default search action
Paul M. Baggenstoss
Person information
SPARQL queries
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c32]Paul M. Baggenstoss:
Projected Belief Networks with Discriminative Alignment for Classifying Marine Mammals. EUSIPCO 2024: 201-205 - [i11]Paul M. Baggenstoss, Kevin Wilkinghoff, Felix Govaers, Frank Kurth:
Projected Belief Networks With Discriminative Alignment for Acoustic Event Classification: Rivaling State of the Art CNNs. CoRR abs/2401.11199 (2024) - [i10]Paul M. Baggenstoss:
On Maximum Entropy Linear Feature Inversion. CoRR abs/2407.14166 (2024) - 2023
- [c31]Paul M. Baggenstoss, Kevin Wilkinghoff:
Novel Generative Classifier for Acoustic Events. EUSIPCO 2023: 196-200 - [c30]Paul M. Baggenstoss:
Improved Auto-Encoding Using Deterministic Projected Belief Networks and Compound Activation Functions. EUSIPCO 2023: 1250-1254 - [c29]J. DeMarchi, R. Rijken, J. Melrose, B. Madahar, Giorgio Fumera, Fabio Roli, Emanuele Ledda, Metin Aktas, Frank Kurth, Paul M. Baggenstoss, Björn Pelzer, L. Kanestad:
Evaluation of Robustness Metrics for Defense of Machine Learning Systems. ICMCIS 2023: 1-12 - [i9]Paul M. Baggenstoss:
Improved Auto-Encoding using Deterministic Projected Belief Networks. CoRR abs/2309.07481 (2023) - [i8]Paul M. Baggenstoss, Felix Govaers:
A Comparison of PDF Projection with Normalizing Flows and SurVAE. CoRR abs/2311.14412 (2023) - 2022
- [j24]Paul M. Baggenstoss, Steven Kay:
Nonlinear Dimension Reduction by PDF Estimation. IEEE Trans. Signal Process. 70: 1493-1505 (2022) - [c28]Paul M. Baggenstoss:
Trainable Compound Activation Functions for Machine Learning. EUSIPCO 2022: 1382-1386 - [c27]Paul M. Baggenstoss, Frank Kurth:
Using the Projected Belief Network at High Dimensions. EUSIPCO 2022: 1526-1530 - [i7]Paul M. Baggenstoss:
Trainable Compound Activation Functions for Machine Learning. CoRR abs/2204.12920 (2022) - [i6]Paul M. Baggenstoss:
Using the Projected Belief Network at High Dimensions. CoRR abs/2204.12922 (2022) - 2021
- [j23]Paul M. Baggenstoss:
Discriminative Alignment of Projected Belief Networks. IEEE Signal Process. Lett. 28: 1963-1967 (2021) - [c26]Paul M. Baggenstoss:
New Restricted Boltzmann Machines and Deep Belief Networks for Audio Classification. ITG Conference on Speech Communication 2021: 1-5 - [c25]Paul M. Baggenstoss, Karl-Heinz Frommolt, Olaf Jahn, Frank Kurth:
Separation of Bird Calls and DOA estimation using a 4-Microphone Array. EUSIPCO 2021: 166-170 - [c24]Felix Govaers, Paul M. Baggenstoss:
On a Detection Method of Adversarial Samples for Deep Neural Networks. FUSION 2021: 1-5 - [i5]Paul M. Baggenstoss:
Maximum Entropy Auto-Encoding. CoRR abs/2104.07448 (2021) - 2020
- [c23]Paul M. Baggenstoss:
The Projected Belief Network Classifier: both Generative and Discriminative. EUSIPCO 2020: 795-799 - [c22]Paul M. Baggenstoss:
A Neural Network Based on First Principles. ICASSP 2020: 4002-4006 - [i4]Paul M. Baggenstoss:
A Neural Network Based on First Principles. CoRR abs/2002.07469 (2020) - [i3]Paul M. Baggenstoss:
The Projected Belief Network Classfier : both Generative and Discriminative. CoRR abs/2008.06434 (2020)
2010 – 2019
- 2019
- [j22]Paul M. Baggenstoss:
On the Duality Between Belief Networks and Feed-Forward Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 30(1): 190-200 (2019) - [c21]Paul M. Baggenstoss:
Applications of Projected Belief Networks (PBN). EUSIPCO 2019: 1-5 - [c20]Paul M. Baggenstoss, Mark Springer, Marc Oispuu, Frank Kurth:
Efficient Phase-Based Acoustic Tracking of Drones using a Microphone Array. EUSIPCO 2019: 1-5 - 2018
- [j21]Paul M. Baggenstoss:
Beyond Moments: Extending the Maximum Entropy Principle to Feature Distribution Constraints. Entropy 20(9): 650 (2018) - [c19]Kevin Wilkinghoff, Paul M. Baggenstoss, Alessia Cornaggia-Urrigshardt, Frank Kurth:
Robust Speaker Identification by Fusing Classification Scores with a Neural Network. ITG Symposium on Speech Communication 2018: 1-5 - [c18]Paul M. Baggenstoss:
Acoustic Event Classification Using Multi-Resolution HMM. EUSIPCO 2018: 972-976 - 2017
- [j20]Paul M. Baggenstoss:
Uniform Manifold Sampling (UMS): Sampling the Maximum Entropy PDF. IEEE Trans. Signal Process. 65(9): 2455-2470 (2017) - [c17]Paul M. Baggenstoss:
Evaluating the RBM without integration using PDF projection. EUSIPCO 2017: 828-832 - [c16]Paul M. Baggenstoss, Kevin Wilkinghoff, Frank Kurth:
Glottal mixture model (GLOMM) for speaker identification on telephone channels. EUSIPCO 2017: 2734-2738 - [c15]Bo Tang, Paul M. Baggenstoss, Haibo He:
Kernel-based generative learning in distortion feature space. SSCI 2017: 1-8 - 2016
- [j19]Bo Tang, Steven Kay, Haibo He, Paul M. Baggenstoss:
EEF: Exponentially Embedded Families With Class-Specific Features for Classification. IEEE Signal Process. Lett. 23(7): 969-973 (2016) - [j18]Paul M. Baggenstoss, Brian F. Harrison:
Class-specific model mixtures for the classification of acoustic time series. IEEE Trans. Aerosp. Electron. Syst. 52(4): 1937-1952 (2016) - [j17]Bo Tang, Haibo He, Paul M. Baggenstoss, Steven Kay:
A Bayesian Classification Approach Using Class-Specific Features for Text Categorization. IEEE Trans. Knowl. Data Eng. 28(6): 1602-1606 (2016) - [c14]Paul M. Baggenstoss:
Combining the glottal mixture model (GLOMM) with UBM for speaker recognition. EUSIPCO 2016: 2156-2160 - [c13]Paul M. Baggenstoss:
Maximum entropy feature fusion. FUSION 2016: 1163-1169 - [i2]Bo Tang, Steven Kay, Haibo He, Paul M. Baggenstoss:
EEF: Exponentially Embedded Families with Class-Specific Features for Classification. CoRR abs/1605.03631 (2016) - [i1]Bo Tang, Paul M. Baggenstoss, Haibo He:
Kernel-based Generative Learning in Distortion Feature Space. CoRR abs/1606.06377 (2016) - 2015
- [j16]Satish Madhogaria, Paul M. Baggenstoss, Marek Schikora, Wolfgang Koch, Daniel Cremers:
Car detection by fusion of HOG and causal MRF. IEEE Trans. Aerosp. Electron. Syst. 51(1): 575-590 (2015) - [j15]Paul M. Baggenstoss:
Maximum Entropy PDF Design Using Feature Density Constraints: Applications in Signal Processing. IEEE Trans. Signal Process. 63(11): 2815-2825 (2015) - [c12]Paul M. Baggenstoss:
Derivative-augmented features as a dynamic model for time-series. EUSIPCO 2015: 958-962 - [c11]Paul M. Baggenstoss:
Class-specific model mixtures for the classification of time-series. EUSIPCO 2015: 2341-2345 - 2014
- [j14]Paul M. Baggenstoss:
Recursive Decimation/Interpolation for ML Chirp Parameter Estimation. IEEE Trans. Aerosp. Electron. Syst. 50(1): 445-455 (2014) - [c10]Paul M. Baggenstoss:
Optimal Detection and Classification of Diverse Short-duration Signals. IC2E 2014: 534-539 - 2013
- [j13]Paul M. Baggenstoss:
Specular Decomposition of Active Sonar Returns using Combined Waveforms. IEEE Trans. Aerosp. Electron. Syst. 49(4): 2509-2521 (2013) - 2012
- [j12]Paul M. Baggenstoss:
On the Equivalence of Hanning-Weighted and Overlapped Analysis Windows Using Different Window Sizes. IEEE Signal Process. Lett. 19(1): 27-30 (2012) - 2011
- [j11]Paul M. Baggenstoss:
Two-Dimensional Hidden Markov Model for Classification of Continuous-Valued Noisy Vector Fields. IEEE Trans. Aerosp. Electron. Syst. 47(2): 1073-1080 (2011) - 2010
- [j10]Paul M. Baggenstoss:
A multi-resolution hidden Markov model using class-specific features. IEEE Trans. Signal Process. 58(10): 5165-5177 (2010) - [c9]Virginia Estellers, Paul M. Baggenstoss, Jean-Philippe Thiran:
Class-specific classifiers in audio-visual speech recognition. EUSIPCO 2010: 1998-2002
2000 – 2009
- 2008
- [c8]Paul M. Baggenstoss:
Iterated class-specific subspaces for speaker-dependent phoneme classification. EUSIPCO 2008: 1-5 - [c7]Paul M. Baggenstoss:
A multi-resolution hidden Markov model using class-specific features. EUSIPCO 2008: 1-5 - 2004
- [j9]Paul M. Baggenstoss:
Image Distortion Analysis Using Polynomial Series Expansion. IEEE Trans. Pattern Anal. Mach. Intell. 26(11): 1438-1451 (2004) - [c6]Thomas Beierholm, Paul M. Baggenstoss:
Speech Music Discrimination Using Class-Specific Features. ICPR (2) 2004: 379-382 - 2003
- [j8]Paul M. Baggenstoss:
The PDF projection theorem and the class-specific method. IEEE Trans. Signal Process. 51(3): 672-685 (2003) - [c5]Paul M. Baggenstoss:
A New Optimal Classifier Architecture to Aviod the Dimensionality Curse. IbPRIA 2003: 70-79 - 2002
- [c4]Paul M. Baggenstoss:
The Chain-Rule Processor: Optimal Classification Through Signal Processing. ICPR (1) 2002: 230-234 - 2001
- [j7]Paul M. Baggenstoss:
A modified Baum-Welch algorithm for hidden Markov models with multiple observation spaces. IEEE Trans. Speech Audio Process. 9(4): 411-416 (2001) - [j6]Steven M. Kay, Albert H. Nuttall, Paul M. Baggenstoss:
Multidimensional probability density function approximations for detection, classification, and model order selection. IEEE Trans. Signal Process. 49(10): 2240-2252 (2001) - 2000
- [c3]Paul M. Baggenstoss:
A modified Baum-Welch algorithm for hidden Markov models with multiple observation spaces. ICASSP 2000: 717-720 - [c2]Paul M. Baggenstoss, Heinrich Niemann:
A Theoretically Optimal Probabilistic Classifier Using Class-Specific Features. ICPR 2000: 2763-2768
1990 – 1999
- 1999
- [j5]Paul M. Baggenstoss:
Class-specific feature sets in classification. IEEE Trans. Signal Process. 47(12): 3428-3432 (1999) - [c1]Paul M. Baggenstoss, Tod Luginbuhl:
An E-M algorithm for joint model estimation. ICASSP 1999: 1825-1828 - 1995
- [j4]Paul M. Baggenstoss, Steven M. Kay:
Detection of broadband planewaves in the presence of Gaussian noise of unknown covariance: asymptotically optimum tests using the 2-D autoregressive noise model. IEEE Trans. Signal Process. 43(4): 950-966 (1995) - 1993
- [j3]Paul M. Baggenstoss, Ramdas Kumaresan:
On the estimation of rational transfer functions from samples of the power spectrum. IEEE Trans. Signal Process. 41(3): 1431-1435 (1993) - 1992
- [j2]Paul M. Baggenstoss, Steven M. Kay:
An adaptive detector for deterministic signals in noise of unknown spectra using the Rao test. IEEE Trans. Signal Process. 40(6): 1460-1468 (1992) - 1991
- [j1]Paul M. Baggenstoss, Steven M. Kay:
On estimating the angle parameters of an exponential signal at high SNR. IEEE Trans. Signal Process. 39(5): 1203-1205 (1991)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 21:29 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint