J. Ambient Intell. Smart Environ. 1(2): 129-142 (2009) - [j21]Zeeshan Syed, Piotr Indyk, John V. Guttag:
Learning Approximate Sequential Patterns for Classification. J. Mach. Learn. Res. 10: 1913-1936 (2009) - [c48]Phil Sung, Zeeshan Syed, John V. Guttag:
Quantifying morphology changes in time series data with skew. ICASSP 2009: 477-480 - [c47]Eugene Shih, Ali H. Shoeb, John V. Guttag:
Sensor selection for energy-efficient ambulatory medical monitoring. MobiSys 2009: 347-358 - [c46]Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John V. Guttag, Bruce M. Maggs:
Cutting the electric bill for internet-scale systems. SIGCOMM 2009: 123-134 - 2008
- [j20]Dorothy Curtis, Esteban J. Pino, Jacob Bailey, Eugene Shih, Jason Waterman, Staal Amund Vinterbo, Thomas O. Stair, John V. Guttag, Robert A. Greenes, Lucila Ohno-Machado:
Application of Information Technology: SMART - An Integrated Wireless System for Monitoring Unattended Patients. J. Am. Medical Informatics Assoc. 15(1): 44-53 (2008) - [c45]Dorothy Curtis, Eugene Shih, Jason Waterman, John V. Guttag, Jacob Bailey, Thomas O. Stair, Robert A. Greenes, Lucila Ohno-Machado:
Physiological signal monitoring in the waiting areas of an emergency room. BODYNETS 2008: 5 - 2007
- [j19]Zeeshan Syed, John V. Guttag, Collin M. Stultz:
Clustering and Symbolic Analysis of Cardiovascular Signals: Discovery and Visualization of Medically Relevant Patterns in Long-Term Data Using Limited Prior Knowledge. EURASIP J. Adv. Signal Process. 2007 (2007) - [j18]Zeeshan Syed, Daniel Leeds, Daniel Curtis, Francesca Nesta, Robert A. Levine, John V. Guttag:
A Framework for the Analysis of Acoustical Cardiac Signals. IEEE Trans. Biomed. Eng. 54(4): 651-662 (2007) - [c44]Zeeshan Syed, John V. Guttag:
Prototypical Biological Signals. ICASSP (1) 2007: 397-400 - 2006
- [c43]Zeeshan Syed, Daniel Leeds, Dorothy Curtis, John V. Guttag:
Audio-Visual Tools for Computer-Assisted Diagnosis of Cardiac Disorders. CBMS 2006: 207-212 - [c42]Elena L. Glassman, John V. Guttag:
Reducing the Number of Channels for an Ambulatory Patient-Specific EEG-based Epileptic Seizure Detector by Applying Recursive Feature Elimination. EMBC 2006: 2175-2178 - [c41]Zeeshan Syed, Dorothy Curtis, John V. Guttag, Francesca Nesta, Robert A. Levine:
Software Enhanced Learning of Cardiac Auscultation. EMBC 2006: 6105-6108 - [c40]Asfandyar Qureshi, Jennifer N. Carlisle, John V. Guttag:
Tavarua: video streaming with WWAN striping. ACM Multimedia 2006: 327-336 - 2005
- [c39]Jason Waterman, Dorothy Curtis, Michel Goraczko, Eugene Shih, Pankaj Sarin, Esteban J. Pino, Lucila Ohno-Machado, Robert A. Greenes, John V. Guttag, Thomas O. Stair:
Demonstration of SMART (Scalable Medical Alert Response Technology). AMIA 2005 - [c38]Godfrey Tan, John V. Guttag:
The 802.11 MAC protocol leads to inefficient equilibria. INFOCOM 2005: 1-11 - [c37]Asfandyar Qureshi, John V. Guttag:
Horde: separating network striping policy from mechanism. MobiSys 2005: 121-134 - 2004
- [c36]Eugene Shih, Vladimir Bychkovsky, Dorothy Curtis, John V. Guttag:
Continuous medical monitoring using wireless microsensors. SenSys 2004: 310 - [c35]Godfrey Tan, John V. Guttag:
Long-term time-share guarantees are necessary for wireless LANs. ACM SIGOPS European Workshop 2004: 35 - [c34]Godfrey Tan, John V. Guttag:
Time-based Fairness Improves Performance in Multi-Rate WLANs. USENIX ATC, General Track 2004: 269-282 - 2003
- [c33]Godfrey Tan, Massimiliano Poletto, John V. Guttag, M. Frans Kaashoek:
Role Classification of Hosts Within Enterprise Networks Based on Connection Patterns. USENIX ATC, General Track 2003: 15-28 - 2002
- [c32]Godfrey Tan, John V. Guttag:
A Locally Coordinated Scatternet Scheduling Algorithm. LCN 2002: 293-303 - [p2]John V. Guttag:
Abstract Data Types, Then and Now. Software Pioneers 2002: 442-452 - [p1]John V. Guttag:
Abstract Data Types and the Development of Data Structures (Reprint). Software Pioneers 2002: 453-479 - 2001
- [b2]Barbara Liskov, John V. Guttag:
Program Development in Java - Abstraction, Specification, and Object-Oriented Design. Addison-Wesley 2001, ISBN 978-0-201-65768-5, pp. I-XIX, 1-443
1990 – 1999
- 1999
- [j17]David Wetherall, John V. Guttag, David L. Tennenhouse:
ANTS: Network Services Without the Red Tape. Computer 32(4): 42-48 (1999) - [j16]Vanu G. Bose, Michael Ismert, Matt Welborn, John V. Guttag:
Virtual radios. IEEE J. Sel. Areas Commun. 17(4): 591-602 (1999) - [c31]Vanu G. Bose, David Wetherall, John V. Guttag:
Next Century Challenges: RadioActive Networks. MobiCom 1999: 242-248 - 1998
- [j15]Ulana Legedza, John V. Guttag:
Using Network-Level Support to Improve Cache Routing. Comput. Networks 30(22-23): 2193-2201 (1998) - [j14]David Wetherall, D. Legedza, John V. Guttag:
Introducing new Internet services: why and how. IEEE Netw. 12(3): 12-19 (1998) - [c30]Ulana Legedza, David Wetherall, John V. Guttag:
Improving the Performance of Distributed Applications Using Active Networks. INFOCOM 1998: 590-599 - 1995
- [c29]Raymie Stata, John V. Guttag:
Modular Reasoning in the Presence of Subclassing. OOPSLA 1995: 200-214 - 1994
- [c28]Anant Agarwal, John V. Guttag, Christoforos N. Hadjicostis, Marios C. Papaefthymiou:
Memory Assignment for Multiprocessor Caches through Grey Coloring. PARLE 1994: 351-362 - [c27]David E. Evans, John V. Guttag, James J. Horning, Yang Meng Tan:
LCLint: A Tool for Using Specifications to Check Code. SIGSOFT FSE 1994: 87-96 - [c26]Mark T. Vandevoorde, John V. Guttag:
Using Specialized Procedures and Specification-Based Analysis to Reduce the Runtime Costs of Modularity. SIGSOFT FSE 1994: 121-127 - 1993
- [b1]John V. Guttag, James J. Horning, Stephen J. Garland, Kevin D. Jones, A. Modet, Jeannette M. Wing:
Larch: Languages and Tools for Formal Specification. Texts and Monographs in Computer Science, Springer 1993, ISBN 978-1-4612-7636-4, pp. 1-156 - [j13]James B. Saxe, James J. Horning, John V. Guttag, Stephen J. Garland:
Using Transformations and Verification in Circuit Design. Formal Methods Syst. Des. 3(3): 181-209 (1993) - [c25]Jørgen F. Søgaard-Andersen, Stephen J. Garland, John V. Guttag, Nancy A. Lynch, Anna Pogosyants:
Computer-Assisted Simulation Proofs. CAV 1993: 305-319 - [c24]Stephen J. Garland, John V. Guttag, James J. Horning:
An Overview of Larch. Functional Programming, Concurrency, Simulation and Automated Reasoning 1993: 329-348 - [c23]John V. Guttag:
Goldilocks and the Three Specifications. TAPSOFT 1993: 1-14 - 1992
- [c22]James B. Saxe, Stephen J. Garland, John V. Guttag, James J. Horning:
Using Transformations and Verification in Ciruit Design. Designing Correct Circuits 1992: 1-25 - [c21]James B. Saxe, John V. Guttag, James J. Horning, Stephen J. Garland:
Using Transformations and Verification in Circuit Design. Larch 1992: 201-226 - [c20]Jørgen Staunstrup, Stephen J. Garland, John V. Guttag:
Mechanized Verification of Circuit Descriptions Using the Larch Prover. TPCD 1992: 277-299 - 1991
- [c19]John V. Guttag, James J. Horning:
A Tutorial on LARCH and LCL, A LARCH/C Interface Language. VDM Europe (2) 1991: 1-78 - [c18]John V. Guttag:
The Larch Approach to Specification (Abstract). VDM Europe (1) 1991: 10 - 1990
- [j12]Stephen J. Garland, John V. Guttag, James J. Horning:
Debugging Larch Shared Language Specifications. IEEE Trans. Software Eng. 16(9): 1044-1057 (1990) - [c17]Stephen J. Garland, John V. Guttag:
Using LP to Debug Specifications. Programming Concepts and Methods 1990: 369-386
1980 – 1989
- 1989
- [c16]Jørgen Staunstrup, Stephen J. Garland, John V. Guttag:
Localized Verification of Circuit Descriptions. Automatic Verification Methods for Finite State Systems 1989: 349-364 - [c15]Stephen J. Garland, John V. Guttag:
An Overview of LP, The Larch Power. RTA 1989: 137-151 - 1988
- [c14]Stephen J. Garland, John V. Guttag:
LP: The Larch Prover. CADE 1988: 748-749 - [c13]Stephen J. Garland, John V. Guttag:
Inductive Methods for Reasoning about Abstract Data Types. POPL 1988: 219-228 - 1987
- [c12]Andrew Birrell, John V. Guttag, James J. Horning, Roy Levin:
Synchronization Primitives for a Multiprocessor: A Formal Specification. SOSP 1987: 94-102 - 1986
- [j11]John V. Guttag, James J. Horning:
Report on the Larch Shared Language. Sci. Comput. Program. 6(2): 103-134 (1986) - [j10]John V. Guttag, James J. Horning:
A Larch Shared Language Handbook. Sci. Comput. Program. 6(2): 135-157 (1986) - [j9]John V. Guttag, James J. Horning, Jeannette M. Wing:
Abstracts in software engineering. ACM SIGSOFT Softw. Eng. Notes 11(1): 103-110 (1986) - 1985
- [j8]John V. Guttag, James J. Horning, Jeannette M. Wing:
The Larch Family of Specification Languages. IEEE Softw. 2(5): 24-36 (1985) - 1983
- [j7]John V. Guttag, Deepak Kapur, David R. Musser:
On Proving Uniform Termination and Restricted Termination of Rewriting Systems. SIAM J. Comput. 12(1): 189-214 (1983) - [c11]John V. Guttag, James J. Horning:
An Introduction to the Larch Shared Language. IFIP Congress 1983: 809-814 - 1982
- [j6]John V. Guttag, James J. Horning, Jeannette M. Wing:
Some Notes on Putting Formal Specifications to Productive Use. Sci. Comput. Program. 2(1): 53-68 (1982) - [c10]John V. Guttag, Deepak Kapur, David R. Musser:
Derived Pairs, Overlap Closures, and Rewrite Dominoes: New Tools for Analyzing Term rewriting Systems. ICALP 1982: 300-312 - 1981
- [c9]John V. Guttag:
A few Remarks on Putting Formal Specifications to Productive Use. Program Specification 1981: 370-380 - [c8]John V. Guttag, James J. Horning, John Williams:
FP with data abstraction and strong typing. FPCA 1981: 11-24 - 1980
- [j5]John V. Guttag:
Notes on Type Abstraction (Version 2). IEEE Trans. Software Eng. 6(1): 13-23 (1980) - [c7]John V. Guttag, James J. Horning:
Formal Specification as a Design Tool. POPL 1980: 251-261
1970 – 1979
- 1978
- [j4]Ralph L. London, John V. Guttag, James J. Horning, Butler W. Lampson, James G. Mitchell, Gerald J. Popek:
Proof Rules for the Programming Language Euclid. Acta Informatica 10: 1-26 (1978) - [j3]John V. Guttag, James J. Horning:
The Algebraic Specification of Abstract Data Types. Acta Informatica 10: 27-52 (1978) - [j2]John V. Guttag, Ellis Horowitz, David R. Musser:
Abstract Data Types and Software Validation. Commun. ACM 21(12): 1048-1064 (1978) - [c6]Ralph L. London, John V. Guttag, James J. Horning, Butler W. Lampson, James G. Mitchell, Gerald J. Popek:
Proof Rules for the Programming Language Euclid. Program Construction 1978: 133-163 - [c5]John V. Guttag:
Notes on Type Abstraction. Program Construction 1978: 593-616 - 1977
- [j1]John V. Guttag:
Abstract Data Type and the Development of Data Structures. Commun. ACM 20(6): 396-404 (1977) - [c4]John V. Guttag, James J. Horning, Ralph L. London:
A Proof Rule for Euclid Procedures. Formal Description of Programming Concepts 1977: 211-220 - [c3]John V. Guttag, Ellis Horowitz, David R. Musser:
Some Extensions to Algebraic Specifications. Language Design for Reliable Software 1977: 63-67 - 1976
- [c2]John V. Guttag, Ellis Horowitz, David R. Musser:
The Design of Data Type Specifications. ICSE 1976: 414-420 - [c1]John V. Guttag:
Abstract Data Types and the Development of Data Structures. Conference on Data: Abstraction, Definition and Structure 1976: 72
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-04 19:58 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint