default search action
BioData Mining, Volume 16
Volume 16, Number 1, January 2023
- Peter Appiahene, Justice Williams Asare, Emmanuel Timmy Donkoh, Giovanni Dimauro, Rosalia Maglietta:
Detection of iron deficiency anemia by medical images: a comparative study of machine learning algorithms. - Abdulrahman Alasiri, Konrad J. Karczewski, Brian S. Cole, Bao-Li Loza, Jason H. Moore, Sander W. Van der Laan, Folkert W. Asselbergs, Brendan J. Keating, Jessica van Setten:
LoFTK: a framework for fully automated calculation of predicted Loss-of-Function variants and genes. - Yun Jiang, Jinkun Dong, Tongtong Cheng, Yuan Zhang, Xin Lin, Jing Liang:
iU-Net: a hybrid structured network with a novel feature fusion approach for medical image segmentation. - Petr Rysavý, Filip Zelezný:
Reference-free phylogeny from sequencing data. - Davide Chicco, Giuseppe Jurman:
Ten simple rules for providing bioinformatics support within a hospital. - Shuo-Ming Ou, Ming-Tsun Tsai, Kuo-Hua Lee, Wei-Cheng Tseng, Chih-Yu Yang, Tz-Heng Chen, Pin-Jie Bin, Tzeng-Ji Chen, Yao-Ping Lin, Wayne Huey-Herng Sheu, Yuan-Chia Chu, Der-Cherng Tarng:
Prediction of the risk of developing end-stage renal diseases in newly diagnosed type 2 diabetes mellitus using artificial intelligence algorithms. - Sebastian Spänig, Alexander Michel, Dominik Heider:
Unsupervised encoding selection through ensemble pruning for biomedical classification. - Davide Chicco, Tiziana Sanavia, Giuseppe Jurman:
Signature literature review reveals AHCY, DPYSL3, and NME1 as the most recurrent prognostic genes for neuroblastoma. - Davide Chicco, Giuseppe Jurman:
The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification. - Philip J. Freda, Attri Ghosh, Elizabeth Zhang, Tianhao Luo, Apurva S. Chitre, Oksana Polesskaya, Celine L. St. Pierre, Jianjun Gao, Connor D. Martin, Hao Chen, Angel G. Garcia-Martinez, Tengfei Wang, Wenyan Han, Keita Ishiwari, Paul Meyer, Alexander Lamparelli, Christopher P. King, Abraham A. Palmer, Ruowang Li, Jason H. Moore:
Automated quantitative trait locus analysis (AutoQTL). - Scott M. Williams, Jason H. Moore:
Genetics and precision health: the ecological fallacy and artificial intelligence solutions. - Mengying Wang, Cuixia Lee, Zhenhao Wei, Hong Ji, Yingyun Yang, Cheng Yang:
Clinical assistant decision-making model of tuberculosis based on electronic health records. - Diego Arnal, Celeste Moya, Luigi Filippelli, Jaume Segura-Garcia, Sergi Maicas:
Bacteria spatial tracking in Urban Park soils with MALDI-TOF Mass Spectrometry and Specific PCR. - Nico Schmid, Mihnea Ghinescu, Moritz Schanz, Micha Christ, Severin Schricker, Markus Ketteler, Mark Dominik Alscher, Ulrich Franke, Nora Goebel:
Algorithm-based detection of acute kidney injury according to full KDIGO criteria including urine output following cardiac surgery: a descriptive analysis. - Nelson E. Ordóñez-Guillén, José Luis González Compeán, Ivan López-Arévalo, Miguel Contreras-Murillo, Edwin Aldana-Bobadilla:
Machine learning based study for the classification of Type 2 diabetes mellitus subtypes. - Wei Li, Minghang Zhang, Siyu Cai, Liangliang Wu, Chao Li, Yuqi He, Guibin Yang, Jinghui Wang, Yuanming Pan:
Neural network-based prognostic predictive tool for gastric cardiac cancer: the worldwide retrospective study. - Elnaz Ziad, Somayeh Sadat, Farshad Farzadfar, Mohammad-Reza Malekpour:
Prescription pattern analysis of Type 2 Diabetes Mellitus: a cross-sectional study in Isfahan, Iran. - Sofia Martins, Roberta Coletti, Marta B. Lopes:
Disclosing transcriptomics network-based signatures of glioma heterogeneity using sparse methods. - Zarif L. Azher, Anish Suvarna, Ji-Qing Chen, Ze Zhang, Brock C. Christensen, Lucas A. Salas, Louis J. Vaickus, Joshua J. Levy:
Assessment of emerging pretraining strategies in interpretable multimodal deep learning for cancer prognostication. - Guohua Huang, Xiaohong Huang, Wei Luo:
6mA-StackingCV: an improved stacking ensemble model for predicting DNA N6-methyladenine site. - Jiyoon Park, Jae Won Lee, Mira Park:
Comparison of cancer subtype identification methods combined with feature selection methods in omics data analysis. - David N. Nicholson, Faisal Alquaddoomi, Vincent Rubinetti, Casey S. Greene:
Changing word meanings in biomedical literature reveal pandemics and new technologies. - Tzong-Hann Yang, Yu-Fu Chen, Yen-Fu Cheng, Jue-Ni Huang, Chuan-Song Wu, Yuan-Chia Chu:
Optimizing age-related hearing risk predictions: an advanced machine learning integration with HHIE-S. - Jesse G. Meyer, Ryan J. Urbanowicz, Patrick C. N. Martin, Karen O'Connor, Ruowang Li, Pei-Chen Peng, Tiffani J. Bright, Nicholas P. Tatonetti, Kyoung-Jae Won, Graciela Gonzalez-Hernandez, Jason H. Moore:
ChatGPT and large language models in academia: opportunities and challenges. - Naya Nagy, Matthew Stuart-Edwards, Marius Nagy, Liam Mitchell, Athanasios Zovoilis:
Quantum analysis of squiggle data. - Qian Yan, Wenjiang Zheng, Boqing Wang, Baoqian Ye, Huiyan Luo, Xinqian Yang, Ping Zhang, Xiongwen Wang:
Correction: A prognostic model based on seven immune-related genes predicts the overall survival of patients with hepatocellular carcinoma. - Zhenxiang He, Xiaoxia Li, Yuling Chen, Nianzu Lv, Yong Cai:
Attention-based dual-path feature fusion network for automatic skin lesion segmentation. - Massimiliano Datres, Elisa Paolazzi, Marco Chierici, Matteo Pozzi, Antonio Colangelo, Marcello Dorian Donzella, Giuseppe Jurman:
Endoscopy-based IBD identification by a quantized deep learning pipeline. - John T. Gregg, Jason H. Moore:
STAR_outliers: a python package that separates univariate outliers from non-normal distributions. - Weiquan Pan, Faning Long, Jian Pan:
ScInfoVAE: interpretable dimensional reduction of single cell transcription data with variational autoencoders and extended mutual information regularization. - Marian Petrica, Ionel Popescu:
Inverse problem for parameters identification in a modified SIRD epidemic model using ensemble neural networks. - Maryam Ramezani, Amirhossein Takian, Ahad Bakhtiari, Hamid R. Rabiee, Sadegh Ghazanfari, Saharnaz Sazgarnejad:
Research agenda for using artificial intelligence in health governance: interpretive scoping review and framework. - Sana Munquad, Asim Bikas Das:
DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping. - Jing Luo, Jundong Li, Qi Mao, Zhenghao Shi, Haiqin Liu, Xiaoyong Ren, Xinhong Hei:
Overlapping filter bank convolutional neural network for multisubject multicategory motor imagery brain-computer interface. - Tanapol Kosolwattana, Chenang Liu, Renjie Hu, Shizhong Han, Hua Chen, Ying Lin:
A self-inspected adaptive SMOTE algorithm (SASMOTE) for highly imbalanced data classification in healthcare.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.