default search action
Gerhard Widmer
Person information
- affiliation: Johannes Kepler University of Linz, Austria
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j52]Hamid Eghbal-zadeh, Werner Zellinger, Maura Pintor, Kathrin Grosse, Khaled Koutini, Bernhard Alois Moser, Battista Biggio, Gerhard Widmer:
Rethinking data augmentation for adversarial robustness. Inf. Sci. 654: 119838 (2024) - [j51]Florian Schmid, Khaled Koutini, Gerhard Widmer:
Dynamic Convolutional Neural Networks as Efficient Pre-Trained Audio Models. IEEE ACM Trans. Audio Speech Lang. Process. 32: 2227-2241 (2024) - [c223]Paul Primus, Gerhard Widmer:
Fusing Audio and Metadata Embeddings Improves Language-Based Audio Retrieval. EUSIPCO 2024: 321-325 - [c222]Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer:
Perception-Inspired Graph Convolution for Music Understanding Tasks. IJCAI 2024: 7681-7689 - [i130]Silvan David Peter, Carlos Eduardo Cancino Chacón, Emmanouil Karystinaios, Gerhard Widmer:
Sounding Out Reconstruction Error-Based Evaluation of Generative Models of Expressive Performance. CoRR abs/2401.00471 (2024) - [i129]Silvan David Peter, Shreyan Chowdhury, Carlos Eduardo Cancino Chacón, Gerhard Widmer:
Are we describing the same sound? An analysis of word embedding spaces of expressive piano performance. CoRR abs/2401.02979 (2024) - [i128]Shreyan Chowdhury, Gerhard Widmer:
Expressivity-aware Music Performance Retrieval using Mid-level Perceptual Features and Emotion Word Embeddings. CoRR abs/2401.14826 (2024) - [i127]Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer:
Perception-Inspired Graph Convolution for Music Understanding Tasks. CoRR abs/2405.09224 (2024) - [i126]Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer:
SMUG-Explain: A Framework for Symbolic Music Graph Explanations. CoRR abs/2405.09241 (2024) - [i125]Florian Schmid, Paul Primus, Toni Heittola, Annamaria Mesaros, Irene Martín-Morató, Khaled Koutini, Gerhard Widmer:
Data-Efficient Low-Complexity Acoustic Scene Classification in the DCASE 2024 Challenge. CoRR abs/2405.10018 (2024) - [i124]Patricia Hu, Lukás Samuel Marták, Carlos Cancino Chacón, Gerhard Widmer:
Towards Musically Informed Evaluation of Piano Transcription Models. CoRR abs/2406.08454 (2024) - [i123]Paul Primus, Gerhard Widmer:
Fusing Audio and Metadata Embeddings Improves Language-based Audio Retrieval. CoRR abs/2406.15897 (2024) - [i122]Emmanouil Karystinaios, Gerhard Widmer:
GraphMuse: A Library for Symbolic Music Graph Processing. CoRR abs/2407.12671 (2024) - [i121]Francesco Foscarin, Emmanouil Karystinaios, Eita Nakamura, Gerhard Widmer:
Cluster and Separate: a GNN Approach to Voice and Staff Prediction for Score Engraving. CoRR abs/2407.21030 (2024) - [i120]Francesco Foscarin, Jan Schlüter, Gerhard Widmer:
Beat this! Accurate beat tracking without DBN postprocessing. CoRR abs/2407.21658 (2024) - [i119]Florian Schmid, Paul Primus, Tobias Morocutti, Jonathan Greif, Gerhard Widmer:
Improving Audio Spectrogram Transformers for Sound Event Detection Through Multi-Stage Training. CoRR abs/2408.00791 (2024) - [i118]Silvan David Peter, Gerhard Widmer:
TheGlueNote: Learned Representations for Robust and Flexible Note Alignment. CoRR abs/2408.04309 (2024) - [i117]Lukás Samuel Marták, Patricia Hu, Gerhard Widmer:
Quantifying the Corpus Bias Problem in Automatic Music Transcription Systems. CoRR abs/2408.04737 (2024) - [i116]Mathias Rose Bjare, Stefan Lattner, Gerhard Widmer:
Controlling Surprisal in Music Generation via Information Content Curve Matching. CoRR abs/2408.06022 (2024) - [i115]Paul Primus, Florian Schmid, Gerhard Widmer:
Estimated Audio-Caption Correspondences Improve Language-Based Audio Retrieval. CoRR abs/2408.11641 (2024) - [i114]Florian Schmid, Tobias Morocutti, Francesco Foscarin, Jan Schlüter, Paul Primus, Gerhard Widmer:
Effective Pre-Training of Audio Transformers for Sound Event Detection. CoRR abs/2409.09546 (2024) - 2023
- [j50]Katharina Hoedt, Verena Praher, Arthur Flexer, Gerhard Widmer:
Constructing adversarial examples to investigate the plausibility of explanations in deep audio and image classifiers. Neural Comput. Appl. 35(14): 10011-10029 (2023) - [j49]Silvan David Peter, Carlos Eduardo Cancino Chacón, Francesco Foscarin, Andrew McLeod, Florian Henkel, Emmanouil Karystinaios, Gerhard Widmer:
Automatic Note-Level Score-to-Performance Alignments in the ASAP Dataset. Trans. Int. Soc. Music. Inf. Retr. 6(1): 27-42 (2023) - [c221]Silvan David Peter, Carlos Eduardo Cancino Chacón, Emmanouil Karystinaios, Gerhard Widmer:
Sounding Out Reconstruction Error-Based Evaluation of Generative Models of Expressive Performance. DLfM 2023: 58-66 - [c220]Tobias Morocutti, Florian Schmid, Khaled Koutini, Gerhard Widmer:
Device-Robust Acoustic Scene Classification via Impulse Response Augmentation. EUSIPCO 2023: 176-180 - [c219]Shahed Masoudian, Khaled Koutini, Markus Schedl, Gerhard Widmer, Navid Rekabsaz:
Domain Information Control at Inference Time for Acoustic Scene Classification. EUSIPCO 2023: 181-185 - [c218]Paul Primus, Gerhard Widmer:
On Frequency-Wise Normalizations for Better Recording Device Generalization in Audio Spectrogram Transformers. EUSIPCO 2023: 391-395 - [c217]Florian Schmid, Khaled Koutini, Gerhard Widmer:
Low-Complexity Audio Embedding Extractors. EUSIPCO 2023: 451-455 - [c216]Silvan David Peter, Shreyan Chowdhury, Carlos Eduardo Cancino Chacón, Gerhard Widmer:
Are we describing the same sound? An analysis of word embedding spaces of expressive piano performance. FIRE 2023: 58-66 - [c215]Shreyan Chowdhury, Gerhard Widmer:
Expressivity-aware Music Performance Retrieval using Mid-level Perceptual Features and Emotion Word Embeddings. FIRE 2023: 73-77 - [c214]Ali Nikrang, Maarten Grachten, Martin Gasser, Harald Frostel, Gerhard Widmer, Tom Collins:
Music Visualisation and Its Short-Term Effect on Appraisal Skills. HCI (50) 2023: 112-130 - [c213]Florian Schmid, Khaled Koutini, Gerhard Widmer:
Efficient Large-Scale Audio Tagging Via Transformer-to-CNN Knowledge Distillation. ICASSP 2023: 1-5 - [c212]Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer:
Musical Voice Separation as Link Prediction: Modeling a Musical Perception Task as a Multi-Trajectory Tracking Problem. IJCAI 2023: 3866-3874 - [c211]Carlos Cancino Chacón, Silvan Peter, Patricia Hu, Emmanouil Karystinaios, Florian Henkel, Francesco Foscarin, Gerhard Widmer:
The ACCompanion: Combining Reactivity, Robustness, and Musical Expressivity in an Automatic Piano Accompanist. IJCAI 2023: 5779-5787 - [c210]Matthias Plasser, Silvan Peter, Gerhard Widmer:
Discrete Diffusion Probabilistic Models for Symbolic Music Generation. IJCAI 2023: 5842-5850 - [c209]Patricia Hu, Gerhard Widmer:
The Batik-Plays-Mozart Corpus: Linking Performance to Score to Musicological Annotations. ISMIR 2023: 297-303 - [c208]Francesco Foscarin, Daniel Harasim, Gerhard Widmer:
Predicting Music Hierarchies With a Graph-Based Neural Decoder. ISMIR 2023: 425-432 - [c207]Emmanouil Karystinaios, Gerhard Widmer:
Roman Numeral Analysis With Graph Neural Networks: Onset-Wise Predictions From Note-Wise Features. ISMIR 2023: 597-604 - [c206]Luís Carvalho, Gerhard Widmer:
Passage Summarization With Recurrent Models for Audio - Sheet Music Retrieval. ISMIR 2023: 700-707 - [c205]Mathias Rose Bjare, Stefan Lattner, Gerhard Widmer:
Exploring Sampling Techniques for Generating Melodies With a Transformer Language Model. ISMIR 2023: 810-816 - [c204]Huan Zhang, Emmanouil Karystinaios, Simon Dixon, Gerhard Widmer, Carlos Eduardo Cancino Chacón:
Symbolic Music Representations for Classification Tasks: A Systematic Evaluation. ISMIR 2023: 848-858 - [c203]Luís Carvalho, Gerhard Widmer:
Towards Robust and Truly Large-Scale Audio-Sheet Music Retrieval. MIPR 2023: 1-6 - [c202]Luís Carvalho, Tobias Washüttl, Gerhard Widmer:
Self-Supervised Contrastive Learning for Robust Audio-Sheet Music Retrieval Systems. MMSys 2023: 239-248 - [i113]Shreyan Chowdhury, Gerhard Widmer:
Decoding and Visualising Intended Emotion in an Expressive Piano Performance. CoRR abs/2303.01875 (2023) - [i112]Florian Schmid, Khaled Koutini, Gerhard Widmer:
Low-Complexity Audio Embedding Extractors. CoRR abs/2303.01879 (2023) - [i111]Carlos Cancino Chacón, Silvan Peter, Patricia Hu, Emmanouil Karystinaios, Florian Henkel, Francesco Foscarin, Nimrod Varga, Gerhard Widmer:
The ACCompanion: Combining Reactivity, Robustness, and Musical Expressivity in an Automatic Piano Accompanist. CoRR abs/2304.12939 (2023) - [i110]Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer:
Musical Voice Separation as Link Prediction: Modeling a Musical Perception Task as a Multi-Trajectory Tracking Problem. CoRR abs/2304.14848 (2023) - [i109]Tobias Morocutti, Florian Schmid, Khaled Koutini, Gerhard Widmer:
Device-Robust Acoustic Scene Classification via Impulse Response Augmentation. CoRR abs/2305.07499 (2023) - [i108]Matthias Plasser, Silvan Peter, Gerhard Widmer:
Discrete Diffusion Probabilistic Models for Symbolic Music Generation. CoRR abs/2305.09489 (2023) - [i107]Shahed Masoudian, Khaled Koutini, Markus Schedl, Gerhard Widmer, Navid Rekabsaz:
Domain Information Control at Inference Time for Acoustic Scene Classification. CoRR abs/2306.08010 (2023) - [i106]Paul Primus, Gerhard Widmer:
On Frequency-Wise Normalizations for Better Recording Device Generalization in Audio Spectrogram Transformers. CoRR abs/2306.11764 (2023) - [i105]Francesco Foscarin, Daniel Harasim, Gerhard Widmer:
Predicting Music Hierarchies with a Graph-Based Neural Decoder. CoRR abs/2306.16955 (2023) - [i104]Emmanouil Karystinaios, Gerhard Widmer:
Roman Numeral Analysis with Graph Neural Networks: Onset-wise Predictions from Note-wise Features. CoRR abs/2307.03544 (2023) - [i103]Paul Primus, Khaled Koutini, Gerhard Widmer:
Advancing Natural-Language Based Audio Retrieval with PaSST and Large Audio-Caption Data Sets. CoRR abs/2308.04258 (2023) - [i102]Mathias Rose Bjare, Stefan Lattner, Gerhard Widmer:
Exploring Sampling Techniques for Generating Melodies with a Transformer Language Model. CoRR abs/2308.09454 (2023) - [i101]Patricia Hu, Gerhard Widmer:
The Batik-plays-Mozart Corpus: Linking Performance to Score to Musicological Annotations. CoRR abs/2309.02399 (2023) - [i100]Huan Zhang, Emmanouil Karystinaios, Simon Dixon, Gerhard Widmer, Carlos Eduardo Cancino Chacón:
Symbolic Music Representations for Classification Tasks: A Systematic Evaluation. CoRR abs/2309.02567 (2023) - [i99]Luís Carvalho, Gerhard Widmer:
Passage Summarization with Recurrent Models for Audio-Sheet Music Retrieval. CoRR abs/2309.12111 (2023) - [i98]Luís Carvalho, Tobias Washüttl, Gerhard Widmer:
Self-Supervised Contrastive Learning for Robust Audio-Sheet Music Retrieval Systems. CoRR abs/2309.12134 (2023) - [i97]Luís Carvalho, Gerhard Widmer:
Towards Robust and Truly Large-Scale Audio-Sheet Music Retrieval. CoRR abs/2309.12158 (2023) - [i96]Emmanouil Karystinaios, Francesco Foscarin, Florent Jacquemard, Masahiko Sakai, Satoshi Tojo, Gerhard Widmer:
8+8=4: Formalizing Time Units to Handle Symbolic Music Durations. CoRR abs/2310.14952 (2023) - [i95]Florian Schmid, Khaled Koutini, Gerhard Widmer:
Dynamic Convolutional Neural Networks as Efficient Pre-trained Audio Models. CoRR abs/2310.15648 (2023) - 2022
- [j48]Mathias Rose Bjare, Stefan Lattner, Gerhard Widmer:
Differentiable Short-Term Models for Efficient Online Learning and Prediction in Monophonic Music. Trans. Int. Soc. Music. Inf. Retr. 5(1): 190 (2022) - [c201]Paul Primus, Gerhard Widmer:
Improving Natural-Language-Based Audio Retrieval with Transfer Learning and Audio & Text Augmentations. DCASE 2022 - [c200]Florian Schmid, Shahed Masoudian, Khaled Koutini, Gerhard Widmer:
Knowledge Distillation from Transformers for Low-Complexity Acoustic Scene Classification. DCASE 2022 - [c199]Paul Primus, Gerhard Widmer:
Improved Zero-Shot Audio Tagging & Classification with Patchout Spectrogram Transformers. EUSIPCO 2022: 410-413 - [c198]Khaled Koutini, Jan Schlüter, Hamid Eghbal-zadeh, Gerhard Widmer:
Efficient Training of Audio Transformers with Patchout. INTERSPEECH 2022: 2753-2757 - [c197]Francesco Foscarin, Katharina Hoedt, Verena Praher, Arthur Flexer, Gerhard Widmer:
Concept-Based Techniques for "Musicologist-Friendly" Explanations in Deep Music Classifiers. ISMIR 2022: 876-883 - [c196]Emmanouil Karystinaios, Gerhard Widmer:
Cadence Detection in Symbolic Classical Music using Graph Neural Networks.. ISMIR 2022: 917-924 - [i94]Katharina Hoedt, Arthur Flexer, Gerhard Widmer:
Defending a Music Recommender Against Hubness-Based Adversarial Attacks. CoRR abs/2205.12032 (2022) - [i93]Carlos Cancino Chacón, Silvan David Peter, Emmanouil Karystinaios, Francesco Foscarin, Maarten Grachten, Gerhard Widmer:
Partitura: A Python Package for Symbolic Music Processing. CoRR abs/2206.01071 (2022) - [i92]Francesco Foscarin, Emmanouil Karystinaios, Silvan David Peter, Carlos Cancino Chacón, Maarten Grachten, Gerhard Widmer:
The match file format: Encoding Alignments between Scores and Performances. CoRR abs/2206.01104 (2022) - [i91]Paul Primus, Gerhard Widmer:
Improved Zero-Shot Audio Tagging & Classification with Patchout Spectrogram Transformers. CoRR abs/2208.11402 (2022) - [i90]Paul Primus, Gerhard Widmer:
Improving Natural-Language-based Audio Retrieval with Transfer Learning and Audio & Text Augmentations. CoRR abs/2208.11460 (2022) - [i89]Francesco Foscarin, Katharina Hoedt, Verena Praher, Arthur Flexer, Gerhard Widmer:
Concept-Based Techniques for "Musicologist-friendly" Explanations in a Deep Music Classifier. CoRR abs/2208.12485 (2022) - [i88]Emmanouil Karystinaios, Gerhard Widmer:
Cadence Detection in Symbolic Classical Music using Graph Neural Networks. CoRR abs/2208.14819 (2022) - [i87]Florian Schmid, Khaled Koutini, Gerhard Widmer:
Efficient Large-scale Audio Tagging via Transformer-to-CNN Knowledge Distillation. CoRR abs/2211.04772 (2022) - [i86]Khaled Koutini, Shahed Masoudian, Florian Schmid, Hamid Eghbal-zadeh, Jan Schlüter, Gerhard Widmer:
Learning General Audio Representations with Large-Scale Training of Patchout Audio Transformers. CoRR abs/2211.13956 (2022) - [i85]Lukás Samuel Marták, Rainer Kelz, Gerhard Widmer:
Probabilistic Modelling of Signal Mixtures with Differentiable Dictionaries. CoRR abs/2211.15439 (2022) - [i84]Lukás Samuel Marták, Rainer Kelz, Gerhard Widmer:
Differentiable Dictionary Search: Integrating Linear Mixing with Deep Non-Linear Modelling for Audio Source Separation. CoRR abs/2211.15524 (2022) - 2021
- [j47]Florian Henkel, Gerhard Widmer:
Real-Time Music Following in Score Sheet Images via Multi-Resolution Prediction. Frontiers Comput. Sci. 3: 718340 (2021) - [j46]Khaled Koutini, Hamid Eghbal-zadeh, Gerhard Widmer:
Receptive Field Regularization Techniques for Audio Classification and Tagging With Deep Convolutional Neural Networks. IEEE ACM Trans. Audio Speech Lang. Process. 29: 1987-2000 (2021) - [j45]Katharina Prinz, Arthur Flexer, Gerhard Widmer:
On End-to-End White-Box Adversarial Attacks in Music Information Retrieval. Trans. Int. Soc. Music. Inf. Retr. 4(1): 93 (2021) - [c195]Alessandro B. Melchiorre, Verena Haunschmid, Markus Schedl, Gerhard Widmer:
LEMONS: Listenable Explanations for Music recOmmeNder Systems. ECIR (2) 2021: 531-536 - [c194]Florian Henkel, Gerhard Widmer:
Multi-modal Conditional Bounding Box Regression for Music Score Following. EUSIPCO 2021: 356-360 - [c193]Charles Brazier, Gerhard Widmer:
Handling Structural Mismatches in Real-time Opera Tracking. EUSIPCO 2021: 366-370 - [c192]Luís Carvalho, Gerhard Widmer:
Exploiting Temporal Dependencies for Cross-modal Music Piece Identification. EUSIPCO 2021: 386-390 - [c191]Lukás Samuel Marták, Rainer Kelz, Gerhard Widmer:
Probabilistic Modelling of Signal Mixtures with Differentiable Dictionaries. EUSIPCO 2021: 441-445 - [c190]Khaled Koutini, Shahed Masoudian, Florian Schmid, Hamid Eghbal-zadeh, Jan Schlüter, Gerhard Widmer:
Learning General Audio Representations With Large-Scale Training of Patchout Audio Transformers. HEAR@NeurIPS 2021: 65-89 - [c189]Gerhard Widmer:
Con Espressione! AI, Machine Learning, and Musical Expressivity. ICAART (1) 2021: 5 - [c188]Shreyan Chowdhury, Gerhard Widmer:
Towards Explaining Expressive Qualities in Piano Recordings: Transfer of Explanatory Features Via Acoustic Domain Adaptation. ICASSP 2021: 561-565 - [c187]Rainer Kelz, Gerhard Widmer:
Nonlinear Denoising, Linear Demixing. ICBINB@NeurIPS 2021: 54-58 - [c186]Charles Brazier, Gerhard Widmer:
On-Line Audio-to-Lyrics Alignment Based on a Reference Performance. ISMIR 2021: 66-73 - [c185]Shreyan Chowdhury, Gerhard Widmer:
On Perceived Emotion in Expressive Piano Performance: Further Experimental Evidence for the Relevance of Mid-level Perceptual Features. ISMIR 2021: 128-134 - [c184]Verena Praher, Katharina Prinz, Arthur Flexer, Gerhard Widmer:
On the Veracity of Local, Model-agnostic Explanations in Audio Classification: Targeted Investigations with Adversarial Examples. ISMIR 2021: 531-538 - [i83]Shreyan Chowdhury, Gerhard Widmer:
Towards Explaining Expressive Qualities in Piano Recordings: Transfer of Explanatory Features via Acoustic Domain Adaptation. CoRR abs/2102.13479 (2021) - [i82]Florian Henkel, Gerhard Widmer:
Multi-modal Conditional Bounding Box Regression for Music Score Following. CoRR abs/2105.04309 (2021) - [i81]Charles Brazier, Gerhard Widmer:
Handling Structural Mismatches in Real-time Opera Tracking. CoRR abs/2105.08531 (2021) - [i80]Khaled Koutini, Hamid Eghbal-zadeh, Gerhard Widmer:
Receptive Field Regularization Techniques for Audio Classification and Tagging with Deep Convolutional Neural Networks. CoRR abs/2105.12395 (2021) - [i79]Luís Carvalho, Gerhard Widmer:
Exploiting Temporal Dependencies for Cross-Modal Music Piece Identification. CoRR abs/2105.12536 (2021) - [i78]Shreyan Chowdhury, Verena Praher, Gerhard Widmer:
Tracing Back Music Emotion Predictions to Sound Sources and Intuitive Perceptual Qualities. CoRR abs/2106.07787 (2021) - [i77]Khaled Koutini, Hamid Eghbal-zadeh, Florian Henkel, Jan Schlüter, Gerhard Widmer:
Over-Parameterization and Generalization in Audio Classification. CoRR abs/2107.08933 (2021) - [i76]Verena Praher, Katharina Prinz, Arthur Flexer, Gerhard Widmer:
On the Veracity of Local, Model-agnostic Explanations in Audio Classification: Targeted Investigations with Adversarial Examples. CoRR abs/2107.09045 (2021) - [i75]Shreyan Chowdhury, Gerhard Widmer:
On Perceived Emotion in Expressive Piano Performance: Further Experimental Evidence for the Relevance of Mid-level Perceptual Features. CoRR abs/2107.13231 (2021) - [i74]Charles Brazier, Gerhard Widmer:
Improving Real-time Score Following in Opera by Combining Music with Lyrics Tracking. CoRR abs/2110.02592 (2021) - [i73]Khaled Koutini, Jan Schlüter, Hamid Eghbal-zadeh, Gerhard Widmer:
Efficient Training of Audio Transformers with Patchout. CoRR abs/2110.05069 (2021) - [i72]Florian Henkel, Stephanie Schwaiger, Gerhard Widmer:
Fully Automatic Page Turning on Real Scores. CoRR abs/2111.06643 (2021) - 2020
- [c183]Khaled Koutini, Florian Henkel, Hamid Eghbal-Zadeh, Gerhard Widmer:
Low-Complexity Models for Acoustic Scene Classification Based on Receptive Field Regularization and Frequency Damping. DCASE 2020: 86-90 - [c182]Paul Primus, Verena Haunschmid, Patrick Praher, Gerhard Widmer:
Anomalous Sound Detection as a Simple Binary Classification Problem with Careful Selection of Proxy Outlier Examples. DCASE 2020: 170-174 - [c181]Carlos Eduardo Cancino Chacón, Silvan Peter, Shreyan Chowdhury, Anna Aljanaki, Gerhard Widmer:
On the Characterization of Expressive Performance in Classical Music: First Results of the Con Espressione Game. ISMIR 2020: 613-620 - [c180]Florian Henkel, Rainer Kelz, Gerhard Widmer:
Learning to Read and Follow Music in Complete Score Sheet Images. ISMIR 2020: 780-787 - [c179]Hamid Eghbal-zadeh, Florian Henkel, Gerhard Widmer:
Context-Adaptive Reinforcement Learning using Unsupervised Learning of Context Variables. Preregister@NeurIPS 2020: 236-254 - [i71]Charles Brazier, Gerhard Widmer:
Towards Reliable Real-time Opera Tracking: Combining Alignment with Audio Event Detectors to Increase Robustness. CoRR abs/2006.11033 (2020) - [i70]David R. W. Sears, Gerhard Widmer:
Beneath (or beyond) the surface: Discovering voice-leading patterns with skip-grams. CoRR abs/2006.15399 (2020) - [i69]Hamid Eghbal-zadeh, Khaled Koutini, Paul Primus, Verena Haunschmid, Michal Lewandowski, Werner Zellinger, Bernhard Alois Moser, Gerhard Widmer:
On Data Augmentation and Adversarial Risk: An Empirical Analysis. CoRR abs/2007.02650 (2020) - [i68]Florian Henkel, Rainer Kelz, Gerhard Widmer:
Learning to Read and Follow Music in Complete Score Sheet Images. CoRR abs/2007.10736 (2020) - [i67]Khaled Koutini, Hamid Eghbal-Zadeh, Verena Haunschmid, Paul Primus, Shreyan Chowdhury, Gerhard Widmer:
Receptive-Field Regularized CNNs for Music Classification and Tagging. CoRR abs/2007.13503 (2020) - [i66]Verena Haunschmid, Ethan Manilow, Gerhard Widmer:
audioLIME: Listenable Explanations Using Source Separation. CoRR abs/2008.00582 (2020) - [i65]Carlos Eduardo Cancino Chacón, Silvan Peter, Shreyan Chowdhury, Anna Aljanaki, Gerhard Widmer:
On the Characterization of Expressive Performance in Classical Music: First Results of the Con Espressione Game. CoRR abs/2008.02194 (2020) - [i64]Katharina Prinz, Arthur Flexer, Gerhard Widmer:
The Impact of Label Noise on a Music Tagger. CoRR abs/2008.06273 (2020) - [i63]Verena Haunschmid, Ethan Manilow, Gerhard Widmer:
Towards Musically Meaningful Explanations Using Source Separation. CoRR abs/2009.02051 (2020) - [i62]Charles Brazier, Gerhard Widmer:
Addressing the Recitative Problem in Real-time Opera Tracking. CoRR abs/2010.11013 (2020) - [i61]Paul Primus, Verena Haunschmid, Patrick Praher, Gerhard Widmer:
Anomalous Sound Detection as a Simple Binary Classification Problem with Careful Selection of Proxy Outlier Examples. CoRR abs/2011.02949 (2020) - [i60]Khaled Koutini, Florian Henkel, Hamid Eghbal-zadeh, Gerhard Widmer:
Low-Complexity Models for Acoustic Scene Classification Based on Receptive Field Regularization and Frequency Damping. CoRR abs/2011.02955 (2020)
2010 – 2019
- 2019
- [j44]Andreu Vall, Massimo Quadrana, Markus Schedl, Gerhard Widmer:
Order, context and popularity bias in next-song recommendations. Int. J. Multim. Inf. Retr. 8(2): 101-113 (2019) - [j43]Hamid Eghbal-Zadeh, Lukas Fischer, Niko Popitsch, Florian Kromp, Sabine Taschner-Mandl, Teresa Gerber, Eva Bozsaky, Peter F. Ambros, Inge M. Ambros, Gerhard Widmer, Bernhard Alois Moser:
DeepSNP: An End-to-End Deep Neural Network with Attention-Based Localization for Breakpoint Detection in Single-Nucleotide Polymorphism Array Genomic Data. J. Comput. Biol. 26(6): 572-596 (2019) - [j42]Meinard Müller, Andreas Arzt, Stefan Balke, Matthias Dorfer, Gerhard Widmer:
Cross-Modal Music Retrieval and Applications: An Overview of Key Methodologies. IEEE Signal Process. Mag. 36(1): 52-62 (2019) - [j41]Florian Henkel, Stefan Balke, Matthias Dorfer, Gerhard Widmer:
Score Following as a Multi-Modal Reinforcement Learning Problem. Trans. Int. Soc. Music. Inf. Retr. 2(1): 67-81 (2019) - [j40]Andreu Vall, Matthias Dorfer, Hamid Eghbal-zadeh, Markus Schedl, Keki Burjorjee, Gerhard Widmer:
Feature-combination hybrid recommender systems for automated music playlist continuation. User Model. User Adapt. Interact. 29(2): 527-572 (2019) - [c178]Hamid Eghbal-zadeh, Werner Zellinger, Gerhard Widmer:
Mixture Density Generative Adversarial Networks. CVPR 2019: 5820-5829 - [c177]Khaled Koutini, Hamid Eghbal-zadeh, Gerhard Widmer:
Receptive-Field-Regularized CNN Variants for Acoustic Scene Classification. DCASE 2019: 124-128 - [c176]Paul Primus, Hamid Eghbal-zadeh, David Eitelsebner, Khaled Koutini, Andreas Arzt, Gerhard Widmer:
Exploiting Parallel Audio Recordings to Enforce Device Invariance in CNN-based Acoustic Scene Classification. DCASE 2019: 204-208 - [c175]Khaled Koutini, Hamid Eghbal-zadeh, Matthias Dorfer, Gerhard Widmer:
The Receptive Field as a Regularizer in Deep Convolutional Neural Networks for Acoustic Scene Classification. EUSIPCO 2019: 1-5 - [c174]Rainer Kelz, Sebastian Böck, Gerhard Widmer:
Deep Polyphonic ADSR Piano Note Transcription. ICASSP 2019: 246-250 - [c173]Stefan Balke, Matthias Dorfer, Luís Carvalho, Andreas Arzt, Gerhard Widmer:
Learning Soft-Attention Models for Tempo-invariant Audio-Sheet Music Retrieval. ISMIR 2019: 216-222 - [c172]Shreyan Chowdhury, Andreu Vall, Verena Haunschmid, Gerhard Widmer:
Towards Explainable Music Emotion Recognition: The Route via Mid-level Features. ISMIR 2019: 237-243 - [c171]Rainer Kelz, Gerhard Widmer:
Towards Interpretable Polyphonic Transcription with Invertible Neural Networks. ISMIR 2019: 376-383 - [c170]Thassilo Gadermaier, Gerhard Widmer:
A Study of Annotation and Alignment Accuracy for Performance Comparison in Complex Orchestral Music. ISMIR 2019: 769-775 - [c169]Federico Simonetta, Carlos Eduardo Cancino Chacón, Stavros Ntalampiras, Gerhard Widmer:
A Convolutional Approach to Melody Line Identification in Symbolic Scores. ISMIR 2019: 924-931 - [c168]Khaled Koutini, Shreyan Chowdhury, Verena Haunschmid, Hamid Eghbal-Zadeh, Gerhard Widmer:
Emotion and Theme Recognition in Music with Frequency-Aware RF-Regularized CNNs. MediaEval 2019 - [d1]Thassilo Gadermaier, Gerhard Widmer:
A Study of Annotation and Alignment Accuracy for Performance Comparison in Complex Orchestral Music. Zenodo, 2019 - [i59]Rainer Kelz, Sebastian Böck, Gerhard Widmer:
Multitask Learning for Polyphonic Piano Transcription, a Case Study. CoRR abs/1902.04390 (2019) - [i58]Meinard Müller, Andreas Arzt, Stefan Balke, Matthias Dorfer, Gerhard Widmer:
Cross-Modal Music Retrieval and Applications: An Overview of Key Methodologies. CoRR abs/1902.04397 (2019) - [i57]Verena Haunschmid, Shreyan Chowdhury, Gerhard Widmer:
Two-level Explanations in Music Emotion Recognition. CoRR abs/1905.11760 (2019) - [i56]Zhengshan Shi, Carlos Cancino Chacón, Gerhard Widmer:
User Curated Shaping of Expressive Performances. CoRR abs/1906.06428 (2019) - [i55]Rainer Kelz, Sebastian Böck, Gerhard Widmer:
Deep Polyphonic ADSR Piano Note Transcription. CoRR abs/1906.09165 (2019) - [i54]Federico Simonetta, Carlos Eduardo Cancino Chacón, Stavros Ntalampiras, Gerhard Widmer:
A Convolutional Approach to Melody Line Identification in Symbolic Scores. CoRR abs/1906.10547 (2019) - [i53]Stefan Balke, Matthias Dorfer, Luís Carvalho, Andreas Arzt, Gerhard Widmer:
Learning Soft-Attention Models for Tempo-invariant Audio-Sheet Music Retrieval. CoRR abs/1906.10996 (2019) - [i52]Khaled Koutini, Hamid Eghbal-zadeh, Matthias Dorfer, Gerhard Widmer:
The Receptive Field as a Regularizer in Deep Convolutional Neural Networks for Acoustic Scene Classification. CoRR abs/1907.01803 (2019) - [i51]Shreyan Chowdhury, Andreu Vall, Verena Haunschmid, Gerhard Widmer:
Towards Explainable Music Emotion Recognition: The Route via Mid-level Features. CoRR abs/1907.03572 (2019) - [i50]Rainer Kelz, Gerhard Widmer:
Towards Interpretable Polyphonic Transcription with Invertible Neural Networks. CoRR abs/1909.01622 (2019) - [i49]Khaled Koutini, Hamid Eghbal-zadeh, Gerhard Widmer:
Receptive-field-regularized CNN variants for acoustic scene classification. CoRR abs/1909.02859 (2019) - [i48]Paul Primus, Hamid Eghbal-zadeh, David Eitelsebner, Khaled Koutini, Andreas Arzt, Gerhard Widmer:
Exploiting Parallel Audio Recordings to Enforce Device Invariance in CNN-based Acoustic Scene Classification. CoRR abs/1909.02869 (2019) - [i47]Florian Henkel, Rainer Kelz, Gerhard Widmer:
Audio-Conditioned U-Net for Position Estimation in Full Sheet Images. CoRR abs/1910.07254 (2019) - [i46]Thassilo Gadermaier, Gerhard Widmer:
A Study of Annotation and Alignment Accuracy for Performance Comparison in Complex Orchestral Music. CoRR abs/1910.07394 (2019) - [i45]Khaled Koutini, Shreyan Chowdhury, Verena Haunschmid, Hamid Eghbal-zadeh, Gerhard Widmer:
Emotion and Theme Recognition in Music with Frequency-Aware RF-Regularized CNNs. CoRR abs/1911.05833 (2019) - 2018
- [j39]Carlos Eduardo Cancino Chacón, Maarten Grachten, Werner Goebl, Gerhard Widmer:
Computational Models of Expressive Music Performance: A Comprehensive and Critical Review. Frontiers Digit. Humanit. 5: 25 (2018) - [j38]Matthias Dorfer, Jan Schlüter, Andreu Vall, Filip Korzeniowski, Gerhard Widmer:
End-to-end cross-modality retrieval with CCA projections and pairwise ranking loss. Int. J. Multim. Inf. Retr. 7(2): 117-128 (2018) - [j37]Bernhard Lehner, Jan Schlüter, Gerhard Widmer:
Online, Loudness-Invariant Vocal Detection in Mixed Music Signals. IEEE ACM Trans. Audio Speech Lang. Process. 26(8): 1369-1380 (2018) - [j36]Chih-Wei Wu, Christian Dittmar, Carl Southall, Richard Vogl, Gerhard Widmer, Jason Hockman, Meinard Müller, Alexander Lerch:
A Review of Automatic Drum Transcription. IEEE ACM Trans. Audio Speech Lang. Process. 26(9): 1457-1483 (2018) - [j35]Matthias Dorfer, Jan Hajic Jr., Andreas Arzt, Harald Frostel, Gerhard Widmer:
Learning Audio-Sheet Music Correspondences for Cross-Modal Retrieval and Piece Identification. Trans. Int. Soc. Music. Inf. Retr. 1(1): 22-31 (2018) - [c167]Khaled Koutini, Hamid Eghbal-zadeh, Gerhard Widmer:
Iterative knowledge distillation in R-CNNs for weakly-labeled semi-supervised sound event detection. DCASE 2018: 173-177 - [c166]Matthias Dorfer, Gerhard Widmer:
Training general-purpose audio tagging networks with noisy labels and iterative self-verification. DCASE 2018: 178-182 - [c165]Filip Korzeniowski, Gerhard Widmer:
Automatic Chord Recognition with Higher-Order Harmonic Language Modelling. EUSIPCO 2018: 1900-1904 - [c164]Filip Korzeniowski, David R. W. Sears, Gerhard Widmer:
A Large-Scale Study of Language Models for Chord Prediction. ICASSP 2018: 91-95 - [c163]Rainer Kelz, Gerhard Widmer:
Investigating Label Noise Sensitivity of Convolutional Neural Networks for Fine Grained Audio Signal Labelling. ICASSP 2018: 2996-3000 - [c162]Filip Korzeniowski, Gerhard Widmer:
Improved Chord Recognition by Combining Duration and Harmonic Language Models. ISMIR 2018: 10-17 - [c161]Stefan Lattner, Maarten Grachten, Gerhard Widmer:
A Predictive Model for Music based on Learned Interval Representations. ISMIR 2018: 26-33 - [c160]David R. W. Sears, Filip Korzeniowski, Gerhard Widmer:
Evaluating Language Models of Tonal Harmony. ISMIR 2018: 211-217 - [c159]Jan Hajic Jr., Matthias Dorfer, Gerhard Widmer, Pavel Pecina:
Towards Full-Pipeline Handwritten OMR with Musical Symbol Detection by U-Nets. ISMIR 2018: 225-232 - [c158]Filip Korzeniowski, Gerhard Widmer:
Genre-Agnostic Key Classification With Convolutional Neural Networks. ISMIR 2018: 264-270 - [c157]Stefan Lattner, Maarten Grachten, Gerhard Widmer:
Learning Interval Representations from Polyphonic Music Sequences. ISMIR 2018: 661-668 - [c156]Matthias Dorfer, Florian Henkel, Gerhard Widmer:
Learning to Listen, Read, and Follow: Score Following as a Reinforcement Learning Game. ISMIR 2018: 784-791 - [c155]Andreu Vall, Gerhard Widmer:
Machine Learning Approaches to Hybrid Music Recommender Systems. ECML/PKDD (3) 2018: 639-642 - [c154]Andreu Vall, Matthias Dorfer, Markus Schedl, Gerhard Widmer:
A hybrid approach to music playlist continuation based on playlist-song membership. SAC 2018: 1374-1382 - [i44]Filip Korzeniowski, David R. W. Sears, Gerhard Widmer:
A Large-Scale Study of Language Models for Chord Prediction. CoRR abs/1804.01849 (2018) - [i43]Andreu Vall, Matthias Dorfer, Markus Schedl, Gerhard Widmer:
A Hybrid Approach to Music Playlist Continuation Based on Playlist-Song Membership. CoRR abs/1805.09557 (2018) - [i42]Rainer Kelz, Gerhard Widmer:
Investigating Label Noise Sensitivity of Convolutional Neural Networks for Fine Grained Audio Signal Labelling. CoRR abs/1805.10880 (2018) - [i41]Rainer Kelz, Gerhard Widmer:
Learning to Transcribe by Ear. CoRR abs/1805.11526 (2018) - [i40]Richard Vogl, Gerhard Widmer, Peter Knees:
Towards multi-instrument drum transcription. CoRR abs/1806.06676 (2018) - [i39]Stefan Lattner, Maarten Grachten, Gerhard Widmer:
Learning Transposition-Invariant Interval Features from Symbolic Music and Audio. CoRR abs/1806.08236 (2018) - [i38]Stefan Lattner, Maarten Grachten, Gerhard Widmer:
A Predictive Model for Music Based on Learned Interval Representations. CoRR abs/1806.08686 (2018) - [i37]David R. W. Sears, Filip Korzeniowski, Gerhard Widmer:
Evaluating language models of tonal harmony. CoRR abs/1806.08724 (2018) - [i36]Hamid Eghbal-zadeh, Lukas Fischer, Niko Popitsch, Florian Kromp, Sabine Taschner-Mandl, Khaled Koutini, Teresa Gerber, Eva Bozsaky, Peter F. Ambros, Inge M. Ambros, Gerhard Widmer, Bernhard Alois Moser:
Deep SNP: An End-to-end Deep Neural Network with Attention-based Localization for Break-point Detection in SNP Array Genomic data. CoRR abs/1806.08840 (2018) - [i35]Anna Aljanaki, Gerhard Widmer:
Modeling Majorness as a Perceptual Property in Music from Listener Ratings. CoRR abs/1806.10570 (2018) - [i34]Andreu Vall, Massimo Quadrana, Markus Schedl, Gerhard Widmer:
The Importance of Song Context and Song Order in Automated Music Playlist Generation. CoRR abs/1807.04690 (2018) - [i33]Andreu Vall, Gerhard Widmer:
Machine Learning Approaches to Hybrid Music Recommender Systems. CoRR abs/1807.05858 (2018) - [i32]Matthias Dorfer, Florian Henkel, Gerhard Widmer:
Learning to Listen, Read, and Follow: Score Following as a Reinforcement Learning Game. CoRR abs/1807.06391 (2018) - [i31]David R. W. Sears, Gerhard Widmer:
Psychological constraints on string-based methods for pattern discovery in polyphonic corpora. CoRR abs/1807.06700 (2018) - [i30]Filip Korzeniowski, Gerhard Widmer:
Improved Chord Recognition by Combining Duration and Harmonic Language Models. CoRR abs/1808.05335 (2018) - [i29]Filip Korzeniowski, Gerhard Widmer:
Genre-Agnostic Key Classification With Convolutional Neural Networks. CoRR abs/1808.05340 (2018) - [i28]Filip Korzeniowski, Gerhard Widmer:
Automatic Chord Recognition with Higher-Order Harmonic Language Modelling. CoRR abs/1808.05341 (2018) - [i27]Matthias Dorfer, Jan Hajic Jr., Gerhard Widmer:
Attention as a Perspective for Learning Tempo-invariant Audio Queries. CoRR abs/1809.05689 (2018) - [i26]Hamid Eghbal-zadeh, Werner Zellinger, Gerhard Widmer:
Mixture Density Generative Adversarial Networks. CoRR abs/1811.00152 (2018) - 2017
- [j34]Maarten Grachten, Carlos Eduardo Cancino Chacón, Thassilo Gadermaier, Gerhard Widmer:
Toward Computer-Assisted Understanding of Dynamics in Symphonic Music. IEEE Multim. 24(1): 36-46 (2017) - [j33]Carlos Eduardo Cancino Chacón, Thassilo Gadermaier, Gerhard Widmer, Maarten Grachten:
An evaluation of linear and non-linear models of expressive dynamics in classical piano and symphonic music. Mach. Learn. 106(6): 887-909 (2017) - [j32]Gerhard Widmer:
Getting Closer to the Essence of Music: The Con Espressione Manifesto. ACM Trans. Intell. Syst. Technol. 8(2): 19:1-19:13 (2017) - [c153]Ali Nikrang, David R. W. Sears, Gerhard Widmer:
Automatic Estimation of Harmonic Tension by Distributed Representation of Chords. CMMR 2017: 23-34 - [c152]Filip Korzeniowski, Gerhard Widmer:
End-to-end musical key estimation using a convolutional neural network. EUSIPCO 2017: 966-970 - [c151]Hamid Eghbal-zadeh, Bernhard Lehner, Matthias Dorfer, Gerhard Widmer:
A hybrid approach with multi-channel i-vectors and convolutional neural networks for acoustic scene classification. EUSIPCO 2017: 2749-2753 - [c150]Matthias Dorfer, Jan Hajic, Gerhard Widmer:
On the Potential of Fully Convolutional Neural Networks for Musical Symbol Detection. GREC@ICDAR 2017: 53-54 - [c149]Matthias Dorfer, Andreas Arzt, Gerhard Widmer:
Learning Audio-Sheet Music Correspondences for Score Identification and Offline Alignment. ISMIR 2017: 115-122 - [c148]Richard Vogl, Matthias Dorfer, Gerhard Widmer, Peter Knees:
Drum Transcription via Joint Beat and Drum Modeling Using Convolutional Recurrent Neural Networks. ISMIR 2017: 150-157 - [c147]David R. W. Sears, Andreas Arzt, Harald Frostel, Reinhard Sonnleitner, Gerhard Widmer:
Modeling Harmony with Skip-Grams. ISMIR 2017: 332-338 - [c146]Andreas Arzt, Gerhard Widmer:
Piece Identification in Classical Piano Music Without Reference Scores. ISMIR 2017: 354-360 - [c145]Andreu Vall, Hamid Eghbal-zadeh, Matthias Dorfer, Markus Schedl, Gerhard Widmer:
Music Playlist Continuation by Learning from Hand-Curated Examples and Song Features: Alleviating the Cold-Start Problem for Rare and Out-of-Set Songs. DLRS@RecSys 2017: 46-54 - [c144]Andreu Vall, Massimo Quadrana, Markus Schedl, Gerhard Widmer, Paolo Cremonesi:
The Importance of Song Context in Music Playlists. RecSys Posters 2017 - [c143]Rainer Kelz, Gerhard Widmer:
An Experimental Analysis of the Entanglement Problem in Neural-Network-based Music Transcription Systems. Semantic Audio 2017 - [c142]Filip Korzeniowski, Gerhard Widmer:
On the Futility of Learning Complex Frame-Level Language Models for Chord Recognition. Semantic Audio 2017 - [i25]Rainer Kelz, Gerhard Widmer:
An Experimental Analysis of the Entanglement Problem in Neural-Network-based Music Transcription Systems. CoRR abs/1702.00025 (2017) - [i24]Filip Korzeniowski, Gerhard Widmer:
On the Futility of Learning Complex Frame-Level Language Models for Chord Recognition. CoRR abs/1702.00178 (2017) - [i23]Matthias Dorfer, Jan Schlüter, Andreu Vall, Filip Korzeniowski, Gerhard Widmer:
End-to-End Cross-Modality Retrieval with CCA Projections and Pairwise Ranking Loss. CoRR abs/1705.06979 (2017) - [i22]Filip Korzeniowski, Gerhard Widmer:
End-to-End Musical Key Estimation Using a Convolutional Neural Network. CoRR abs/1706.02921 (2017) - [i21]Hamid Eghbal-zadeh, Bernhard Lehner, Matthias Dorfer, Gerhard Widmer:
A Hybrid Approach with Multi-channel I-Vectors and Convolutional Neural Networks for Acoustic Scene Classification. CoRR abs/1706.06525 (2017) - [i20]Ali Nikrang, David R. W. Sears, Gerhard Widmer:
Automatic estimation of harmonic tension by distributed representation of chords. CoRR abs/1707.00972 (2017) - [i19]David R. W. Sears, Andreas Arzt, Harald Frostel, Reinhard Sonnleitner, Gerhard Widmer:
Modeling Harmony with Skip-Grams. CoRR abs/1707.04457 (2017) - [i18]Hamid Eghbal-zadeh, Gerhard Widmer:
Likelihood Estimation for Generative Adversarial Networks. CoRR abs/1707.07530 (2017) - [i17]Matthias Dorfer, Andreas Arzt, Gerhard Widmer:
Learning Audio - Sheet Music Correspondences for Score Identification and Offline Alignment. CoRR abs/1707.09887 (2017) - [i16]Andreas Arzt, Gerhard Widmer:
Piece Identification in Classical Piano Music Without Reference Scores. CoRR abs/1708.00733 (2017) - [i15]Hamid Eghbal-zadeh, Gerhard Widmer:
Probabilistic Generative Adversarial Networks. CoRR abs/1708.01886 (2017) - [i14]Stefan Lattner, Maarten Grachten, Gerhard Widmer:
Learning Musical Relations using Gated Autoencoders. CoRR abs/1708.05325 (2017) - [i13]Carlos Eduardo Cancino Chacón, Maarten Grachten, David R. W. Sears, Gerhard Widmer:
What were you expecting? Using Expectancy Features to Predict Expressive Performances of Classical Piano Music. CoRR abs/1709.03629 (2017) - [i12]Carlos Cancino Chacón, Martin Bonev, Amaury Durand, Maarten Grachten, Andreas Arzt, Laura Bishop, Werner Goebl, Gerhard Widmer:
The ACCompanion v0.1: An Expressive Accompaniment System. CoRR abs/1711.02427 (2017) - [i11]Hamid Eghbal-zadeh, Matthias Dorfer, Gerhard Widmer:
Deep Within-Class Covariance Analysis for Acoustic Scene Classification. CoRR abs/1711.04022 (2017) - 2016
- [j31]Reinhard Sonnleitner, Gerhard Widmer:
Robust Quad-Based Audio Fingerprinting. IEEE ACM Trans. Audio Speech Lang. Process. 24(3): 409-421 (2016) - [c141]Filip Korzeniowski, Gerhard Widmer:
Feature Learning for Chord Recognition: The Deep Chroma Extractor. ISMIR 2016: 37-43 - [c140]Florian Krebs, Sebastian Böck, Matthias Dorfer, Gerhard Widmer:
Downbeat Tracking Using Beat Synchronous Features with Recurrent Neural Networks. ISMIR 2016: 129-135 - [c139]Reinhard Sonnleitner, Andreas Arzt, Gerhard Widmer:
Landmark-Based Audio Fingerprinting for DJ Mix Monitoring. ISMIR 2016: 185-191 - [c138]Sebastian Böck, Florian Krebs, Gerhard Widmer:
Joint Beat and Downbeat Tracking with Recurrent Neural Networks. ISMIR 2016: 255-261 - [c137]Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian Böck, Andreas Arzt, Gerhard Widmer:
On the Potential of Simple Framewise Approaches to Piano Transcription. ISMIR 2016: 475-481 - [c136]Hamid Eghbal-zadeh, Gerhard Widmer:
Noise Robust Music Artist Recognition Using I-Vector Features. ISMIR 2016: 709-715 - [c135]Matthias Dorfer, Andreas Arzt, Gerhard Widmer:
Towards Score Following In Sheet Music Images. ISMIR 2016: 789-795 - [c134]Filip Korzeniowski, Gerhard Widmer:
A fully convolutional deep auditory model for musical chord recognition. MLSP 2016: 1-6 - [c133]Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Florian Krebs, Gerhard Widmer:
madmom: A New Python Audio and Music Signal Processing Library. ACM Multimedia 2016: 1174-1178 - [c132]Matthias Dorfer, Rainer Kelz, Gerhard Widmer:
Deep Linear Discriminant Analysis. ICLR (Poster) 2016 - [p3]Tom Collins, Andreas Arzt, Harald Frostel, Gerhard Widmer:
Using Geometric Symbolic Fingerprinting to Discover Distinctive Patterns in Polyphonic Music Corpora. Computational Music Analysis 2016: 445-474 - [i10]Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Florian Krebs, Gerhard Widmer:
madmom: a new Python Audio and Music Signal Processing Library. CoRR abs/1605.07008 (2016) - [i9]Gerhard Widmer:
Getting Closer to the Essence of Music: The Con Espressione Manifesto. CoRR abs/1611.09733 (2016) - [i8]Maarten Grachten, Carlos Eduardo Cancino Chacón, Thassilo Gadermaier, Gerhard Widmer:
Towards computer-assisted understanding of dynamics in symphonic music. CoRR abs/1612.02198 (2016) - [i7]Stefan Lattner, Maarten Grachten, Gerhard Widmer:
Imposing higher-level Structure in Polyphonic Music Generation using Convolutional Restricted Boltzmann Machines and Constraints. CoRR abs/1612.04742 (2016) - [i6]Matthias Dorfer, Andreas Arzt, Gerhard Widmer:
Towards Score Following in Sheet Music Images. CoRR abs/1612.05050 (2016) - [i5]Filip Korzeniowski, Gerhard Widmer:
Feature Learning for Chord Recognition: The Deep Chroma Extractor. CoRR abs/1612.05065 (2016) - [i4]Matthias Dorfer, Andreas Arzt, Gerhard Widmer:
Towards End-to-End Audio-Sheet-Music Retrieval. CoRR abs/1612.05070 (2016) - [i3]Matthias Dorfer, Andreas Arzt, Sebastian Böck, Amaury Durand, Gerhard Widmer:
Live Score Following on Sheet Music Images. CoRR abs/1612.05076 (2016) - [i2]Filip Korzeniowski, Gerhard Widmer:
A Fully Convolutional Deep Auditory Model for Musical Chord Recognition. CoRR abs/1612.05082 (2016) - [i1]Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian Böck, Andreas Arzt, Gerhard Widmer:
On the Potential of Simple Framewise Approaches to Piano Transcription. CoRR abs/1612.05153 (2016) - 2015
- [j30]Florian Krebs, Andre Holzapfel, Ali Taylan Cemgil, Gerhard Widmer:
Inferring Metrical Structure in Music Using Particle Filters. IEEE ACM Trans. Audio Speech Lang. Process. 23(5): 817-827 (2015) - [c131]Bernhard Lehner, Gerhard Widmer, Sebastian Böck:
A low-latency, real-time-capable singing voice detection method with LSTM recurrent neural networks. EUSIPCO 2015: 21-25 - [c130]Hamid Eghbal-zadeh, Markus Schedl, Gerhard Widmer:
Timbral modeling for music artist recognition using i-vectors. EUSIPCO 2015: 1286-1290 - [c129]Andreas Arzt, Harald Frostel, Thassilo Gadermaier, Martin Gasser, Maarten Grachten, Gerhard Widmer:
Artificial Intelligence in the Concertgebouw. IJCAI 2015: 2424-2430 - [c128]Bernhard Lehner, Gerhard Widmer, Reinhard Sonnleitner:
Improving voice activity detection in movies. INTERSPEECH 2015: 2942-2946 - [c127]Florian Krebs, Sebastian Böck, Gerhard Widmer:
An Efficient State-Space Model for Joint Tempo and Meter Tracking. ISMIR 2015: 72-78 - [c126]Bernhard Lehner, Gerhard Widmer:
Monaural Blind Source Separation in the Context of Vocal Detection. ISMIR 2015: 309-315 - [c125]Andreas Arzt, Gerhard Widmer:
Real-Time Music Tracking Using Multiple Performances as a Reference. ISMIR 2015: 357-363 - [c124]Hamid Eghbal-zadeh, Bernhard Lehner, Markus Schedl, Gerhard Widmer:
I-Vectors for Timbre-Based Music Similarity and Music Artist Classification. ISMIR 2015: 554-560 - [c123]Martin Gasser, Andreas Arzt, Thassilo Gadermaier, Maarten Grachten, Gerhard Widmer:
Classical Music on the Web - User Interfaces and Data Representations. ISMIR 2015: 571-577 - [c122]Christian Dittmar, Bernhard Lehner, Thomas Prätzlich, Meinard Müller, Gerhard Widmer:
Cross-Version Singing Voice Detection in Classical Opera Recordings. ISMIR 2015: 618-624 - [c121]Sebastian Böck, Florian Krebs, Gerhard Widmer:
Accurate Tempo Estimation Based on Recurrent Neural Networks and Resonating Comb Filters. ISMIR 2015: 625-631 - 2014
- [c120]Reinhard Sonnleitner, Gerhard Widmer:
Quad-Based Audio Fingerprinting Robust to Time and Frequency Scaling. DAFx 2014: 173-180 - [c119]Andreas Arzt, Sebastian Böck, Sebastian Flossmann, Harald Frostel, Martin Gasser, Cynthia C. S. Liem, Gerhard Widmer:
The Piano Music Companion. ECAI 2014: 1221-1222 - [c118]Florian Krebs, Filip Korzeniowski, Maarten Grachten, Gerhard Widmer:
Unsupervised learning and refinement of rhythmic patterns for beat and downbeat tracking. EUSIPCO 2014: 611-615 - [c117]Bernhard Lehner, Gerhard Widmer, Reinhard Sonnleitner:
On the reduction of false positives in singing voice detection. ICASSP 2014: 7480-7484 - [c116]Filip Korzeniowski, Sebastian Böck, Gerhard Widmer:
Probabilistic Extraction of Beat Positions from a Beat Activation Function. ISMIR 2014: 513-518 - [c115]Andreas Arzt, Gerhard Widmer, Reinhard Sonnleitner:
Tempo- and Transposition-invariant Identification of Piece and Score Position. ISMIR 2014: 549-554 - [c114]Sebastian Böck, Florian Krebs, Gerhard Widmer:
A Multi-model Approach to Beat Tracking Considering Heterogeneous Music Styles. ISMIR 2014: 603-608 - [c113]Tom Collins, Sebastian Böck, Florian Krebs, Gerhard Widmer:
Bridging the Audio-Symbolic Gap: The Discovery of Repeated Note Content Directly from Polyphonic Music Audio. Semantic Audio 2014 - 2013
- [c112]Filip Korzeniowski, Florian Krebs, Andreas Arzt, Gerhard Widmer:
Tracking rests and Tempo changes: Improved Score following with Particle filters. ICMC 2013 - [c111]Bernhard Lehner, Reinhard Sonnleitner, Gerhard Widmer:
Towards Light-Weight, Real-Time-Capable Singing Voice Detection. ISMIR 2013: 53-58 - [c110]Florian Krebs, Sebastian Böck, Gerhard Widmer:
Rhythmic Pattern Modeling for Beat and Downbeat Tracking in Musical Audio. ISMIR 2013: 227-232 - [c109]Sebastian Böck, Gerhard Widmer:
Local Group Delay Based Vibrato and Tremolo Suppression for Onset Detection. ISMIR 2013: 361-366 - [c108]Tom Collins, Andreas Arzt, Sebastian Flossmann, Gerhard Widmer:
SIARCT-CFP: Improving Precision and the Discovery of Inexact Musical Patterns in Point-Set Representations. ISMIR 2013: 549-554 - [c107]Maarten Grachten, Martin Gasser, Andreas Arzt, Gerhard Widmer:
Automatic Alignment of Music Performances with Structural Differences. ISMIR 2013: 607-612 - [p2]Sebastian Flossmann, Maarten Grachten, Gerhard Widmer:
Expressive Performance Rendering with Probabilistic Models. Guide to Computing for Expressive Music Performance 2013: 75-98 - 2012
- [j29]Dominik Schnitzer, Arthur Flexer, Markus Schedl, Gerhard Widmer:
Local and global scaling reduce hubs in space. J. Mach. Learn. Res. 13: 2871-2902 (2012) - [j28]Peter Knees, Tim Pohle, Gerhard Widmer:
Sound/tracks: artistic real-time sonification of train journeys. J. Multimodal User Interfaces 6(1-2): 87-93 (2012) - [j27]Dominik Schnitzer, Arthur Flexer, Gerhard Widmer:
A fast audio similarity retrieval method for millions of music tracks. Multim. Tools Appl. 58(1): 23-40 (2012) - [c106]Andreas Arzt, Gerhard Widmer, Sebastian Böck, Reinhard Sonnleitner, Harald Frostel:
Towards a Complete Classical Music Companion. ECAI 2012: 67-72 - [c105]Andreas Arzt, Gerhard Widmer, Simon Dixon:
Adaptive distance normalization for real-time music tracking. EUSIPCO 2012: 2689-2693 - [c104]Andreas Arzt, Sebastian Böck, Gerhard Widmer:
Fast Identification of Piece and Score Position via Symbolic Fingerprinting. ISMIR 2012: 433-438 - 2011
- [j26]Markus Schedl, Gerhard Widmer, Peter Knees, Tim Pohle:
A music information system automatically generated via Web content mining techniques. Inf. Process. Manag. 47(3): 426-439 (2011) - [j25]Markus Schedl, Tim Pohle, Peter Knees, Gerhard Widmer:
Exploring the music similarity space on the web. ACM Trans. Inf. Syst. 29(3): 14:1-14:24 (2011) - [c103]Dominik Schnitzer, Arthur Flexer, Markus Schedl, Gerhard Widmer:
Using Mutual Proximity to Improve Content-Based Audio Similarity. ISMIR 2011: 79-84 - [c102]Bernhard Niedermayer, Sebastian Böck, Gerhard Widmer:
On the Importance of "Real" Audio Data for MIR Algorithm Evaluation at the Note-Level - A Comparative Study. ISMIR 2011: 543-548 - 2010
- [j24]Werner Goebl, Sebastian Flossmann, Gerhard Widmer:
Investigations of Between-Hand Synchronization in Magaloff's Chopin. Comput. Music. J. 34(3): 35-44 (2010) - [c101]Klaus Seyerlehner, Gerhard Widmer, Peter Knees:
A Comparison of Human, Automatic and Collaborative Music Genre Classification and User Centric Evaluation of Genre Classification Systems. Adaptive Multimedia Retrieval 2010: 118-131 - [c100]Miguel Molina-Solana, Maarten Grachten, Gerhard Widmer:
Evidence for Pianist-specific Rubato Style in Chopin Nocturnes. ISMIR 2010: 225-230 - [c99]Dominik Schnitzer, Arthur Flexer, Gerhard Widmer, Martin Gasser:
Islands of Gaussians: The Self Organizing Map and Gaussian Music Similarity Features. ISMIR 2010: 327-332 - [c98]Bernhard Niedermayer, Gerhard Widmer:
A Multi-pass Algorithm for Accurate Audio-to-Score Alignment. ISMIR 2010: 417-422 - [c97]Peter Knees, Markus Schedl, Tim Pohle, Klaus Seyerlehner, Gerhard Widmer:
Supervised and Unsupervised Web Document Filtering Techniques to Improve Text-Based Music Retrieval. ISMIR 2010: 543-548 - [c96]Markus Schedl, Klaus Seyerlehner, Dominik Schnitzer, Gerhard Widmer, Cornelia Schiketanz:
Three web-based heuristics to determine a person's or institution's country of origin. SIGIR 2010: 801-802 - [c95]Andreas Arzt, Gerhard Widmer:
Towards Effective 'Any-Time' Music Tracking. STAIRS 2010: 24-36
2000 – 2009
- 2009
- [j23]Gerhard Widmer, Sebastian Flossmann, Maarten Grachten:
YQX Plays Chopin. AI Mag. 30(3): 35-48 (2009) - [c94]Maarten Grachten, Gerhard Widmer:
Who Is Who in the End? Recognizing Pianists by Their Final Ritardandi. ISMIR 2009: 51-56 - [c93]Maarten Grachten, Markus Schedl, Tim Pohle, Gerhard Widmer:
The ISMIR Cloud: A Decade of ISMIR Conferences at Your Fingertips. ISMIR 2009: 63-68 - [c92]Klaus Seyerlehner, Peter Knees, Dominik Schnitzer, Gerhard Widmer:
Browsing Music Recommendation Networks. ISMIR 2009: 129-134 - [c91]Tim Pohle, Dominik Schnitzer, Markus Schedl, Peter Knees, Gerhard Widmer:
On Rhythm and General Music Similarity. ISMIR 2009: 525-530 - [c90]Dominik Schnitzer, Arthur Flexer, Gerhard Widmer:
A Filter-and-Refine Indexing Method for Fast Similarity Search in Millions of Music Tracks. ISMIR 2009: 537-542 - [c89]Peter Knees, Tim Pohle, Markus Schedl, Dominik Schnitzer, Klaus Seyerlehner, Gerhard Widmer:
Augmenting Text-based Music Retrieval with Audio Similarity: Advantages and Limitations. ISMIR 2009: 579-584 - [c88]Gerhard Widmer:
Dealing with Music in Intelligent Ways. ISMIS 2009: 2 - [c87]Klaus Seyerlehner, Arthur Flexer, Gerhard Widmer:
On the limitations of browsing top-N recommender systems. RecSys 2009: 321-324 - 2008
- [j22]Craig Saunders, David R. Hardoon, John Shawe-Taylor, Gerhard Widmer:
Using string kernels to identify famous performers from their playing style. Intell. Data Anal. 12(4): 425-440 (2008) - [c86]Tim Pohle, Klaus Seyerlehner, Gerhard Widmer:
An Approach to Automatically Tracking Music Preference on Mobile Players. Adaptive Multimedia Retrieval 2008: 66-77 - [c85]Søren Tjagvad Madsen, Rainer Typke, Gerhard Widmer:
Automatic Reduction of MIDI Files Preserving Relevant Musical Content. Adaptive Multimedia Retrieval 2008: 89-99 - [c84]Andreas Arzt, Gerhard Widmer, Simon Dixon:
Automatic Page Turning for Musicians via Real-Time Machine Listening. ECAI 2008: 241-245 - [c83]Markus Schedl, Peter Knees, Tim Pohle, Gerhard Widmer:
Towards an Automatically Generated Music Information System Via Web Content Mining. ECIR 2008: 585-590 - [c82]Christoph Anthes, Vassil Alexandrov, Dieter Kranzlmüller, Jens Volkert, Gerhard Widmer:
Collaborative and Cooperative Environments. ICCS (3) 2008: 379-380 - [c81]Arthur Flexer, Dominik Schnitzer, Martin Gasser, Gerhard Widmer:
Playlist Generation using Start and End Songs. ISMIR 2008: 173-178 - [c80]Martin Gasser, Arthur Flexer, Gerhard Widmer:
Streamcatcher: Integrated Visualization of Music Clips and Online Audio Streams. ISMIR 2008: 205-210 - [c79]Tim Pohle, Peter Knees, Gerhard Widmer:
Sound/tracks: real-time synaesthetic sonification and visualisation of passing landscapes. ACM Multimedia 2008: 599-608 - [c78]Peter Knees, Tim Pohle, Gerhard Widmer:
Sound/tracks: real-time synaesthetic sonification of train journeys. ACM Multimedia 2008: 1117-1118 - 2007
- [j21]Peter Knees, Markus Schedl, Tim Pohle, Gerhard Widmer:
Exploring Music Collections in Virtual Landscapes. IEEE Multim. 14(3): 46-54 (2007) - [j20]Tim Pohle, Peter Knees, Markus Schedl, Elias Pampalk, Gerhard Widmer:
"Reinventing the Wheel": A Novel Approach to Music Player Interfaces. IEEE Trans. Multim. 9(3): 567-575 (2007) - [c77]Peter Knees, Gerhard Widmer:
Searching for Music Using Natural Language Queries and Relevance Feedback. Adaptive Multimedia Retrieval 2007: 109-121 - [c76]Markus Schedl, Gerhard Widmer:
Automatically Detecting Members and Instrumentation of Music Bands Via Web Content Mining. Adaptive Multimedia Retrieval 2007: 122-133 - [c75]Tim Pohle, Peter Knees, Markus Schedl, Gerhard Widmer:
Building an Interactive Next-Generation Artist Recommender Based on Automatically Derived High-Level Concepts. CBMI 2007: 336-343 - [c74]Fabien Gouyon, Simon Dixon, Gerhard Widmer:
Evaluating Low-Level Features for Beat Classification and Tracking. ICASSP (4) 2007: 1309-1312 - [c73]Søren Tjagvad Madsen, Gerhard Widmer:
Key-Finding with Interval Profiles. ICMC 2007 - [c72]Søren Tjagvad Madsen, Gerhard Widmer:
Towards a Computational Model of Melody Identification in Polyphonic Music. IJCAI 2007: 459-464 - [c71]Tim Pohle, Peter Knees, Markus Schedl, Gerhard Widmer:
Meaningfully Browsing Music Services. ISMIR 2007: 115-116 - [c70]Markus Schedl, Gerhard Widmer, Tim Pohle, Klaus Seyerlehner:
Web-Based Detection of Music Band Members and Line-Up. ISMIR 2007: 117-118 - [c69]Klaus Seyerlehner, Gerhard Widmer, Dominik Schnitzer:
From Rhythm Patterns to Perceived Tempo. ISMIR 2007: 519-524 - [c68]Dominik Schnitzer, Tim Pohle, Peter Knees, Gerhard Widmer:
One-touch access to music on mobile devices. MUM 2007: 103-109 - [c67]Peter Knees, Tim Pohle, Markus Schedl, Gerhard Widmer:
A music search engine built upon audio-based and web-based similarity measures. SIGIR 2007: 447-454 - 2006
- [j19]Alexander K. Seewald, Christian Holzbaur, Gerhard Widmer:
Evaluation of term utility functions for very short multidocument summaries. Appl. Artif. Intell. 20(1): 57-77 (2006) - [j18]Søren Tjagvad Madsen, Gerhard Widmer:
Exploring Pianist Performance Styles with Evolutionary String Matching. Int. J. Artif. Intell. Tools 15(4): 495-514 (2006) - [j17]Asmir Tobudic, Gerhard Widmer:
Relational IBL in classical music. Mach. Learn. 64(1-3): 5-24 (2006) - [j16]Gerhard Widmer:
Guest editorial: Machine learning in and for music. Mach. Learn. 65(2-3): 343-346 (2006) - [j15]Gerhard Widmer:
Guest Editorial: Machine learning in and for music. Mach. Learn. 65(2-3): 347 (2006) - [c66]Markus Schedl, Peter Knees, Tim Pohle, Gerhard Widmer:
Towards Automatic Retrieval of Album Covers. ECIR 2006: 531-534 - [c65]Markus Schedl, Peter Knees, Gerhard Widmer:
Investigating Web-Based Approaches to Revealing Prototypical Music Artists in Genre Taxonomies. ICDIM 2006: 519-524 - [c64]Søren Tjagvad Madsen, Gerhard Widmer:
Separating voices in MIDI. ISMIR 2006: 57-60 - [c63]Arthur Flexer, Fabien Gouyon, Simon Dixon, Gerhard Widmer:
Probabilistic Combination of Features for Music Classification. ISMIR 2006: 111-114 - [c62]Tim Pohle, Peter Knees, Markus Schedl, Gerhard Widmer:
Independent Component Analysis for Music Similarity Computation. ISMIR 2006: 228-233 - [c61]Markus Schedl, Tim Pohle, Peter Knees, Gerhard Widmer:
Assigning and Visualizing Music Genres by Web-based Co-Occurrence Analysis. ISMIR 2006: 260-265 - [c60]Peter Knees, Tim Pohle, Markus Schedl, Gerhard Widmer:
Combining audio-based similarity with web-based data to accelerate automatic music playlist generation. Multimedia Information Retrieval 2006: 147-154 - [c59]Peter Knees, Markus Schedl, Tim Pohle, Gerhard Widmer:
An innovative three-dimensional user interface for exploring music collections enriched. ACM Multimedia 2006: 17-24 - 2005
- [j14]Efstathios Stamatatos, Gerhard Widmer:
Automatic identification of music performers with learning ensembles. Artif. Intell. 165(1): 37-56 (2005) - [j13]Gerhard Widmer:
Musikalisch intelligente Computer Anwendungen in der klassischen und populären Musik. Inform. Spektrum 28(5): 363-368 (2005) - [c58]Markus Schedl, Peter Knees, Gerhard Widmer:
Improving Prototypical Artist Detection by Penalizing Exorbitant Popularity. CMMR 2005: 196-200 - [c57]Elias Pampalk, Arthur Flexer, Gerhard Widmer:
Hierarchical Organization and Description of Music Collections at the Artist Level. ECDL 2005: 37-48 - [c56]Søren Tjagvad Madsen, Gerhard Widmer:
Evolutionary Search for Musical Parallelism. EvoWorkshops 2005: 488-497 - [c55]Søren Tjagvad Madsen, Gerhard Widmer:
Exploring Similarities in Music Performances with an Evolutionary Algorithm. FLAIRS 2005: 80-85 - [c54]Simon Dixon, Werner Goebl, Gerhard Widmer:
The "Air Worm": an Interface for Real-Time manipulation of Expressive Music Performance. ICMC 2005 - [c53]Gerhard Widmer, Simon Dixon, Arthur Flexer, Werner Goebl, Peter Knees, Søren Tjagvad Madsen, Elias Pampalk, Tim Pohle, Markus Schedl, Asmir Tobudic:
The Machine Learning and Intelligent Music Processing Group at the Austrian Research Institute for Artificial Intelligence (öFAI), Vienna. ICMC 2005 - [c52]Asmir Tobudic, Gerhard Widmer:
Learning to Play Like the Great Pianists. IJCAI 2005: 871-876 - [c51]Gerhard Widmer:
Why Computers Need to Learn About Music. ILP 2005: 414 - [c50]Markus Schedl, Peter Knees, Gerhard Widmer:
Discovering and Visualizing Prototypical Artists by Web-Based Co-Occurrence Analysis. ISMIR 2005: 21-28 - [c49]Arthur Flexer, Elias Pampalk, Gerhard Widmer:
Novelty Detection Based on Spectral Similarity of Songs. ISMIR 2005: 260-263 - [c48]Simon Dixon, Gerhard Widmer:
MATCH: A Music Alignment Tool Chest. ISMIR 2005: 492-497 - [c47]Peter Knees, Markus Schedl, Gerhard Widmer:
Multiple Lyrics Alignment: Automatic Retrieval of Song Lyrics. ISMIR 2005: 564-569 - [c46]Elias Pampalk, Arthur Flexer, Gerhard Widmer:
Improvements of Audio-Based Music Similarity and Genre Classificaton. ISMIR 2005: 628-633 - [c45]Elias Pampalk, Tim Pohle, Gerhard Widmer:
Dynamic Playlist Generation Based on Skipping Behavior. ISMIR 2005: 634-637 - [c44]Markus Schedl, Peter Knees, Gerhard Widmer:
Interactive Poster: Using CoMIRVA for Visualizing Similarities Between Music Artists. IEEE Visualization 2005: 89 - 2004
- [j12]Elias Pampalk, Simon Dixon, Gerhard Widmer:
Exploring Music Collections by Browsing Different Views. Comput. Music. J. 28(2): 49-62 (2004) - [j11]Elias Pampalk, Gerhard Widmer, Alvin T. S. Chan:
A new approach to hierarchical clustering and structuring of data with Self-Organizing Maps. Intell. Data Anal. 8(2): 131-149 (2004) - [c43]Gerhard Widmer, Patrick Zanon:
Automatic Recognition of Famous Artists by Machine. ECAI 2004: 1109-1110 - [c42]Craig Saunders, David R. Hardoon, John Shawe-Taylor, Gerhard Widmer:
Using String Kernels to Identify Famous Performers from Their Playing Style. ECML 2004: 384-395 - [c41]Asmir Tobudic, Gerhard Widmer:
Case-Based Relational Learning of Expressive Phrasing in Classical Music. ECCBR 2004: 419-433 - [c40]Simon Dixon, Fabien Gouyon, Gerhard Widmer:
Towards Characterisation of Music via Rhythmic Patterns. ISMIR 2004 - [c39]Peter Knees, Elias Pampalk, Gerhard Widmer:
Artist Classification with Web-Based Data. ISMIR 2004 - 2003
- [j10]Gerhard Widmer:
Discovering simple rules in complex data: A meta-learning algorithm and some surprising musical discoveries. Artif. Intell. 146(2): 129-148 (2003) - [j9]Gerhard Widmer, Simon Dixon, Werner Goebl, Elias Pampalk, Asmir Tobudic:
In Search of the Horowitz Factor. AI Mag. 24(3): 111-130 (2003) - [c38]Asmir Tobudic, Gerhard Widmer:
Playing Mozart Phrase by Phrase. ICCBR 2003: 552-566 - [c37]Asmir Tobudic, Gerhard Widmer:
Relational IBL in Music with a New Structural Similarity Measure. ILP 2003: 365-382 - [c36]Simon Dixon, Elias Pampalk, Gerhard Widmer:
Classification of dance music by periodicity patterns. ISMIR 2003 - [c35]Elias Pampalk, Simon Dixon, Gerhard Widmer:
Exploring music collections by browsing different views. ISMIR 2003 - [c34]Elias Pampalk, Werner Goebl, Gerhard Widmer:
Visualizing changes in the structure of data for exploratory feature selection. KDD 2003: 157-166 - 2002
- [c33]Gerhard Widmer:
In Search of the Horowitz Factor: Interim Report on a Musical Discovery Project. ALT 2002: 41 - [c32]Gerhard Widmer:
In Search of the Horowitz Factor: Interim Report on a Musical Discovery Project. Discovery Science 2002: 13-21 - [c31]Efstathios Stamatatos, Gerhard Widmer:
Music Performer Recognition Using an Ensemble of Simple Classifiers. ECAI 2002: 335-339 - [c30]Marcus-Christopher Ludl, Gerhard Widmer:
Towards a Simple Clustering Criterion Based on Minimum Length Encoding. ECML 2002: 258-269 - [c29]Simon Dixon, Werner Goebl, Gerhard Widmer:
Real Time Tracking and Visualisation of Musical Expression. ICMAI 2002: 58-68 - [c28]Simon Dixon, Werner Goebl, Gerhard Widmer:
The Performance Worm: Real Time Visualisation of Expression based on Langner's Tempo-Loudness Animation. ICMC 2002 - [c27]Björn Bringmann, Stefan Kramer, Friedrich Neubarth, Hannes Pirker, Gerhard Widmer:
Transformation-Based Regression. ICML 2002: 59-66 - 2001
- [j8]Gerhard Widmer:
Using AI and machine learning to study expressive music performance: project survey and first report. AI Commun. 14(3): 149-162 (2001) - [j7]Stefan Kramer, Gerhard Widmer, Bernhard Pfahringer, Michael de Groeve:
Prediction of Ordinal Classes Using Regression Trees. Fundam. Informaticae 47(1-2): 1-13 (2001) - [c26]Gerhard Widmer:
Discovering Strong Principles of Expressive Music Performance with the PLCG Rule Learning Strategy. ECML 2001: 552-563 - [c25]Gerhard Widmer:
The Musical Expression Project: A Challenge for Machine Learning and Knowledge Discovery. ECML 2001: 603-614 - [c24]Alexander K. Seewald, Johann Petrak, Gerhard Widmer:
Hybrid Decision Tree Learners with Alternative Leaf Classifiers: An Empirical Study. FLAIRS 2001: 407-411 - [c23]Gerhard Widmer:
Inductive Learning of General and Robust Local Expression Principles. ICMC 2001 - [c22]Gerhard Widmer:
The Musical Expression Project: A Challenge for Machine Learning and Knowledge Discovery. PKDD 2001: 495-506 - 2000
- [j6]Klaus Kovar, Johannes Fürnkranz, Johann Petrak, Bernhard Pfahringer, Robert Trappl, Gerhard Widmer:
Searching for Patterns in Political Event Sequences: Experiments with the Keds Database. Cybern. Syst. 31(6): 649-668 (2000) - [c21]Marcus-Christopher Ludl, Gerhard Widmer:
Relative Unsupervised Discretization for Regresseion Problems. ECML 2000: 246-253 - [c20]Gerhard Widmer:
Large-scale Induction of Expressive Performance Rules: First Quantitative Results. ICMC 2000 - [c19]Stefan Kramer, Gerhard Widmer, Bernhard Pfahringer, Michael de Groeve:
Prediction of Ordinal Classes Using Regression Trees. ISMIS 2000: 426-434 - [c18]Marcus-Christopher Ludl, Gerhard Widmer:
Relative Unsupervised Discretization for Association Rule Mining. PKDD 2000: 148-158 - [p1]Gerhard Widmer:
On the Potential of Machine Learning for Music Research. Readings in Music and Artificial Intelligence 2000: 69-84
1990 – 1999
- 1998
- [j5]Gerhard Widmer, Miroslav Kubat:
Guest Editors' Introduction. Mach. Learn. 32(2): 83-84 (1998) - 1997
- [j4]Gerhard Widmer:
Tracking Context Changes through Meta-Learning. Mach. Learn. 27(3): 259-286 (1997) - [e1]Maarten van Someren, Gerhard Widmer:
Machine Learning: ECML-97, 9th European Conference on Machine Learning, Prague, Czech Republic, April 23-25, 1997, Proceedings. Lecture Notes in Computer Science 1224, Springer 1997, ISBN 3-540-62858-4 [contents] - 1996
- [j3]Gerhard Widmer, Miroslav Kubat:
Learning in the Presence of Concept Drift and Hidden Contexts. Mach. Learn. 23(1): 69-101 (1996) - [c17]Gerhard Widmer:
What Is It That Makes It a Horowitz? Empirical Musicology via Machine Learning. ECAI 1996: 458-462 - [c16]Gerhard Widmer:
Recognition and Exploitation of Contextual CLues via Incremental Meta-Learning. ICML 1996: 525-533 - 1995
- [c15]Miroslav Kubat, Gerhard Widmer:
Adapting to Drift in Continuous Domains (Extended Abstract). ECML 1995: 307-310 - 1994
- [c14]Gerhard Widmer:
The Synergy of Music Theory and Al: Learning Multi-Level Expressive Interpretation. AAAI 1994: 114-119 - [c13]Gerhard Widmer:
Combining Robustness and Flexibility in Learning Drifting Concepts. ECAI 1994: 468-472 - [c12]Gerhard Widmer:
Learning Expression at Multiple Structural Levels. ICMC 1994 - [c11]Johannes Fürnkranz, Gerhard Widmer:
Incremental Reduced Error Pruning. ICML 1994: 70-77 - 1993
- [j2]Gerhard Widmer, Werner Horn, Bernhard Nagele:
Automatic knowledge base refinement: learning from examples and deep knowledge in rheumatology. Artif. Intell. Medicine 5(3): 225-243 (1993) - [j1]Gerhard Widmer:
Combining Knowledge-Based and Instance-Based Learning to Exploit Qualitative Knowledge. Informatica (Slovenia) 17(4) (1993) - [c10]Gerhard Widmer, Miroslav Kubat:
Effective Learning in Dynamic Environments by Explicit Context Tracking. ECML 1993: 227-243 - [c9]Gerhard Widmer:
Understanding and Learning Musical Expression. ICMC 1993 - 1992
- [c8]Gerhard Widmer, Miroslav Kubat:
Learning Flexible Concepts from Streams of Examples: FLORA 2. ECAI 1992: 463-467 - 1991
- [c7]Gerhard Widmer:
Using Plausible Explanations to Bias Empirical Generalizations in Weak Theory Domains. EWSL 1991: 33-43 - [c6]Werner Horn, Gerhard Widmer, Bernhard Nagele:
Learning Specialized Disease Descriptions in a Rheumatological Expert System. MIE 1991: 322-326 - [c5]Bernhard Nagele, Gerhard Widmer, Werner Horn:
Automatische Verfeinerung der Wissensbasis durch maschinelles Lernen in einem medizinischen Expertensystem. ÖGAI 1991: 68-77 - 1990
- [c4]Gerhard Widmer:
The Usefulness of Qualitative Theories of Musical Perception. ICMC 1990
1980 – 1989
- 1989
- [c3]Gerhard Widmer:
A Tight Integration of Deductive Learning. ML 1989: 11-13 - [c2]Gerhard Widmer:
Wissensbasiertes Lernen in der Musik: Die Integration induktiver und deduktiver Lernmethoden. ÖGAI 1989: 154-163 - 1985
- [c1]Gerhard Widmer, Werner Horn:
VIE-PCX - Ein Expert System Shell für den PC. ÖGAI 1985: 34-41
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:31 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint