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Abstract—We consider a long-standing open problem per-
taining to scheduling over a wideband multi-user downlink. In
this problem a base-station (BS) must assign multiple subbands
to its served users such that a weighted sum rate metric is
maximized subject to sum power and cardinality constraints. On
each subband multiple users can simultaneously be scheduled.
Such scheduling is complicated by the fact that the rate achieved
by a user on any subband assigned to it depends not only
on its own channel condition, but on the set of other users
co-scheduled on that subband as well. The latter dependence
is via the transmission scheme adopted by the BS in order
to simultaneously serve multiple users on the same subband.
This problem has received wide attention for over a decade
and while numerous heuristics have been designed, there is no
known algorithm that offers provable constant-factor worst-case
guarantee. In this paper we obtain an important result which
demonstrates that when the transmitter employs capacity-optimal
dirty paper coding, constant-factor approximation guarantee can
be achieved via simple algorithms. Indeed, we show that for a
wideband scheduling problem in which a permissible set of user
groups is specified as input, a simple deterministic algorithm
yields a constant-factor approximation guarantee. Further, for
the generalized case where any user group subject to a cardinality
constraint is permissible, a greedy algorithm yields a constant-
factor guarantee over certain practically relevant regimes.

I. INTRODUCTION

The significant promise of MU-MIMO was demonstrated by
the seminal works of [1]-[3] which derived theoretical limits
for a broadcast channel, achieved using dirty paper coding
(DPC). The ensuing investigations that have been carried out
for the past decade have mainly considered more practical
linear transmit precoding [5]-[7]. In industry, standardization
of MU-MIMO is an ongoing effort being carried out by
IEEE and 3GPP. This effort has so far led to precoded pilots
being standardized. These pilots are precoded using the same
transmit precoder as data symbols and are embedded in the
block of data symbols sent to each user. Their key advantage
is that transmit precoders no longer have to be selected from
any fixed pre-determined codebook, which allows for con-
siderable optimization of linear transmit precoding schemes.
In initial field trials as well as detailed system simulations,
the performance results of MU-MIMO over networks where
each BS is equipped with a small number of cross-polarized
transmit antennas (typically 2 or 4) have not met expectations.
Fortunately, the advent of massive MIMO, which advocates
the use of a large array at each BS, together with more
sophisticated transceivers has once again galvanized MU-
MIMO, particularly for TDD networks where channel state
information can be more readily acquired. Indeed, simultane-
ous transmission to a multitude of users on the same spectral
band is the main benefit promised by massive MIMO which is
a key 5G technology [4]. Furthermore, enhanced base-stations
that can perform more complex encoding as well as user
terminals capable of non-linear and advanced decoding make

schemes hitherto of theoretical interest, to be viable candidates
for 5G networks. The emphasis now is on realizing efficient
scheduling algorithms that can extract most of the gains made
possible by such increased sophistication.

In this paper, we consider wideband dynamic downlink MU-
MIMO scheduling with DPC, where the BS as well as users
have multiple antennas. The problem at hand involves selecting
a set of scheduled users and their respective covariance matri-
ces, on each subband (once every subframe), subject to total
power and several other constraints, and can be regarded as
a generalization of the the popular narrowband user grouping
problem in MU-MIMO. The latter problem which has been
widely investigated, deals with selecting a group of users on a
single subband, where each user sees a frequency-flat channel
and has one receive antenna, while the BS employs linear
transmit precoding [5], [7]. Due to the intractability of even
this seemingly simple problem, several heuristics have been
proposed (cf. [8]). A combinatorial optimization view has been
adopted in [9] where it has been shown that this problem can
be even hard to approximate. To the best of our knowledge,
only a recent work in [17] has revealed an exploitable structure
in the problem by reformulating it as the maximization of
the difference of submodular set functions. However, even the
latter approach fails to provide any performance guarantees. In
lieu of these somewhat pessimistic results, a germane question
is whether any strong analytical guarantee! is at all possible
for MU-MIMO scheduling over relevant regimes. Our results
in this paper answer the latter question in the affirmative and
are summarized below.

e We first establish that the narrowband user grouping
problem with DPC is a monotone submodular maximization
problem in certain relevant regimes. We derive simple condi-
tions to assess whether an input instance falls in such a regime.
e We then consider a wideband scheduling problem in which
DPC can be used on each subband on any user group selected
from an input set of permissible groups, subject to a wideband
sum power constraint as well as multiple well justified con-
straints. The latter constraints include constraints on the num-
ber of assigned subbands per-user, as well as the total number
of assigned subbands. We demonstrate that this problem is
equivalent to submodular set function maximization subject
to matroid and binary knapsack constraints. Thereby, we can
design simple constant-factor approximation algorithms.

To the best of our knowledge, these are the first results
establishing submodularity for any problem involving MU-
MIMO in the downlink. On the other hand, results estab-
lishing submodularity for downlink single-user or SU-MIMO
scheduling (which avoids co-scheduled user interference) are

'We exclude here guarantees which linearly depend on system parameters
such as number of users, antennas, subbands etc.



available. In particular, [10], [11] reveal submodularity in
the SU-MIMO scheduling problem with fixed powers (see
also [12]), and a more recent contribution in [18] proved
submodularity of waterfilling for sum rate maximization over
parallel scalar channels. The latter result was then extended
to weighted sum rate maximization in [19]. We note that
submodularity has also been shown to hold in formulations
considering the user-BS association problem [13], [14]. The
formulation in [13] accounts for MU-MIMO scheduling at
each BS by invoking limiting SINR expressions, which in turn
assume pre-determined multiplexing gains along with channel
hardening to remove the impact of short-term fading. Thereby,
each user’s achievable rate depends only the cardinality of
the set of co-scheduled users and not its composition. In
contrast, our results consider dynamic MU-MIMO scheduling
and do not make any assumption on the channel statistics or
system dimension. Consequently, they can be used as building
blocks in a variety of resource management settings where
submodularity and/or game theoretic tools are used, [15], [16],
[20], [21].

In the following sections we will use boldface uppercase
(lowercase) alphabets to denote matrices (vectors). Further, |.|
is used to denote the determinant of its matrix argument as
well as cardinality of its input set. (.)! is used to denote the
conjugate transpose of its matrix argument while ||.|| denotes
the Frobenius (¢3) norm of its matrix (vector) argument.

II. SYSTEM MODEL

We consider a single-cell downlink in which one base-
station (BS) equipped with N, transmit antennas serves K
users, each equipped with NV, receive antennas. Let U/ denote
the set of users with cardinality |//| = K. We consider a wide-
band frequency-selective channel to model the propagation
link between each user and the BS. Then, supposing that the
BS employs OFDM and that all propagation delays lie within
the cyclic prefix, we can model the received observations at
the k*" user and n'" subband, where n € N’ = {1,--- ,N},
as

Yen = H} S0 + M, (1)

where yyi e @V *! denotes the received vector of observa-
tions. 1y, denotes the additive noise which is assumed to have
CN(0,1) distribution. s,, € ©™¥**! denotes the transmit vector
on the n*" subband and H; ., e V¥ Nr models the channel
matrix of user k on the n*" subband. A sum power constraint,
> en Elllsnl|?] < P, is imposed on the BS along with other
practical ones that will be revealed later. We will also refer
to P as the transmit SNR. Our focus here is on the design
of scheduling algorithms so for simplicity we assume that the
BS has perfect knowledge of all Hy,, Vk € U,n € N.

III. USER GROUPING

In this section we consider the by now classical problem of
user grouping. This problem considers a narrowband model
wherein any subset of U/ subject to a cardinality constraint
can be scheduled. In order to distill the problem essence, we
consider the sum rate objective and any one sub-band in (1).
We also suppose that N, = 1 and that N; > K. Accordingly,

we drop the subband index and denote the channel vector
correspoting to user £ by hy V k£ € U. We note that
these assumptions are mainly for ease of exposition and the
techniques and results presented in this section indeed extend
to the original more general choice of parameters.

Let Hg = [hi]reg V G C U. By invoking uplink-downlink
duality, which promises that any set of rates achieved via DPC
in the downlink is achieved in the dual uplink and vice-versa
[24], we can pose the DPC user grouping problem of interest

to us succintly as
} @

where J is the input cardinality bound. Notice that (2) is
a mixed optimization problem that involves (discrete) subset
or user group selection and a continuous optimization over
powers for each group. Optimally solving this problem seems
intractable so we seek to characterize the set function f(., P)
defined in (2). It is easy to see that the set function f(., P)
is monotone, i.e., f(A,P) < f(B,P) YV A C B C U and
normalized, i.e., f(¢, P) = 0, where ¢ denotes the empty set.
We now proceed to check whether it is submodular (cf. [25]),
i.e., whether for any A C B C U : |B| = |A] + 1 and any
uel\ B,
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f(AUu,P)—f(A,P)Zf(BUu,P)—f(B,P) (3)

Note that (3) is readily satisfied by f(.,P) when A = ¢
(i.e., A is the empty set). Thus, we can assert that the set
function is submodular when K = 2. As a result, we suppose
K > 3 and will determine whether (3) holds when A # ¢.
A general result that can verify whether or not (3) holds for
any given input instance is as yet elusive. Note here that for
a given choice of parameters N, K, an instance refers to an
input channel matrix Hy,, a power budget P and a cardinality
bound J. Clearly, a brute-force approach that considers all
subsets in order to verify (3) is futile. Consequently, we
analytically identify a set of instances over which (3) holds,
with the understanding that readily verifiable relations should
be derived in order to be able to assert whether any given
input instance falls in the identified set or not. We offer our
first result.

Theorem 1. The set function f(.,P) defined in (2) is a
submodular set function over U for any instance in which
HLHU is invertible and which satisfies

K K-2

K-1 K—1
2N log 1+ ) < A(K), )
> og( ) < A09)
such that
KX (K — 1K1
209 = (e ) —8 (i) ©



and {f;
order. o =

K | is the set {||hy||?}xew sorted in descending
where Q = (HLHU)

m
Proof. We start by noticing that the condition in (4) is readily
verifiable. The proof of this theorem is fairly involved and has
multiple parts. We suppose HLHM to be invertible and will
instead derive a sufficient condition under which a stronger
relation than (3) holds, where the said stronger relation entails
replacing f(A U w, P), f(B) in (3) by their respective lower
bounds and f(B U u,P), f(A) by their respective upper
bounds. In particular we will show that

flb(AuuaP)fob(Avp) Z

fub(Buuvp)_flb(va)v (6)

whenever (4) holds. In order to derive appropriate bounds, we
consider any subset G C U and re-write f(G, P) as

6.0, s fiepe P S | o)
zkegqu keg

Then, for any number ¢ € {1,---, |G|}, we let 7(G, £) denote
any selection of ¢ distinct elements (order being immaterial)
from G and let Hy (g ¢ be the matrix formed by columns of
H,;, with indices in 7(G,¢). For any choice of power allo-
cation fractions {dj }rcg we have the determinant expansion
in (8) (cf. [28]). We can then obtain the upper bounds in
(9), where we use the AM-GM inequality to ascertain that

maXdkem+v1@eg {(erg dk)} = (1/‘g|)|g‘ for all G # ¢.

> d
Proceed]ﬁlgg ’further we will upper bound the term s(G, P) in

(9). Note that by invoking Schur’s complement formula for
determinant of block partitioned matrices along with Cholesky
decomposition of positive definite matrices [28] we get that
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we express it as
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Then, we invoke Lemma 1 stated in the appendix to obtain an
upper bound
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Next, in order to obtain a lower bound we consider the expan-
sion in (8) and fix a choice dy, = 1/|G| V k € G. This yields
the lower bounds in (11). Again invoking Schur’s complement
formula for determinant of block partitioned matrices along
with Hadamard’s determinant inequality for positive definite
matrices we get that

n
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which when used in (11) yields a lower bound
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Putting all these together we can further bound the upper
bounds in (9) and lower bounds in (11) to obtain (13). At this
point we make a key observation that since the set-function

7(G) = log |H Hg| V G is a submodular set function (cf [26])
we must have that

log [H,,, HLAuu| — log [ H 4| >

log [HY,,, Hpuu| — log [HyHp). (14)

Then, define a function r : IR, x IRy — IR such that
r(z,z) = zlog(l + x/(Pz)) — zlog(x) ¥V z,z > 0. Using
the bounds in (13), where we recall that |B| = |.A| + 1, along
with the key observation stated above, we can deduce that the
stronger condition in (6) (and hence (3)) holds true whenever
the following condition holds for all n: 3 < n < K.

BuUu

r(n,a) +r(n—2,a)+ 2(n—1)log(n — 1)

n—1
<0.
Pﬁ(i))‘

Finally to prove (15) we first re-write it as

15)

r(n,a)+r(n—2,a)—2r(n —1,a)

<log<1—|—np_al)—log(1+ _1>> <0. (16)

n
PBy

We can now invoke Lemma 2, also stated in the appendix,
along with the observation that the summation in the LHS
of (16) is increasing in n since B;) > « V i to deduce that
the LHS of (16) is maximized at n = K. Thus, (15) holds
whenever

n—1

+2)

i=1

r(K, o) +r(K -2 a) +2(K —1)log(K — 1)

-2 Z log (1 + 3(11) <0.

(17) is indeed the condition stated in the theorem, which
thereby proves it. O

a7)

We also have the following corollary which provides a
simpler condition than (4) albeit which is harder to satisfy.
It can be proved by using the convexity of log(1 + +/z) in
x > 0 for any v > 0, along with Jensen’s inequality in (4).
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Corollary 1. The set function f(.,P) defined in (2) is a
submodular set function over U for any instance in which
HLHM is invertible and which satisfies

K K-2

—2(K —1)log (1 + KP,81> < A(K), (18

where [3 is the arithmetic mean of {f;)};— _1

Remark 1. Note that for any K > 3, A(K) defined in (5)
strictly positive and thus the condition in (4) is always satisfied
at high transmit power (hight transmit SNR) P. Moreover,
considering (18) we notice that it always holds when 8 = a. In
general, the ratio & B lies between one and the condition number
of H! 1 Hu. Therefore (18) is more readily satisfied by well-
condltoned channels with large norms. The latter condition

certainly holds in the massive MIMO regime but is also seen
to be often met with not-so-large number of antennas.

The following result captures the utility of the results
derived in Theorem 1 and directy follows from using the
classical result of [25] proving the approximate optimality of
the greedy algorithm for maximizing a monotone submodular
set function subject to a cardinality constraint. To clarify, we
will say that an algorithm offers a v guarantee for (2), for
some scalar v € IR, if for every input instance it provides
an output whose corresponding sum-rate is at-least as large as
v times the optimal sum rate for that instance.

Theorem 2. For any instance satisfying (4), a simple greedy
algorithm guarantees 1 — 1/e approximation for (2).



IV. SIMULATION RESULTS

We first evaluate the performance of different algorithms
over the user selection problem in (2). We consider a narrow-
band model with N; = 32 (equivalently 32 receive antennas
in the dual uplink) and varying numbers of users, at varying
power budgets of 10, 16, 18.45 & 20 dB, respectively. In
each trial each user’s channel vector is generated indepently
using the i.i.d. CAV(0,I) distribution. To evaluate any tentative
choice of user selection we implemented the iterative water-
filling algorithm to optimize the sum rate [23]. We tried:

o Exhaustive search: We evaluate all ({]{ ) user group choices
and select the best one. Due to its exponentially scaling
complexity this method is tried only for small K.

e Greedy: We implement the natural greedy method in which
the locally best user (offering the largest sum rate improve-
ment) is selected from the pool of un-selected users in each
step, until the cardinality limit is reached.

o Lazy Greedy: We implement the lazy implementation [27]
assuming submodularity. In particular, we assume that f(O U
u, P)— f(O, P) < f(OUu, P)— f(O, P) for any unselected
user u € U\ O, where O is the set of users selected so
far while © C O is a user set that was selected upto any
previous iteration. With the partial ordering provided by this
assumption we can avoid evaluating the rate improvements
of user choices whose past improvement is below the current
improvement evaluated for any user. Further, in any instance
where submodularity indeed holds we can assert that the lazy
greedy will perform identical to greedy.

In Fig. 1 we plot the achieved sum rates (averaged over
1000 realizations) versus the user group cardinality J. In
each case we set the number of users as K = min{32,2.J}.
Comparing the exhaustive search (which is plotted only for
J = 4 & 8) and greedy we see that the curves are vir-
tually indistinguishable and greedy achieves almost identical
performance. Interestingly greedy and lazy greedy were seen
to achieve exactly identical performance over all instances
which suggests submodularity holds in all instances for (2).
More importantly, Fig. 2 plots the reduction in number of ten-
tative choice evaluations (directly proportional to complexity
reduction) obtained using lazy greedy over greedy. We see
that as problem size grows the complexity reduction becomes
significant (about 30% reduction).

In Fig. 3 we test the regimes over which the sufficient
condition derived in Theorem 1 holds. We employ the setup
used in above examples and consider varying transmit powers
with K = 4, 6 & 8 users. In each case for ten thousand
instances we compute the frequency with which the sufficient
condition for submodularity derived in Theorem 1 is satisfied.
From the plot we see that this condition is highly likely to be
met in asymmetric configurations (where the number of users
is significantly dominated by the number of BS antennas) or
at high transmit SNRs. Both these scenarios are practical.

V. WIDEBAND SCHEDULING

We consider the original model in (1) and assume that the
BS can employ the capacity achieving DPC on each subband.
Accordingly, we compute the weighted sum rate that can be
achieved on any subband for any given user-grouping and

power budget. Towards this end, let wy denote the given
positive weight assigned to user k € U. > Next, consider
any subband n, subband power budget P and any user group
G = {k1,---k¢} C U and without loss of generality suppose
that wy, > wg, > -+ > wyg,. In order to deduce the optimal
weighted sum rate that can be achieved in the downlink via
DPC for the given power budget and user group, we can
equivalently consider the dual multiple access channel for the
same sum power budget [24]. Consequently, considering the
dual MAC let us define a function g : 24 x N x IR, — IR
such that g(G,n, P’), for any user subset G C U, subband
n € N and subband power budget P’, yields the optimal
weighted sum rate. Letting S f denote the set of all N, x N,
positive semidefinite matrices, we can determine g(G,n, P’)
explicitly as in (19) (cf. [23]).

In order to pose our scheduling problem, we define a family
of permissible subsets of U/ denoted by Z. In particular, it is
a family of subsets of ¢/ such that each of its member can be
selected as a user group on any subband. We suppose that Z
is given as an input and that its cardinality is much smaller
than 2. Indeed, any scheduling algorithm whose complexity
scales polynomially in |Z| is deemed feasible. > We can now
pose our main scheduling problem in (20). In (20) the binary
valued variable xg ,, is one if group G is chosen on subband
n and zero otherwise, so that the first set of constraints in
(20) ensures that at-most one member of Z is chosen on
each subband. Further, the second constraint enforces that
the total number of occupied subbands cannot exceed NN, for
some given N : 1 < N < N. Indeed, this constraint is
meaningful whenever N — N subbands have to reserved for
some (lower priority) application. The third constraint enforces
the total sum power budget and the final set of constraints (in
conjunction with the first set of constraints) enforces that for
each user u in some given user subset U’, the total number of
subbands on which that user is scheduled cannot exceed some
given number J,,. Such a constraint is very useful to impose
assigned bandwidth constraint on any specified subset of users.
Note here that any choice of indicator variables in (20) defines
a collection of tuples, where each tuple comprises of a member
(user subset) in Z and a subband from N. Accordingly, let us
define a ground set of all possible such tuples as

F=2{(Gn):GeLneN}. (1)

We now proceed to characterize the problem in (20). Notice
first that this problem is a mixed optimization problem involv-
ing discrete indicator variables, continuous non-negative power
budget variables, as well as (implicit) positive semi-definite
matrix variables. Before we offer our key result let us define
an input instance. For a given choice of system parameters
K, N¢, N, and |Z|, an input instance for (20) comprises of
channels {Hj, ,, }keu,nen, family Z, sum power budget P,
user subset U’ and bounds {J, },eyr and N. Our key result
follows.

2These weights can be updated based on the obtained scheduling decision,
to optimize a desired utility over a coarser time-scale (cf. [10]).

3The burden of choosing an effective family Z is not addressed here.
Nevertheless, results of Section III indicate that simple greedy methods used
on “average” channels that capture spatial correlations might be useful.
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Theorem 3. The problem in (20) is equivalent to the maxi-
mization of a normalized monotone submodular set function
subject to one matroid and |U'| knapsack constraints.

Proof. We begin by definining any collection of tuples,

A=U" (G n)s GGy €Lngy) ENVI<j<m (22)
where we do allow for repeated subbands or arbitrarily over-
lapping subsets across tuples in \A, i.e., we do not restrict our
attention to only collections feasible for (20). For any such
non-empty collection A and any sum power budget P let us
compute the weighted sum rate as

Zg

max

f(A’P):P €IR, v
() + V7

>m P(])<P

P(J)) (23)

j=1

and where f(¢, P) = 0 for the empty set ¢. Notice here that
in (23) for the j** tuple and any tentative choice of power
budget for that tuple, P(;), g(G(j),n(), FP)) is evaluated
using (19) assuming subband n;), user group G(;) and sum
power F(;. Further, the optimization problem in (23) is a
convex optimization problem and can be efficiently solved
[23]. Similarly let B = A U (G(m+1), N(m+1)) C FE so that
B includes all tuples in .4 and one extra tuple. Further, let
€ = (G(m+2)s M(m+2)) € F denote a tuple that is not present
in B. We will prove that submodularity holds, i.e.,

In order to prove (24) we consider any optimal solution
(of powers and covariance matrices) under B U ¢ and let
P(m+1) and P(m+2) denote the powers assigned to tuples
(Gm+1)s "(m+1)) and (G(m4-2), N(m+2) ), respectively. Clearly,
the relations in (25) must hold true. In particular, equality there
follows from the definition in (23) whereas both inequalities
follow from the simple observation that fixing the choice of
power for any tuple and optimizing over the remaining ones
will lead to a sub-optimal solution. Thus, in lieu of (25), to
prove (24) it suffices to prove

AP~ Pppyoy — FAP = Pyt

f(A, P).

P(erl )

< f(A7 P - P(7rz+2)) - (26)

Moreover, (26) clearly follows if we are able to show that for
any collection of tuples A, f(.A, P) is concave in P. Towards

that end, letting P") and P(?) denote any two power budgets,
we will establish that for each A € (0,1),

F(ANPWY 1+ (1 - \)P®P)
> M (A, PM) + (1 - N f(A PP).

Finally, to show (27) let {Q (])} o) and {Q (J)} 1S9
1<j

1<j<m
denote any optimal sets of covarlance matrices under sum

power budgets P(Y) and P, respectively. Notice here that
the optimization problems in (23) and (19) have continuous
objectives and for any finite sum power budget their respective
constraint sets are compact, so an optimal solution (set of
per-subband sum powers and covanance matrices) must exist.
Clearly then {)\Q(lzj) +(1- )\)Q (7)} ) is a feasible

choice under budget AP +(1—)\)P?) in that the sum power
constraint is satisfied and each matrix in that set is positive
semi-definite. Then invoking the joint concavity of each log |.|
term of (19) in its input covariance matrices, we can deduce
that

h( n(] {AQT(LIEJ

27)

+ (1= Q) hueg) 2
1
MGy {QU ) buea)
+(1 = MhGi), ne)s {Q’Eizj)}ueg(j) )

so that the relations in (28) must all hold. From (28), which
demonstrates concavity, we can conclude that the property in
(26) and hence (24) indeed holds true. Thus, we have proved
that the set function f(., P) is a normalized submodular set
function over the ground set F defined in (21). Clearly, this set
function is also monotone non-decreasing. Finally, a feasible
collection A must have no more that N tuples and no two
tuples in it can have identical subband indices. It can be
verified that the latter two constraints together specify one
matroid. Finally, the set of bandwidth limiting constraints (one
for each u € U') are simply knapsack constraints defined on
the ground set. O

VI

We begin our quest to obtain an approximation algorithm
for (20) by defining a vector of indicator variables x =
[£gn], VG € Z n € N. Then, note that the constraints in
(20) can be represented as Ax < b where the inequality is
componentwise and A € {0, 1}([WITN+DXIZIN is 3 binary-
valued matrix corresponding to the |U//| + N + 1 constraints
(all constraints in (20) involving indicator variables) and the

APPROXIMATION ALGORITHM



f(BUe, P) =

FOAP = Piity = Pinso) + 9(Gmr1ys ims1)s Pomt1)) + 9(Gimt2)s Mmt2)s Pomt2))s

f(Ba P) > f(Av P — P(m+1)) + g(g(m+1); N(m+1), P(m+1))
f(AUEe, P) > f(A, P~ Puni2)) + 9(Gmr2), Mmt2), Pim+2) (25)
FANPD + (1= NPD) > N h(Gyyng), Q) + (1= NQE, tueg,,) (28)
j=1

> A h(Gh),ni) Q)
j=1

= M(APWY)+

vector b is a vector enforcing the respective budgets. Further
let L.y defined as

Linax = max{|GNU'| : G € T} (29)

denote the maximal number of users in U’ present in any
member of Z, which typically would be a small constant.

Theorem 4. There exists a simple approximation algorithm
yielding C'/(Lmax + 2) approximation for (20), where C' is a
positive constant invariant across all input instances as well
as system parameters.

Proof. The key observations to prove this theorem are to
invoke the arguments made in this section above along with
Theorem 3. We can then deduce that (20) can be reformulated,
with some abuse of notation, as

{f(x,P)} st. Ax <b, (30)

max

x€{0,1}IZIN
where the set function f(.,P) is a normalized monotone
submodular set function over F and the constraints are binary
knapsack constraints. Further, these constraints are column-
sparse in that each column of A has at most L.y +2 positive
elements (each equal to unity). This allows us to assert that
the simple greedy algorithm proposed in [22] to maximize any
monotone submodular set function subject to binary column-
sparse knapsack constraints, will offer the claimed guarantee
for (30) and thus for (20). This proves the theorem. O]

We note here that (20) represents a significant generalization
of the basic waterfilling problem considered in [18] so that
Theorem 3 substantially expands the result therein. Moreover,
we demonstrate in [29] that our formulation and analysis can
also incorporate minimum rate and power constraints.

In order to test our proposed algorithm for wideband
scheduling, we now conduct simulations over a simple setup.
We consider a single-cell downlink with N = 4 subbands
and K = 5 single receive antenna users, and consider varying
number of antennas at the BS (in particular NV; = 2,3 & 4)
as well as several values for the transmit power budget
(P = [10,16,18.45,20] dB). We further suppose that the
family of permissible subsets, I, comprises of all subsets of I/
whose cardinalities are identical to J = 2. We impose no other
constraints apart from the wideband sum power constraint
and the per-subband ones pertaining to restricting the chosen
subset to lie in I. As a result, the approximation algorithm
proposed in Section VI reduces to the natural greedy method.
To benchmark the latter algorithm, we compare it against an

(1- A

) S (@)
,(j)}uegu-)) + (1= 2:1 h(g(j)7 n(4), {Qu,(j)}ueg(j))
j=

)f(A, PP).

upper bound obtained by allowing all K users to be scheduled
on each subband. We note that this upper bound becomes
progressively looser as N; becomes larger compared to J,
since it can exploit additional multiplexing gains that are not
available to any feasible solution. Indeed, this observation is
reflected in Fig. 4 where we have plotted the performance (sum
rate) of the greedy method as a fraction of the upper bound.
We see that as long as the family I is sufficiently rich (in
terms of candidate user groups) the greedy method captures a
significant portion of available gains.

VII. CONCLUSIONS

We proved that the user gouping problem under DPC can
be cast as a monotone submodular maximization under fairly
mild conditions. Further, we showed that a relevant wideband
scheduling problem with DPC and an input set of permissible
user groups is equivalent to monotone submodular maxi-
mization subject to binary sparse knapsack constraints. This
enables design of constant-factor approximation algorithms.
The simulation results of Section IV strongly suggest that
submodularity in (2) indeed holds for all instances. Towards
this end, we have been able to identify two other sets of input
instances for which submodularity provably holds. A unified
approach that can cover all instances is an interesting avenue
for further research.

APPENDIX

The proofs of the following two lemmas are given in [29].

Lemma 1. For any © > 0 and any integer L > 1 we have
that

L L
L {H(l + @Cg) — (@)L HC@}
’ =1

max
{cg}f €RY =1
Zszl cp<1 -
=(1+0e/L)" - (e/L)" 31)
Lemma 2. For any > « > 0 we have that
r(z,a)+r(x—2,a) —2r(z —1,58) (32)

is increasing in x for all x > 3.
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