default search action
Ashwin Srinivasan 0001
Person information
- affiliation: Birla Institute of Technology and Science, Goa, India
Other persons with the same name
- Ashwin Srinivasan — disambiguation page
- Ashwin Srinivasan 0002 — Carnegie Mellon University, PA, USA
- Ashwin Srinivasan 0003 — Microsoft
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j39]Ashwin Srinivasan, A. Baskar, Tirtharaj Dash, Devanshu Shah:
Composition of relational features with an application to explaining black-box predictors. Mach. Learn. 113(3): 1091-1132 (2024) - [c62]Shreyas Bhat Brahmavar, Ashwin Srinivasan, Tirtharaj Dash, Sowmya Ramaswamy Krishnan, Lovekesh Vig, Arijit Roy, Raviprasad Aduri:
Generating Novel Leads for Drug Discovery Using LLMs with Logical Feedback. AAAI 2024: 21-29 - 2023
- [c61]Soham Rohit Chitnis, Sidong Liu, Tirtharaj Dash, Tanmay Tulsidas Verlekar, Antonio Di Ieva, Shlomo Berkovsky, Lovekesh Vig, Ashwin Srinivasan:
Domain-Specific Pre-training Improves Confidence in Whole Slide Image Classification. EMBC 2023: 1-4 - [c60]Shreyas Bhat Brahmavar, Rohit Rajesh, Tirtharaj Dash, Lovekesh Vig, Tanmay Tulsidas Verlekar, Md Mahmudul Hasan, Tariq Mahmood Khan, Erik Meijering, Ashwin Srinivasan:
IKD+: Reliable Low Complexity Deep Models for Retinopathy Classification. ICIP 2023: 2400-2404 - [c59]Shrey Pandit, Gautam Shroff, Ashwin Srinivasan, Lovekesh Vig:
Can LLMs solve generative visual analogies? IARML@IJCAI 2023: 30-32 - [i23]Ashwin Srinivasan, Michael Bain, A. Baskar, Enrico W. Coiera:
A Protocol for Intelligible Interaction Between Agents That Learn and Explain. CoRR abs/2301.01819 (2023) - [i22]S. I Harini, Gautam Shroff, Ashwin Srinivasan, Prayushi Faldu, Lovekesh Vig:
Neuro-symbolic Meta Reinforcement Learning for Trading. CoRR abs/2302.08996 (2023) - [i21]Soham Rohit Chitnis, Sidong Liu, Tirtharaj Dash, Tanmay Tulsidas Verlekar, Antonio Di Ieva, Shlomo Berkovsky, Lovekesh Vig, Ashwin Srinivasan:
Domain-Specific Pretraining Improves Confidence in Whole Slide Image Classification. CoRR abs/2302.09833 (2023) - [i20]Shreyas Bhat Brahmavar, Rohit Rajesh, Tirtharaj Dash, Lovekesh Vig, Tanmay Tulsidas Verlekar, Md Mahmudul Hasan, Tariq Mahmood Khan, Erik Meijering, Ashwin Srinivasan:
IKD+: Reliable Low Complexity Deep Models For Retinopathy Classification. CoRR abs/2303.02310 (2023) - 2022
- [j38]Tirtharaj Dash, Ashwin Srinivasan, A. Baskar:
Inclusion of domain-knowledge into GNNs using mode-directed inverse entailment. Mach. Learn. 111(2): 575-623 (2022) - [j37]Ashwin Srinivasan, Michael Bain, A. Baskar:
Learning explanations for biological feedback with delays using an event calculus. Mach. Learn. 111(7): 2435-2487 (2022) - [c58]Atharv Sonwane, Gautam Shroff, Lovekesh Vig, Ashwin Srinivasan, Tirtharaj Dash:
Solving Visual Analogies Using Neural Algorithmic Reasoning (Student Abstract). AAAI 2022: 13055-13056 - [c57]Aditya Challa, Ashwin Srinivasan, Michael Bain, Gautam Shroff:
A Program-Synthesis Challenge for ARC-Like Tasks. ILP 2022: 25-39 - [c56]Vishwa Shah, Aditya Sharma, Gautam Shroff, Lovekesh Vig, Tirtharaj Dash, Ashwin Srinivasan:
Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces. NeSy 2022: 142-154 - [i19]Ashwin Srinivasan, Michael Bain, Enrico W. Coiera:
One-way Explainability Isn't The Message. CoRR abs/2205.08954 (2022) - [i18]Ashwin Srinivasan, A. Baskar, Tirtharaj Dash, Devanshu Shah:
Composition of Relational Features with an Application to Explaining Black-Box Predictors. CoRR abs/2206.00738 (2022) - [i17]Vishwa Shah, Aditya Sharma, Gautam Shroff, Lovekesh Vig, Tirtharaj Dash, Ashwin Srinivasan:
Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces. CoRR abs/2209.08750 (2022) - [i16]Vedant Shah, Aditya Agrawal, Lovekesh Vig, Ashwin Srinivasan, Gautam Shroff, Tanmay T. Verlekar:
Neural Feature-Adaptation for Symbolic Predictions Using Pre-Training and Semantic Loss. CoRR abs/2211.16047 (2022) - 2021
- [j36]Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig:
Incorporating symbolic domain knowledge into graph neural networks. Mach. Learn. 110(7): 1609-1636 (2021) - [c55]Het Shah, Ashwin Vaswani, Tirtharaj Dash, Ramya Hebbalaguppe, Ashwin Srinivasan:
Empirical Study of Data-Free Iterative Knowledge Distillation. ICANN (3) 2021: 546-557 - [c54]Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig, Arijit Roy:
Using Domain-Knowledge to Assist Lead Discovery in Early-Stage Drug Design. ILP 2021: 78-94 - [i15]Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja, Ashwin Srinivasan:
Incorporating Domain Knowledge into Deep Neural Networks. CoRR abs/2103.00180 (2021) - [i14]Tirtharaj Dash, Ashwin Srinivasan, A. Baskar:
Inclusion of Domain-Knowledge into GNNs using Mode-Directed Inverse Entailment. CoRR abs/2105.10709 (2021) - [i13]Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja, Ashwin Srinivasan:
How to Tell Deep Neural Networks What We Know. CoRR abs/2107.10295 (2021) - [i12]Atharv Sonwane, Sharad Chitlangia, Tirtharaj Dash, Lovekesh Vig, Gautam Shroff, Ashwin Srinivasan:
Using Program Synthesis and Inductive Logic Programming to solve Bongard Problems. CoRR abs/2110.09947 (2021) - [i11]Atharv Sonwane, Gautam Shroff, Lovekesh Vig, Ashwin Srinivasan, Tirtharaj Dash:
Solving Visual Analogies Using Neural Algorithmic Reasoning. CoRR abs/2111.10361 (2021) - 2020
- [j35]Ashwin Srinivasan, Lovekesh Vig, Gautam Shroff:
Constructing generative logical models for optimisation problems using domain knowledge. Mach. Learn. 109(7): 1371-1392 (2020) - [c53]Sanket Rajan Gupte, Dharm Skandh Jain, Ashwin Srinivasan, Raviprasad Aduri:
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences. BIBM 2020: 421-425 - [c52]Mouli Rastogi, Syed Afshan Ali, Mrinal Rawat, Lovekesh Vig, Puneet Agarwal, Gautam Shroff, Ashwin Srinivasan:
Information Extraction from Document Images via FCA based Template Detection and Knowledge Graph Rule Induction. CVPR Workshops 2020: 2377-2385 - [c51]Sharan Yalburgi, Tirtharaj Dash, Ramya Hebbalaguppe, Srinidhi Hegde, Ashwin Srinivasan:
An Empirical Study of Iterative Knowledge Distillation for Neural Network Compression. ESANN 2020: 217-222 - [c50]Kushagra Mahajan, Monika Sharma, Lovekesh Vig, Rishab Khincha, Soundarya Krishnan, Adithya Niranjan, Tirtharaj Dash, Ashwin Srinivasan, Gautam Shroff:
CovidDiagnosis: Deep Diagnosis of COVID-19 Patients Using Chest X-Rays. TIA@MICCAI 2020: 61-73 - [c49]Soundarya Krishnan, Rishab Khincha, Lovekesh Vig, Tirtharaj Dash, Ashwin Srinivasan:
A Case Study of Transfer of Lesion-Knowledge. iMIMIC/MIL3ID/LABELS@MICCAI 2020: 138-145 - [i10]Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig:
Incorporating Symbolic Domain Knowledge into Graph Neural Networks. CoRR abs/2010.13900 (2020) - [i9]Rishab Khincha, Soundarya Krishnan, Krishnan Guru-Murthy, Tirtharaj Dash, Lovekesh Vig, Ashwin Srinivasan:
Constructing and Evaluating an Explainable Model for COVID-19 Diagnosis from Chest X-rays. CoRR abs/2012.10787 (2020)
2010 – 2019
- 2019
- [j34]Ashwin Srinivasan, Lovekesh Vig, Michael Bain:
Logical Explanations for Deep Relational Machines Using Relevance Information. J. Mach. Learn. Res. 20: 130:1-130:47 (2019) - [c48]Richa Verma, Sarmimala Saikia, Harshad Khadilkar, Puneet Agarwal, Gautam Shroff, Ashwin Srinivasan:
A Reinforcement Learning Framework for Container Selection and Ship Load Sequencing in Ports. AAMAS 2019: 2250-2252 - [c47]Tirtharaj Dash, Ashwin Srinivasan, Ramprasad S. Joshi, A. Baskar:
Discrete Stochastic Search and Its Application to Feature-Selection for Deep Relational Machines. ICANN (2) 2019: 29-45 - [c46]Vishal Sunder, Ashwin Srinivasan, Lovekesh Vig, Gautam Shroff, Rohit Rahul:
One-shot Information Extraction from Document Images using Neuro-Deductive Program Synthesis. NeSy@IJCAI 2019 - [i8]Vishal Sunder, Ashwin Srinivasan, Lovekesh Vig, Gautam Shroff, Rohit Rahul:
One-shot Information Extraction from Document Images using Neuro-Deductive Program Synthesis. CoRR abs/1906.02427 (2019) - 2018
- [j33]Haimonti Dutta, Ashwin Srinivasan:
Consensus-based modeling using distributed feature construction with ILP. Mach. Learn. 107(5): 825-858 (2018) - [j32]Michael Bain, Ashwin Srinivasan:
Identification of biological transition systems using meta-interpreted logic programs. Mach. Learn. 107(7): 1171-1206 (2018) - [c45]Vishwanath D, Rohit Rahul, Gunjan Sehgal, Swati, Arindam Chowdhury, Monika Sharma, Lovekesh Vig, Gautam Shroff, Ashwin Srinivasan:
Deep Reader: Information Extraction from Document Images via Relation Extraction and Natural Language. ACCV Workshops 2018: 186-201 - [c44]Sarmimala Saikia, Richa Verma, Puneet Agarwal, Gautam Shroff, Lovekesh Vig, Ashwin Srinivasan:
Evolutionary RL for Container Loading. ESANN 2018 - [c43]Tirtharaj Dash, Ashwin Srinivasan, Lovekesh Vig, Oghenejokpeme I. Orhobor, Ross D. King:
Large-Scale Assessment of Deep Relational Machines. ILP 2018: 22-37 - [i7]Sarmimala Saikia, Richa Verma, Puneet Agarwal, Gautam Shroff, Lovekesh Vig, Ashwin Srinivasan:
Evolutionary RL for Container Loading. CoRR abs/1805.06664 (2018) - [i6]Ashwin Srinivasan, Lovekesh Vig, Michael Bain:
Logical Explanations for Deep Relational Machines Using Relevance Information. CoRR abs/1807.00595 (2018) - [i5]Vishwanath D, Rohit Rahul, Gunjan Sehgal, Swati, Arindam Chowdhury, Monika Sharma, Lovekesh Vig, Gautam Shroff, Ashwin Srinivasan:
Deep Reader: Information extraction from Document images via relation extraction and Natural Language. CoRR abs/1812.04377 (2018) - 2017
- [j31]Ashwin Srinivasan, Michael Bain:
An empirical study of on-line models for relational data streams. Mach. Learn. 106(2): 243-276 (2017) - [c42]Prerna Khurana, Puneet Agarwal, Gautam Shroff, Lovekesh Vig, Ashwin Srinivasan:
Hybrid BiLSTM-Siamese network for FAQ Assistance. CIKM 2017: 537-545 - [c41]Lovekesh Vig, Ashwin Srinivasan, Michael Bain, Ankit Verma:
An Investigation into the Role of Domain-Knowledge on the Use of Embeddings. ILP 2017: 169-183 - 2016
- [j30]Rama Kaalia, Ashwin Srinivasan, Amit Kumar, Indira Ghosh:
ILP-assisted de novo drug design. Mach. Learn. 103(3): 309-341 (2016) - [c40]Deepika Vatsa, Sumeet Agarwal, Ashwin Srinivasan:
Learning transition models of biological regulatory and signaling networks from noisy data. CODS 2016: 9:1-9:6 - [c39]Ashwin Srinivasan, Gautam Shroff, Lovekesh Vig, Sarmimala Saikia:
Generation of Near-Optimal Solutions Using ILP-Guided Sampling. ILP 2016: 120-131 - [c38]Sarmimala Saikia, Lovekesh Vig, Ashwin Srinivasan, Gautam Shroff, Puneet Agarwal, Richa Rawat:
Neuro-Symbolic EDA-Based Optimization Using ILP-Enhanced DBNs. CoCo@NIPS 2016 - [i4]Ashwin Srinivasan, Gautam Shroff, Lovekesh Vig, Sarmimala Saikia, Puneet Agarwal:
Generation of Near-Optimal Solutions Using ILP-Guided Sampling. CoRR abs/1608.01093 (2016) - [i3]Sarmimala Saikia, Lovekesh Vig, Ashwin Srinivasan, Gautam Shroff, Puneet Agarwal, Richa Rawat:
Neuro-symbolic EDA-based Optimisation using ILP-enhanced DBNs. CoRR abs/1612.06528 (2016) - 2015
- [c37]Sarmimala Saikia, Gautam Shroff, Puneet Agarwal, Ashwin Srinivasan:
Succinctly summarizing machine usage via multi-subspace clustering of multi-sensor data. DSAA 2015: 1-10 - [c36]Ashwin Srinivasan, Michael Bain, Deepika Vatsa, Sumeet Agarwal:
Identification of Transition Models of Biological Systems in the Presence of Transition Noise. ILP 2015: 200-214 - 2014
- [c35]Sarmimala Saikia, Gautam Shroff, Puneet Agarwal, Ashwin Srinivasan, Aditeya Pandey, Gaurangi Anand:
Exploratory Data Analysis Using Alternating Covers of Rules and Exceptions. COMAD 2014: 105-108 - [c34]Geetika Sharma, Gautam Shroff, Aditeya Pandey, Puneet Agarwal, Ashwin Srinivasan:
Interactively Visualizing Summaries of Rules and Exceptions. EuroVA@EuroVis 2014 - [i2]Haimonti Dutta, Ashwin Srinivasan:
Consensus-Based Modelling using Distributed Feature Construction. CoRR abs/1409.3446 (2014) - 2012
- [j29]Stephen H. Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter A. Flach, Katsumi Inoue, Ashwin Srinivasan:
ILP turns 20 - Biography and future challenges. Mach. Learn. 86(1): 3-23 (2012) - [j28]Ashwin Srinivasan, Tanveer A. Faruquie, Sachindra Joshi:
Data and task parallelism in ILP using MapReduce. Mach. Learn. 86(1): 141-168 (2012) - [c33]Tanveer A. Faruquie, Ashwin Srinivasan, Ross D. King:
Topic Models with Relational Features for Drug Design. ILP 2012: 45-57 - [c32]Amrita Saha, Ashwin Srinivasan, Ganesh Ramakrishnan:
What Kinds of Relational Features Are Useful for Statistical Learning? ILP 2012: 209-224 - 2011
- [j27]Ashwin Srinivasan, Ganesh Ramakrishnan:
Parameter Screening and Optimisation for ILP using Designed Experiments. J. Mach. Learn. Res. 12: 627-662 (2011) - [c31]Ashwin Srinivasan, Michael Bain:
Knowledge-Guided Identification of Petri Net Models of Large Biological Systems. ILP 2011: 317-331 - [i1]George Macleod Coghill, Ross D. King, Ashwin Srinivasan:
Qualitative System Identification from Imperfect Data. CoRR abs/1111.0051 (2011) - 2010
- [j26]Sumeet Agarwal, Candida Vaz, Alok Bhattacharya, Ashwin Srinivasan:
Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM). BMC Bioinform. 11(S-1): 29 (2010) - [c30]Srihari Kalgi, Chirag Gosar, Prasad Gawde, Ganesh Ramakrishnan, Kekin Gada, Chander Iyer, T. V. S. Kiran, Ashwin Srinivasan:
BET : An Inductive Logic Programming Workbench. ILP 2010: 130-137
2000 – 2009
- 2009
- [j25]Nuno A. Fonseca, Ashwin Srinivasan, Fernando M. A. Silva, Rui Camacho:
Parallel ILP for distributed-memory architectures. Mach. Learn. 74(3): 257-279 (2009) - [j24]Lucia Specia, Ashwin Srinivasan, Sachindra Joshi, Ganesh Ramakrishnan, Maria das Graças Volpe Nunes:
An investigation into feature construction to assist word sense disambiguation. Mach. Learn. 76(1): 109-136 (2009) - [c29]Ashwin Srinivasan, Ganesh Ramakrishnan:
Parameter Screening and Optimisation for ILP Using Designed Experiments. ILP 2009: 217-225 - 2008
- [j23]George Macleod Coghill, Ashwin Srinivasan, Ross D. King:
Qualitative System Identification from Imperfect Data. J. Artif. Intell. Res. 32: 825-877 (2008) - [j22]Ashwin Srinivasan, Ross D. King:
Incremental Identification of Qualitative Models of Biological Systems using Inductive Logic Programming. J. Mach. Learn. Res. 9: 1475-1533 (2008) - [c28]Sachindra Joshi, Ganesh Ramakrishnan, Ashwin Srinivasan:
Feature Construction Using Theory-Guided Sampling and Randomised Search. ILP 2008: 140-157 - 2007
- [c27]Ganesh Ramakrishnan, Sachindra Joshi, Sreeram Balakrishnan, Ashwin Srinivasan:
Using ILP to Construct Features for Information Extraction from Semi-structured Text. ILP 2007: 211-224 - [c26]Lucia Specia, Maria das Graças Volpe Nunes, Ashwin Srinivasan, Ganesh Ramakrishnan:
USP-IBM-1 and USP-IBM-2: The ILP-based Systems for Lexical Sample WSD in SemEval-2007. SemEval@ACL 2007: 442-445 - [p1]Simon M. Garrett, George Macleod Coghill, Ashwin Srinivasan, Ross D. King:
Learning Qualitative Models of Physical and Biological Systems. Computational Discovery of Scientific Knowledge 2007: 248-272 - 2006
- [j21]Ashwin Srinivasan, David Page, Rui Camacho, Ross D. King:
Quantitative pharmacophore models with inductive logic programming. Mach. Learn. 64(1-3): 65-90 (2006) - [j20]Rui Camacho, Ross D. King, Ashwin Srinivasan:
Guest editorial. Mach. Learn. 64(1-3): 145-147 (2006) - [j19]Filip Zelezný, Ashwin Srinivasan, C. David Page Jr.:
Randomised restarted search in ILP. Mach. Learn. 64(1-3): 183-208 (2006) - [c25]Aline Paes, Filip Zelezný, Gerson Zaverucha, C. David Page Jr., Ashwin Srinivasan:
ILP Through Propositionalization and Stochastic k-Term DNF Learning. ILP 2006: 379-393 - [c24]Lucia Specia, Ashwin Srinivasan, Ganesh Ramakrishnan, Maria das Graças Volpe Nunes:
Word Sense Disambiguation Using Inductive Logic Programming. ILP 2006: 409-423 - 2005
- [c23]Hendrik Blockeel, David Page, Ashwin Srinivasan:
Multi-instance tree learning. ICML 2005: 57-64 - [c22]Ashwin Srinivasan, Ravi Kothari:
A Study of Applying Dimensionality Reduction to Restrict the Size of a Hypothesis Space. ILP 2005: 348-365 - [c21]Ashwin Srinivasan:
Five Problems in Five Areas for Five Years. ILP 2005: 424-425 - 2004
- [c20]Filip Zelezný, Ashwin Srinivasan, David Page:
A Monte Carlo Study of Randomised Restarted Search in ILP. ILP 2004: 341-358 - [e1]Rui Camacho, Ross D. King, Ashwin Srinivasan:
Inductive Logic Programming, 14th International Conference, ILP 2004, Porto, Portugal, September 6-8, 2004, Proceedings. Lecture Notes in Computer Science 3194, Springer 2004, ISBN 3-540-22941-8 [contents] - 2003
- [j18]Hannu Toivonen, Ashwin Srinivasan, Ross D. King, Stefan Kramer, Christoph Helma:
Statistical Evaluation of the Predictive Toxicology Challenge 2000-2001. Bioinform. 19(10): 1183-1193 (2003) - [j17]Ashwin Srinivasan, Ross D. King, Michael Bain:
An Empirical Study of the Use of Relevance Information in Inductive Logic Programming. J. Mach. Learn. Res. 4: 369-383 (2003) - [j16]David Page, Ashwin Srinivasan:
ILP: A Short Look Back and a Longer Look Forward. J. Mach. Learn. Res. 4: 415-430 (2003) - [j15]Vítor Santos Costa, Ashwin Srinivasan, Rui Camacho, Hendrik Blockeel, Bart Demoen, Gerda Janssens, Jan Struyf, Henk Vandecasteele, Wim Van Laer:
Query Transformations for Improving the Efficiency of ILP Systems. J. Mach. Learn. Res. 4: 465-491 (2003) - 2002
- [c19]Ashwin Srinivasan:
The Applicability to ILP of Results Concerning the Ordering of Binomial Populations. ILP 2002: 238-253 - [c18]Filip Zelezný, Ashwin Srinivasan, David Page:
Lattice-Search Runtime Distributions May Be Heavy-Tailed. ILP 2002: 333-345 - 2001
- [j14]Christoph Helma, Ross D. King, Stefan Kramer, Ashwin Srinivasan:
The Predictive Toxicology Challenge 2000-2001. Bioinform. 17(1): 107-108 (2001) - [j13]Steve Moyle, Ashwin Srinivasan:
Classificatory challenge-data mining: a recipe. Informatica (Slovenia) 25(3) (2001) - [j12]Ross D. King, Ashwin Srinivasan, Luc Dehaspe:
Warmr: a data mining tool for chemical data. J. Comput. Aided Mol. Des. 15(2): 173-181 (2001) - [j11]Stephen H. Muggleton, Christopher H. Bryant, Ashwin Srinivasan, Alex Whittaker, Simon Topp, Christopher J. Rawlings:
Are Grammatical Representations Useful for Learning from Biological Sequence Data? - A Case Study. J. Comput. Biol. 8(5): 493-521 (2001) - [j10]Ashwin Srinivasan:
Extracting Context-Sensitive Models in Inductive Logic Programming. Mach. Learn. 44(3): 301-324 (2001) - 2000
- [c17]Stephen H. Muggleton, Christopher H. Bryant, Ashwin Srinivasan:
Measuring Performance when Positives Are Rare: Relative Advantage versus Predictive Accuracy - A Biological Case Study. ECML 2000: 300-312 - [c16]Stephen H. Muggleton, Christopher H. Bryant, Ashwin Srinivasan:
Learning Chomsky-like Grammars for Biological Sequence Families. ICML 2000: 631-638 - [c15]Ljupco Todorovski, Saso Dzeroski, Ashwin Srinivasan, Jonathan P. Whiteley, David Gavaghan:
Discovering the Structure of Partial Differential Equations from Example Behaviour. ICML 2000: 991-998 - [c14]Vítor Santos Costa, Ashwin Srinivasan, Rui Camacho:
A Note on Two Simple Transformations for Improving the Efficiency of an ILP System. ILP 2000: 225-242
1990 – 1999
- 1999
- [j9]Ashwin Srinivasan, Ross D. King:
Feature Construction with Inductive Logic Programming: A Study of Quantitative Predictions of Biological Activity Aided by Structural Attributes. Data Min. Knowl. Discov. 3(1): 37-57 (1999) - [j8]Ashwin Srinivasan:
A Study of Two Sampling Methods for Analyzing Large Datasets with ILP. Data Min. Knowl. Discov. 3(1): 95-123 (1999) - [j7]Ashwin Srinivasan, Rui Camacho:
Numerical Reasoning with an ILP System Capable of Lazy Evaluation and Customised Search. J. Log. Program. 40(2-3): 185-213 (1999) - [c13]Ashwin Srinivasan, Ross D. King, Douglas W. Bristol:
An assessment of submissions made to the Predictive Toxicology Evaluation Challenge. IJCAI 1999: 270-275 - [c12]Ashwin Srinivasan, Ross D. King, Douglas W. Bristol:
An Assessment of ILP-Assisted Models for Toxicology and the PTE-3 Experiment. ILP 1999: 291-302 - 1998
- [j6]Ross D. King, Ashwin Srinivasan:
The discovery of indicator variables for QSAR using inductive logic programming. J. Comput. Aided Mol. Des. 12(6): 571-580 (1998) - [j5]Paul W. Finn, Stephen H. Muggleton, David Page, Ashwin Srinivasan:
Pharmacophore Discovery Using the Inductive Logic Programming System PROGOL. Mach. Learn. 30(2-3): 241-270 (1998) - [c11]Stephen H. Muggleton, Ashwin Srinivasan, Ross D. King, Michael J. E. Sternberg:
Biochemical Knowledge Discovery Using Inductive Logic Programming. Discovery Science 1998: 326-341 - [c10]Ashwin Srinivasan:
Application of ILP to Problems in Chemistry and Biology (Abstract). ILP 1998: 10 - 1997
- [j4]Ross D. King, Ashwin Srinivasan:
The discovery of indicator variables for QSAR using inductive logic programming. J. Comput. Aided Mol. Des. 11(6): 571-580 (1997) - [c9]Ashwin Srinivasan, Ross D. King, Stephen H. Muggleton, Michael J. E. Sternberg:
The Predictive Toxicology Evaluation Challenge. IJCAI (1) 1997: 4-9 - [c8]Ashwin Srinivasan, Ross D. King, Stephen H. Muggleton, Michael J. E. Sternberg:
Carcinogenesis Predictions Using ILP. ILP 1997: 273-287 - 1996
- [j3]Ashwin Srinivasan, Stephen H. Muggleton, Michael J. E. Sternberg, Ross D. King:
Theories for Mutagenicity: A Study in First-Order and Feature-Based Induction. Artif. Intell. 85(1-2): 277-299 (1996) - [c7]Stephen H. Muggleton, David Page, Ashwin Srinivasan:
An Initial Experiment into Stereochemistry-Based Drug Design Using Inductive Logic Programming. Inductive Logic Programming Workshop 1996: 25-40 - [c6]Ashwin Srinivasan, Ross D. King:
Feature Construction with Inductive Logic Programming: A Study of Quantitative Predictions of Biological Activity by Structural Attributes. Inductive Logic Programming Workshop 1996: 89-104 - 1995
- [j2]Ross D. King, Michael J. E. Sternberg, Ashwin Srinivasan:
Relating Chemical Activity to Structure: An Examination of ILP Successes. New Gener. Comput. 13(3&4): 411-433 (1995) - [c5]Michael J. E. Sternberg, Ross D. King, Ashwin Srinivasan, Stephen H. Muggleton:
Drug Design by Machine Learning. Machine Intelligence 15 1995: 328-338 - 1993
- [c4]James Cussens, Anthony Hunter, Ashwin Srinivasan:
Generating Explicit Orderings for Non-monotonic Logics. AAAI 1993: 420-425 - [c3]Michael Bain, Ashwin Srinivasan:
Inductive Logic Programming With Large-Scale Unstructured Data. Machine Intelligence 14 1993: 235- - 1992
- [j1]Paul Compton, Glenn Edwards, Byeong Kang, Leslie Lazarus, Ron Malor, Phillip Preston, Ashwin Srinivasan:
Ripple down rules: Turning knowledge acquisition into knowledge maintenance. Artif. Intell. Medicine 4(6): 463-475 (1992) - [c2]Stephen H. Muggleton, Ashwin Srinivasan, Michael Bain:
Compression, Significance, and Accuracy. ML 1992: 338-347 - [c1]Ashwin Srinivasan, Stephen H. Muggleton, Michael Bain:
The Justification of Logical Theories based on Data Compression. Machine Intelligence 13 1992: 87-121
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 22:12 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint