default search action
Jonathan Scarlett
Person information
- affiliation: National University of Singapore, Singapore
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j43]Nelvin Tan, Pablo Pascual Cobo, Jonathan Scarlett, Ramji Venkataramanan:
Approximate Message Passing with Rigorous Guarantees for Pooled Data and Quantitative Group Testing. SIAM J. Math. Data Sci. 6(4): 1027-1054 (2024) - [j42]Millen Kanabar, Jonathan Scarlett:
Mismatched Rate-Distortion Theory: Ensembles, Bounds, and General Alphabets. IEEE Trans. Inf. Theory 70(3): 1525-1539 (2024) - [j41]Yan Hao Ling, Jonathan Scarlett:
Maxflow-Based Bounds for Low-Rate Information Propagation Over Noisy Networks. IEEE Trans. Inf. Theory 70(6): 3840-3854 (2024) - [j40]Thach V. Bui, Jonathan Scarlett:
Concomitant Group Testing. IEEE Trans. Inf. Theory 70(10): 7179-7192 (2024) - [j39]Zihan Li, Jonathan Scarlett:
Regret Bounds for Noise-Free Cascaded Kernelized Bandits. Trans. Mach. Learn. Res. 2024 (2024) - [c85]Xu Cai, Jonathan Scarlett:
Kernelized Normalizing Constant Estimation: Bridging Bayesian Quadrature and Bayesian Optimization. AAAI 2024: 11150-11158 - [c84]Arpan Losalka, Jonathan Scarlett:
No-Regret Algorithms for Safe Bayesian Optimization with Monotonicity Constraints. AISTATS 2024: 3232-3240 - [c83]Yan Hao Ling, Jonathan Scarlett:
Exact Error Exponents for a Concatenated Coding Based Class of DNA Storage Codes. ISIT 2024: 3426-3431 - [c82]Zihan Li, Pasin Manurangsi, Jonathan Scarlett, Warut Suksompong:
Complexity of Round-Robin Allocation with Potentially Noisy Queries. SAGT 2024: 520-537 - [i96]Junren Chen, Jonathan Scarlett:
Exact Thresholds for Noisy Non-Adaptive Group Testing. CoRR abs/2401.04884 (2024) - [i95]Xu Cai, Jonathan Scarlett:
Kernelized Normalizing Constant Estimation: Bridging Bayesian Quadrature and Bayesian Optimization. CoRR abs/2401.05716 (2024) - [i94]Zihan Li, Pasin Manurangsi, Jonathan Scarlett, Warut Suksompong:
Complexity of Round-Robin Allocation with Potentially Noisy Queries. CoRR abs/2404.19402 (2024) - [i93]Arpan Losalka, Jonathan Scarlett:
No-Regret Algorithms for Safe Bayesian Optimization with Monotonicity Constraints. CoRR abs/2406.03264 (2024) - [i92]Qianli Shen, Yezhen Wang, Zhouhao Yang, Xiang Li, Haonan Wang, Yang Zhang, Jonathan Scarlett, Zhanxing Zhu, Kenji Kawaguchi:
Memory-Efficient Gradient Unrolling for Large-Scale Bi-level Optimization. CoRR abs/2406.14095 (2024) - [i91]Junren Chen, Zhaoqiang Liu, Michael Kwok-Po Ng, Jonathan Scarlett:
Robust Instance Optimal Phase-Only Compressed Sensing. CoRR abs/2408.06275 (2024) - [i90]Yan Hao Ling, Jonathan Scarlett:
Exact Error Exponents of Concatenated Codes for DNA Storage. CoRR abs/2409.01223 (2024) - [i89]Recep Can Yavas, Yuqi Huang, Vincent Y. F. Tan, Jonathan Scarlett:
A General Framework for Clustering and Distribution Matching with Bandit Feedback. CoRR abs/2409.05072 (2024) - 2023
- [j38]Nelvin Tan, Way Tan, Jonathan Scarlett:
Performance Bounds for Group Testing With Doubly-Regular Designs. IEEE Trans. Inf. Theory 69(2): 1224-1243 (2023) - [j37]Yan Hao Ling, Jonathan Scarlett:
Multi-Bit Relaying Over a Tandem of Channels. IEEE Trans. Inf. Theory 69(6): 3511-3524 (2023) - [j36]Xu Cai, Chi Thanh Lam, Jonathan Scarlett:
On Average-Case Error Bounds for Kernel-Based Bayesian Quadrature. Trans. Mach. Learn. Res. 2023 (2023) - [c81]Ivan Lau, Yan Hao Ling, Mayank Shrivastava, Jonathan Scarlett:
Max-Quantile Grouped Infinite-Arm Bandits. ALT 2023: 909-945 - [c80]Jonathan Scarlett, Nicholas Teh, Yair Zick:
For One and All: Individual and Group Fairness in the Allocation of Indivisible Goods. AAMAS 2023: 2466-2468 - [c79]Prathamesh Mayekar, Jonathan Scarlett, Vincent Y. F. Tan:
Communication-Constrained Bandits under Additive Gaussian Noise. ICML 2023: 24236-24250 - [c78]Junren Chen, Jonathan Scarlett, Michael Ng, Zhaoqiang Liu:
A Unified Framework for Uniform Signal Recovery in Nonlinear Generative Compressed Sensing. NeurIPS 2023 - [c77]Arpan Losalka, Jonathan Scarlett:
Benefits of monotonicity in safe exploration with Gaussian processes. UAI 2023: 1304-1314 - [e1]Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, Jonathan Scarlett:
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA. Proceedings of Machine Learning Research 202, PMLR 2023 [contents] - [i88]Jonathan Scarlett, Nicholas Teh, Yair Zick:
For One and All: Individual and Group Fairness in the Allocation of Indivisible Goods. CoRR abs/2302.06958 (2023) - [i87]Yan Hao Ling, Jonathan Scarlett:
Maxflow-Based Bounds for Low-Rate Information Propagation over Noisy Networks. CoRR abs/2304.02226 (2023) - [i86]Prathamesh Mayekar, Jonathan Scarlett, Vincent Y. F. Tan:
Communication-Constrained Bandits under Additive Gaussian Noise. CoRR abs/2304.12680 (2023) - [i85]Thach V. Bui, Jonathan Scarlett:
Concomitant Group Testing. CoRR abs/2309.04221 (2023) - [i84]Nelvin Tan, Jonathan Scarlett, Ramji Venkataramanan:
Approximate Message Passing with Rigorous Guarantees for Pooled Data and Quantitative Group Testing. CoRR abs/2309.15507 (2023) - [i83]Junren Chen, Jonathan Scarlett, Michael Kwok-Po Ng, Zhaoqiang Liu:
A Unified Framework for Uniform Signal Recovery in Nonlinear Generative Compressed Sensing. CoRR abs/2310.03758 (2023) - [i82]Yan Hao Ling, Jonathan Scarlett:
Optimal 1-bit Error Exponent for 2-hop Relaying with Binary-Input Channels. CoRR abs/2311.14251 (2023) - 2022
- [j35]Paul Hand, Reinhard Heckel, Jonathan Scarlett:
Guest Editorial. IEEE J. Sel. Areas Inf. Theory 3(3): 432 (2022) - [j34]Jonathan Scarlett, Reinhard Heckel, Miguel R. D. Rodrigues, Paul Hand, Yonina C. Eldar:
Theoretical Perspectives on Deep Learning Methods in Inverse Problems. IEEE J. Sel. Areas Inf. Theory 3(3): 433-453 (2022) - [j33]Oliver Gebhard, Max Hahn-Klimroth, Olaf Parczyk, Manuel Penschuck, Maurice Rolvien, Jonathan Scarlett, Nelvin Tan:
Near-Optimal Sparsity-Constrained Group Testing: Improved Bounds and Algorithms. IEEE Trans. Inf. Theory 68(5): 3253-3280 (2022) - [j32]Bernard Teo, Jonathan Scarlett:
Noisy Adaptive Group Testing via Noisy Binary Search. IEEE Trans. Inf. Theory 68(5): 3340-3353 (2022) - [j31]Yan Hao Ling, Jonathan Scarlett:
Simple Coding Techniques for Many-Hop Relaying. IEEE Trans. Inf. Theory 68(11): 7043-7053 (2022) - [j30]Zexin Wang, Vincent Y. F. Tan, Jonathan Scarlett:
Tight Regret Bounds for Noisy Optimization of a Brownian Motion. IEEE Trans. Signal Process. 70: 1072-1087 (2022) - [j29]Ivan Lau, Jonathan Scarlett, Yang Sun:
Model-Based and Graph-Based Priors for Group Testing. IEEE Trans. Signal Process. 70: 6035-6050 (2022) - [c76]Zhenlin Wang, Jonathan Scarlett:
Max-Min Grouped Bandits. AAAI 2022: 8603-8611 - [c75]Zihan Li, Jonathan Scarlett:
Gaussian Process Bandit Optimization with Few Batches. AISTATS 2022: 92-107 - [c74]Yang Sun, Jonathan Scarlett:
Data-Driven Algorithms for Gaussian Measurement Matrix Design in Compressive Sensing. ICASSP 2022: 5523-5527 - [c73]Zhaoqiang Liu, Jiulong Liu, Subhroshekhar Ghosh, Jun Han, Jonathan Scarlett:
Generative Principal Component Analysis. ICLR 2022 - [c72]Eric Han, Jonathan Scarlett:
Adversarial Attacks on Gaussian Process Bandits. ICML 2022: 8304-8329 - [c71]Sattar Vakili, Jonathan Scarlett, Da-Shan Shiu, Alberto Bernacchia:
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning. ICML 2022: 21960-21983 - [c70]Thach V. Bui, Yeow Meng Chee, Jonathan Scarlett, Van Khu Vu:
Group Testing with Blocks of Positives. ISIT 2022: 1082-1087 - [c69]Millen Kanabar, Jonathan Scarlett:
Multi-User Random Coding Techniques for Mismatched Rate-Distortion Theory. ISIT 2022: 1425-1429 - [c68]Yan Hao Ling, Jonathan Scarlett:
A Simple Coding Scheme Attaining Positive Information Velocity. ISIT 2022: 3215-3219 - [c67]Sidhant Bansal, Arnab Bhattacharyya, Anamay Chaturvedi, Jonathan Scarlett:
Universal 1-Bit Compressive Sensing for Bounded Dynamic Range Signals. ISIT 2022: 3280-3284 - [c66]Ilija Bogunovic, Zihan Li, Andreas Krause, Jonathan Scarlett:
A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian Process Bandits. NeurIPS 2022 - [i81]Nelvin Tan, Way Tan, Jonathan Scarlett:
Performance Bounds for Group Testing With Doubly-Regular Designs. CoRR abs/2201.03745 (2022) - [i80]Ilija Bogunovic, Zihan Li, Andreas Krause, Jonathan Scarlett:
A Robust Phased Elimination Algorithm for Corruption-Tolerant Gaussian Process Bandits. CoRR abs/2202.01850 (2022) - [i79]Sattar Vakili, Jonathan Scarlett, Da-Shan Shiu, Alberto Bernacchia:
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning. CoRR abs/2202.04005 (2022) - [i78]Sidhant Bansal, Arnab Bhattacharyya, Anamay Chaturvedi, Jonathan Scarlett:
Universal 1-Bit Compressive Sensing for Bounded Dynamic Range Signals. CoRR abs/2202.10611 (2022) - [i77]Xu Cai, Chi Thanh Lam, Jonathan Scarlett:
Order-Optimal Error Bounds for Noisy Kernel-Based Bayesian Quadrature. CoRR abs/2202.10615 (2022) - [i76]Zhaoqiang Liu, Jiulong Liu, Subhroshekhar Ghosh, Jun Han, Jonathan Scarlett:
Generative Principal Component Analysis. CoRR abs/2203.09693 (2022) - [i75]Millen Kanabar, Jonathan Scarlett:
Mismatched Rate-Distortion Theory: Ensembles, Bounds, and General Alphabets. CoRR abs/2203.15193 (2022) - [i74]Ivan Lau, Jonathan Scarlett, Yang Sun:
Model-Based and Graph-Based Priors for Group Testing. CoRR abs/2205.11838 (2022) - [i73]Jonathan Scarlett, Reinhard Heckel, Miguel R. D. Rodrigues, Paul Hand, Yonina C. Eldar:
Theoretical Perspectives on Deep Learning Methods in Inverse Problems. CoRR abs/2206.14373 (2022) - [i72]Yan Hao Ling, Jonathan Scarlett:
Multi-Bit Relaying over a Tandem of Channels. CoRR abs/2208.02003 (2022) - [i71]Ivan Lau, Yan Hao Ling, Mayank Shrivastava, Jonathan Scarlett:
Max-Quantile Grouped Infinite-Arm Bandits. CoRR abs/2210.01295 (2022) - [i70]Arpan Losalka, Jonathan Scarlett:
Benefits of Monotonicity in Safe Exploration with Gaussian Processes. CoRR abs/2211.01561 (2022) - [i69]Zihan Li, Jonathan Scarlett:
Regret Bounds for Noise-Free Cascaded Kernelized Bandits. CoRR abs/2211.05430 (2022) - 2021
- [j28]Yang Sun, Hangdong Zhao, Jonathan Scarlett:
On Architecture Selection for Linear Inverse Problems with Untrained Neural Networks. Entropy 23(11): 1481 (2021) - [j27]Steffen Bondorf, Binbin Chen, Jonathan Scarlett, Haifeng Yu, Yuda Zhao:
Sublinear-Time Non-Adaptive Group Testing With O(k log n) Tests via Bit-Mixing Coding. IEEE Trans. Inf. Theory 67(3): 1559-1570 (2021) - [j26]Yan Hao Ling, Jonathan Scarlett:
Optimal Rates of Teaching and Learning Under Uncertainty. IEEE Trans. Inf. Theory 67(11): 7067-7080 (2021) - [c65]Eric Han, Ishank Arora, Jonathan Scarlett:
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models. AAAI 2021: 7630-7638 - [c64]Ilija Bogunovic, Arpan Losalka, Andreas Krause, Jonathan Scarlett:
Stochastic Linear Bandits Robust to Adversarial Attacks. AISTATS 2021: 991-999 - [c63]Sattar Vakili, Jonathan Scarlett, Tara Javidi:
Open Problem: Tight Online Confidence Intervals for RKHS Elements. COLT 2021: 4647-4652 - [c62]Xu Cai, Selwyn Gomes, Jonathan Scarlett:
Lenient Regret and Good-Action Identification in Gaussian Process Bandits. ICML 2021: 1183-1192 - [c61]Xu Cai, Jonathan Scarlett:
On Lower Bounds for Standard and Robust Gaussian Process Bandit Optimization. ICML 2021: 1216-1226 - [c60]Yan Hao Ling, Jonathan Scarlett:
Optimal Rates of Teaching and Learning Under Binary Symmetric Noise. ISIT 2021: 1356-1360 - [c59]Nelvin Tan, Jonathan Scarlett:
An Analysis of the DD Algorithm for Group Testing with Size-Constrained Tests. ISIT 2021: 1967-1972 - [c58]Zhaoqiang Liu, Subhroshekhar Ghosh, Jonathan Scarlett:
Robust 1-bit Compressive Sensing with Partial Gaussian Circulant Matrices and Generative Priors. ITW 2021: 1-6 - [c57]Zhaoqiang Liu, Subhroshekhar Ghosh, Jonathan Scarlett:
Towards Sample-Optimal Compressive Phase Retrieval with Sparse and Generative Priors. NeurIPS 2021: 17656-17668 - [i68]Xu Cai, Selwyn Gomes, Jonathan Scarlett:
Lenient Regret and Good-Action Identification in Gaussian Process Bandits. CoRR abs/2102.05793 (2021) - [i67]Yan Hao Ling, Jonathan Scarlett:
Optimal Rates of Teaching and Learning Under Uncertainty. CoRR abs/2104.06565 (2021) - [i66]Eric Price, Jonathan Scarlett, Nelvin Tan:
Fast Splitting Algorithms for Sparsity-Constrained and Noisy Group Testing. CoRR abs/2106.00308 (2021) - [i65]Bernard Teo, Jonathan Scarlett:
Noisy Adaptive Group Testing via Noisy Binary Search. CoRR abs/2106.12193 (2021) - [i64]Zhaoqiang Liu, Subhroshekhar Ghosh, Jonathan Scarlett:
Towards Sample-Optimal Compressive Phase Retrieval with Sparse and Generative Priors. CoRR abs/2106.15358 (2021) - [i63]Zhaoqiang Liu, Subhroshekhar Ghosh, Jun Han, Jonathan Scarlett:
Robust 1-bit Compressive Sensing with Partial Gaussian Circulant Matrices and Generative Priors. CoRR abs/2108.03570 (2021) - [i62]Zihan Li, Jonathan Scarlett:
Gaussian Process Bandit Optimization with Few Batches. CoRR abs/2110.07788 (2021) - [i61]Eric Han, Jonathan Scarlett:
Adversarial Attacks on Gaussian Process Bandits. CoRR abs/2110.08449 (2021) - [i60]Sattar Vakili, Jonathan Scarlett, Tara Javidi:
Open Problem: Tight Online Confidence Intervals for RKHS Elements. CoRR abs/2110.15458 (2021) - [i59]Zhenlin Wang, Jonathan Scarlett:
Max-Min Grouped Bandits. CoRR abs/2111.08862 (2021) - [i58]Yan Hao Ling, Jonathan Scarlett:
Simple Coding Techniques for Many-Hop Relaying. CoRR abs/2112.07120 (2021) - 2020
- [j25]Lan V. Truong, Jonathan Scarlett:
On Gap-Based Lower Bounding Techniques for Best-Arm Identification. Entropy 22(7): 788 (2020) - [j24]Jonathan Scarlett, Albert Guillén i Fàbregas, Anelia Somekh-Baruch, Alfonso Martinez:
Information-Theoretic Foundations of Mismatched Decoding. Found. Trends Commun. Inf. Theory 17(2-3): 149-401 (2020) - [j23]Zhaoqiang Liu, Jonathan Scarlett:
Information-Theoretic Lower Bounds for Compressive Sensing With Generative Models. IEEE J. Sel. Areas Inf. Theory 1(1): 292-303 (2020) - [j22]Lan V. Truong, Matthew Aldridge, Jonathan Scarlett:
On the All-or-Nothing Behavior of Bernoulli Group Testing. IEEE J. Sel. Areas Inf. Theory 1(3): 669-680 (2020) - [j21]Jonathan Scarlett, Oliver Johnson:
Noisy Non-Adaptive Group Testing: A (Near-)Definite Defectives Approach. IEEE Trans. Inf. Theory 66(6): 3775-3797 (2020) - [j20]Lan V. Truong, Jonathan Scarlett:
Support Recovery in the Phase Retrieval Model: Information-Theoretic Fundamental Limit. IEEE Trans. Inf. Theory 66(12): 7887-7910 (2020) - [c56]Lorenzo Ciampiconi, Bishwamittra Ghosh, Jonathan Scarlett, Kuldeep S. Meel:
A MaxSAT-Based Framework for Group Testing. AAAI 2020: 10144-10152 - [c55]Ilija Bogunovic, Andreas Krause, Jonathan Scarlett:
Corruption-Tolerant Gaussian Process Bandit Optimization. AISTATS 2020: 1071-1081 - [c54]Anamay Chaturvedi, Jonathan Scarlett:
Learning Gaussian Graphical Models via Multiplicative Weights. AISTATS 2020: 1104-1114 - [c53]Eric Price, Jonathan Scarlett:
A Fast Binary Splitting Approach to Non-Adaptive Group Testing. APPROX-RANDOM 2020: 13:1-13:20 - [c52]Abdul Fatir Ansari, Jonathan Scarlett, Harold Soh:
A Characteristic Function Approach to Deep Implicit Generative Modeling. CVPR 2020: 7476-7484 - [c51]Zhaoqiang Liu, Selwyn Gomes, Avtansh Tiwari, Jonathan Scarlett:
Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable Embeddings with Generative Priors. ICML 2020: 6216-6225 - [c50]Nelvin Tan, Jonathan Scarlett:
Near-Optimal Sparse Adaptive Group Testing. ISIT 2020: 1420-1425 - [c49]Zhaoqiang Liu, Jonathan Scarlett:
The Generalized Lasso with Nonlinear Observations and Generative Priors. NeurIPS 2020 - [c48]Zhaoqiang Liu, Jonathan Scarlett:
Sample Complexity Lower Bounds for Compressive Sensing with Generative Models. SPCOM 2020: 1-5 - [i57]Zexin Wang, Vincent Y. F. Tan, Jonathan Scarlett:
Tight Regret Bounds for Noisy Optimization of a Brownian Motion. CoRR abs/2001.09327 (2020) - [i56]Lan V. Truong, Jonathan Scarlett:
On the All-Or-Nothing Behavior of Bernoulli Group Testing. CoRR abs/2001.10137 (2020) - [i55]Zhaoqiang Liu, Selwyn Gomes, Avtansh Tiwari, Jonathan Scarlett:
Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable Embeddings with Generative Priors. CoRR abs/2002.01697 (2020) - [i54]Anamay Chaturvedi, Jonathan Scarlett:
Learning Gaussian Graphical Models via Multiplicative Weights. CoRR abs/2002.08663 (2020) - [i53]Ilija Bogunovic, Andreas Krause, Jonathan Scarlett:
Corruption-Tolerant Gaussian Process Bandit Optimization. CoRR abs/2003.01971 (2020) - [i52]Jonathan Scarlett, Albert Guillén i Fàbregas, Anelia Somekh-Baruch, Alfonso Martinez:
Information-Theoretic Foundations of Mismatched Decoding. CoRR abs/2003.11694 (2020) - [i51]Nelvin Tan, Jonathan Scarlett:
Improved Bounds and Algorithms for Sparsity-Constrained Group Testing. CoRR abs/2004.03119 (2020) - [i50]Bay Wei Heng, Jonathan Scarlett:
Non-Adaptive Group Testing in the Linear Regime: Strong Converse and Approximate Recovery. CoRR abs/2006.01325 (2020) - [i49]Eric Price, Jonathan Scarlett:
A Fast Binary Splitting Approach to Non-Adaptive Group Testing. CoRR abs/2006.10268 (2020) - [i48]Zhaoqiang Liu, Jonathan Scarlett:
The Generalized Lasso with Nonlinear Observations and Generative Priors. CoRR abs/2006.12415 (2020) - [i47]Ilija Bogunovic, Arpan Losalka, Andreas Krause, Jonathan Scarlett:
Stochastic Linear Bandits Robust to Adversarial Attacks. CoRR abs/2007.03285 (2020) - [i46]Xu Cai, Jonathan Scarlett:
On Lower Bounds for Standard and Robust Gaussian Process Bandit Optimization. CoRR abs/2008.08757 (2020) - [i45]Eric Han, Ishank Arora, Jonathan Scarlett:
High-Dimensional Bayesian Optimization via Tree-Structured Additive Models. CoRR abs/2012.13088 (2020)
2010 – 2019
- 2019
- [j19]Matthew Aldridge, Oliver Johnson, Jonathan Scarlett:
Group Testing: An Information Theory Perspective. Found. Trends Commun. Inf. Theory 15(3-4): 196-392 (2019) - [j18]Oliver Johnson, Matthew Aldridge, Jonathan Scarlett:
Performance of Group Testing Algorithms With Near-Constant Tests Per Item. IEEE Trans. Inf. Theory 65(2): 707-723 (2019) - [j17]Anelia Somekh-Baruch, Jonathan Scarlett, Albert Guillen i Fabregas:
Generalized Random Gilbert-Varshamov Codes. IEEE Trans. Inf. Theory 65(6): 3452-3469 (2019) - [j16]Jonathan Scarlett:
Noisy Adaptive Group Testing: Bounds and Algorithms. IEEE Trans. Inf. Theory 65(6): 3646-3661 (2019) - [c47]Steffen Bondorf, Binbin Chen, Jonathan Scarlett, Haifeng Yu, Yuda Zhao:
Cross-sender bit-mixing coding. IPSN 2019: 205-216 - [c46]Jonathan Scarlett, Ilija Bogunovic, Volkan Cevher:
Overlapping Multi-Bandit Best Arm Identification. ISIT 2019: 2544-2548 - [c45]Jonathan Scarlett:
An Efficient Algorithm for Capacity-Approaching Noisy Adaptive Group Testing. ISIT 2019: 2679-2683 - [c44]Anelia Somekh-Baruch, Jonathan Scarlett, Albert Guillén i Fàbregas:
A Recursive Cost-Constrained Construction that Attains the Expurgated Exponent. ISIT 2019: 2938-2942 - [c43]Lan V. Truong, Jonathan Scarlett:
On the Information-Theoretic Limits of Noisy Sparse Phase Retrieval. ITW 2019: 1-5 - [c42]Zihan Li, Matthias Fresacher, Jonathan Scarlett:
Learning Erdos-Renyi Random Graphs via Edge Detecting Queries. NeurIPS 2019: 402-412 - [i44]Jonathan Scarlett, Volkan Cevher:
An Introductory Guide to Fano's Inequality with Applications in Statistical Estimation. CoRR abs/1901.00555 (2019) - [i43]Lan V. Truong, Jonathan Scarlett:
Support Recovery in the Phase Retrieval Model: Information-Theoretic Fundamental Limits. CoRR abs/1901.10647 (2019) - [i42]Matthew Aldridge, Oliver Johnson, Jonathan Scarlett:
Group testing: an information theory perspective. CoRR abs/1902.06002 (2019) - [i41]Steffen Bondorf, Binbin Chen, Jonathan Scarlett, Haifeng Yu, Yuda Zhao:
Sublinear-Time Non-Adaptive Group Testing with O(k log n) Tests via Bit-Mixing Coding. CoRR abs/1904.10102 (2019) - [i40]Zihan Li, Matthias Fresacher, Jonathan Scarlett:
Learning Erdős-Rényi Random Graphs via Edge Detecting Queries. CoRR abs/1905.03410 (2019) - [i39]Zhaoqiang Liu, Jonathan Scarlett:
Information-Theoretic Lower Bounds for Compressive Sensing with Generative Models. CoRR abs/1908.10744 (2019) - [i38]Abdul Fatir Ansari, Jonathan Scarlett, Harold Soh:
A Characteristic Function Approach to Deep Implicit Generative Modeling. CoRR abs/1909.07425 (2019) - [i37]Jonathan Scarlett:
An Efficient Algorithm for Capacity-Approaching Noisy Adaptive Group Testing. CoRR abs/1911.02764 (2019) - 2018
- [j15]Jonathan Scarlett, Volkan Cevher:
Near-Optimal Noisy Group Testing via Separate Decoding of Items. IEEE J. Sel. Top. Signal Process. 12(5): 902-915 (2018) - [j14]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Mismatched Multi-Letter Successive Decoding for the Multiple-Access Channel. IEEE Trans. Inf. Theory 64(4): 2253-2266 (2018) - [j13]Baran Gozcu, Rabeeh Karimi Mahabadi, Yen-Huan Li, Efe Ilicak, Tolga Çukur, Jonathan Scarlett, Volkan Cevher:
Learning-Based Compressive MRI. IEEE Trans. Medical Imaging 37(6): 1394-1406 (2018) - [c41]Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, Volkan Cevher:
High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups. AISTATS 2018: 298-307 - [c40]Anelia Somekh-Baruch, Jonathan Scarlett, Albert Guillen i Fabregas:
The error exponent of random gilbert-varshamov codes. CISS 2018: 1-2 - [c39]Jonathan Scarlett:
Tight Regret Bounds for Bayesian Optimization in One Dimension. ICML 2018: 4507-4515 - [c38]Jonathan Scarlett, Volkan Cevher:
Near-Optimal Noisy Group Testing via Separate Decoding of Items. ISIT 2018: 2311-2315 - [c37]Anelia Somekh-Baruch, Jonathan Scarlett, Albert Guillen i Fabregas:
The Error Exponent of Generalized Random-Gilbert Varshamov Codes. ISIT 2018: 2361-2365 - [c36]Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, Volkan Cevher:
Adversarially Robust Optimization with Gaussian Processes. NeurIPS 2018: 5765-5775 - [i36]Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, Volkan Cevher:
High-Dimensional Bayesian Optimization via Additive Models with Overlapping Groups. CoRR abs/1802.07028 (2018) - [i35]Jonathan Scarlett:
Noisy Adaptive Group Testing: Bounds and Algorithms. CoRR abs/1803.05099 (2018) - [i34]Baran Gözcü, Rabeeh Karimi Mahabadi, Yen-Huan Li, Efe Ilicak, Tolga Çukur, Jonathan Scarlett, Volkan Cevher:
Learning-Based Compressive MRI. CoRR abs/1805.01266 (2018) - [i33]Anelia Somekh-Baruch, Jonathan Scarlett, Albert Guillén i Fàbregas:
Generalized Random Gilbert-Varshamov Codes. CoRR abs/1805.02515 (2018) - [i32]Jonathan Scarlett:
Tight Regret Bounds for Bayesian Optimization in One Dimension. CoRR abs/1805.11792 (2018) - [i31]Steffen Bondorf, Binbin Chen, Jonathan Scarlett, Haifeng Yu, Yuda Zhao:
Cross-Sender Bit-Mixing Coding. CoRR abs/1807.04449 (2018) - [i30]Jonathan Scarlett, Oliver Johnson:
Noisy Non-Adaptive Group Testing: A (Near-)Definite Defectives Approach. CoRR abs/1808.09143 (2018) - [i29]Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, Volkan Cevher:
Adversarially Robust Optimization with Gaussian Processes. CoRR abs/1810.10775 (2018) - 2017
- [j12]Jonathan Scarlett, Vincent Y. F. Tan, Giuseppe Durisi:
The Dispersion of Nearest-Neighbor Decoding for Additive Non-Gaussian Channels. IEEE Trans. Inf. Theory 63(1): 81-92 (2017) - [j11]Jonathan Scarlett, Volkan Cevher:
Limits on Support Recovery With Probabilistic Models: An Information-Theoretic Framework. IEEE Trans. Inf. Theory 63(1): 593-620 (2017) - [c35]Jonathan Scarlett, Volkan Cevher:
Lower Bounds on Active Learning for Graphical Model Selection. AISTATS 2017: 55-64 - [c34]Ilija Bogunovic, Slobodan Mitrovic, Jonathan Scarlett, Volkan Cevher:
A distributed algorithm for partitioned robust submodular maximization. CAMSAP 2017: 1-5 - [c33]Jonathan Scarlett, Ilija Bogunovic, Volkan Cevher:
Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization. COLT 2017: 1723-1742 - [c32]Jonathan Scarlett, Volkan Cevher:
How little does non-exact recovery help in group testing? ICASSP 2017: 6090-6094 - [c31]Ilija Bogunovic, Slobodan Mitrovic, Jonathan Scarlett, Volkan Cevher:
Robust Submodular Maximization: A Non-Uniform Partitioning Approach. ICML 2017: 508-516 - [c30]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Expurgated joint source-channel coding bounds and error exponents. ISIT 2017: 908-912 - [c29]Jonathan Scarlett, Volkan Cevher:
Phase Transitions in the Pooled Data Problem. NIPS 2017: 377-385 - [c28]Volkan Cevher, Michael Kapralov, Jonathan Scarlett, Amir Zandieh:
An adaptive sublinear-time block sparse fourier transform. STOC 2017: 702-715 - [i28]Volkan Cevher, Michael Kapralov, Jonathan Scarlett, Amir Zandieh:
An Adaptive Sublinear-Time Block Sparse Fourier Transform. CoRR abs/1702.01286 (2017) - [i27]Jonathan Scarlett, Ilija Bogunovic, Volkan Cevher:
Lower Bounds on Regret for Noisy Gaussian Process Bandit Optimization. CoRR abs/1706.00090 (2017) - [i26]Ilija Bogunovic, Slobodan Mitrovic, Jonathan Scarlett, Volkan Cevher:
Robust Submodular Maximization: A Non-Uniform Partitioning Approach. CoRR abs/1706.04918 (2017) - [i25]Jonathan Scarlett, Volkan Cevher:
Phase Transitions in the Pooled Data Problem. CoRR abs/1710.06766 (2017) - [i24]Jonathan Scarlett, Volkan Cevher:
Efficient and Near-Optimal Noisy Group Testing: An Information-Theoretic Framework. CoRR abs/1710.08704 (2017) - 2016
- [j10]Luca Baldassarre, Yen-Huan Li, Jonathan Scarlett, Baran Gozcu, Ilija Bogunovic, Volkan Cevher:
Learning-Based Compressive Subsampling. IEEE J. Sel. Top. Signal Process. 10(4): 809-822 (2016) - [j9]Jonathan Scarlett, Alfonso Martinez, Albert Guillén i Fàbregas:
Multiuser Random Coding Techniques for Mismatched Decoding. IEEE Trans. Inf. Theory 62(7): 3950-3970 (2016) - [j8]Jonathan Scarlett, Volkan Cevher:
On the Difficulty of Selecting Ising Models With Approximate Recovery. IEEE Trans. Signal Inf. Process. over Networks 2(4): 625-638 (2016) - [c27]Jonathan Scarlett, Volkan Cevher:
Limits on Sparse Support Recovery via Linear Sketching with Random Expander Matrices. AISTATS 2016: 149-158 - [c26]Ilija Bogunovic, Jonathan Scarlett, Volkan Cevher:
Time-Varying Gaussian Process Bandit Optimization. AISTATS 2016: 314-323 - [c25]Matthew Aldridge, Oliver Johnson, Jonathan Scarlett:
Improved group testing rates with constant column weight designs. ISIT 2016: 1381-1385 - [c24]Jonathan Scarlett, Volkan Cevher:
Partial recovery bounds for the sparse stochastic block model. ISIT 2016: 1904-1908 - [c23]Jonathan Scarlett, Vincent Y. F. Tan, Giuseppe Durisi:
The dispersion of nearest-neighbor decoding for additive non-Gaussian channels. ISIT 2016: 2664-2668 - [c22]Jonathan Scarlett, Volkan Cevher:
Converse bounds for noisy group testing with arbitrary measurement matrices. ISIT 2016: 2868-2872 - [c21]Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, Volkan Cevher:
Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation. NIPS 2016: 1507-1515 - [c20]Jonathan Scarlett, Volkan Cevher:
Phase Transitions in Group Testing. SODA 2016: 40-53 - [i23]Ilija Bogunovic, Jonathan Scarlett, Volkan Cevher:
Time-Varying Gaussian Process Bandit Optimization. CoRR abs/1601.06650 (2016) - [i22]Jonathan Scarlett, Volkan Cevher:
Converse Bounds for Noisy Group Testing with Arbitrary Measurement Matrices. CoRR abs/1602.00875 (2016) - [i21]Jonathan Scarlett, Volkan Cevher:
Partial Recovery Bounds for the Sparse Stochastic Block Model. CoRR abs/1602.00877 (2016) - [i20]Matthew Aldridge, Oliver Johnson, Jonathan Scarlett:
Improved group testing rates with constant column weight designs. CoRR abs/1602.03471 (2016) - [i19]Jonathan Scarlett, Volkan Cevher:
On the Difficulty of Selecting Ising Models with Approximate Recovery. CoRR abs/1602.03647 (2016) - [i18]Jonathan Scarlett, Volkan Cevher:
Lower Bounds on Active Learning for Graphical Model Selection. CoRR abs/1607.02413 (2016) - [i17]Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, Volkan Cevher:
Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation. CoRR abs/1610.07379 (2016) - [i16]Jonathan Scarlett, Alfonso Martinez, Albert Guillén i Fàbregas:
Mismatched Multi-letter Successive Decoding for the Multiple-Access Channel. CoRR abs/1612.00211 (2016) - [i15]Oliver Johnson, Matthew Aldridge, Jonathan Scarlett:
Performance of group testing algorithms with constant tests-per-item. CoRR abs/1612.07122 (2016) - 2015
- [j7]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Second-Order Rate Region of Constant-Composition Codes for the Multiple-Access Channel. IEEE Trans. Inf. Theory 61(1): 157-172 (2015) - [j6]Jonathan Scarlett:
On the Dispersions of the Gel'fand-Pinsker Channel and Dirty Paper Coding. IEEE Trans. Inf. Theory 61(9): 4569-4586 (2015) - [j5]Jonathan Scarlett, Anelia Somekh-Baruch, Alfonso Martinez, Albert Guillen i Fabregas:
A Counter-Example to the Mismatched Decoding Converse for Binary-Input Discrete Memoryless Channels. IEEE Trans. Inf. Theory 61(10): 5387-5395 (2015) - [j4]Jonathan Scarlett, Vincent Y. F. Tan:
Second-Order Asymptotics for the Gaussian MAC With Degraded Message Sets. IEEE Trans. Inf. Theory 61(12): 6700-6718 (2015) - [c19]Yen-Huan Li, Jonathan Scarlett, Pradeep Ravikumar, Volkan Cevher:
Sparsistency of 1-Regularized M-Estimators. AISTATS 2015 - [c18]Ilija Bogunovic, Volkan Cevher, Jarvis D. Haupt, Jonathan Scarlett:
Active learning of self-concordant like multi-index functions. ICASSP 2015: 2189-2193 - [c17]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
The likelihood decoder: Error exponents and mismatch. ISIT 2015: 86-90 - [c16]Jonathan Scarlett, Volkan Cevher:
Limits on support recovery with probabilistic models: An information-theoretic framework. ISIT 2015: 2331-2335 - [c15]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Refinements of the third-order term in the fixed error asymptotics of constant-composition codes. ISIT 2015: 2954-2958 - [c14]Jonathan Scarlett, Vincent Y. F. Tan:
Second-order asymptotics for the discrete memoryless MAC with degraded message sets. ISIT 2015: 2964-2968 - [i14]Jonathan Scarlett, Volkan Cevher:
Limits on Support Recovery with Probabilistic Models: An Information-Spectrum Approach. CoRR abs/1501.07440 (2015) - [i13]Jonathan Scarlett, Anelia Somekh-Baruch, Alfonso Martinez, Albert Guillén i Fàbregas:
A Counter-Example to the Mismatched Decoding Converse for Binary-Input Discrete Memoryless Channels. CoRR abs/1508.02374 (2015) - [i12]Luca Baldassarre, Yen-Huan Li, Jonathan Scarlett, Baran Gözcü, Ilija Bogunovic, Volkan Cevher:
Learning-based Compressive Subsampling. CoRR abs/1510.06188 (2015) - [i11]Jonathan Scarlett, Vincent Y. F. Tan, Giuseppe Durisi:
The Dispersion of Nearest-Neighbor Decoding for Additive Non-Gaussian Channels. CoRR abs/1512.06618 (2015) - 2014
- [j3]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Mismatched Decoding: Error Exponents, Second-Order Rates and Saddlepoint Approximations. IEEE Trans. Inf. Theory 60(5): 2647-2666 (2014) - [j2]Jonathan Scarlett, Li Peng, Neri Merhav, Alfonso Martinez, Albert Guillen i Fabregas:
Expurgated Random-Coding Ensembles: Exponents, Refinements, and Connections. IEEE Trans. Inf. Theory 60(8): 4449-4462 (2014) - [c13]Jonathan Scarlett, Vincent Y. F. Tan:
Second-order asymptotics for the gaussian MAC with degraded message sets. ISIT 2014: 461-465 - [c12]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
The saddlepoint approximation: Unified random coding asymptotics for fixed and varying rates. ISIT 2014: 1892-1896 - [c11]Jonathan Scarlett:
On the dispersion of dirty paper coding. ISIT 2014: 2282-2286 - [c10]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Mismatched multi-letter successive decoding for the multiple-access channel. ISIT 2014: 2539-2543 - [c9]Alfonso Martinez, Jonathan Scarlett, Marco Dalai, Albert Guillen i Fabregas:
A complex-integration approach to the saddlepoint approximation for random-coding bounds. ISWCS 2014: 618-621 - [i10]Jonathan Scarlett, Alfonso Martinez, Albert Guillén i Fàbregas:
The Saddlepoint Approximation: A Unification of Exponents, Dispersions and Moderate Deviations. CoRR abs/1402.3941 (2014) - [i9]Jonathan Scarlett, Vincent Y. F. Tan:
Second-Order Asymptotics for the Discrete Memoryless MAC with Degraded Message Sets. CoRR abs/1408.1119 (2014) - 2013
- [j1]Jonathan Scarlett, Jamie S. Evans, Subhrakanti Dey:
Compressed Sensing With Prior Information: Information-Theoretic Limits and Practical Decoders. IEEE Trans. Signal Process. 61(2): 427-439 (2013) - [c8]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Second-order rate region of constant-composition codes for the multiple-access channel. Allerton 2013: 588-593 - [c7]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
A derivation of the asymptotic random-coding prefactor. Allerton 2013: 956-961 - [c6]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Superposition codes for mismatched decoding. ISIT 2013: 81-85 - [c5]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
The mismatched multiple-access channel: General alphabets. ISIT 2013: 86-90 - [c4]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Cost-constrained random coding and applications. ITA 2013: 1-7 - [i8]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Mismatched Decoding: Finite-Length Bounds, Error Exponents and Approximations. CoRR abs/1303.6166 (2013) - [i7]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Second-Order Rate Region of Constant-Composition Codes for the Multiple-Access Channel. CoRR abs/1303.6167 (2013) - [i6]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
A Derivation of the Asymptotic Random-Coding Prefactor. CoRR abs/1306.6203 (2013) - [i5]Jonathan Scarlett, Li Peng, Neri Merhav, Alfonso Martinez, Albert Guillen i Fabregas:
Expurgated Random-Coding Ensembles: Exponents, Refinements and Connections. CoRR abs/1307.6679 (2013) - [i4]Jonathan Scarlett:
Second-Order Rate of Constant-Composition Codes for the Gel'fand-Pinsker Channel. CoRR abs/1309.6200 (2013) - [i3]Jonathan Scarlett, Vincent Y. F. Tan:
Second-Order Asymptotics for the Gaussian MAC with Degraded Message Sets. CoRR abs/1310.1197 (2013) - [i2]Jonathan Scarlett, Alfonso Martinez, Albert Guillén i Fàbregas:
Multiuser Coding Techniques for Mismatched Decoding. CoRR abs/1311.6635 (2013) - 2012
- [c3]Jonathan Scarlett, Alfonso Martinez, Albert Guillen i Fabregas:
Ensemble-tight error exponents for mismatched decoders. Allerton Conference 2012: 1951-1958 - [c2]Jonathan Scarlett, Albert Guillen i Fabregas:
An achievable error exponent for the mismatched multiple-access channel. Allerton Conference 2012: 1975-1982 - 2011
- [c1]Jonathan Scarlett, Jamie S. Evans, Subhrakanti Dey:
How much training is needed in fading multiple access channels? ISWCS 2011: 527-531 - [i1]Jonathan Scarlett, Jamie S. Evans, Subhrakanti Dey:
On the Tradeoff Between Multiuser Diversity and Training Overhead in Multiple Access Channels. CoRR abs/1105.3531 (2011)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 21:28 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint