default search action
Thomas Seidl 0001
Person information
- affiliation (since 2016): Ludwig Maximilians University of Munich, Institute for Computer Science, Germany
- affiliation (2002-2016): RWTH Aachen University, Germany
Other persons with the same name
- Thomas Seidl 0002 — Fraunhofer Institute for Factory Operation and Automation (IFF)
- Thomas Seidl 0003 — VfB Stuttgart, Stuttgart, Germany
Other persons with a similar name
- Daniel Thomas Seidl (aka: D. Thomas Seidl) — Sandia National Laboratories, Albuquerque, NM, USA (and 1 more)
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c308]Andrea Maldonado, Christian M. M. Frey, Gabriel Marques Tavares, Nikolina Rehwald, Thomas Seidl:
GEDI: Generating Event Data with Intentional Features for Benchmarking Process Mining. BPM 2024: 221-237 - [c307]Andrea Maldonado, Sai Anirudh Aryasomayajula, Christian M. M. Frey, Thomas Seidl:
iGEDI: interactive Generating Event Data with Intentional Features. ICPM Doctoral Consortium / Demo 2024 - [c306]Simon Rauch, Christian M. M. Frey, Ludwig Zellner, Thomas Seidl:
Process-Aware Bayesian Networks for Sequential Event Log Queries. ICPM 2024: 161-168 - [c305]Ludwig Zellner, Simon Rauch, Janina Sontheim, Thomas Seidl:
On Diverse and Precise Recommendations for Small and Medium-Sized Enterprises. PAKDD (5) 2024: 118-130 - [c304]Philipp Jahn, Christian M. M. Frey, Anna Beer, Collin Leiber, Thomas Seidl:
Data with Density-Based Clusters: A Generator for Systematic Evaluation of Clustering Algorithms. ECML/PKDD (7) 2024: 3-21 - [c303]Sandra Gilhuber, Anna Beer, Yunpu Ma, Thomas Seidl:
FALCUN: A Simple and Efficient Deep Active Learning Strategy. ECML/PKDD (3) 2024: 421-439 - [i24]David Winkel, Niklas Strauß, Matthias Schubert, Thomas Seidl:
Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning. CoRR abs/2404.10683 (2024) - [i23]Valentin Margraf, Marcel Wever, Sandra Gilhuber, Gabriel Marques Tavares, Thomas Seidl, Eyke Hüllermeier:
ALPBench: A Benchmark for Active Learning Pipelines on Tabular Data. CoRR abs/2406.17322 (2024) - [i22]David Winkel, Niklas Strauß, Maximilian Bernhard, Zongyue Li, Thomas Seidl, Matthias Schubert:
Autoregressive Policy Optimization for Constrained Allocation Tasks. CoRR abs/2409.18735 (2024) - 2023
- [j47]Theresa Ullmann, Anna Beer, Maximilian Hünemörder, Thomas Seidl, Anne-Laure Boulesteix:
Over-optimistic evaluation and reporting of novel cluster algorithms: an illustrative study. Adv. Data Anal. Classif. 17(1): 211-238 (2023) - [c302]Rajat Koner, Tanveer Hannan, Suprosanna Shit, Sahand Sharifzadeh, Matthias Schubert, Thomas Seidl, Volker Tresp:
InstanceFormer: An Online Video Instance Segmentation Framework. AAAI 2023: 1188-1195 - [c301]Michael Fromm, Max Berrendorf, Evgeniy Faerman, Thomas Seidl:
Cross-Domain Argument Quality Estimation. ACL (Findings) 2023: 13435-13448 - [c300]David Winkel, Niklas Strauß, Matthias Schubert, Thomas Seidl:
Simplex Decomposition for Portfolio Allocation Constraints in Reinforcement Learning. ECAI 2023: 2655-2662 - [c299]Andrea Maldonado, Gabriel Marques Tavares, Rafael Seidi Oyamada, Paolo Ceravolo, Thomas Seidl:
FEEED: Feature Extraction from Event Data. ICPM Doctoral Consortium / Demo 2023 - [c298]Andrea Maldonado, Ludwig Zellner, Sven Strickroth, Thomas Seidl:
Process Mining Techniques for Collusion Detection in Online Exams. ICPM Workshops 2023: 336-348 - [c297]Yao Zhang, Yunpu Ma, Thomas Seidl, Volker Tresp:
Adaptive Multi-Resolution Attention with Linear Complexity. IJCNN 2023: 1-8 - [c296]David Winkel, Niklas Strauß, Matthias Schubert, Yunpu Ma, Thomas Seidl:
Constrained Portfolio Management Using Action Space Decomposition for Reinforcement Learning. PAKDD (2) 2023: 373-385 - [c295]Sandra Gilhuber, Julian Busch, Daniel Rotthues, Christian M. M. Frey, Thomas Seidl:
DiffusAL: Coupling Active Learning with Graph Diffusion for Label-Efficient Node Classification. ECML/PKDD (1) 2023: 75-91 - [c294]Sandra Gilhuber, Rasmus Hvingelby, Mang Ling Ada Fok, Thomas Seidl:
How to Overcome Confirmation Bias in Semi-Supervised Image Classification by Active Learning. ECML/PKDD (2) 2023: 330-347 - [i21]Tanveer Hannan, Rajat Koner, Maximilian Bernhard, Suprosanna Shit, Bjoern H. Menze, Volker Tresp, Matthias Schubert, Thomas Seidl:
GRAtt-VIS: Gated Residual Attention for Auto Rectifying Video Instance Segmentation. CoRR abs/2305.17096 (2023) - [i20]Sandra Gilhuber, Julian Busch, Daniel Rotthues, Christian M. M. Frey, Thomas Seidl:
DiffusAL: Coupling Active Learning with Graph Diffusion for Label-Efficient Node Classification. CoRR abs/2308.00146 (2023) - [i19]Sandra Gilhuber, Rasmus Hvingelby, Mang Ling Ada Fok, Thomas Seidl:
How To Overcome Confirmation Bias in Semi-Supervised Image Classification By Active Learning. CoRR abs/2308.08224 (2023) - [i18]Tanveer Hannan, Md Mohaiminul Islam, Thomas Seidl, Gedas Bertasius:
RGNet: A Unified Retrieval and Grounding Network for Long Videos. CoRR abs/2312.06729 (2023) - 2022
- [j46]Ellen Hohma, Christian M. M. Frey, Anna Beer, Thomas Seidl:
SCAR - Spectral Clustering Accelerated and Robustified. Proc. VLDB Endow. 15(11): 3031-3044 (2022) - [c293]Sandra Gilhuber, Philipp Jahn, Yunpu Ma, Thomas Seidl:
VERIPS: Verified Pseudo-label Selection for Deep Active Learning. ICDM 2022: 951-956 - [c292]Sandra Gilhuber, Max Berrendorf, Yunpu Ma, Thomas Seidl:
Accelerating Diversity Sampling for Deep Active Learning By Low-Dimensional Representations. IAL@PKDD/ECML 2022: 43-48 - [c291]David Winkel, Niklas Strauß, Matthias Schubert, Thomas Seidl:
Risk-Aware Reinforcement Learning for Multi-Period Portfolio Selection. ECML/PKDD (6) 2022: 185-200 - [i17]Michael Fromm, Max Berrendorf, Johanna Reiml, Isabelle Mayerhofer, Siddharth Bhargava, Evgeniy Faerman, Thomas Seidl:
Towards a Holistic View on Argument Quality Prediction. CoRR abs/2205.09803 (2022) - [i16]Rajat Koner, Tanveer Hannan, Suprosanna Shit, Sahand Sharifzadeh, Matthias Schubert, Thomas Seidl, Volker Tresp:
InstanceFormer: An Online Video Instance Segmentation Framework. CoRR abs/2208.10547 (2022) - 2021
- [j45]Daniyal Kazempour, Johannes Winter, Peer Kröger, Thomas Seidl:
On Methods and Measures for the Inspection of Arbitrarily Oriented Subspace Clusters. Datenbank-Spektrum 21(3): 213-223 (2021) - [c290]Michael Fromm, Evgeniy Faerman, Max Berrendorf, Siddharth Bhargava, Ruoxia Qi, Yao Zhang, Lukas Dennert, Sophia Selle, Yang Mao, Thomas Seidl:
Argument Mining Driven Analysis of Peer-Reviews. AAAI 2021: 4758-4766 - [c289]Sandra Obermeier, Anna Beer, Florian Wahl, Thomas Seidl:
Cluster Flow - an Advanced Concept for Ensemble-Enabling, Interactive Clustering. BTW 2021: 175-194 - [c288]Daniyal Kazempour, Anna Beer, Melanie Oelker, Peer Kröger, Thomas Seidl:
Compound Segmentation via Clustering on Mol2Vec-based Embeddings. e-Science 2021: 60-69 - [c287]Michael Fromm, Max Berrendorf, Sandra Obermeier, Thomas Seidl, Evgeniy Faerman:
Diversity Aware Relevance Learning for Argument Search. ECIR (2) 2021: 264-271 - [c286]Anna Beer, Ekaterina Allerborn, Valentin Hartmann, Thomas Seidl:
KISS - A fast kNN-based Importance Score for Subspaces. EDBT 2021: 391-396 - [c285]Anna Wimbauer, Florian Richter, Thomas Seidl:
PErrCas: Process Error Cascade Mining in Trace Streams. ICPM Workshops 2021: 224-236 - [c284]Anna Beer, Lisa Stephan, Thomas Seidl:
LUCKe - Connecting Clustering and Correlation Clustering. ICDM (Workshops) 2021: 431-440 - [c283]Julian Busch, Maximilian Hünemörder, Janis Held, Peer Kröger, Thomas Seidl:
Implicit Hough Transform Neural Networks for Subspace Clustering. ICDM (Workshops) 2021: 441-448 - [c282]Ludwig Zellner, Janina Sontheim, Florian Richter, Gabriel Lindner, Thomas Seidl:
SCORER-Gap: Sequentially Correlated Rules for Event Recommendation Considering Gap Size. ICDM (Workshops) 2021: 925-934 - [c281]Andreas Lohrer, Anna Beer, Maximilian Archimedes Xaver Hünemörder, Jenny Lauterbach, Thomas Seidl, Peer Kröger:
AnyCORE - An Anytime Algorithm for Cluster Outlier REmoval. LWDA 2021: 145-156 - [c280]Julian Busch, Anton Kocheturov, Volker Tresp, Thomas Seidl:
NF-GNN: Network Flow Graph Neural Networks for Malware Detection and Classification. SSDBM 2021: 121-132 - [e9]Thomas Seidl, Michael Fromm, Sandra Obermeier:
Proceedings of the LWDA 2021 Workshops: FGWM, KDML, FGWI-BIA, and FGIR, Online, September 1-3, 2021. CEUR Workshop Proceedings 2993, CEUR-WS.org 2021 [contents] - [i15]Julian Busch, Anton Kocheturov, Volker Tresp, Thomas Seidl:
NF-GNN: Network Flow Graph Neural Networks for Malware Detection and Classification. CoRR abs/2103.03939 (2021) - [i14]Yao Zhang, Yunpu Ma, Thomas Seidl, Volker Tresp:
Adaptive Multi-Resolution Attention with Linear Complexity. CoRR abs/2108.04962 (2021) - [i13]Nataliia Kees, Michael Fromm, Evgeniy Faerman, Thomas Seidl:
Active Learning for Argument Strength Estimation. CoRR abs/2109.11319 (2021) - 2020
- [j44]Florian Richter, Yifeng Lu, Daniyal Kazempour, Thomas Seidl:
"Show Me the Crowds!" Revealing Cluster Structures Through AMTICS. Data Sci. Eng. 5(4): 360-374 (2020) - [j43]Dietrich Trautmann, Michael Fromm, Volker Tresp, Thomas Seidl, Hinrich Schütze:
Relational and Fine-Grained Argument Mining. Datenbank-Spektrum 20(2): 99-105 (2020) - [c279]Florian Richter, Janina Sontheim, Ludwig Zellner, Thomas Seidl:
TADE: Stochastic Conformance Checking Using Temporal Activity Density Estimation. BPM 2020: 220-236 - [c278]Valentyn Melnychuk, Evgeniy Faerman, Ilja Manakov, Thomas Seidl:
Matching the Clinical Reality: Accurate OCT-Based Diagnosis From Few Labels. CIKM (Workshops) 2020 - [c277]Florian Richter, Yifeng Lu, Daniyal Kazempour, Thomas Seidl:
AMTICS: Aligning Micro-clusters to Identify Cluster Structures. DASFAA (1) 2020: 752-768 - [c276]Julian Busch, Jiaxing Pi, Thomas Seidl:
PushNet: Efficient and Adaptive Neural Message Passing. ECAI 2020: 1039-1046 - [c275]Max Berrendorf, Evgeniy Faerman, Valentyn Melnychuk, Volker Tresp, Thomas Seidl:
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned. ECIR (2) 2020: 3-11 - [c274]Daniyal Kazempour, Peer Kröger, Thomas Seidl:
Towards an Internal Evaluation Measure for Arbitrarily Oriented Subspace Clustering. ICDM (Workshops) 2020: 300-307 - [c273]Daniyal Kazempour, Long Mathias Yan, Peer Kröger, Thomas Seidl:
You see a set of wagons - I see one train: Towards a unified view of local and global arbitrarily oriented subspace clusters. ICDM (Workshops) 2020: 308-315 - [c272]Daniyal Kazempour, Anna Beer, Peer Kröger, Thomas Seidl:
I fold you so! An internal evaluation measure for arbitrary oriented subspace clustering. ICDM (Workshops) 2020: 316-323 - [c271]Thomas Seidl:
Keynote Data Mining on Process Data. ICPM 2020: 1 - [c270]Florian Richter, Yifeng Lu, Ludwig Zellner, Janina Sontheim, Thomas Seidl:
TOAD: Trace Ordering for Anomaly Detection. ICPM 2020: 169-176 - [c269]Ludwig Zellner, Florian Richter, Janina Sontheim, Andrea Maldonado, Thomas Seidl:
Concept Drift Detection on Streaming Data with Dynamic Outlier Aggregation. ICPM Workshops 2020: 206-217 - [c268]Florian Richter, Andrea Maldonado, Ludwig Zellner, Thomas Seidl:
OTOSO: Online Trace Ordering for Structural Overviews. ICPM Workshops 2020: 218-229 - [c267]Andrea Maldonado, Janina Sontheim, Florian Richter, Thomas Seidl:
Performance Skyline: Inferring Process Performance Models from Interval Events. ICPM Workshops 2020: 230-242 - [c266]Yao Zhang, Yifeng Lu, Thomas Seidl:
KNNAC: An Efficient k Nearest Neighbor Based Clustering with Active Core Detection. iiWAS 2020: 62-71 - [c265]Yifeng Lu, Yao Zhang, Florian Richter, Thomas Seidl:
k-Nearest Neighbor based Clustering with Shape Alternation Adaptivity. IJCNN 2020: 1-8 - [c264]Anna Beer, Daniyal Kazempour, Julian Busch, Alexander Tekles, Thomas Seidl:
Grace - Limiting the Number of Grid Cells for Clustering High-Dimensional Data. LWDA 2020: 11-22 - [c263]Felix Borutta, Daniyal Kazempour, Felix Mathy, Peer Kröger, Thomas Seidl:
Detecting Arbitrarily Oriented Subspace Clusters in Data Streams Using Hough Transform. PAKDD (1) 2020: 356-368 - [c262]Anna Beer, Dominik Seeholzer, Nadine Sarah Schüler, Thomas Seidl:
Angle-Based Clustering. SISAP 2020: 312-320 - [c261]Anna Beer, Valentin Hartmann, Thomas Seidl:
Orderings of Data - More Than a Tripping Hazard: Visionary. SSDBM 2020: 17:1-17:4 - [p5]Yifeng Lu, Florian Richter, Thomas Seidl:
Efficient Infrequent Pattern Mining Using Negative Itemset Tree. Complex Pattern Mining 2020: 1-16 - [d1]Michael Fromm, Max Berrendorf, Evgheniy Faerman, Thomas Seidl:
Argument Mining Driven Analysis of Peer-Reviews Dataset. Zenodo, 2020 - [i12]Julian Busch, Jiaxing Pi, Thomas Seidl:
PushNet: Efficient and Adaptive Neural Message Passing. CoRR abs/2003.02228 (2020) - [i11]Julian Busch, Evgeniy Faerman, Matthias Schubert, Thomas Seidl:
Learning Self-Expression Metrics for Scalable and Inductive Subspace Clustering. CoRR abs/2009.12875 (2020) - [i10]Valentyn Melnychuk, Evgeniy Faerman, Ilja Manakov, Thomas Seidl:
Matching the Clinical Reality: Accurate OCT-Based Diagnosis From Few Labels. CoRR abs/2010.12316 (2020) - [i9]Michael Fromm, Max Berrendorf, Sandra Obermeier, Thomas Seidl, Evgeniy Faerman:
Diversity Aware Relevance Learning for Argument Search. CoRR abs/2011.02177 (2020) - [i8]Michael Fromm, Evgeniy Faerman, Max Berrendorf, Siddharth Bhargava, Ruoxia Qi, Yao Zhang, Lukas Dennert, Sophia Selle, Yang Mao, Thomas Seidl:
Argument Mining Driven Analysis of Peer-Reviews. CoRR abs/2012.07743 (2020)
2010 – 2019
- 2019
- [j42]Janis Held, Anna Beer, Thomas Seidl:
Chain-detection Between Clusters. Datenbank-Spektrum 19(3): 219-230 (2019) - [j41]Daniyal Kazempour, Markus Mauder, Peer Kröger, Thomas Seidl:
Detecting global hyperparaboloid correlated clusters: a Hough-transform based multicore algorithm. Distributed Parallel Databases 37(1): 39-72 (2019) - [j40]Marwan Hassani, Daniel Töws, Alfredo Cuzzocrea, Thomas Seidl:
BFSPMiner: an effective and efficient batch-free algorithm for mining sequential patterns over data streams. Int. J. Data Sci. Anal. 8(3): 223-239 (2019) - [j39]Florian Richter, Thomas Seidl:
Looking into the TESSERACT: Time-drifts in event streams using series of evolving rolling averages of completion times. Inf. Syst. 84: 265-282 (2019) - [c260]Florian Richter, Ludwig Zellner, Imen Azaiz, David Winkel, Thomas Seidl:
LIProMa: Label-Independent Process Matching. Business Process Management Workshops 2019: 186-198 - [c259]Janis Held, Anna Beer, Thomas Seidl:
Chain-detection for DBSCAN. BTW (Workshops) 2019: 173-183 - [c258]Daniyal Kazempour, Maksim Kazakov, Peer Kröger, Thomas Seidl:
DICE: Density-based Interactive Clustering and Exploration. BTW 2019: 547-550 - [c257]Anna Beer, Daniyal Kazempour, Thomas Seidl:
Rock - Let the points roam to their clusters themselves. EDBT 2019: 630-633 - [c256]Daniyal Kazempour, Lisa Krombholz, Peer Kröger, Thomas Seidl:
A Galaxy of Correlations. EDBT 2019: 702-705 - [c255]Daniyal Kazempour, Thomas Seidl:
Insights into a running clockwork: On interactive process-aware clustering. EDBT 2019: 706-709 - [c254]Anna Beer, Daniyal Kazempour, Marcel Baur, Thomas Seidl:
Human Learning in Data Science. HCI (34) 2019: 170-176 - [c253]Daniyal Kazempour, Anna Beer, Thomas Seidl:
Data on RAILs: On Interactive Generation of Artificial Linear Correlated Data. HCI (34) 2019: 184-189 - [c252]Anna Beer, Nadine Sarah Schüler, Thomas Seidl:
A Generator for Subspace Clusters. LWDA 2019: 69-73 - [c251]Maximilian Archimedes Xaver Hünemörder, Anna Beer, Daniyal Kazempour, Thomas Seidl:
CODEC - Detecting Linear Correlations in Dense Clusters using coMAD-based PCA. LWDA 2019: 111-114 - [c250]Daniyal Kazempour, Anna Beer, Oliver Schrüfer, Thomas Seidl:
Clustering Trend Data Time-Series through Segmentation of FFT-decomposed Signal Constituents. LWDA 2019: 127-138 - [c249]Daniyal Kazempour, Long Mathias Yan, Thomas Seidl:
From Covariance to Comode in context of Principal Component Analysis. LWDA 2019: 139-143 - [c248]Florian Richter, Florian Wahl, Alona Sydorova, Thomas Seidl:
k-process: Model-Conformance-based Clustering of Process Instances. LWDA 2019: 161-172 - [c247]Janina Sontheim, Florian Richter, Thomas Seidl:
Temporal Deviations on Event Sequences. LWDA 2019: 173-177 - [c246]Florian Richter, Ludwig Zellner, Janina Sontheim, Thomas Seidl:
Model-Aware Clustering of Non-conforming Traces. OTM Conferences 2019: 193-200 - [c245]Anna Beer, Jennifer Lauterbach, Thomas Seidl:
MORe++: k-Means Based Outlier Removal on High-Dimensional Data. SISAP 2019: 188-202 - [c244]Maximilian Archimedes Xaver Hünemörder, Daniyal Kazempour, Peer Kröger, Thomas Seidl:
SIDEKICK: Linear Correlation Clustering with Supervised Background Knowledge. SISAP 2019: 221-230 - [c243]Daniyal Kazempour, Max Hünemörder, Thomas Seidl:
On coMADs and Principal Component Analysis. SISAP 2019: 273-280 - [c242]Anna Beer, Daniyal Kazempour, Lisa Stephan, Thomas Seidl:
LUCK- Linear Correlation Clustering Using Cluster Algorithms and a kNN based Distance Function. SSDBM 2019: 181-184 - [c241]Anna Beer, Thomas Seidl:
Graph Ordering and Clustering: A Circular Approach. SSDBM 2019: 185-188 - [c240]Daniyal Kazempour, Kilian Emmerig, Peer Kröger, Thomas Seidl:
Detecting Global Periodic Correlated Clusters in Event Series based on Parameter Space Transform. SSDBM 2019: 222-225 - [c239]Daniyal Kazempour, Thomas Seidl:
On systematic hyperparameter analysis through the example of subspace clustering. SSDBM 2019: 226-229 - [c238]Michael Fromm, Evgeniy Faerman, Thomas Seidl:
TACAM: Topic And Context Aware Argument Mining. WI 2019: 99-106 - [c237]Yifeng Lu, Florian Richter, Thomas Seidl:
LSCMiner: Efficient Low Support Closed Itemsets Mining. WISE 2019: 293-309 - [i7]Michael Fromm, Evgeniy Faerman, Thomas Seidl:
TACAM: Topic And Context Aware Argument Mining. CoRR abs/1906.00923 (2019) - [i6]Max Berrendorf, Evgeniy Faerman, Valentyn Melnychuk, Volker Tresp, Thomas Seidl:
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned. CoRR abs/1911.08342 (2019) - 2018
- [j38]Göran Kauermann, Thomas Seidl:
Data Science: a proposal for a curriculum. Int. J. Data Sci. Anal. 6(3): 195-199 (2018) - [c236]Yifeng Lu, Florian Richter, Thomas Seidl:
Efficient Infrequent Itemset Mining Using Depth-First and Top-Down Lattice Traversal. DASFAA (1) 2018: 908-915 - [c235]Yifeng Lu, Thomas Seidl:
Towards Efficient Closed Infrequent Itemset Mining Using Bi-Directional Traversing. DSAA 2018: 140-149 - [c234]Daniyal Kazempour, Anna Beer, Friederike Herzog, Daniel Kaltenthaler, Johannes-Y. Lohrer, Thomas Seidl:
FATBIRD: A Tool for Flight and Trajectories Analyses of Birds. eScience 2018: 75-82 - [c233]Daniyal Kazempour, Andrian Mörtlbauer, Peer Kröger, Thomas Seidl:
Mirror Mirror on the Wall, What is the Fairest Linear Parameter Space Representation of All? On Representations of Linear Parameter Space in Context of Clustering. LWDA 2018: 169-173 - [c232]Daniyal Kazempour, Thomas Seidl:
Identifying Entangled Data Points on Iteration Trajectories of Clusterings. LWDA 2018: 174-178 - [c231]Daniyal Kazempour, Kevin Bein, Peer Kröger, Thomas Seidl:
D-MASC: A Novel Search Strategy for Detecting Regions of Interest in Linear Parameter Space. SISAP 2018: 163-176 - [c230]Daniyal Kazempour, Anna Beer, Johannes-Y. Lohrer, Daniel Kaltenthaler, Thomas Seidl:
PARADISO: an interactive approach of parameter selection for the mean shift algorithm. SSDBM 2018: 26:1-26:4 - [r2]Thomas Seidl:
Nearest Neighbor Classification. Encyclopedia of Database Systems (2nd ed.) 2018 - 2017
- [j37]Daniel Schüller, Christian Beecks, Marwan Hassani, Jennifer Hinnell, Bela Brenger, Thomas Seidl, Irene Mittelberg:
Automated Pattern Analysis in Gesture Research: Similarity Measuring in 3D Motion Capture Models of Communicative Action. Digit. Humanit. Q. 11(2) (2017) - [j36]Brigitte Boden, Stephan Günnemann, Holger Hoffmann, Thomas Seidl:
MiMAG: mining coherent subgraphs in multi-layer graphs with edge labels. Knowl. Inf. Syst. 50(2): 417-446 (2017) - [j35]Marwan Hassani, Thomas Seidl:
Using internal evaluation measures to validate the quality of diverse stream clustering algorithms. Vietnam. J. Comput. Sci. 4(3): 171-183 (2017) - [c229]Florian Richter, Thomas Seidl:
TESSERACT: Time-Drifts in Event Streams Using Series of Evolving Rolling Averages of Completion Times. BPM 2017: 289-305 - [c228]Thomas Seidl:
Multimedia Similarity Search. BTW (Workshops) 2017: 397 - [c227]Marwan Hassani, Daniel Töws, Thomas Seidl:
Understanding the bigger picture: batch-free exploration of streaming sequential patterns with accurate prediction. SAC 2017: 866-869 - [c226]Merih Seran Uysal, Kai Driessen, Tobias Brockhoff, Thomas Seidl:
Fast Similarity Search with the Earth Mover's Distance via Feasible Initialization and Pruning. SISAP 2017: 141-155 - [c225]Yifeng Lu, Marwan Hassani, Thomas Seidl:
Incremental Temporal Pattern Mining Using Efficient Batch-Free Stream Clustering. SSDBM 2017: 7:1-7:12 - [c224]Daniyal Kazempour, Markus Mauder, Peer Kröger, Thomas Seidl:
Detecting Global Hyperparaboloid Correlated Clusters Based on Hough Transform. SSDBM 2017: 31:1-31:6 - [e8]Christian Beecks, Felix Borutta, Peer Kröger, Thomas Seidl:
Similarity Search and Applications - 10th International Conference, SISAP 2017, Munich, Germany, October 4-6, 2017, Proceedings. Lecture Notes in Computer Science 10609, Springer 2017, ISBN 978-3-319-68473-4 [contents] - 2016
- [j34]Christian Beecks, Marwan Hassani, Bela Brenger, Jennifer Hinnell, Daniel Schüller, Irene Mittelberg, Thomas Seidl:
Efficient Query Processing in 3D Motion Capture Gesture Databases. Int. J. Semantic Comput. 10(1): 5-26 (2016) - [j33]Marwan Hassani, Thomas Seidl:
Clustering Big Data streams: recent challenges and contributions. it Inf. Technol. 58(4): 206-213 (2016) - [c223]Marwan Hassani, Pascal Spaus, Alfredo Cuzzocrea, Thomas Seidl:
I-HASTREAM: Density-Based Hierarchical Clustering of Big Data Streams and Its Application to Big Graph Analytics Tools. CCGrid 2016: 656-665 - [c222]Merih Seran Uysal, Daniel Sabinasz, Thomas Seidl:
Approximation-Based Efficient Query Processing with the Earth Mover's Distance. DASFAA (2) 2016: 165-180 - [c221]Merih Seran Uysal, Christian Beecks, Daniel Sabinasz, Jochen Schmücking, Thomas Seidl:
Efficient Query Processing using the Earth's Mover Distance in Video Databases. EDBT 2016: 389-400 - [c220]Marwan Hassani, Yifeng Lu, Thomas Seidl:
Towards an Efficient Ranking of Interval-Based Patterns. EDBT 2016: 688-689 - [c219]Christian Beecks, Merih Seran Uysal, Thomas Seidl:
Distance-based Multimedia Indexing. EDBT 2016: 722-723 - [c218]Tom De Nies, Christian Beecks, Fréderic Godin, Wesley De Neve, Grzegorz Stepien, Dörthe Arndt, Laurens De Vocht, Ruben Verborgh, Thomas Seidl, Erik Mannens, Rik Van de Walle:
Normalized Semantic Web Distance. ESWC 2016: 69-84 - [c217]Marwan Hassani, Yifeng Lu, Jens Wischnewsky, Thomas Seidl:
A geometric approach for mining sequential patterns in interval-based data streams. FUZZ-IEEE 2016: 2128-2135 - [c216]Laurens De Vocht, Christian Beecks, Ruben Verborgh, Erik Mannens, Thomas Seidl, Rik Van de Walle:
Effect of Heuristics on Serendipity in Path-Based Storytelling with Linked Data. HCI (4) 2016: 238-251 - [c215]Erik Scharwächter, Emmanuel Müller, Jonathan F. Donges, Marwan Hassani, Thomas Seidl:
Detecting Change Processes in Dynamic Networks by Frequent Graph Evolution Rule Mining. ICDM 2016: 1191-1196 - [c214]Klaus Schoeffmann, Christian Beecks, Mathias Lux, Merih Seran Uysal, Thomas Seidl:
Content-based retrieval in videos from laparoscopic surgery. Medical Imaging: Image-Guided Procedures 2016: 97861V - [c213]Roland Assam, Subramanyam Sathyanarayana, Thomas Seidl:
Infusing Geo-Recency Mixture Models for Effective Location Prediction in LBSN. SDM 2016: 855-863 - [c212]Tom De Nies, Christian Beecks, Fréderic Godin, Wesley De Neve, Grzegorz Stepien, Dörthe Arndt, Laurens De Vocht, Ruben Verborgh, Thomas Seidl, Erik Mannens, Rik Van de Walle:
A Distance-Based Approach for Semantic Dissimilarity in Knowledge Graphs. ICSC 2016: 254-257 - 2015
- [j32]Marwan Hassani, Yunsu Kim, Seungjin Choi, Thomas Seidl:
Subspace clustering of data streams: new algorithms and effective evaluation measures. J. Intell. Inf. Syst. 45(3): 319-335 (2015) - [j31]Emmanuel Müller, Ira Assent, Stephan Günnemann, Thomas Seidl, Jennifer G. Dy:
MultiClust special issue on discovering, summarizing and using multiple clusterings. Mach. Learn. 98(1-2): 1-5 (2015) - [c211]Ayman Tarakji, Marwan Hassani, Lyubomir Georgiev, Thomas Seidl, Rainer Leupers:
Parallel Density-Based Stream Clustering Using a Multi-user GPU Scheduler. BDAS 2015: 343-360 - [c210]Christian Beecks, Merih Seran Uysal, Thomas Seidl:
Gradient-based signatures for big multimedia data. IEEE BigData 2015: 2834-2835 - [c209]Daniel Töws, Marwan Hassani, Christian Beecks, Thomas Seidl:
Optimizing Sequential Pattern Mining Within Multiple Streams. BTW Workshops 2015: 223-232 - [c208]Christian Beecks, Merih Seran Uysal, Thomas Seidl:
Distance-based Multimedia Indexing. BTW Workshops 2015: 265-268 - [c207]Volker Markl, Erhard Rahm, Wolfgang Lehner, Michael Beigl, Thomas Seidl:
Big Data-Zentren - Vorstellung und Panel. BTW 2015: 477-479 - [c206]Marwan Hassani, Christian Beecks, Daniel Töws, Tatiana Serbina, Max Haberstroh, Paula Niemietz, Sabina Jeschke, Stella Neumann, Thomas Seidl:
Sequential Pattern Mining of Multimodal Streams in the Humanities. BTW 2015: 683-686 - [c205]Merih Seran Uysal, Christian Beecks, Thomas Seidl:
On efficient content-based near-duplicate video detection. CBMI 2015: 1-6 - [c204]Merih Seran Uysal, Christian Beecks, Daniel Sabinasz, Thomas Seidl:
Large-scale Efficient and Effective Video Similarity Search. LSDS-IR@CIKM 2015: 3-8 - [c203]Christian Beecks, Merih Seran Uysal, Judith Hermanns, Thomas Seidl:
Gradient-based Signatures for Efficient Similarity Search in Large-scale Multimedia Databases. CIKM 2015: 1241-1250 - [c202]Laurens De Vocht, Christian Beecks, Ruben Verborgh, Thomas Seidl, Erik Mannens, Rik Van de Walle:
Improving Semantic Relatedness in Paths for Storytelling with Linked Data on the Web. ESWC (Satellite Events) 2015: 31-35 - [c201]Christian Beecks, Marwan Hassani, Florian Obeloer, Thomas Seidl:
Efficient Distance-Based Gestural Pattern Mining in Spatiotemporal 3D Motion Capture Databases. ICDM Workshops 2015: 1425-1432 - [c200]Christian Beecks, Klaus Schoeffmann, Mathias Lux, Merih Seran Uysal, Thomas Seidl:
Endoscopic Video Retrieval: A Signature-Based Approach for Linking Endoscopic Images with Video Segments. ISM 2015: 33-38 - [c199]Christian Beecks, Marwan Hassani, Florian Obeloer, Thomas Seidl:
Efficient Query Processing in 3D Motion Capture Databases via Lower Bound Approximation of the Gesture Matching Distance. ISM 2015: 148-153 - [c198]Christian Beecks, Merih Seran Uysal, Thomas Seidl:
Earth Mover's Distance vs. Quadratic form Distance: An Analytical and Empirical Comparison. ISM 2015: 233-236 - [c197]Merih Seran Uysal, Christian Beecks, Daniel Sabinasz, Thomas Seidl:
Effective Content-Based Near-Duplicate Video Detection. ISM 2015: 254-257 - [c196]Marwan Hassani, Pascal Spaus, Alfredo Cuzzocrea, Thomas Seidl:
Adaptive Stream Clustering Using Incremental Graph Maintenance. BigMine 2015: 49-64 - [c195]Marwan Hassani, Christian Beecks, Daniel Töws, Thomas Seidl:
Mining Sequential Patterns of Event Streams in a Smart Home Application. LWA 2015: 159-170 - [c194]Christian Beecks, Merih Seran Uysal, Thomas Seidl:
Content-Based Image Retrieval with Gaussian Mixture Models. MMM (1) 2015: 294-305 - [c193]Marwan Hassani, Thomas Seidl:
Internal Clustering Evaluation of Data Streams. PAKDD Workshops 2015: 198-209 - [c192]Roland Assam, Simon Feiden, Thomas Seidl:
UrbanHubble: Location Prediction and Geo-Social Analytics in LBSN. ECML/PKDD (3) 2015: 329-332 - [c191]Michael Hund, Michael Behrisch, Ines Färber, Michael Sedlmair, Tobias Schreck, Thomas Seidl, Daniel A. Keim:
Subspace Nearest Neighbor Search - Problem Statement, Approaches, and Discussion - Position Paper. SISAP 2015: 307-313 - [c190]Merih Seran Uysal, Christian Beecks, Daniel Sabinasz, Thomas Seidl:
FELICITY: A Flexible Video Similarity Search Framework Using the Earth Mover's Distance. SISAP 2015: 347-350 - [c189]Marwan Hassani, Sergio Siccha, Florian Richter, Thomas Seidl:
Efficient Process Discovery From Event Streams Using Sequential Pattern Mining. SSCI 2015: 1366-1373 - [c188]Christian Beecks, Marwan Hassani, Jennifer Hinnell, Daniel Schüller, Bela Brenger, Irene Mittelberg, Thomas Seidl:
Spatiotemporal Similarity Search in 3D Motion Capture Gesture Streams. SSTD 2015: 355-372 - [c187]Merih Seran Uysal, Christian Beecks, Jochen Schmücking, Thomas Seidl:
Efficient similarity search in scientific databases with feature signatures. SSDBM 2015: 30:1-30:12 - [e7]Thomas Seidl, Norbert Ritter, Harald Schöning, Kai-Uwe Sattler, Theo Härder, Steffen Friedrich, Wolfram Wingerath:
Datenbanksysteme für Business, Technologie und Web (BTW), 16. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS), 4.-6.3.2015 in Hamburg, Germany. Proceedings. LNI P-241, GI 2015, ISBN 978-3-88579-635-0 [contents] - 2014
- [j30]Stephan Günnemann, Ines Färber, Brigitte Boden, Thomas Seidl:
GAMer: a synthesis of subspace clustering and dense subgraph mining. Knowl. Inf. Syst. 40(2): 243-278 (2014) - [j29]Christian Beecks, Steffen Kirchhoff, Thomas Seidl:
On stability of signature-based similarity measures for content-based image retrieval. Multim. Tools Appl. 71(1): 349-362 (2014) - [c186]Tom De Nies, Christian Beecks, Wesley De Neve, Thomas Seidl, Erik Mannens, Rik Van de Walle:
Towards Named-Entity-based Similarity Measures: Challenges and Opportunities. ESAIR 2014: 9-11 - [c185]Merih Seran Uysal, Christian Beecks, Thomas Seidl:
On Efficient Query Processing with the Earth Mover's Distance. PIKM@CIKM 2014: 25-32 - [c184]Merih Seran Uysal, Christian Beecks, Jochen Schmücking, Thomas Seidl:
Efficient Filter Approximation Using the Earth Mover's Distance in Very Large Multimedia Databases with Feature Signatures. CIKM 2014: 979-988 - [c183]Marwan Hassani, Thomas Seidl:
Efficient Streaming Detection of Hidden Clusters in Big Data Using Subspace Stream Clustering. DASFAA Workshops 2014: 146-160 - [c182]Sergej Fries, Stephan Wels, Thomas Seidl:
Projected Clustering for Huge Data Sets in MapReduce. EDBT 2014: 49-60 - [c181]Fréderic Godin, Tom De Nies, Christian Beecks, Laurens De Vocht, Wesley De Neve, Erik Mannens, Thomas Seidl, Rik Van de Walle:
The Normalized Freebase Distance. ESWC (Satellite Events) 2014: 218-221 - [c180]Roland Assam, Thomas Seidl:
Prediction of freezing of gait from Parkinson's Disease movement time series using conditional random fields. HealthGIS 2014: 11-20 - [c179]Sergej Fries, Brigitte Boden, Grzegorz Stepien, Thomas Seidl:
PHiDJ: Parallel similarity self-join for high-dimensional vector data with MapReduce. ICDE 2014: 796-807 - [c178]Roland Assam, Thomas Seidl:
Check-in Location Prediction Using Wavelets and Conditional Random Fields. ICDM 2014: 713-718 - [c177]Stephan Günnemann, Ines Färber, Matthias Sebastian Rüdiger, Thomas Seidl:
SMVC: semi-supervised multi-view clustering in subspace projections. KDD 2014: 253-262 - [c176]Christian Beecks, Steffen Kirchhoff, Thomas Seidl:
On the Stability of Signature-Based Distance Functions for Content-Based Image Retrieval. LWA 2014: 226 - [c175]Marwan Hassani, Pascal Spaus, Thomas Seidl:
Adaptive Multiple-Resolution Stream Clustering. MLDM 2014: 134-148 - [c174]Roland Assam, Thomas Seidl:
Effective Map Matching Using Curve Tangents and Hidden Markov Model. MSN 2014: 213-219 - [c173]Roland Assam, Thomas Seidl:
Context-based location clustering and prediction using conditional random fields. MUM 2014: 1-10 - [c172]Marwan Hassani, Ayman Tarakji, Lyubomir Georgiev, Thomas Seidl:
Parallel Implementation of a Density-Based Stream Clustering Algorithm Over a GPU Scheduling System. PAKDD Workshops 2014: 441-453 - [c171]Brigitte Boden, Martin Ester, Thomas Seidl:
Density-Based Subspace Clustering in Heterogeneous Networks. ECML/PKDD (1) 2014: 149-164 - [c170]Roland Assam, Marwan Hassani, Michael Brysch, Thomas Seidl:
(k, d)-core anonymity: structural anonymization of massive networks. SSDBM 2014: 17:1-17:12 - [c169]Anca Maria Zimmer, Philip Driessen, Philipp Kranen, Thomas Seidl:
Inverse predictions on continuous models in scientific databases. SSDBM 2014: 26:1-26:12 - [c168]Marwan Hassani, Philipp Kranen, Rajveer Saini, Thomas Seidl:
Subspace anytime stream clustering. SSDBM 2014: 37:1-37:4 - [c167]Roland Assam, Thomas Seidl:
Near-Optimal Activity Prediction through Efficient Wavelet Modulus Maxima Partitioning and Conditional Random Fields. UIC/ATC/ScalCom 2014: 236-243 - [c166]Roland Assam, Thomas Seidl:
Activity recognition from sensors using dyadic wavelets and Hidden Markov Model. WiMob 2014: 442-448 - [p4]Ines Färber, Sergej Fries, Götz Marczinski, Thomas Seidl, Nils-Per Steinmann:
Machining Intelligence Network: Data Mining and Semantic Search in Manufacturing Industry. Towards the Internet of Services 2014: 417-424 - [e6]Thomas Seidl, Marwan Hassani, Christian Beecks:
Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, Aachen, Germany, September 8-10, 2014. CEUR Workshop Proceedings 1226, CEUR-WS.org 2014 [contents] - [i5]Stephan Günnemann, Hardy Kremer, Matthias Hannen, Thomas Seidl:
KDD-SC: Subspace Clustering Extensions for Knowledge Discovery Frameworks. CoRR abs/1407.3850 (2014) - 2013
- [j28]Thomas Seidl:
Datenmanagement und -exploration an der RWTH Aachen. Datenbank-Spektrum 13(1): 55-58 (2013) - [j27]Markus Harmsen, Benedikt Fischer, Hauke Schramm, Thomas Seidl, Thomas Martin Deserno:
Support Vector Machine Classification Based on Correlation Prototypes Applied to Bone Age Assessment. IEEE J. Biomed. Health Informatics 17(1): 190-197 (2013) - [c165]Thomas Seidl, Sergej Fries, Brigitte Boden:
MR-DSJ: Distance-Based Self-Join for Large-Scale Vector Data Analysis with MapReduce. BTW 2013: 37-56 - [c164]Christian Beecks, Merih Seran Uysal, Philip Driessen, Thomas Seidl:
Content-based exploration of multimedia databases. CBMI 2013: 59-64 - [c163]Brigitte Boden, Roman Haag, Thomas Seidl:
Detecting and exploring clusters in attributed graphs: a plugin for the gephi platform. CIKM 2013: 2505-2508 - [c162]Marwan Hassani, Yunsu Kim, Thomas Seidl:
Subspace MOA: Subspace Stream Clustering Evaluation Using the MOA Framework. DASFAA (2) 2013: 446-449 - [c161]Ayman Tarakji, Marwan Hassani, Stefan Lankes, Thomas Seidl:
Using a Multitasking GPU Environment for Content-Based Similarity Measures of Big Data. ICCSA (5) 2013: 181-196 - [c160]Stephan Günnemann, Ines Färber, Sebastian Raubach, Thomas Seidl:
Spectral Subspace Clustering for Graphs with Feature Vectors. ICDM 2013: 231-240 - [c159]Hardy Kremer, Stephan Günnemann, Arne Held, Thomas Seidl:
An Evaluation Framework for Temporal Subspace Clustering Approaches. ICDM Workshops 2013: 1089-1092 - [c158]Anca Maria Zimmer, Michael Kurze, Thomas Seidl:
Adaptive Model Tree for Streaming Data. ICDM 2013: 1319-1324 - [c157]Christoph Quix, Johannes Barnickel, Sandra Geisler, Marwan Hassani, Saim Kim, Xiang Li, Andreas Lorenz, Till Quadflieg, Thomas Gries, Matthias Jarke, Steffen Leonhardt, Ulrike Meyer, Thomas Seidl:
HealthNet: A System for Mobile and Wearable Health Information Management. IMMoA 2013: 36-43 - [c156]Daniel Haak, Jing Yu, Hendrik Simon, Hauke Schramm, Thomas Seidl, Thomas M. Deserno:
Bone age assessment using support vector regression with smart class mapping. Medical Imaging: Computer-Aided Diagnosis 2013: 86700A - [c155]Christian Beecks, Steffen Kirchhoff, Thomas Seidl:
Signature matching distance for content-based image retrieval. ICMR 2013: 41-48 - [c154]Stephan Günnemann, Brigitte Boden, Ines Färber, Thomas Seidl:
Efficient Mining of Combined Subspace and Subgraph Clusters in Graphs with Feature Vectors. PAKDD (1) 2013: 261-275 - [c153]Marwan Hassani, Yunsu Kim, Seungjin Choi, Thomas Seidl:
Effective Evaluation Measures for Subspace Clustering of Data Streams. PAKDD Workshops 2013: 342-353 - [c152]Brigitte Boden, Stephan Günnemann, Holger Hoffmann, Thomas Seidl:
RMiCS: a robust approach for mining coherent subgraphs in edge-labeled multi-layer graphs. SSDBM 2013: 23:1-23:12 - [c151]Hardy Kremer, Stephan Günnemann, Simon Wollwage, Thomas Seidl:
Nesting the earth mover's distance for effective cluster tracing. SSDBM 2013: 34:1-34:4 - [c150]Roland Assam, Thomas Seidl:
A Model for Context-Aware Location Identity Preservation Using Differential Privacy. TrustCom/ISPA/IUCC 2013: 346-353 - [c149]Roland Assam, Thomas Seidl:
BodyGuards: A Clairvoyant Location Predictor Using Frequent Neighbors and Markov Model. UIC/ATC 2013: 25-32 - [c148]Roland Assam, Thomas Seidl:
Private Map Matching: Realistic Private Route Cognition on Road Networks. UIC/ATC 2013: 178-185 - 2012
- [j26]Stephan Günnemann, Hardy Kremer, Charlotte Laufkötter, Thomas Seidl:
Tracing Evolving Subspace Clusters in Temporal Climate Data. Data Min. Knowl. Discov. 24(2): 387-410 (2012) - [j25]Stephan Günnemann, Brigitte Boden, Thomas Seidl:
Finding density-based subspace clusters in graphs with feature vectors. Data Min. Knowl. Discov. 25(2): 243-269 (2012) - [j24]Philipp Kranen, Ira Assent, Thomas Seidl:
An Index-Inspired Algorithm for Anytime Classification on Evolving Data Streams. Datenbank-Spektrum 12(1): 43-50 (2012) - [j23]Anca Maria Ivanescu, Marc Wichterich, Christian Beecks, Thomas Seidl:
The ClasSi coefficient for the evaluation of ranking quality in the presence of class similarities. Frontiers Comput. Sci. 6(5): 568-580 (2012) - [j22]Marwan Hassani, Thomas Seidl:
Distributed Weighted Clustering of Evolving Sensor Data Streams with Noise. J. Digit. Inf. Manag. 10(6): 410-420 (2012) - [c147]Brigitte Boden, Stephan Günnemann, Thomas Seidl:
Tracing clusters in evolving graphs with node attributes. CIKM 2012: 2331-2334 - [c146]Philipp Kranen, Stephan Wels, Tim Rohlfs, Sebastian Raubach, Thomas Seidl:
A tool for automated evaluation of algorithms. CIKM 2012: 2692-2694 - [c145]Ira Assent, Philipp Kranen, Corinna Baldauf, Thomas Seidl:
AnyOut: Anytime Outlier Detection on Streaming Data. DASFAA (1) 2012: 228-242 - [c144]Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Jesse Read:
Stream Data Mining Using the MOA Framework. DASFAA (2) 2012: 309-313 - [c143]Anca Maria Ivanescu, Philipp Kranen, Manfred Smieschek, Philip Driessen, Thomas Seidl:
PA-Miner: Process Analysis Using Retrieval, Modeling, and Prediction. DASFAA (2) 2012: 319-322 - [c142]Roland Assam, Marwan Hassani, Thomas Seidl:
Differential private trajectory protection of moving objects. IWGS@SIGSPATIAL/GIS 2012: 68-77 - [c141]Roland Assam, Thomas Seidl:
TMC-pattern: holistic trajectory extraction, modeling and mining. BigSpatial@SIGSPATIAL 2012: 71-80 - [c140]Emmanuel Müller, Stephan Günnemann, Ines Färber, Thomas Seidl:
Discovering Multiple Clustering Solutions: Grouping Objects in Different Views of the Data. ICDE 2012: 1207-1210 - [c139]Hardy Kremer, Stephan Günnemann, Arne Held, Thomas Seidl:
Effective and Robust Mining of Temporal Subspace Clusters. ICDM 2012: 369-378 - [c138]Anca Maria Ivanescu, Thivaharan Albin, Dirk Abel, Thomas Seidl:
Employing the Principal Hessian Direction for Building Hinging Hyperplane Models. ICDM Workshops 2012: 481-485 - [c137]Stephan Günnemann, Hardy Kremer, Richard Musiol, Roman Haag, Thomas Seidl:
A Subspace Clustering Extension for the KNIME Data Mining Framework. ICDM Workshops 2012: 886-889 - [c136]Andrada Tatu, Fabian Maass, Ines Färber, Enrico Bertini, Tobias Schreck, Thomas Seidl, Daniel A. Keim:
Subspace search and visualization to make sense of alternative clusterings in high-dimensional data. IEEE VAST 2012: 63-72 - [c135]Stephan Günnemann, Ines Färber, Thomas Seidl:
Multi-view clustering using mixture models in subspace projections. KDD 2012: 132-140 - [c134]Stephan Günnemann, Ines Färber, Kittipat Virochsiri, Thomas Seidl:
Subspace correlation clustering: finding locally correlated dimensions in subspace projections of the data. KDD 2012: 352-360 - [c133]Brigitte Boden, Stephan Günnemann, Holger Hoffmann, Thomas Seidl:
Mining coherent subgraphs in multi-layer graphs with edge labels. KDD 2012: 1258-1266 - [c132]Christian Beecks, Thomas Seidl:
On Stability of Adaptive Similarity Measures for Content-Based Image Retrieval. MMM 2012: 346-357 - [c131]Roland Assam, Marwan Hassani, Thomas Seidl:
Differential Private Trajectory Obfuscation. MobiQuitous 2012: 139-151 - [c130]Marwan Hassani, Thomas Seidl:
Resource-Aware Distributed Clustering of Drifting Sensor Data Streams. NDT (1) 2012: 592-607 - [c129]Hardy Kremer, Stephan Günnemann, Arne Held, Thomas Seidl:
Mining of Temporal Coherent Subspace Clusters in Multivariate Time Series Databases. PAKDD (1) 2012: 444-455 - [c128]Thomas Seidl, Brigitte Boden, Sergej Fries:
CC-MR - Finding Connected Components in Huge Graphs with MapReduce. ECML/PKDD (1) 2012: 458-473 - [c127]Stephan Günnemann, Brigitte Boden, Thomas Seidl:
Substructure Clustering: A Novel Mining Paradigm for Arbitrary Data Types. SSDBM 2012: 280-297 - [c126]Philipp Kranen, Marwan Hassani, Thomas Seidl:
BT* - An Advanced Algorithm for Anytime Classification. SSDBM 2012: 298-315 - [c125]Anca Maria Ivanescu, Philipp Kranen, Thomas Seidl:
Hinging Hyperplane Models for Multiple Predicted Variables. SSDBM 2012: 431-448 - [c124]Marwan Hassani, Pascal Spaus, Mohamed Medhat Gaber, Thomas Seidl:
Density-Based Projected Clustering of Data Streams. SUM 2012: 311-324 - [e5]Emmanuel Müller, Thomas Seidl, Suresh Venkatasubramanian, Arthur Zimek:
3rd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings, MultiClust '12, in conjunction with SDM 2012, Anaheim, CA, USA, April 28, 2012, Anaheim, CA, USA, April 28, 2012. SIAM 2012 [contents] - [i4]Daniel A. Keim, Fabrice Rossi, Thomas Seidl, Michel Verleysen, Stefan Wrobel:
Information Visualization, Visual Data Mining and Machine Learning (Dagstuhl Seminar 12081). Dagstuhl Reports 2(2): 58-83 (2012) - 2011
- [j21]Christoph Busch, Ulrike Korte, Sebastian Abt, Christian Böhm, Ines Färber, Sergej Fries, Johannes Merkle, Claudia Nickel, Alexander Nouak, Alexander Opel, Annahita Oswald, Thomas Seidl, Bianca Wackersreuther, Peter Wackersreuther, Xuebing Zhou:
Biometric Template Protection - Ein Bericht über das Projekt BioKeyS. Datenschutz und Datensicherheit 35(3): 183-191 (2011) - [j20]Nikos Mamoulis, Thomas Seidl:
Special section on spatial and temporal databases. GeoInformatica 15(4): 663-664 (2011) - [j19]Philipp Kranen, Ira Assent, Corinna Baldauf, Thomas Seidl:
The ClusTree: indexing micro-clusters for anytime stream mining. Knowl. Inf. Syst. 29(2): 249-272 (2011) - [c123]Christian Böhm, Ines Färber, Sergej Fries, Ulrike Korte, Johannes Merkle, Annahita Oswald, Thomas Seidl, Bianca Wackersreuther, Peter Wackersreuther:
Efficient Database Techniques for Identification with Fuzzy Vault Templates. BIOSIG 2011: 115-126 - [c122]Marc Wichterich, Anca Maria Ivanescu, Thomas Seidl:
Feature-Based Graph Similarity with Co-Occurrence Histograms and the Earth Mover's Distance. BTW 2011: 135-146 - [c121]Emmanuel Müller, Ira Assent, Stephan Günnemann, Patrick Gerwert, Matthias Hannen, Timm Jansen, Thomas Seidl:
A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases. BTW 2011: 347-366 - [c120]Christian Böhm, Ines Färber, Sergej Fries, Ulrike Korte, Johannes Merkle, Annahita Oswald, Thomas Seidl, Bianca Wackersreuther, Peter Wackersreuther:
Filtertechniken für geschützte biometrische Datenbanken. BTW 2011: 379-389 - [c119]Thivaharan Albin, Peter Drews, Frank J. Hesseler, Anca Maria Ivanescu, Thomas Seidl, Dirk Abel:
A hybrid control approach for low temperature combustion engine control. CDC/ECC 2011: 6846-6851 - [c118]Emmanuel Müller, Ira Assent, Stephan Günnemann, Thomas Seidl:
Scalable density-based subspace clustering. CIKM 2011: 1077-1086 - [c117]Stephan Günnemann, Ines Färber, Emmanuel Müller, Ira Assent, Thomas Seidl:
External evaluation measures for subspace clustering. CIKM 2011: 1363-1372 - [c116]Martin Krulis, Jakub Lokoc, Christian Beecks, Tomás Skopal, Thomas Seidl:
Processing the signature quadratic form distance on many-core GPU architectures. CIKM 2011: 2373-2376 - [c115]Stephan Günnemann, Hardy Kremer, Dominik Lenhard, Thomas Seidl:
Subspace clustering for indexing high dimensional data: a main memory index based on local reductions and individual multi-representations. EDBT 2011: 237-248 - [c114]Roland Assam, Thomas Seidl:
Preserving privacy of moving objects via temporal clustering of spatio-temporal data streams. SPRINGL 2011: 9-16 - [c113]Christian Beecks, Anca Maria Ivanescu, Steffen Kirchhoff, Thomas Seidl:
Modeling image similarity by Gaussian mixture models and the Signature Quadratic Form Distance. ICCV 2011: 1754-1761 - [c112]Emmanuel Müller, Matthias Schiffer, Thomas Seidl:
Statistical selection of relevant subspace projections for outlier ranking. ICDE 2011: 434-445 - [c111]Stephan Günnemann, Emmanuel Müller, Sebastian Raubach, Thomas Seidl:
Flexible Fault Tolerant Subspace Clustering for Data with Missing Values. ICDM 2011: 231-240 - [c110]Christian Beecks, Thomas Seidl:
Analyzing the inner workings of the Signature Quadratic Form Distance. ICME 2011: 1-6 - [c109]Hardy Kremer, Philipp Kranen, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer:
An effective evaluation measure for clustering on evolving data streams. KDD 2011: 868-876 - [c108]Stephan Günnemann, Brigitte Boden, Thomas Seidl:
Finding Density-Based Subspace Clusters in Graphs with Feature Vectors. LWA 2011: 20-27 - [c107]Marwan Hassani, Philipp Kranen, Thomas Seidl:
Noise-aware Concise Clustering of Streaming Sensor Data in a Logarithmic Time. LWA 2011: 97-105 - [c106]Marwan Hassani, Thomas Seidl:
Towards a Mobile Health Context Prediction: Sequential Pattern Mining in Multiple Streams. Mobile Data Management (2) 2011: 55-57 - [c105]Christian Beecks, Jakub Lokoc, Thomas Seidl, Tomás Skopal:
Indexing the signature quadratic form distance for efficient content-based multimedia retrieval. ICMR 2011: 24 - [c104]Christian Beecks, Anca Maria Ivanescu, Steffen Kirchhoff, Thomas Seidl:
Modeling multimedia contents through probabilistic feature signatures. ACM Multimedia 2011: 1433-1436 - [c103]Christian Beecks, Ira Assent, Thomas Seidl:
Content-Based Multimedia Retrieval in the Presence of Unknown User Preferences. MMM (1) 2011: 140-150 - [c102]Christian Beecks, Merih Seran Uysal, Thomas Seidl:
L2-Signature Quadratic Form Distance for Efficient Query Processing in Very Large Multimedia Databases. MMM (1) 2011: 381-391 - [c101]Anca Maria Ivanescu, Marc Wichterich, Thomas Seidl:
ClasSi: Measuring Ranking Quality in the Presence of Object Classes with Similarity Information. PAKDD Workshops 2011: 185-196 - [c100]Stephan Günnemann, Hardy Kremer, Charlotte Laufkötter, Thomas Seidl:
Tracing Evolving Clusters by Subspace and Value Similarity. PAKDD (2) 2011: 444-456 - [c99]Stephan Günnemann, Brigitte Boden, Thomas Seidl:
DB-CSC: A Density-Based Approach for Subspace Clustering in Graphs with Feature Vectors. ECML/PKDD (1) 2011: 565-580 - [c98]Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Jesse Read, Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl:
MOA: A Real-Time Analytics Open Source Framework. ECML/PKDD (3) 2011: 617-620 - [c97]Christian Beecks, Anca Maria Ivanescu, Thomas Seidl, Diana Martin, Philipp Pischke, Reinhold Kneer:
Applying similarity search for the investigation of the fuel injection process. SISAP 2011: 117-118 - [c96]Jakub Lokoc, Christian Beecks, Thomas Seidl, Tomás Skopal:
Parameterized earth mover's distance for efficient metric space indexing. SISAP 2011: 121-122 - [c95]Hardy Kremer, Stephan Günnemann, Anca Maria Ivanescu, Ira Assent, Thomas Seidl:
Efficient Processing of Multiple DTW Queries in Time Series Databases. SSDBM 2011: 150-167 - [c94]Philipp Kranen, Felix Reidl, Fernando Sánchez Villaamil, Thomas Seidl:
Hierarchical Clustering for Real-Time Stream Data with Noise. SSDBM 2011: 405-413 - [p3]Thomas Seidl, Jost Enderle:
Binary Search. Algorithms Unplugged 2011: 5-11 - [e4]Emmanuel Müller, Stephan Günnemann, Ira Assent, Thomas Seidl:
Proceedings of the 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings, Athens, Greece, September 5, 2011, in conjunction with ECML/PKDD 2011. CEUR Workshop Proceedings 772, CEUR-WS.org 2011 [contents] - 2010
- [j18]Stephan Günnemann, Ines Färber, Hardy Kremer, Thomas Seidl:
CoDA: Interactive Cluster Based Concept Discovery. Proc. VLDB Endow. 3(2): 1633-1636 (2010) - [c93]Emmanuel Müller, Matthias Schiffer, Thomas Seidl:
Adaptive outlierness for subspace outlier ranking. CIKM 2010: 1629-1632 - [c92]Christian Beecks, Merih Seran Uysal, Thomas Seidl:
Signature Quadratic Form Distance. CIVR 2010: 438-445 - [c91]Ira Assent, Hardy Kremer, Thomas Seidl:
Speeding Up Complex Video Copy Detection Queries. DASFAA (1) 2010: 307-321 - [c90]Emmanuel Müller, Philipp Kranen, Michael Nett, Felix Reidl, Thomas Seidl:
Air-Indexing on Error Prone Communication Channels. DASFAA (1) 2010: 505-519 - [c89]Ira Assent, Hardy Kremer, Stephan Günnemann, Thomas Seidl:
Pattern detector: fast detection of suspicious stream patterns for immediate reaction. EDBT 2010: 709-712 - [c88]Christian Beecks, Merih Seran Uysal, Thomas Seidl:
Efficient k-nearest neighbor queries with the Signature Quadratic Form Distance. ICDE Workshops 2010: 10-15 - [c87]Hardy Kremer, Stephan Günnemann, Thomas Seidl:
Detecting Climate Change in Multivariate Time Series Data by Novel Clustering and Cluster Tracing Techniques. ICDM Workshops 2010: 96-97 - [c86]Stephan Günnemann, Ines Färber, Brigitte Boden, Thomas Seidl:
Subspace Clustering Meets Dense Subgraph Mining: A Synthesis of Two Paradigms. ICDM 2010: 845-850 - [c85]Emmanuel Müller, Stephan Günnemann, Ines Färber, Thomas Seidl:
Discovering Multiple Clustering Solutions: Grouping Objects in Different Views of the Data. ICDM 2010: 1220 - [c84]Stephan Günnemann, Hardy Kremer, Ines Färber, Thomas Seidl:
MCExplorer: Interactive Exploration of Multiple (Subspace) Clustering Solutions. ICDM Workshops 2010: 1387-1390 - [c83]Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl, Albert Bifet, Geoff Holmes, Bernhard Pfahringer:
Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA. ICDM Workshops 2010: 1400-1403 - [c82]Christian Beecks, Thilo Stadelmann, Bernd Freisleben, Thomas Seidl:
Visual speaker model exploration. ICME 2010: 727-728 - [c81]Christian Beecks, Merih Seran Uysal, Thomas Seidl:
A comparative study of similarity measures for content-based multimedia retrieval. ICME 2010: 1552-1557 - [c80]Christian Beecks, Sascha Wiedenfeld, Thomas Seidl:
Improving the Efficiency of Content-Based Multimedia Exploration. ICPR 2010: 3163-3166 - [c79]Ira Assent, Philipp Kranen, Corinna Baldauf, Thomas Seidl:
Detecting outliers on arbitrary data streams using anytime approaches. StreamKDD@KDD 2010: 10-15 - [c78]Christian Beecks, Philip Driessen, Thomas Seidl:
Index support for content-based multimedia exploration. ACM Multimedia 2010: 999-1002 - [c77]Stephan Günnemann, Thomas Seidl:
Subgraph Mining on Directed and Weighted Graphs. PAKDD (2) 2010: 133-146 - [c76]Philipp Kranen, Ralph Krieger, Stefan Denker, Thomas Seidl:
Bulk Loading Hierarchical Mixture Models for Efficient Stream Classification. PAKDD (2) 2010: 325-334 - [c75]Emmanuel Müller, Matthias Schiffer, Patrick Gerwert, Matthias Hannen, Timm Jansen, Thomas Seidl:
SOREX: Subspace Outlier Ranking Exploration Toolkit. ECML/PKDD (3) 2010: 607-610 - [c74]Stephan Günnemann, Hardy Kremer, Thomas Seidl:
Subspace Clustering for Uncertain Data. SDM 2010: 385-396 - [c73]Christian Beecks, Merih Seran Uysal, Thomas Seidl:
Similarity matrix compression for efficient signature quadratic form distance computation. SISAP 2010: 109-114 - [c72]Philipp Kranen, Stephan Günnemann, Sergej Fries, Thomas Seidl:
MC-Tree: Improving Bayesian Anytime Classification. SSDBM 2010: 252-269 - [c71]Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Philipp Kranen, Hardy Kremer, Timm Jansen, Thomas Seidl:
MOA: Massive Online Analysis, a Framework for Stream Classification and Clustering. WAPA 2010: 44-50
2000 – 2009
- 2009
- [j17]Philipp Kranen, Thomas Seidl:
Harnessing the strengths of anytime algorithms for constant data streams. Data Min. Knowl. Discov. 19(2): 245-260 (2009) - [j16]Matthias Schiffer, Emmanuel Müller, Thomas Seidl:
SubRank: Ranking Local Outliers in Projections of High-Dimensional Spaces. Datenbank-Spektrum 9(29): 53-55 (2009) - [j15]Ira Assent, Marc Wichterich, Ralph Krieger, Hardy Kremer, Thomas Seidl:
Anticipatory DTW for Efficient Similarity Search in Time Series Databases. Proc. VLDB Endow. 2(1): 826-837 (2009) - [j14]Emmanuel Müller, Stephan Günnemann, Ira Assent, Thomas Seidl:
Evaluating Clustering in Subspace Projections of High Dimensional Data. Proc. VLDB Endow. 2(1): 1270-1281 (2009) - [c70]Marc Wichterich, Christian Beecks, Martin Sundermeyer, Thomas Seidl:
Relevance Feedback for the Earth Mover's Distance. Adaptive Multimedia Retrieval 2009: 72-86 - [c69]Ira Assent, Stephan Günnemann, Hardy Kremer, Thomas Seidl:
High-Dimensional Indexing for Multimedia Features. BTW 2009: 187-206 - [c68]Christian Beecks, Marc Wichterich, Thomas Seidl:
Metrische Anpassung der Earth Mover's Distanz zur Ähnlichkeitssuche in Multimedia-Datenbanken. BTW 2009: 207-216 - [c67]Stephan Günnemann, Emmanuel Müller, Ines Färber, Thomas Seidl:
Detection of orthogonal concepts in subspaces of high dimensional data. CIKM 2009: 1317-1326 - [c66]Marc Wichterich, Christian Beecks, Martin Sundermeyer, Thomas Seidl:
Exploring multimedia databases via optimization-based relevance feedback and the earth mover's distance. CIKM 2009: 1621-1624 - [c65]Babak Ahmadi, Marios Hadjieleftheriou, Thomas Seidl, Divesh Srivastava, Suresh Venkatasubramanian:
Type-based categorization of relational attributes. EDBT 2009: 84-95 - [c64]Thomas Seidl, Ira Assent, Philipp Kranen, Ralph Krieger, Jennifer Herrmann:
Indexing density models for incremental learning and anytime classification on data streams. EDBT 2009: 311-322 - [c63]Philipp Kranen, Ira Assent, Corinna Baldauf, Thomas Seidl:
Self-Adaptive Anytime Stream Clustering. ICDM 2009: 249-258 - [c62]Emmanuel Müller, Ira Assent, Stephan Günnemann, Ralph Krieger, Thomas Seidl:
Relevant Subspace Clustering: Mining the Most Interesting Non-redundant Concepts in High Dimensional Data. ICDM 2009: 377-386 - [c61]Marwan Hassani, Emmanuel Müller, Thomas Seidl:
EDISKCO: energy efficient distributed in-sensor-network k-center clustering with outliers. KDD Workshop on Knowledge Discovery from Sensor Data 2009: 39-48 - [c60]Christian Beecks, Merih Seran Uysal, Thomas Seidl:
Signature quadratic form distances for content-based similarity. ACM Multimedia 2009: 697-700 - [c59]Philipp Kranen, Thomas Seidl:
Harnessing the Strengths of Anytime Algorithms for Constant Data Streams. ECML/PKDD (1) 2009: 31 - [c58]Emmanuel Müller, Ira Assent, Ralph Krieger, Stephan Günnemann, Thomas Seidl:
DensEst: Density Estimation for Data Mining in High Dimensional Spaces. SDM 2009: 175-186 - [c57]Emmanuel Müller, Ira Assent, Thomas Seidl:
HSM: Heterogeneous Subspace Mining in High Dimensional Data. SSDBM 2009: 497-516 - [c56]Philipp Kranen, Thomas Seidl:
Using Index Structures for Anytime Stream Mining. VLDB PhD Workshop 2009 - [e3]Nikos Mamoulis, Thomas Seidl, Torben Bach Pedersen, Kristian Torp, Ira Assent:
Advances in Spatial and Temporal Databases, 11th International Symposium, SSTD 2009, Aalborg, Denmark, July 8-10, 2009, Proceedings. Lecture Notes in Computer Science 5644, Springer 2009, ISBN 978-3-642-02981-3 [contents] - [r1]Thomas Seidl:
Nearest Neighbor Classification. Encyclopedia of Database Systems 2009: 1885-1890 - 2008
- [j13]David Ruau, Corinna Kolárik, Heinz-Theodor Mevissen, Emmanuel Müller, Ira Assent, Ralph Krieger, Thomas Seidl, Martin Hofmann-Apitius, Martin Zenke:
Public microarray repository semantic annotation with ontologies employing text mining and expression profile correlation. BMC Bioinform. 9(S-10) (2008) - [j12]Thomas Martin Deserno, Mark Oliver Güld, Bartosz Plodowski, Klaus Spitzer, Berthold B. Wein, Henning Schubert, Hermann Ney, Thomas Seidl:
Extended Query Refinement for Medical Image Retrieval. J. Digit. Imaging 21(3): 280-289 (2008) - [j11]Ira Assent, Ralph Krieger, Boris Glavic, Thomas Seidl:
Clustering multidimensional sequences in spatial and temporal databases. Knowl. Inf. Syst. 16(1): 29-51 (2008) - [c55]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl:
EDSC: efficient density-based subspace clustering. CIKM 2008: 1093-1102 - [c54]Ira Assent, Ralph Krieger, Farzad Afschari, Thomas Seidl:
The TS-tree: efficient time series search and retrieval. EDBT 2008: 252-263 - [c53]Ira Assent, Marc Wichterich, Tobias Meisen, Thomas Seidl:
Efficient similarity search using the Earth Mover's Distance for large multimedia databases. ICDE 2008: 307-316 - [c52]Marc Wichterich, Christian Beecks, Thomas Seidl:
Ranking multimedia databases via relevance feedback with history and foresight support. ICDE Workshops 2008: 596-599 - [c51]Emmanuel Müller, Ira Assent, Uwe Steinhausen, Thomas Seidl:
OutRank: ranking outliers in high dimensional data. ICDE Workshops 2008: 600-603 - [c50]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl:
INSCY: Indexing Subspace Clusters with In-Process-Removal of Redundancy. ICDM 2008: 719-724 - [c49]Emmanuel Müller, Ira Assent, Ralph Krieger, Timm Jansen, Thomas Seidl:
Morpheus: interactive exploration of subspace clustering. KDD 2008: 1089-1092 - [c48]Philipp Kranen, David Kensche, Saim Kim, Nadine Zimmermann, Emmanuel Müller, Christoph Quix, Xiang Li, Thomas Gries, Thomas Seidl, Matthias Jarke, Steffen Leonhardt:
Mobile Mining and Information Management in HealthNet Scenarios. MDM 2008: 215-216 - [c47]Ira Assent, Ralph Krieger, Petra Welter, Jörg Herbers, Thomas Seidl:
SubClass: Classification of Multidimensional Noisy Data Using Subspace Clusters. PAKDD 2008: 40-52 - [c46]Ira Assent, Emmanuel Müller, Ralph Krieger, Timm Jansen, Thomas Seidl:
Pleiades: Subspace Clustering and Evaluation. ECML/PKDD (2) 2008: 666-671 - [c45]Marc Wichterich, Ira Assent, Philipp Kranen, Thomas Seidl:
Efficient EMD-based similarity search in multimedia databases via flexible dimensionality reduction. SIGMOD Conference 2008: 199-212 - [c44]Christoph Brochhaus, Thomas Seidl:
IndeGSRI: Efficient View-Dependent Ranking in CFD Post- processing Queries with RDBMS. SSDBM 2008: 598-604 - [p2]Thomas Seidl, Jost Enderle:
Binäre Suche. Taschenbuch der Algorithmen 2008: 7-13 - [i3]Thomas Seidl, Emmanuel Müller, Ira Assent, Uwe Steinhausen:
Outlier detection and ranking based on subspace clustering. Uncertainty Management in Information Systems 2008 - 2007
- [j10]Mohammed J. Zaki, Markus Peters, Ira Assent, Thomas Seidl:
Clicks: An effective algorithm for mining subspace clusters in categorical datasets. Data Knowl. Eng. 60(1): 51-70 (2007) - [j9]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl:
VISA: visual subspace clustering analysis. SIGKDD Explor. 9(2): 5-12 (2007) - [c43]Ira Assent, Ralph Krieger, Thomas Seidl:
AttentionAttractor: efficient video stream similarity query processing in real time. ICDE 2007: 1509-1510 - [c42]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl:
DUSC: Dimensionality Unbiased Subspace Clustering. ICDM 2007: 409-414 - [c41]Christoph Brochhaus, Thomas Seidl:
Efficient Index Support for View-Dependent Queries on CFD Data. SSTD 2007: 57-74 - [c40]Christoph Brochhaus, Thomas Seidl:
IndeGS: Index Supported Graphics Data Server for CFD Data Postprocessing. VLDB 2007: 1354-1357 - [e2]Alfons Kemper, Harald Schöning, Thomas Rose, Matthias Jarke, Thomas Seidl, Christoph Quix, Christoph Brochhaus:
Datenbanksysteme in Business, Technologie und Web (BTW 2007), 12. Fachtagung des GI-Fachbereichs "Datenbanken und Informationssysteme" (DBIS), Proceedings, 7.-9. März 2007, Aachen, Germany. LNI P-103, GI 2007, ISBN 978-3-88579-197-3 [contents] - [e1]Matthias Jarke, Thomas Seidl, Christoph Quix, David Kensche, Stefan Conrad, Erhard Rahm, Ralf Klamma, Harald Kosch, Michael Granitzer, Sven Apel, Marko Rosenmüller, Gunter Saake, Olaf Spinczyk:
Datenbanksysteme in Business, Technologie und Web (BTW 2007), Workshop Proceedings, 5.-6. März 2007, Aachen, Germany. Verlagshaus Mainz, Aachen 2007, ISBN 3-86130-929-7 [contents] - [i2]Ira Assent, Ralph Krieger, Emmanuel Müller, Thomas Seidl:
Subspace outlier mining in large multimedia databases. Parallel Universes and Local Patterns 2007 - 2006
- [j8]Ira Assent, Marc Wichterich, Thomas Seidl:
Adaptable Distance Functions for Similarity-based Multimedia Retrieval. Datenbank-Spektrum 19: 23-31 (2006) - [c39]Christoph Brochhaus, Marc Wichterich, Thomas Seidl:
Approximation Techniques to Enable Dimensionality Reduction for Voronoi-Based Nearest Neighbor Search. EDBT 2006: 204-221 - [c38]Ira Assent, Andrea Wenning, Thomas Seidl:
Approximation Techniques for Indexing the Earth Mover's Distance in Multimedia Databases. ICDE 2006: 11 - [c37]Ira Assent, Ralph Krieger, Boris Glavic, Thomas Seidl:
Spatial Multidimensional Sequence Clustering. ICDM Workshops 2006: 343-348 - [c36]Christian Thies, Marcel Schmidt-Borreda, Thomas Seidl, Thomas Martin Lehmann:
A classification framework for content-based extraction of biomedical objects from hierarchically decomposed images. Medical Imaging: Image Processing 2006: 61441N - [i1]Ira Assent, Thomas Seidl:
Efficient multi-step query processing for EMD-based similarity. Content-Based Retrieval 2006 - 2005
- [j7]Christoph Brochhaus, Jost Enderle, Achim Schlosser, Thomas Seidl, Knut Stolze:
Efficient interval management using object-relational database servers. Inform. Forsch. Entwickl. 20(3): 121-137 (2005) - [c35]Christoph Brochhaus, Jost Enderle, Achim Schlosser, Thomas Seidl, Knut Stolze:
Integrating the Relational Interval Tree into IBM's DB2 Universal Database Server. BTW 2005: 67-86 - [c34]Mohammed Javeed Zaki, Markus Peters, Ira Assent, Thomas Seidl:
CLICKS: an effective algorithm for mining subspace clusters in categorical datasets. KDD 2005: 736-742 - [c33]Thomas Martin Lehmann, Daniel Beier, Christian Thies, Thomas Seidl:
Segmentation of medical images combining local, regional, global, and hierarchical distances into a bottom-up region merging scheme. Medical Imaging: Image Processing 2005 - [c32]Jost Enderle, Nicole Schneider, Thomas Seidl:
Efficiently Processing Queries on Interval-and-Value Tuples in Relational Databases. VLDB 2005: 385-396 - [p1]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas Seidl, Jost Enderle:
Object-Relational Spatial Indexing. Spatial Databases 2005: 49-80 - 2004
- [c31]Thomas Seidl:
Nearest Neighbor Search on Multimedia Indexing Structures. CVDB 2004: 2 - [c30]M. Tamer Özsu, Jean Carrive, Sébastien Gilles, Izabela Grasland, Roger Mohr, Thomas Seidl:
CVDB 2004 Panel: Future Applications and Solutions. CVDB 2004: 67-68 - [c29]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas Seidl:
A Cost Model for Spatial Intersection Queries on RI-Trees. DASFAA 2004: 331-338 - [c28]Karin Kailing, Hans-Peter Kriegel, Stefan Schönauer, Thomas Seidl:
Efficient Similarity Search for Hierarchical Data in Large Databases. EDBT 2004: 676-693 - [c27]Karin Kailing, Hans-Peter Kriegel, Stefan Schönauer, Thomas Seidl:
Efficient Similarity Search in Large Databases of Tree Structured Objects. ICDE 2004: 835 - [c26]Jost Enderle, Matthias Hampel, Thomas Seidl:
Joining Interval Data in Relational Databases. SIGMOD Conference 2004: 683-694 - 2003
- [c25]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Matthias Renz, Thomas Seidl:
Spatial Data Management for Virtual Product Development. Computer Science in Perspective 2003: 216-230 - [c24]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas Seidl:
The Paradigm of Relational Indexing: a Survey. BTW 2003: 285-304 - [c23]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas Seidl:
Spatial Query Processing for High Resolutions. DASFAA 2003: 17-26 - [c22]Hans-Peter Kriegel, Peer Kröger, Zahi Mashael, Martin Pfeifle, Marco Pötke, Thomas Seidl:
Effective Similarity Search on Voxelized CAD Object. DASFAA 2003: 27-36 - 2002
- [j6]Christian Böhm, Hans-Peter Kriegel, Thomas Seidl:
Combining Approximation Techniques and Vector Quantization for Adaptable Similarity Search. J. Intell. Inf. Syst. 19(2): 207-230 (2002) - [c21]Hans-Peter Kriegel, Martin Pfeifle, Marco Pötke, Thomas Seidl:
A Cost Model for Interval Intersection Queries on RI-Trees. SSDBM 2002: 131-141 - 2001
- [c20]Christian Böhm, Hans-Peter Kriegel, Thomas Seidl:
Adaptable Similarity Search Using Vector Quantization. DaWaK 2001: 317-327 - [c19]Hans-Peter Kriegel, Andreas Müller, Marco Pötke, Thomas Seidl:
DIVE: Database Integration for Virtual Engineering. ICDE Demo Sessions 2001: 15-16 - [c18]Hans-Peter Kriegel, Andreas Müller, Marco Pötke, Thomas Seidl:
Spatial Data Management for Computer Aided Design. SIGMOD Conference 2001: 614 - [c17]Hans-Peter Kriegel, Marco Pötke, Thomas Seidl:
Interval Sequences: An Object-Relational Approach to Manage Spatial Data. SSTD 2001: 481-501 - [c16]Hans-Peter Kriegel, Marco Pötke, Thomas Seidl:
Object-Relational Indexing for General Interval Relationships. SSTD 2001: 522-542 - 2000
- [j5]Stefan Berchtold, Daniel A. Keim, Hans-Peter Kriegel, Thomas Seidl:
Indexing the Solution Space: A New Technique for Nearest Neighbor Search in High-Dimensional Space. IEEE Trans. Knowl. Data Eng. 12(1): 45-57 (2000) - [c15]Hans-Peter Kriegel, Marco Pötke, Thomas Seidl:
Managing Intervals Efficiently in Object-Relational Databases. VLDB 2000: 407-418
1990 – 1999
- 1999
- [j4]Rolf Backofen, François Bry, Peter Clote, Hans-Peter Kriegel, Thomas Seidl, Klaus U. Schulz:
Bioinformatik - Aktuelles Schlagwort. Inform. Spektrum 22(5): 376-378 (1999) - [c14]Thomas Seidl, Hans-Peter Kriegel:
Adaptable Similarity Search in Large Image Databases. State-of-the-Art in Content-Based Image and Video Retrieval 1999: 297-317 - [c13]Mihael Ankerst, Gabi Kastenmüller, Hans-Peter Kriegel, Thomas Seidl:
Nearest Neighbor Classification in 3D Protein Databases. ISMB 1999: 34-43 - [c12]Mihael Ankerst, Gabi Kastenmüller, Hans-Peter Kriegel, Thomas Seidl:
3D Shape Histograms for Similarity Search and Classification in Spatial Databases. SSD 1999: 207-226 - 1998
- [b1]Thomas Seidl:
Adaptable similarity search in 3-D spatial database systems. Ludwig Maximilian University of Munich, Germany, Utz 1998, ISBN 978-3-89675-327-4, pp. 1-298 - [j3]Hans-Peter Kriegel, Thomas Seidl:
Approximation-Based Similarity Search for 3-D Surface Segments. GeoInformatica 2(2): 113-147 (1998) - [j2]Thomas Seidl:
Adaptable Similarity Search in 3-D Spatial Database Systems (Abstract). Datenbank Rundbr. 21: 96 (1998) - [j1]Mihael Ankerst, Hans-Peter Kriegel, Thomas Seidl:
A Multistep Approach for Shape Similarity Search in Image Databases. IEEE Trans. Knowl. Data Eng. 10(6): 996-1004 (1998) - [c11]Thomas Seidl, Gabi Kastenmüller, Hans-Peter Kriegel:
Similarity Search in 3D Protein Databases. German Conference on Bioinformatics 1998 - [c10]Stefan Berchtold, Bernhard Ertl, Daniel A. Keim, Hans-Peter Kriegel, Thomas Seidl:
Fast Nearest Neighbor Search in High-Dimensional Space. ICDE 1998: 209-218 - [c9]Thomas Seidl, Hans-Peter Kriegel:
Optimal Multi-Step k-Nearest Neighbor Search. SIGMOD Conference 1998: 154-165 - [c8]Mihael Ankerst, Bernhard Braunmüller, Hans-Peter Kriegel, Thomas Seidl:
Improving Adaptable Similarity Query Processing by Using Approximations. VLDB 1998: 206-217 - 1997
- [c7]Hans-Peter Kriegel, Thomas Schmidt, Thomas Seidl:
3D Similarity Search by Shape Approximation. SSD 1997: 11-28 - [c6]Thomas Seidl, Hans-Peter Kriegel:
Efficient User-Adaptable Similarity Search in Large Multimedia Databases. VLDB 1997: 506-515 - 1995
- [c5]Martin Ester, Hans-Peter Kriegel, Thomas Seidl, Xiaowei Xu:
Formbasierte Suche nach komplementären 3D-Oberflächen in einer Protein-Datenbank. BTW 1995: 373-382 - [c4]Thomas Seidl, Hans-Peter Kriegel:
Solvent Accessible Surface Representation in a Database System for Protein Docking. ISMB 1995: 350-358 - [c3]Thomas Seidl, Hans-Peter Kriegel:
A 3D Molecular Surface Representation Supporting Neighborhood Queries. SSD 1995: 240-258 - 1994
- [c2]Daniel A. Keim, Hans-Peter Kriegel, Thomas Seidl:
Supporting Data Mining of Large Databases by Visual Feedback Queries. ICDE 1994: 302-313 - 1993
- [c1]Daniel A. Keim, Hans-Peter Kriegel, Thomas Seidl:
Visual Feedback in Querying Large Databases. IEEE Visualization 1993: 158-165
Coauthor Index
aka: Evgeniy Faerman
aka: Sandra Obermeier
aka: Maximilian Archimedes Xaver Hünemörder
aka: Maximilian Hünemörder
aka: Max Hünemörder
aka: Anca Maria Ivanescu
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-31 20:17 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint