default search action
Gautam Kamath 0001
Person information
- affiliation: University of Waterloo, Cheriton School of Computer Science, ON, Canada
- affiliation: University of California, Berkeley, Simons Institute for the Theory of Computing, CA, USA
- affiliation (PhD 2018): Massachusetts Institute of Technology (MIT), CSAIL, Cambridge, MA, USA
- affiliation: Microsoft Research New England, Cambridge, MA, USA
- affiliation: Cornell University, Department of Computer Science, Ithaca, NY, USA
Other persons with the same name
- Gautam Kamath 0002 — Manipal Institute of Technology, Department of Instrumentation and Control Engineering, India
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c54]Mark Bun, Gautam Kamath, Argyris Mouzakis, Vikrant Singhal:
Not All Learnable Distribution Classes are Privately Learnable. ALT 2024: 390-401 - [c53]Yiwei Lu, Matthew Y. R. Yang, Zuoqiu Liu, Gautam Kamath, Yaoliang Yu:
Disguised Copyright Infringement of Latent Diffusion Models. ICML 2024 - [c52]Florian Tramèr, Gautam Kamath, Nicholas Carlini:
Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining. ICML 2024 - [c51]Ruicheng Xian, Qiaobo Li, Gautam Kamath, Han Zhao:
Differentially Private Post-Processing for Fair Regression. ICML 2024 - [c50]Yiwei Lu, Matthew Y. R. Yang, Gautam Kamath, Yaoliang Yu:
Indiscriminate Data Poisoning Attacks on Pre-trained Feature Extractors. SaTML 2024: 327-343 - [i71]Mark Bun, Gautam Kamath, Argyris Mouzakis, Vikrant Singhal:
Not All Learnable Distribution Classes are Privately Learnable. CoRR abs/2402.00267 (2024) - [i70]Yiwei Lu, Matthew Y. R. Yang, Gautam Kamath, Yaoliang Yu:
Indiscriminate Data Poisoning Attacks on Pre-trained Feature Extractors. CoRR abs/2402.12626 (2024) - [i69]Yiwei Lu, Matthew Y. R. Yang, Zuoqiu Liu, Gautam Kamath, Yaoliang Yu:
Disguised Copyright Infringement of Latent Diffusion Models. CoRR abs/2404.06737 (2024) - [i68]Ruicheng Xian, Qiaobo Li, Gautam Kamath, Han Zhao:
Differentially Private Post-Processing for Fair Regression. CoRR abs/2405.04034 (2024) - [i67]Sushant Agarwal, Gautam Kamath, Mahbod Majid, Argyris Mouzakis, Rose Silver, Jonathan R. Ullman:
Private Mean Estimation with Person-Level Differential Privacy. CoRR abs/2405.20405 (2024) - [i66]Christian Janos Lebeda, Matthew Regehr, Gautam Kamath, Thomas Steinke:
Avoiding Pitfalls for Privacy Accounting of Subsampled Mechanisms under Composition. CoRR abs/2405.20769 (2024) - [i65]Martin Pawelczyk, Jimmy Z. Di, Yiwei Lu, Gautam Kamath, Ayush Sekhari, Seth Neel:
Machine Unlearning Fails to Remove Data Poisoning Attacks. CoRR abs/2406.17216 (2024) - [i64]Shai Ben-David, Alex Bie, Gautam Kamath, Tosca Lechner:
Distribution Learnability and Robustness. CoRR abs/2406.17814 (2024) - [i63]Jie Zhang, Debeshee Das, Gautam Kamath, Florian Tramèr:
Membership Inference Attacks Cannot Prove that a Model Was Trained On Your Data. CoRR abs/2409.19798 (2024) - 2023
- [j11]Alex Bie, Gautam Kamath, Guojun Zhang:
Private GANs, Revisited. Trans. Mach. Learn. Res. 2023 (2023) - [j10]Da Yu, Gautam Kamath, Janardhan Kulkarni, Tie-Yan Liu, Jian Yin, Huishuai Zhang:
Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent. Trans. Mach. Learn. Res. 2023 (2023) - [c49]Yiwei Lu, Gautam Kamath, Yaoliang Yu:
Exploring the Limits of Model-Targeted Indiscriminate Data Poisoning Attacks. ICML 2023: 22856-22879 - [c48]Shai Ben-David, Alex Bie, Gautam Kamath, Tosca Lechner:
Distribution Learnability and Robustness. NeurIPS 2023 - [c47]Shai Ben-David, Alex Bie, Clément L. Canonne, Gautam Kamath, Vikrant Singhal:
Private Distribution Learning with Public Data: The View from Sample Compression. NeurIPS 2023 - [c46]Jimmy Z. Di, Jack Douglas, Jayadev Acharya, Gautam Kamath, Ayush Sekhari:
Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks. NeurIPS 2023 - [c45]Samuel B. Hopkins, Gautam Kamath, Mahbod Majid, Shyam Narayanan:
Robustness Implies Privacy in Statistical Estimation. STOC 2023: 497-506 - [i62]Gautam Kamath, Argyris Mouzakis, Matthew Regehr, Vikrant Singhal, Thomas Steinke, Jonathan R. Ullman:
A Bias-Variance-Privacy Trilemma for Statistical Estimation. CoRR abs/2301.13334 (2023) - [i61]Alex Bie, Gautam Kamath, Guojun Zhang:
Private GANs, Revisited. CoRR abs/2302.02936 (2023) - [i60]Xin Gu, Gautam Kamath, Zhiwei Steven Wu:
Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance. CoRR abs/2303.01256 (2023) - [i59]Yiwei Lu, Gautam Kamath, Yaoliang Yu:
Exploring the Limits of Indiscriminate Data Poisoning Attacks. CoRR abs/2303.03592 (2023) - [i58]Rachel Cummings, Damien Desfontaines, David Evans, Roxana Geambasu, Matthew Jagielski, Yangsibo Huang, Peter Kairouz, Gautam Kamath, Sewoong Oh, Olga Ohrimenko, Nicolas Papernot, Ryan Rogers, Milan Shen, Shuang Song, Weijie J. Su, Andreas Terzis, Abhradeep Thakurta, Sergei Vassilvitskii, Yu-Xiang Wang, Li Xiong, Sergey Yekhanin, Da Yu, Huanyu Zhang, Wanrong Zhang:
Challenges towards the Next Frontier in Privacy. CoRR abs/2304.06929 (2023) - [i57]Shai Ben-David, Alex Bie, Clément L. Canonne, Gautam Kamath, Vikrant Singhal:
Private Distribution Learning with Public Data: The View from Sample Compression. CoRR abs/2308.06239 (2023) - [i56]A. Feder Cooper, Katherine Lee, James Grimmelmann, Daphne Ippolito, Christopher Callison-Burch, Christopher A. Choquette-Choo, Niloofar Mireshghallah, Miles Brundage, David Mimno, Madiha Zahrah Choksi, Jack M. Balkin, Nicholas Carlini, Christopher De Sa, Jonathan Frankle, Deep Ganguli, Bryant Gipson, Andres Guadamuz, Swee Leng Harris, Abigail Z. Jacobs, Elizabeth Joh, Gautam Kamath, Mark Lemley, Cass Matthews, Christine McLeavey, Corynne McSherry, Milad Nasr, Paul Ohm, Adam Roberts, Tom Rubin, Pamela Samuelson, Ludwig Schubert, Kristen Vaccaro, Luis Villa, Felix Wu, Elana Zeide:
Report of the 1st Workshop on Generative AI and Law. CoRR abs/2311.06477 (2023) - 2022
- [j9]Clément L. Canonne, Gautam Kamath, Thomas Steinke:
Discrete Gaussian for Differential Privacy. J. Priv. Confidentiality 12(1) (2022) - [j8]Gautam Kamath, Sepehr Assadi, Anne Driemel, Janardhan Kulkarni:
Introduction to the Special Issue on ACM-SIAM Symposium on Discrete Algorithms (SODA) 2020. ACM Trans. Algorithms 18(4): 30:1-30:2 (2022) - [j7]Yiwei Lu, Gautam Kamath, Yaoliang Yu:
Indiscriminate Data Poisoning Attacks on Neural Networks. Trans. Mach. Learn. Res. 2022 (2022) - [c44]Shubhankar Mohapatra, Sajin Sasy, Xi He, Gautam Kamath, Om Thakkar:
The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection. AAAI 2022: 7806-7813 - [c43]Jayadev Acharya, Ayush Jain, Gautam Kamath, Ananda Theertha Suresh, Huanyu Zhang:
Robust Estimation for Random Graphs. COLT 2022: 130-166 - [c42]Gautam Kamath, Argyris Mouzakis, Vikrant Singhal, Thomas Steinke, Jonathan R. Ullman:
A Private and Computationally-Efficient Estimator for Unbounded Gaussians. COLT 2022: 544-572 - [c41]Clément L. Canonne, Ayush Jain, Gautam Kamath, Jerry Li:
The Price of Tolerance in Distribution Testing. COLT 2022: 573-624 - [c40]Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A. Inan, Gautam Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, Huishuai Zhang:
Differentially Private Fine-tuning of Language Models. ICLR 2022 - [c39]Gautam Kamath, Xingtu Liu, Huanyu Zhang:
Improved Rates for Differentially Private Stochastic Convex Optimization with Heavy-Tailed Data. ICML 2022: 10633-10660 - [c38]Wenxin Ding, Gautam Kamath, Weina Wang, Nihar B. Shah:
Calibration with Privacy in Peer Review. ISIT 2022: 1635-1640 - [c37]Gautam Kamath, Argyris Mouzakis, Vikrant Singhal:
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma. NeurIPS 2022 - [c36]Alex Bie, Gautam Kamath, Vikrant Singhal:
Private Estimation with Public Data. NeurIPS 2022 - [c35]Samuel B. Hopkins, Gautam Kamath, Mahbod Majid:
Efficient mean estimation with pure differential privacy via a sum-of-squares exponential mechanism. STOC 2022: 1406-1417 - [i55]Wenxin Ding, Gautam Kamath, Weina Wang, Nihar B. Shah:
Calibration with Privacy in Peer Review. CoRR abs/2201.11308 (2022) - [i54]Yiwei Lu, Gautam Kamath, Yaoliang Yu:
Indiscriminate Data Poisoning Attacks on Neural Networks. CoRR abs/2204.09092 (2022) - [i53]Gautam Kamath, Argyris Mouzakis, Vikrant Singhal:
New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma. CoRR abs/2205.08532 (2022) - [i52]Da Yu, Gautam Kamath, Janardhan Kulkarni, Tie-Yan Liu, Jian Yin, Huishuai Zhang:
Per-Instance Privacy Accounting for Differentially Private Stochastic Gradient Descent. CoRR abs/2206.02617 (2022) - [i51]Alex Bie, Gautam Kamath, Vikrant Singhal:
Private Estimation with Public Data. CoRR abs/2208.07984 (2022) - [i50]Samuel B. Hopkins, Gautam Kamath, Mahbod Majid, Shyam Narayanan:
Robustness Implies Privacy in Statistical Estimation. CoRR abs/2212.05015 (2022) - [i49]Florian Tramèr, Gautam Kamath, Nicholas Carlini:
Considerations for Differentially Private Learning with Large-Scale Public Pretraining. CoRR abs/2212.06470 (2022) - [i48]Jimmy Z. Di, Jack Douglas, Jayadev Acharya, Gautam Kamath, Ayush Sekhari:
Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks. CoRR abs/2212.10717 (2022) - 2021
- [j6]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robustness meets algorithms. Commun. ACM 64(5): 107-115 (2021) - [j5]Mark Bun, Gautam Kamath, Thomas Steinke, Zhiwei Steven Wu:
Private Hypothesis Selection. IEEE Trans. Inf. Theory 67(3): 1981-2000 (2021) - [c34]Ishaq Aden-Ali, Hassan Ashtiani, Gautam Kamath:
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians. ALT 2021: 185-216 - [c33]Wanrong Zhang, Gautam Kamath, Rachel Cummings:
PAPRIKA: Private Online False Discovery Rate Control. ICML 2021: 12458-12467 - [c32]Ayush Sekhari, Jayadev Acharya, Gautam Kamath, Ananda Theertha Suresh:
Remember What You Want to Forget: Algorithms for Machine Unlearning. NeurIPS 2021: 18075-18086 - [c31]Pranav Subramani, Nicholas Vadivelu, Gautam Kamath:
Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization. NeurIPS 2021: 26409-26421 - [c30]Clément L. Canonne, Xi Chen, Gautam Kamath, Amit Levi, Erik Waingarten:
Random Restrictions of High Dimensional Distributions and Uniformity Testing with Subcube Conditioning. SODA 2021: 321-336 - [i47]Ayush Sekhari, Jayadev Acharya, Gautam Kamath, Ananda Theertha Suresh:
Remember What You Want to Forget: Algorithms for Machine Unlearning. CoRR abs/2103.03279 (2021) - [i46]Gautam Kamath, Xingtu Liu, Huanyu Zhang:
Improved Rates for Differentially Private Stochastic Convex Optimization with Heavy-Tailed Data. CoRR abs/2106.01336 (2021) - [i45]Clément L. Canonne, Ayush Jain, Gautam Kamath, Jerry Li:
The Price of Tolerance in Distribution Testing. CoRR abs/2106.13414 (2021) - [i44]Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A. Inan, Gautam Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, Huishuai Zhang:
Differentially Private Fine-tuning of Language Models. CoRR abs/2110.06500 (2021) - [i43]Christian Covington, Xi He, James Honaker, Gautam Kamath:
Unbiased Statistical Estimation and Valid Confidence Intervals Under Differential Privacy. CoRR abs/2110.14465 (2021) - [i42]Gautam Kamath, Argyris Mouzakis, Vikrant Singhal, Thomas Steinke, Jonathan R. Ullman:
A Private and Computationally-Efficient Estimator for Unbounded Gaussians. CoRR abs/2111.04609 (2021) - [i41]Shubhankar Mohapatra, Sajin Sasy, Xi He, Gautam Kamath, Om Thakkar:
The Role of Adaptive Optimizers for Honest Private Hyperparameter Selection. CoRR abs/2111.04906 (2021) - [i40]Jayadev Acharya, Ayush Jain, Gautam Kamath, Ananda Theertha Suresh, Huanyu Zhang:
Robust Estimation for Random Graphs. CoRR abs/2111.05320 (2021) - [i39]Samuel B. Hopkins, Gautam Kamath, Mahbod Majid:
Efficient Mean Estimation with Pure Differential Privacy via a Sum-of-Squares Exponential Mechanism. CoRR abs/2111.12981 (2021) - 2020
- [j4]Jayadev Acharya, Gautam Kamath, Ziteng Sun, Huanyu Zhang:
INSPECTRE: Privately Estimating the Unseen. J. Priv. Confidentiality 10(2) (2020) - [c29]Sivakanth Gopi, Gautam Kamath, Janardhan Kulkarni, Aleksandar Nikolov, Zhiwei Steven Wu, Huanyu Zhang:
Locally Private Hypothesis Selection. COLT 2020: 1785-1816 - [c28]Gautam Kamath, Vikrant Singhal, Jonathan R. Ullman:
Private Mean Estimation of Heavy-Tailed Distributions. COLT 2020: 2204-2235 - [c27]Huanyu Zhang, Gautam Kamath, Janardhan Kulkarni, Zhiwei Steven Wu:
Privately Learning Markov Random Fields. ICML 2020: 11129-11140 - [c26]Gautam Kamath, Or Sheffet, Vikrant Singhal, Jonathan R. Ullman:
Differentially Private Algorithms for Learning Mixtures of Separated Gaussians. ITA 2020: 1-62 - [c25]Sourav Biswas, Yihe Dong, Gautam Kamath, Jonathan R. Ullman:
CoinPress: Practical Private Mean and Covariance Estimation. NeurIPS 2020 - [c24]Clément L. Canonne, Gautam Kamath, Audra McMillan, Jonathan R. Ullman, Lydia Zakynthinou:
Private Identity Testing for High-Dimensional Distributions. NeurIPS 2020 - [c23]Clément L. Canonne, Gautam Kamath, Thomas Steinke:
The Discrete Gaussian for Differential Privacy. NeurIPS 2020 - [e1]Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, Julia Chuzhoy:
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. ACM 2020, ISBN 978-1-4503-6979-4 [contents] - [i38]Huanyu Zhang, Gautam Kamath, Janardhan Kulkarni, Zhiwei Steven Wu:
Privately Learning Markov Random Fields. CoRR abs/2002.09463 (2020) - [i37]Gautam Kamath, Vikrant Singhal, Jonathan R. Ullman:
Private Mean Estimation of Heavy-Tailed Distributions. CoRR abs/2002.09464 (2020) - [i36]Sivakanth Gopi, Gautam Kamath, Janardhan Kulkarni, Aleksandar Nikolov, Zhiwei Steven Wu, Huanyu Zhang:
Locally Private Hypothesis Selection. CoRR abs/2002.09465 (2020) - [i35]Wanrong Zhang, Gautam Kamath, Rachel Cummings:
PAPRIKA: Private Online False Discovery Rate Control. CoRR abs/2002.12321 (2020) - [i34]Clément L. Canonne, Gautam Kamath, Thomas Steinke:
The Discrete Gaussian for Differential Privacy. CoRR abs/2004.00010 (2020) - [i33]Gautam Kamath, Jonathan R. Ullman:
A Primer on Private Statistics. CoRR abs/2005.00010 (2020) - [i32]Sourav Biswas, Yihe Dong, Gautam Kamath, Jonathan R. Ullman:
CoinPress: Practical Private Mean and Covariance Estimation. CoRR abs/2006.06618 (2020) - [i31]Pranav Subramani, Nicholas Vadivelu, Gautam Kamath:
Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization. CoRR abs/2010.09063 (2020) - [i30]Ishaq Aden-Ali, Hassan Ashtiani, Gautam Kamath:
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians. CoRR abs/2010.09929 (2020)
2010 – 2019
- 2019
- [j3]Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robust Estimators in High-Dimensions Without the Computational Intractability. SIAM J. Comput. 48(2): 742-864 (2019) - [j2]Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath:
Testing Ising Models. IEEE Trans. Inf. Theory 65(11): 6829-6852 (2019) - [c22]Gautam Kamath, Jerry Li, Vikrant Singhal, Jonathan R. Ullman:
Privately Learning High-Dimensional Distributions. COLT 2019: 1853-1902 - [c21]Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Steinhardt, Alistair Stewart:
Sever: A Robust Meta-Algorithm for Stochastic Optimization. ICML 2019: 1596-1606 - [c20]Mark Bun, Gautam Kamath, Thomas Steinke, Zhiwei Steven Wu:
Private Hypothesis Selection. NeurIPS 2019: 156-167 - [c19]Gautam Kamath, Or Sheffet, Vikrant Singhal, Jonathan R. Ullman:
Differentially Private Algorithms for Learning Mixtures of Separated Gaussians. NeurIPS 2019: 168-180 - [c18]Gautam Kamath, Christos Tzamos:
Anaconda: A Non-Adaptive Conditional Sampling Algorithm for Distribution Testing. SODA 2019: 679-693 - [c17]Clément L. Canonne, Gautam Kamath, Audra McMillan, Adam D. Smith, Jonathan R. Ullman:
The structure of optimal private tests for simple hypotheses. STOC 2019: 310-321 - [i29]Clément L. Canonne, Gautam Kamath, Audra McMillan, Jonathan R. Ullman, Lydia Zakynthinou:
Private Identity Testing for High-Dimensional Distributions. CoRR abs/1905.11947 (2019) - [i28]Mark Bun, Gautam Kamath, Thomas Steinke, Zhiwei Steven Wu:
Private Hypothesis Selection. CoRR abs/1905.13229 (2019) - [i27]Gautam Kamath, Or Sheffet, Vikrant Singhal, Jonathan R. Ullman:
Differentially Private Algorithms for Learning Mixtures of Separated Gaussians. CoRR abs/1909.03951 (2019) - [i26]Clément L. Canonne, Xi Chen, Gautam Kamath, Amit Levi, Erik Waingarten:
Random Restrictions of High-Dimensional Distributions and Uniformity Testing with Subcube Conditioning. CoRR abs/1911.07357 (2019) - [i25]Clément L. Canonne, Xi Chen, Gautam Kamath, Amit Levi, Erik Waingarten:
Random Restrictions of High-Dimensional Distributions and Uniformity Testing with Subcube Conditioning. Electron. Colloquium Comput. Complex. TR19 (2019) - 2018
- [b1]Gautam Chetan Kamath:
Modern challenges in distribution testing. Massachusetts Institute of Technology, Cambridge, USA, 2018 - [j1]Jayadev Acharya, Clément L. Canonne, Gautam Kamath:
A Chasm Between Identity and Equivalence Testing with Conditional Queries. Theory Comput. 14(1): 1-46 (2018) - [c16]Steve Hanneke, Adam Tauman Kalai, Gautam Kamath, Christos Tzamos:
Actively Avoiding Nonsense in Generative Models. COLT 2018: 209-227 - [c15]Jayadev Acharya, Gautam Kamath, Ziteng Sun, Huanyu Zhang:
INSPECTRE: Privately Estimating the Unseen. ICML 2018: 30-39 - [c14]Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath:
Testing Ising Models. SODA 2018: 1989-2007 - [c13]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently. SODA 2018: 2683-2702 - [c12]Constantinos Daskalakis, Gautam Kamath, John Wright:
Which Distribution Distances are Sublinearly Testable? SODA 2018: 2747-2764 - [i24]Steve Hanneke, Adam Kalai, Gautam Kamath, Christos Tzamos:
Actively Avoiding Nonsense in Generative Models. CoRR abs/1802.07229 (2018) - [i23]Jayadev Acharya, Gautam Kamath, Ziteng Sun, Huanyu Zhang:
INSPECTRE: Privately Estimating the Unseen. CoRR abs/1803.00008 (2018) - [i22]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Jacob Steinhardt, Alistair Stewart:
Sever: A Robust Meta-Algorithm for Stochastic Optimization. CoRR abs/1803.02815 (2018) - [i21]Gautam Kamath, Jerry Li, Vikrant Singhal, Jonathan R. Ullman:
Privately Learning High-Dimensional Distributions. CoRR abs/1805.00216 (2018) - [i20]Gautam Kamath, Christos Tzamos:
Anaconda: A Non-Adaptive Conditional Sampling Algorithm for Distribution Testing. CoRR abs/1807.06168 (2018) - [i19]Clément L. Canonne, Gautam Kamath, Audra McMillan, Adam D. Smith, Jonathan R. Ullman:
The Structure of Optimal Private Tests for Simple Hypotheses. CoRR abs/1811.11148 (2018) - [i18]Constantinos Daskalakis, Gautam Kamath, John Wright:
Which Distribution Distances are Sublinearly Testable? Electron. Colloquium Comput. Complex. TR18 (2018) - [i17]Gautam Kamath, Christos Tzamos:
Anaconda: A Non-Adaptive Conditional Sampling Algorithm for Distribution Testing. Electron. Colloquium Comput. Complex. TR18 (2018) - 2017
- [c11]Bryan Cai, Constantinos Daskalakis, Gautam Kamath:
Priv'IT: Private and Sample Efficient Identity Testing. ICML 2017: 635-644 - [c10]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Being Robust (in High Dimensions) Can Be Practical. ICML 2017: 999-1008 - [c9]Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath:
Concentration of Multilinear Functions of the Ising Model with Applications to Network Data. NIPS 2017: 12-23 - [i16]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Being Robust (in High Dimensions) Can Be Practical. CoRR abs/1703.00893 (2017) - [i15]Bryan Cai, Constantinos Daskalakis, Gautam Kamath:
Priv'IT: Private and Sample Efficient Identity Testing. CoRR abs/1703.10127 (2017) - [i14]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently. CoRR abs/1704.03866 (2017) - [i13]Constantinos Daskalakis, Gautam Kamath, John Wright:
Which Distribution Distances are Sublinearly Testable? CoRR abs/1708.00002 (2017) - [i12]Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath:
Concentration of Multilinear Functions of the Ising Model with Applications to Network Data. CoRR abs/1710.04170 (2017) - [i11]Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath:
Testing Ising Models. Electron. Colloquium Comput. Complex. TR17 (2017) - 2016
- [c8]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, Alistair Stewart:
Robust Estimators in High Dimensions without the Computational Intractability. FOCS 2016: 655-664 - [c7]Constantinos Daskalakis, Anindya De, Gautam Kamath, Christos Tzamos:
A size-free CLT for poisson multinomials and its applications. STOC 2016: 1074-1086 - [i10]Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Zheng Li, Ankur Moitra, Alistair Stewart:
Robust Estimators in High Dimensions without the Computational Intractability. CoRR abs/1604.06443 (2016) - [i9]Constantinos Daskalakis, Nishanth Dikkala, Gautam Kamath:
Testing Ising Models. CoRR abs/1612.03147 (2016) - [i8]Jayadev Acharya, Constantinos Daskalakis, Gautam Kamath:
A Framework for Testing Properties of Discrete Distributions: Monotonicity, Independence, and More. Tiny Trans. Comput. Sci. 4 (2016) - 2015
- [c6]Jayadev Acharya, Clément L. Canonne, Gautam Kamath:
A Chasm Between Identity and Equivalence Testing with Conditional Queries. APPROX-RANDOM 2015: 449-466 - [c5]Constantinos Daskalakis, Gautam Kamath, Christos Tzamos:
On the Structure, Covering, and Learning of Poisson Multinomial Distributions. FOCS 2015: 1203-1217 - [c4]Jayadev Acharya, Clément L. Canonne, Gautam Kamath:
Adaptive estimation in weighted group testing. ISIT 2015: 2116-2120 - [c3]Jayadev Acharya, Constantinos Daskalakis, Gautam Kamath:
Optimal Testing for Properties of Distributions. NIPS 2015: 3591-3599 - [i7]Constantinos Daskalakis, Gautam Kamath, Christos Tzamos:
On the Structure, Covering, and Learning of Poisson Multinomial Distributions. CoRR abs/1504.08363 (2015) - [i6]Jayadev Acharya, Constantinos Daskalakis, Gautam Kamath:
Optimal Testing for Properties of Distributions. CoRR abs/1507.05952 (2015) - [i5]Constantinos Daskalakis, Anindya De, Gautam Kamath, Christos Tzamos:
A Size-Free CLT for Poisson Multinomials and its Applications. CoRR abs/1511.03641 (2015) - 2014
- [c2]Constantinos Daskalakis, Gautam Kamath:
Faster and Sample Near-Optimal Algorithms for Proper Learning Mixtures of Gaussians. COLT 2014: 1183-1213 - [i4]Jayadev Acharya, Clément L. Canonne, Gautam Kamath:
A Chasm Between Identity and Equivalence Testing with Conditional Queries. CoRR abs/1411.7346 (2014) - [i3]Jayadev Acharya, Clément L. Canonne, Gautam Kamath:
A Chasm Between Identity and Equivalence Testing with Conditional Queries. Electron. Colloquium Comput. Complex. TR14 (2014) - 2013
- [i2]Constantinos Daskalakis, Gautam Kamath:
Faster and Sample Near-Optimal Algorithms for Proper Learning Mixtures of Gaussians. CoRR abs/1312.1054 (2013) - 2012
- [c1]Christina Brandt, Nicole Immorlica, Gautam Kamath, Robert Kleinberg:
An analysis of one-dimensional schelling segregation. STOC 2012: 789-804 - [i1]Christina Brandt, Nicole Immorlica, Gautam Kamath, Robert D. Kleinberg:
An Analysis of One-Dimensional Schelling Segregation. CoRR abs/1203.6346 (2012)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-21 21:31 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint