
Analysis of QoE for Adaptive Video Streaming over
Wireless Networks

Sudheer Poojary∗, Rachid El-Azouzi∗, Eitan Altman‡,∗, Albert Sunny‡, Imen Triki∗, Majed Haddad∗, Tania Jimenez∗,
Stefan Valentin† and Dimitrios Tsilimantos†

∗ CERI/LIA, University of Avignon, Avignon, France
† Paris Research Center, Huawei Technologies France

‡ Univ. Cote d’Azur, INRIA BP93, 06902 Sophia-Antipolis Cedex, France

Abstract—Adaptive video streaming improves users’ quality
of experience (QoE), while using the network efficiently. In the
last few years, adaptive video streaming has seen widespread
adoption and has attracted significant research effort. We study
a dynamic system of random arrivals and departures for different
classes of users using the adaptive streaming industry standard
DASH (Dynamic Adaptive Streaming over HTTP). Using a
Markov chain based analysis, we compute the user QoE metrics:
probability of starvation, prefetching delay, average video quality
and switching rate. We validate our model by simulations, which
show a very close match. Our study of the playout buffer is based
on client adaptation scheme, which makes efficient use of the
network while improving users’ QoE. We prove that for buffer-
based variants, the average video bit-rate matches the average
channel rate. Hence, we would see quality switches whenever
the average channel rate does not match the available video bit
rates. We give a sufficient condition for setting the playout buffer
threshold to ensure that quality switches only between adjacent
quality levels.

I. INTRODUCTION
With rapid adoption of smart phones, video streaming

consumption is increasing over cellular networks. YouTube
statistics [1] suggest that at least one third of Internet users
use YouTube and more than half of YouTube views come from
mobile users. The users’ perceived QoE (quality of experience)
drives the revenue for content providers such as YouTube,
Netflix. Hence analysis of QoE for streaming users, especially
in dynamic wireless environments, is of prime importance.

Streaming clients typically play the video while it is being
downloaded. The incoming video is stored in a playout buffer
from which the user’s player consumes the content. If the
video quality can not be sustained, i.e., if the video bit-rate
exceeds the available channel bandwidth, there is a risk of the
playout buffer becoming empty during playout causing a video
stall, also called a starvation. Ideally the client would want
to play the video at the highest quality without starvation. In
such scenarios, adaptive streaming techniques which match the
user’s video bitrate to the available capacity are highly desired.

We consider MPEG-DASH [2], an HTTP based adaptive
streaming standard. In this standard, a video is split into short
intervals called segments or chunks. Each of these segments
are encoded at different bitrates with higher bitrates corre-
sponding to higher quality. The segments’ information viz., the
timing, the resolution, video bit rate, URL are shared with the
DASH clients in the form of a media presentation description
(MPD) file. A DASH client could use its current playout buffer,
past throughput measurements, the device features along with

the MPD file to choose the quality for the next segment. The
objective of the DASH client is to maximize its QoE. While
DASH standardizes formats for the MPD file and expects
the video to be saved in chunks with copies encoded at
different bitrates, it does not specify the client’s adaptation
behaviour. The client could choose to use a rate-based or a
playout buffer-based approach. In the rate-based approach the
download rate of the previous segment is used to select the
next segment quality. On the other hand, the playout buffer-
based approach looks at the current playout buffer occupancy
to decide the next segment’s quality. In [3], [4], the authors
show that to avoid starvation, rate-based approaches need to
be conservative, i.e., use average video bit-rates lower than
the available bandwidth. However buffer-based approaches do
not suffer from this and are able to match the video bit-rate
to the available bandwidth while avoiding starvation. Similar
conclusions have been established in [5] for rate-based versus
queue-based flow control algorithms.

While the quality of experience is a subjective quantity,
there are metrics which help us quantify a user’s QoE. The
probability of starvation (stall/rebuffering) and the average
video quality are obvious QoE metrics. Video clients typically
prefetch some content before playout and also wait before
playout after a starvation event. This causes a delay before
playout which affects user experience. The average initial
startup delay and rebuffering delay (delay post a starvation
event) quantify this aspect of user QoE. With adaptive stream-
ing, the user’s video quality could change over time. Frequent
quality switches are found to be detrimental to the user’s
QoE. Thus, the frequency of quality switching is another QoE
metric. In this paper, we develop analytical approximations for
the following QoE metrics: average startup delay, probability
of starvation, average video quality and rate of video quality
switches. While the overall QoE is subjective and is dependent
on the context (e.g., type of content, user preference etc.), the
above metrics are still primary indicators of QoE and are major
contributing factors to the overall QoE.

We analyze a dynamic system with randomly arriving
streaming users which share the network resources. Each user
streams a video of random duration and exits the system on
completion of stream. We model multiple classes of users,
where a class could represent different user parameters, (e.g.,
channel conditions, arrival rate) or different DASH parameters.

A. Related Work
The reference [6] does a field study for monitoring QoE

parameters for YouTube videos and finds that streaming pa-
rameters like stalling times, average time spent on a quality
are more representative of subjective user QoE than network
flow parameters. In [4], [7], [8], the authors describe various
client side adaptation algorithms. These identify the following
key QoE metrics, viz., startup delay, average video quality,
stalling and quality switches. The adaptation algorithm in [7]
uses video bit-rate and delay between segments as knobs to
optimize the user QoE. In [4], the authors show that client-
side adaptation could rely on the playout buffer measurements
alone and reduce rebuffering events while sustaining high
video quality. The authors in [8] point towards the lack of a
principled approach towards adaptation and develop a control
theoretic approach towards adaptation. In [9], the authors
experimentally evaluate various adaptation algorithms based
on their perceptual impact. The references [10], [11] provide
a comprehensive survey of adaptive streaming techniques over
HTTP.

While client-side adaptation is of prime importance, [12]
points out the importance of network support for fairness,
stability and efficiency when multiple adaptive flows compete
for bandwidth over a shared link. The authors develop an in-
network scheduling framework to achieve a balance between
the conflicting requirements of efficient resource usage, fair-
ness and user QoE. In [13], the authors present a theoretical
model for computation of QoE metrics such as probability
of starvation, prefetching and rebuffering delays. With a cost
function which accounts for startup delay and starvation,
they identify the optimal prefetch threshold. The reference
[14] accounts for the flow dynamics, i.e., user arrivals and
departures for computing the QoE metrics. The flow dynamics
are described by a Markov process and the QoE metrics are
computed using ODE and PDE models for the flow dynamics.
However, these models are more suitable to study non-adaptive
video streaming traffic. In [15], the authors formulate the QoE
maximization as an optimization problem and provide optimal
rate allocation for video streaming in a wireless network
considering user dynamics.

B. Motivation and Our Contributions
Current cellular base stations incorporate sophisticated

radio resource management techniques for flow scheduling.
However these mechanisms are specially designed to manage
media traffic with non-adaptive video streaming. In fact, for
adaptive streaming such DASH protocol, LTE scheduling
policy is in conflict with fairness since most adaptive stream-
ing videos are greedy in the sense that if a user observes
high throughput, higher and higher rates are requested until
the maximum quality is reached. This can cause significant
wastage of network bandwidth, particularly in dynamic scenar-
ios. Additionally, accounting for user dynamics is important to
design better algorithms and admission control policies which
efficiently allocate resources across adaptive video streaming
users.

The main contributions of our paper are as follows:
• We develop a general model for studying adaptive

streaming with user dynamics.
• We model the system and user flow dynamics as

Markov chains and derive the probability of starvation,

0,0 0,1

1,0 1,1

0,N2

N ,N21N ,01

1,N2

N ,11

Fig. 1. Transition diagram for a two class CTMC. We have Q(~i,~i+ej) = λj
and Q(~i,~i− ej) is denoted by v~i,j . For a class 1 user, states with i1 = N1

are blocking, and for class 2 user, states with i2 = N2 are blocking states.

the average startup delay, the average video quality
and switching frequency.

• We show that the average video bitrate matches the av-
erage channel rate with buffer-based adaptive scheme
in realistic scenarios with discrete video qualities.

• We observe that with buffer-based schemes, the video
quality switches despite fixed channel rate. In such
a scenario, we show that with appropriate spacing of
the buffer level thresholds, we can prevent the video
quality from jumping too many quality levels.

II. MODELS FOR DYNAMIC SCENARIO
A. Markov model for multi-class dynamic traffic

We consider a dynamic network with variable number of
streaming mobile users with finite-size service demands. A
new mobile user joins the network and requests streaming
service from a media server. The user exits the network
upon completion of its stream. Let λk be the arrival rate
of new class k user. We assume that the arrival processes
are independent Poisson processes. We assume that the video
duration of a class k user, measured in seconds, is exponen-
tially distributed with mean 1/θk. The vector of mobile users,
~i(t) = (i1(t), i2(t), . . . , iK(t)), where ik(t) is the number
of class k users, defines the state of the system. Given the
assumption of exponential distributed video durations, it can
be shown that the service times of the mobile users are
also exponentially distributed. This implies that the remaining
service of a user given the state at time t is independent of the
past. We restrict the number of users of each class to be finite
and denote by X = {(i1, i2, . . . , iK) : 0 ≤ ik ≤ Nk}, the
state space of our system. Under the above assumptions, the
dynamics of coexisting mobile users in the cell is a continuous
time Markov chain (CTMC) with finite state space X . Figure 1
illustrates the transition diagram for a system with two classes.

The timescale of scheduling is of the order of 2 millisec-
onds whereas the timescale of a video segment playout is
in seconds and the timescale of arrivals and departures is of
the order of tens of seconds. Due on this separation of time-
scales, the following assumptions are reasonable. In the time

between two state changes in the CTMC,~i(t), we assume that
the average channel rate and the average video bitrate of a
video streaming flow are functions of the current state. Users
of the same class get the same average throughput. Given this,
as their client adaptation algorithm is identical, their average
video bitrate is also same. Let us denote the average channel
rate (in bps) of a class k user by rk(~i) and its average video
bit rate (in bps) by `k(~i), when the system state is ~i. The
average channel rate would depend on the scheduling policy
and the channel statistics of the user. We assume that given
a scheduling policy the average channel rate is a function of
~i. For example, with weighted proportional fair scheduling on
a shared channel of capacity C, the average channel rates for
different users is given by the solution of

max
∑
k∈K

wkik log(rk(~i)), (1)

subject to
∑
k∈K ikrk(

~i) ≤ C.
Let Q denote the rate transition matrix of ~i(t) process. Let

{e1, e2, . . . , eK} be the standard basis vectors of RK , i.e., ej
is a unit vector with 1 in the jth position. Then Q(~i,~i− ~ek) =
ikrk(~i)θk
`k(~i)

is the rate at which a class k user leaves the system.

We note that Q(~i,~i+ ~ek) = λk. The stationary distribution π
of ~i(t) satisfies πQ = 0 and π1 = 1 with 1 being a vector
with all entries 1. For user QoE analysis, besides π, we need
to understand the dynamics of the system as seen by the users
of each class. We do this by analyzing the system dynamics
as seen by ‘tagged’ users of different classes.

B. Flow dynamics observed by a tagged class j user
When a tagged class j user joins the network, in the

steady state, it finds (i1, i2, . . . , iK) other mobile users with
probability π~i with ~i = (i1, i2, . . . , iK). If it finds the system
in state ~i such that ij = Nj , it is dropped. For a class j user
accepted into the system, the system dynamics as experienced
by it can be modelled through a finite Markov Chain Yj with
state space Xj = X −{~i : ij = Nj}. Additionally, we have an
absorbing state, A, corresponding to the tagged user finishing
service. Let Qj denote the rate transition matrix for Yj . The
departures and arrivals of users define the transitions of the
process Yj . The transition rate Qj(~i,~i − ek) from state ~i to
~i−ek is given by ikrk(~i+ej)θk

`k(~i+ej)
and Qj(~i,~i+ek) = λk. After the

tagged class j user joins the network, the Markov process Yj
provides the system dynamics as observed by the tagged user.
Specifically, the Markov process, Yj(t) is the number of other
users in the system that a particular tagged user of class j sees
in its sojourn in the system. We note that we use rj(~i+ej) for
average channel rate and `j(~i + ej) for average video bitrate
when Yj = ~i. We get an additional ej corresponding to the
tagged class j user observing the system. This is to ensure
consistency with the system Markov chain ~i(t) description.

III. COMPUTATION OF QOE METRICS
We now develop approximations for the QoE metrics: start-

up delay, the starvation behaviours, the average quality and the
quality variation. We give a summary of the notations that we
use in Table I.

TABLE I. TABULAR SUMMARY OF NOTATION USED IN THE PAPER.

Symbol Meaning
System Markov chain

~i(t) Markov process denoting state of system
Q Transition rate matrix for ~i(t) process
π Stationary distribution of ~i(t) process
X State space of ~i(t) process

Tagged user Markov chain
Yj(t) State of system as seen by a class j user
Qj Transition rate matrix for Yj(t) process
Mj T.P.M. for embedded Markov chain of Yj(t)
Xj State space of Yj(t) process
Bj States in Xj with channel capacity < `min

Nj Maximum number of class j users in system
QoE metrics

qa Prefetching threshold in seconds
Dj(qa,~i) Mean startup delay for class j with initial state ~i
Dj(qa) Unconditional mean startup delay for class j user
Pj(~i) Starvation probability for class j user with initial state ~i
Pj Unconditional starvation probability for class j user
Vj(~i) Mean video bitrate for class j user with initial state ~i
Vj Unconditional mean video bitrate for class j user
Sj(~i) Mean quality switches for class j user with initial state ~i
Sj Unconditional mean quality switches for class j user
Rj Unconditional rate of switching for class j user

A. Start-Up Delay
The start-up delay is the duration between the time that

a user initiates a session and the time that the media player
starts playing video frames. In the initial prefetching phase, the
player does not start playback until the duration of received
video reaches the start-up threshold. Let q(t) denote the
remaining seconds of video in the playout buffer at time t.
Assuming r is the average channel rate and ` is the average
video bitrate in [t, t+h], the player downloads video at a rate
of r/` video seconds per second. Assuming that the user plays
out video at normal speed with no starvation event in [t, t+h],
the playout buffer evolves as

q(t+ h) =

{
q(t) + rh/`, during prefetching,
max{0, q(t)− h+ rh/`}, otherwise.

(2)

Let qa be the start-up threshold in seconds. Then the start-
up delay is given by D(qa) = inf{t ≥ 0 | q(t) ≥ qa}. Let
Dj(qa) be the average startup delay for a user of class j. Let
Dj(qa,~i) denote the average startup delay for a user entering
the system in state ~i. The arrivals and departures happen at
a time scale of tens of seconds and the prefetching typically
finishes sooner. Thus, we can safely assume that the probability
of an arrival or departure event while a user is prefetching
its video is negligible. During prefetching, the DASH client
is conservative and starts with the lowest video quality. We
assume that prefetching finishes using the lowest video quality.
Then, using Equation (2), the average startup delay Dj(qa,~i)
is given by

Dj(qa,~i) = qa`min/rj(~i+ ej),

where `min is the video bitrate for the lowest quality
video. The average start up delay is computed by av-
eraging over all possible initial states, i.e., Dj(qa) =∑
~i∈Xj

π(~i)Dj(qa,~i)/
∑
~i∈Xj

π(~i), where π is the station-
ary distribution of CTMC, ~i(t). The normalization term∑
~i∈Xj

π(~i) is needed as we only consider the users accepted
into the system for computing the QoE metrics.

B. Starvation Probabilities
1) An upper bound: We assume that the video of a class j

user experiences starvation if, during playout, its corresponding
Markov chain Yj visits state ~i such that rj(~i + ej) < `min,
where `min is the lowest video bitrate available. This is a good
approximation in the regime where the video durations and the
inter-arrival times are large.

Suppose that a tagged user of class j enters the system
at some state ~i. Let us denote by Pj(~i) the probability
of starvation for this tagged user. Let Bj = {~i ∈ Xj :
rj(~i + ej) < `min}. Let Mj denote the transition probability
matrix for the embedded Markov chain of Yj(t). Then we can
write the following recursive equation for {Pj(·)}: Pj(~i) =∑

~i′ Pj(
~i′)Mj(~i, ~i′) for all ~i ∈ Xj \ Bj , else Pj(~i) = 1. This

gives us one non-trivial linear equation for each ~i ∈ Xj \ Bj .
Thus, we get a system of |Xj \Bj | linear equations in |Xj \Bj |
unknowns, which can be solved using matrix inversion. Then
the unconditional starvation probability Pj for a class j user
is
∑
~i∈Xj

π(~i)Pj(~i)/
∑
~i∈Xj

π(~i).
In the preceding computation, we assumed that if the

tagged class j user visits a state in Bj , it stays long enough
in that state so that its playback buffer depletes to 0 before
it exits the state. This ignores the possibility that there could
be a transition from a state in Bj to Xj \ Bj before the buffer
depletes to 0, thus avoiding starvation. Thus Pj , as computed
above, gives us an upper bound on the probability of starvation.
Next we describe an approximation which takes into account
this possibility.

2) Accounting for effect of transitions: We consider two
possibilities : (a) avoiding starvation due to prefetching and
(b) tagged user avoiding starvation by exiting Bj before the
buffer depletes to 0. With this, the probability of starvation for
a class j user entering the system in state ~i is given by

Pj(~i) = pj(~i) + (1− p(~i))
∑
~i′

Mj(~i, ~i′)P̂j(~i, ~i′), (3)

where pj(~i) is the probability that the users buffer depletes to 0
before transition out of state~i. The quantity pj(~i) accounts for
the impact of prefetching. The term P̂j(~i, ~i′) is the probability
that the users video is starved after it transits from state ~i to
~i′. If ~i ∈ Xj \ Bj , p(~i) = 0, if ~i′ ∈ Xj \ Bj , P̂j(~i, ~i′) = Pj(~i′).
If ~i, ~i′ ∈ Bj , P̂j(~i, ~i′) = 1. If ~i ∈ Xj \Bj and ~i′ ∈ Bj , we have

P̂j(~i, ~i′) = pj(~i, ~i′)+ (1−pj(~i, ~i′))
∑
~i′

Mj(~i, ~i′)P̂j(~i, ~i′), (4)

where pj(~i, ~i′) is the probability that the user’s buffer depletes
to 0 before transition out of state ~i′ given that just prior to ~i′
the user visited state ~i. The term pj(~i, ~i′) takes into account
the possibility of avoiding starvation by user transiting out of
~i′ ∈ Bj before its buffer depletes to 0. It is a function of ~i
and ~i′ since the initial buffer value just prior to entering ~i′ is
a function of ~i and the rate of buffer depletion then on is a
function of ~i′.

Computation of pj(~i, ~i′) and pj(~i): For computing pj(~i)
for ~i ∈ B̂j , we need to find the time for the buffer to deplete
to 0 for a user entering system in state~i. Let us denote this time
by Tj(~i). The term Tj(~i) includes (a) the time to prefetch qa
seconds of video and (b) the time to deplete the prefetched

video. Assuming the prefetching video bitrate is `min and
using Equation (2), we get

Tj(~i) = qa/(rj(~i+ej)/`min)+qa/(1−(rj(~i+ej)/`min). (5)

The sojourn time in state ~i is exponentially distributed with
parameter |Qj(~i,~i)|. Hence the quantity pj(~i) is given by
exp(−|Qj(~i,~i)|Tj(~i)).

We now compute pj(~i, ~i′) with ~i ∈ Xj \ Bj and ~i′ ∈ Bj .
Let Tj(~i, ~i′) be the time required for the buffer to deplete to 0
when the Markov chain transitions from~i to ~i′. Let us assume
that just before transition, the buffer size is bj(~i) sec. Then, as
`j(~i′ + ej) = `min, using Equation (2), we get

Tj(~i, ~i′) = bj(~i)/(1− rj(~i′ + ej)/`min) (6)

and pj(~i, ~i′) is then given by exp(−|Qj(~i′, ~i′)|Tj(~i, ~i′)). We
describe computation of bj(~i) for the buffer-based DASH
variant in Section IV.

C. The average video quality
We now compute the average video quality using the

tagged Markov chain approach. Let τj(~i, ~i′) denote the propor-
tion of time that a class j user, entering in state ~i, spends in
state ~i′ before finishing playout. We can compute it as follows

τj(~i, ~i′) =

∑∞
n=0Mj(~i, ~i′)

n/|Qj(~i′, ~i′)|∑
~k∈Xj

∑∞
n=0Mj(~i,~k)n/|Qj(~k,~k)|

.

For computing the infinite series, we use the matrix identity,
(I − M)−1 =

∑∞
n=0M

n. Then, the average video quality,
Vj(~i) for a class j user entering the system in state ~i is∑

~i′ `j(
~i′)τj(~i, ~i′). The unconditional average video quality Vj

for a class j user is
∑
~i∈Xj

π(~i)Vj(~i)/
∑
~i∈Xj

π(~i).

D. The average rate of quality switches
Buffer-based DASH clients match the average video bitrate

to the average channel rate. Thus with buffer-based DASH,
in states where the channel rate does not match video bit
rate, we have non-zero frequency of quality switching. Hence
corresponding to each state, ~i, there is an associated rate of
switching. We also have quality switches when the system state
changes. Let sj(~i) denote the average number of switches that
a class j user experiences during one sojourn in state ~i. Let
zj(~i, ~i′) denote the number of switches that a class j user
experiences when Yj transitions from ~i to ~i′.

Let Sj(~i) denote the average number of switches that a
class j user experiences during the playout of its video when
it enters the system in state~i. This can be computed as follows

Sj(~i) = sj(~i) +
∑
~i′

Mj(~i, ~i′)
(
zj(~i, ~i′) + Sj(~i′)

)
.

The above gives us |Xj | linear equations in |Xj | variables
and we can compute {Sj(~i) : ~i ∈ Xj} using matrix in-
version. The average number of switches Sj is then given
by

∑
~i∈Xj

π(~i)Sj(~i)/
∑
~i∈Xj

π(~i). The average rate Rj of
switching for a video of average duration 1/θ is given by
Sj/θ.

IV. DASH PERFORMANCE EVALUATION
For the computation of the QoE metrics described in

Section III, we need to compute the following quantities:
• the average channel rate rj(~i+ ej),
• the average video bitrate `j(~i+ ej),
• the average buffer size bj(~i),
• the average number of switches sj(~i),
• the average number of switches zj(~i, ~i′).

The channel rates {rj(~i + ej)} achieved by the different
classes of users depends on the base station’s scheduling
scheme. The other quantities depend on the DASH protocol
used for adaptive streaming. For example, a throughput based
DASH client could set the average video rate `j(~i + ej)
to be the largest supportable video bitrate smaller than the
average channel rate rj(~i+ej). In the following discussion, we
will consider a buffer-based DASH client downloading video
segments at a fixed rate r. This corresponds to analyzing our
dynamic system when it is in state ~i and considering a class
j user with average channel rate rj(~i+ ej) = r.

A. Avoiding multiple video bitrate switches
Consider a user downloading video on a channel with

average channel rate r and assume that it uses video bit rates
from the set L = {`1, `2, . . . , `m : `min = `1 < `2 . . . <
`m = `max}. We consider the steady state QoE experienced
by the user and assume that it is using a buffer-based DASH.
With DASH, the video is segmented into segments (also called
chunks) and at the end of every chunk download, the DASH
client decides on the next video quality, which corresponds
to choosing a video bit rate from L for the next segment.
Depending on the current buffer level, the client chooses the
next quality. Let us denote the buffer size (in video segments)
at time t by b(t). With discrete video qualities, after the client
finishes downloading a video segment, it chooses the next
quality as follows:
• If b(t) ≤ b1, next segment is requested at quality `min,
• if bm−1 < b(t), next segment is requested at quality

`max,
• if bk−1 < b(t) ≤ bk, next segment is requested at

quality `k.
Figure 2 illustrates the buffer values to video bitrates mapping.

b

f(b)

0 b1 b2 · · · bk−1 bk bk+1
· · · bm−1

0

`1

`2

`k

`k+1

`max

· · ·

· · ·

Fig. 2. A mapping from buffer occupancy to a discrete set of video bitrates

Number of video segments
0 10 20 30 40 50 60 70 80 90 100

B
u
ff
e
r

s
iz

e
 (

in
 s

e
g
m

e
n
ts

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Playout buffer evolution for user with channel rate = 0.34Mbps

Playout buffer

Number of video segments
0 10 20 30 40 50 60 70 80 90 100

V
id

e
o
 b

it
 r

a
te

 o
f
s
e
g
m

e
n
t
(i
n
 b

p
s
)

×10
5

2

2.5

3

3.5

4

4.5

5
Video quality evolution for user with channel rate = 0.34Mbps

Video bit rates chosen

Fig. 3. The DASH client has a fixed channel rate of 0.34 Mbps and has video
representations encoded at bitrates 0.2, 0.3 and 0.48 Mbps. We expect that in
steady state, the video quality should switch between 0.3 and 0.48 Mbps. In
the top figure we see that the buffer size (in steady state) at the end of every
segment download crosses two threshold values (marked with dotted lines).
This causes the video quality to switch between 0.2 and 0.48 Mbps, whereas
an intermediate representation, 0.3 Mbps is never used in steady state.

If r /∈ L and `min < r < `max, with buffer-based DASH,
for long videos, video quality switches are inevitable. Suppose
`k < r < `k+1 then one would expect the video quality to
switch between `k and `k+1. However if the buffer thresholds
are not spaced appropriately, it is possible that the client
chooses other qualities in steady state. For example, we see
in Figure 3 that a user with channel rate 0.34 Mbps switches
video qualities between 0.2 Mbps and 0.48 Mbps skipping
the intermediate representation with bit rate 0.3 Mbps. The
following result gives a sufficient condition to avoid such
unnecessary switches in steady state.

Proposition 1 For buffer-based DASH with discrete video
qualities L = {`1, `2, . . . , `m : `min = `1 < `2 . . . < `m =
`max}, if the buffer thresholds {b1, b2, . . . , bm−1} are chosen
such that

bk − bk−1 > (`k+1/`k)− 1 and (7)
bk+1 − bk > 1− (`k/`k+1), (8)

with b0 = 0 then for r ∈ (`k, `k+1), the system reaches
a steady state eventually, where the video quality switches
between `k and `k+1. If r ∈ L, then in steady state there
are no quality switches and steady state video bit rate is r.

Proof: Suppose r ∈ (`k, `k+1). Let b[m] denote the
buffer size (in video segments) and let `[m] denote the video
quality chosen at the beginning of mth segment download.
We need to show that there exists a N such that for n > N ,
b[n] ∈ (bk−1, bk+1]. As r > `min, there is no starvation and
the evolution of {b[m]} is given by

b[m+ 1] = b[m] + 1− `[m]/r. (9)

Suppose b[m] ∈ (bk−1, bk], then `[m] = `k. As r < `k+1,
using Equations (8) and (9), we get bk < b[m + 1] ≤ bk+1.
Similarly, if b[m] ∈ (bk, bk+1], using Equation (7), bk < b[m+
1] ≤ bk+1. Thus if b[n] ∈ (bk−1, bk+1], for all m ≥ 0, b[n +
m] ∈ (bk−1, bk+1].

Now let us consider b[m] ∈ [0, bk−1]. This gives us `[m] <
`k and from (9), we get b[m+1] > b[m]. Let b[m] ∈ (bj−1, bj]
with bj ≤ bk−1. Then `[m] = `j < `k. From Equation (9),

b[m+ 1]− b[m] = 1− `j/r. (10)

From Equation (8), we get a series of inequalities bi+1 −
bi > 1 − (`i/`i+1), for i = {j, j + 1, . . . , k}. Adding these
inequalities, we get bk+1− bj > (j− k)−

∑i=k
i=j (`i/`i+1). As

`j/r < `j/`j+1 and `i/`i+1 < 1, (j − k)−
∑i=k
i=j (`i/`i+1) >

1− `j/r. This shows that b[m+1] can not exceed bk+1. Thus
for b[m] ∈ [0, bk−1], b[m] < b[m+ 1] < bk+1, which ensures
that for some N > m, b[n] ∈ (bk−1, bk+1], for all n > N .

Next we consider b[m] ∈ (bk+1,∞). As `[m] > `k+1,
using Equation (9), we get b[m+ 1] > b[m]. From our earlier
arguments, if b[m] ∈ [0, bk+1], there exists N such that b[n] ∈
(bk−1, bk+1] for all n > N . Using this and the fact that b[m+
1] < b[m], as earlier for some N > m, b[n] ∈ (bk−1, bk+1],
for all n > N . Thus, we have shown that irrespective of the
initial value of the buffer, there exists some N such that b[n] ∈
(bk−1, bk+1], for all n > N , which proves the first claim of
the Proposition.

When r ∈ L, using similar steps as above, we can
show that eventually the buffer sizes converge to the region
corresponding to f(b) = r. From then on as video bitrate
matches r, there is no change in buffer size and hence no
further change in video bitrate.

B. Average video bitrate for buffer-based DASH
In [4], the authors prove that when the video qualities

are continuous and the map, f(b) from buffer levels to video
quality is increasing, the DASH clients choose video qualities
such that the average video bitrate matches the average channel
rate. We now prove the result when video bitrates are discrete.

Proposition 2 Consider a buffer-based DASH algorithm
where the map f(b) from buffer levels to video quality is
increasing. Also assume that the buffer thresholds are chosen
as described in Proposition 1. Then if `min < r < `max, the
average video bitrate is r.

Proof: If the buffer spacing criterion of Proposition 1
is satisfied. Then for r such that `k < r < `k+1, the
sequence {b[m]} of playout buffer sizes at the beginning of
mth video segment eventually ends up in (bk, bk+1], i.e., for
some N , b[n] ∈ (bk, bk+1] for all n > N . For computing
the asymptotic average bitrate, the initial N video segments
can be ignored. Hence for computing the asymptotic average
bitrate, we assume that b[0] ∈ (bk−1, bk+1], so that we
download videos at bit rate `k or `k+1. To compute the
average video bit rate, we need to compute the (steady state)
fraction of videos downloaded at bitrates `k and `k+1. If
b[m] ∈ (bk−1, bk], b[m + 1] = b[m] + 1 − `k/r and if
b[m] ∈ (bk, bk+1], b[m + 1] = b[m] + 1 − `k+1/r. At the
beginning of the N th segment download, we have b[N] =
b[0]+n1(1−`k/r)+n2(1−`k+1/r), where N = n1+n2 and
n1, n2 are the number of segments downloaded at bit rates
`k and `k+1 respectively. Let α , limN→∞ n1/N denote

the fraction of segments downloaded at bit rate `k. Since
|b[N]−b[0]| < bk+1−bk−1 as N →∞, (b[N]−b[0])/N → 0.
Hence we get α(1− `k/r) + (1− α)(1− `k+1/r) = 0 which
gives us α`k + (1− α)`k+1 = r).

C. Average rate of video quality switches
Proposition 1 shows that we can avoid switching between

non-adjacent quality levels provided the buffer thresholds
are chosen appropriately. In the following proposition, we
present an approximation for the frequency of switching when
`k < r < `k+1. We will assume that the buffer size oscillates
between a and c in the steady state, with a < c.

Proposition 3 Suppose that the average channel rate, r is
such that `k < r < `k+1 and the buffer thresholds are chosen
as stated in Proposition 1, then the frequency, f(r) of switching
in steady state is given by

f(r) =

{
2

v(`k+1/r+(`k/r)(`k+1−r)/(r−`k))) , if r < `k+`k+1

2
2

v(`k/r+(`k+1/r)(`k−r)/(r−`k+1))
, otherwise

switches per video second, with v being the number of seconds
in one video segment.

Proof: We prove the result for r < `k+`k+1

2 , the other
result can be shown in similar fashion. Let T1, T2 denote the
time for the buffer size to go from a to c and from c to a
respectively. When r < `k+`k+1

2 , the DASH client downloads
one segment at rate `k+1 and the buffer goes from c to a. It
then switches to `k. As r is closer to `k than `k+1, it takes
more than one segment download to go from a to c. Using (2),
the time T2 to download one segment at rate `k+1 is given by
v`k+1/r = (c−a)`k+1/(`k−r) seconds. The time T1 is given
by,

T1 = (c− a)`k/(r − `k) = v(`k+1 − r)`k/(r(r − `k)). (11)

As there are two quality switches in time T1 + T2, we have

f(r) = 2/(T1 + T2)

=
2

v(`k+1/r + (`k/r)(`k+1 − r)/(r − `k)))
.

Computation of `j(~i + ej), bj(~i), sj(~i) and zj(~i, ~i′): We
now give approximations for `j(~i+ej), bj(~i), sj(~i) and zj(~i, ~i′)
using Propositions 1, 2 and 3, From Proposition 2, we have
`j(~i+ej) = rj(~i+ej), whenever `min < rj(~i+ej) < `max. If
rj(~i+ej) < `min, `j(~i+ej) = `min and if rj(~i+ej) > `max,
`j(~i+ej) = `max. If `k < rj(~i+ej) < `k+1, the buffer is close
to bk. Hence, in this case, we set bj(~i) = bk. From Proposition
3, sj(~i) = f(rj(~i+ej))/|Qj(~i,~i)|. For computation of zj(~i, ~i′),
we count the number of video qualities in L which are between
rj(~i + ej) and rj(~i′ + ej). Using these, we can compute the
QoE metrics outlined in Section III.

V. SIMULATION RESULTS
In this section, we validate our analytical results against

simulations. Some simulation results are omitted here due to
the lack of space. These can be found in our technical report
[16].

We simulate about 105 users entering the system, whose
arrival into the network is a Poisson process of rate λ. Each
arriving user requests a video with exponential distribution

and leaves the system once the video is downloaded. The
system enforces admission control rejecting new users when
the system is full. The average channel rate depends on
the number of streaming users of the different classes. The
average video bit-rate of each user is dictated by the DASH
buffer-based bit-rate adaptation algorithm. The segments are
downloaded sequentially and the decision on the quality of
the next segment is based on the buffer level at the end of
current segment download. The buffer thresholds (as described
in Figure 2) are set as follows, b1 = 4 segments, bm−1 = 10
segments. The other values are uniformly spaced which, for
our simulation parameters, ensures that the buffer spacing
condition of Proposition 1 is satisfied.

A. Homogeneous case
Here, we consider a single class of users, The users receive

equal share of network capacity. Each video segment has
2 seconds of video. The playout buffer prefetch threshold,
qa is set to 1 segment. The available video bitrates are
L = {0.2, 0.3, 0.48, 0.75, 1.2, 1.85, 2.85, 4.3, 5.3} Mbps. The
users arrive at a rate of 0.01 arrivals per sec. The average
video duration is 20 minutes while the total channel capacity
available to the streaming users is set to 4 Mbps.

We first investigate the impact of admission control on
the QoE metrics. In Figures 4, 5, 6, 8 we show the effect
of changing the maximum number of users on the probability
of starvation, startup delay, average quality and the probability
of dropping. In Figure 7, we compare the rate of switching
as predicted by the model with simulations. As the maximum
number of users allowed to contend for the channel increases,
the probability of starvation and average startup delay increases
whereas the average video bit rate and the probability of user
blocking decreases. We see that the probability of starvation
is close to 0 when the maximum number of users N is
less than 10. This occurs as the average rate per user when
N ≤ 10 is greater than `min = 0.2 Mbps. This indicates that
the buffer-based rate adaptation strategy does avoid starvation
whenever the available capacity is at least `min. Also our
model quantifies the trade-off between user blocking and user
QoE, demonstrating the use of admission control for achieving
the desired QoE.

We note that in Propositions 1, 2 and 3, we assumed that the
video is downloaded at a fixed rate of r bps and that the user’s
client adaptation algorithm is operating in its steady state.
In the simulations, the channel rate and the client adaptation
changes due to user arrival/departure. Our simulation results
are close to the analytical values which suggests that the DASH
dynamics converge fairly quickly, thus validating our model
and approximations.

B. Multiple Classes
In this section, we consider multiple class of users and

compare the analytically obtained QoE metrics for each class
of users with simulations. We consider two classes of users,
where a user of class 1 gets twice the rate as compared to a user
of class 2. The disparity is representative of a scenario where
class 1 users are closer to the base station whereas class 2 users
are cell-edge users. Also, this setup corresponds to a weighted
proportional fair scheduler (Equation (1) in Section II) with
two classes with weights 2 and 1. The total capacity available
to all the users is 5 Mbps. The arrival rate for each class user is
0.01, the average video duration is 10 minutes. The maximum
number of users for each class is chosen from {5, 10} as

Maximum number of users (N)
0 5 10 15 20 25 30

P
ro

b
a

b
ili

ty
 o

f
s
ta

rv
a

ti
o

n
 (

P
)

0

0.02

0.04

0.06

0.08

0.1

0.12
Probability of starvation

Analysis (upper bound)
Analysis
Simulation

Fig. 4. Effect of admission control on probability of starvation.

Maximum number of users (N)
0 5 10 15 20 25 30A

v
e

ra
g

e
 s

ta
rt

u
p

 d
e

la
y
 i
n

 s
e

c
o

n
d

s
 (

D
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Average startup delay

Analysis
Simulation

Fig. 5. Effect of admission control on startup delay.

Maximum number of users (N)
0 5 10 15 20 25 30

A
v
e

ra
g

e
 v

id
e

o
 b

it
ra

te
 i
n

 b
p

s
 (

V
)

×10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
Average video bitrate

Analysis
Simulation

Fig. 6. Effect of admission control on average video bit rate.

Average video bitrate switches per sec (R (analysis))
0.15 0.2 0.25 0.3 0.35 0.4

A
v
g

.
v
id

e
o

 b
it
ra

te
 s

w
it
c
h

e
s
 (

R
 (

s
im

))

0.15

0.2

0.25

0.3

0.35

0.4

Scatterplot of Rate of quality switching

Fig. 7. Comparison of average rate of switching (number of switches/sec)
with simulation results.

stated in the first column of Tables II, III and IV. The DASH
parameters for all users are set as in the homogeneous case.

Maximum number of users (N)
0 5 10 15 20 25 30

P
ro

b
a
b
ili

ty
 o

f
u
s
e
r

b
lo

c
k
in

g

0

0.2

0.4

0.6

0.8

1
Probability of user blocking

Analysis
Simulation

Fig. 8. Probability of user blocking.

TABLE II. PROBABILITY OF STARVATION

N1, N2 P1, P2 (sim.) P1, P2 (analysis) P1, P2 (analysis)
Exact Upper Bound

5, 5 0, 0 0, 0 0, 0
5, 10 0, 0 0, 0 0, 0
10, 5 0, 0 0, 0 0, 0
10, 10 0, 0.11 0, 0.17 0, 0.27

The different QoE metrics for different values of N1, N2 are
tabulated in Tables II, III and IV. We see that there is a good
match between simulations and our analytical results. As in the
single class case, there is a trade-off between user blocking and
the QoE metrics, starvation, startup delay and average video
bit rate. For example, if we increase the maximum number of
either class from 5 to 10, the probability of user dropping of
the corresponding class decreases from ≈ 0.36 to ≈ 0.04 (see
Table IV). However, when we increase both N1 and N2 from
5 to 10, the users of class 2 experience non-zero probability
of starvation (see Table II).

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have developed a model based on Markov

chains for QoE analysis of adaptive streaming clients over
a dynamic wireless environment. Specifically, we derived
approximations for probability of starvation, average startup
delay, average video quality and switching frequency for
buffer-based DASH clients. We have shown that, in case of
buffer-based adaptive schemes with discrete video qualities,
the average video bitrate matches the average channel rate.
We observed that with buffer-based schemes, the video quality
switches despite a constant channel rate. In such a scenario, we
have shown that with appropriate spacing of the buffer level
thresholds, we can prevent the video quality from jumping too
many quality levels.

In our future works, we plan to extend our model to account
for background traffic and user abandonments.

TABLE III. AVG. STARTUP DELAY (IN SEC) AND AVG. VIDEO
BITRATE (IN MBPS)

N1, N2 D1, D2 D1, D2 V1, V2 V1, V2

sim. analysis sim. analysis
5, 5 0.46, 0.92 0.48, 0.95 0.79, 0.42 0.85, 0.45
5, 10 0.53, 1.11 0.56, 1.14 0.69, 0.35 0.75, 0.37
10, 5 0.65, 1.22 0.68, 1.26 0.59, 0.33 0.64, 0.35
10, 10 0.72, 1.41 0.75, 1.44 0.53, 0.29 0.57, 0.30

TABLE IV. AVERAGE RATE OF SWITCHING (IN SWITCHES PER SEC)
AND PROBABILITY OF USER BLOCKING

N1, N2 R1, R2 R1, R2 π(N1, ·), π(·, N2)
sim. analysis sim. analysis

5, 5 0.21, 0.27 0.21, 0.27 0.35, 0.35 0.36, 0.36
5, 10 0.24, 0.23 0.25, 0.23 0.35, 0.04 0.36, 0.04
10, 5 0.23, 0.23 0.23, 0.24 0.04, 0.36 0.04, 0.36
10, 10 0.24, 0.21 0.24, 0.22 0.04, 0.04 0.04, 0.05

REFERENCES
[1] “Youtube Statistics.” https://www.youtube.com/yt/about/press/. Ac-

cessed: 2017-12-26.
[2] I. Sodagar, “The MPEG-DASH Standard for Multimedia Streaming

Over the Internet,” IEEE MultiMedia, vol. 18, pp. 62–67, April 2011.
[3] T.-Y. Huang, R. Johari, and N. McKeown, “Downton abbey without

the hiccups: Buffer-based rate adaptation for HTTP video streaming,”
in SIGCOMM FhMN workshop, pp. 9–14, ACM, 2013.

[4] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service,” ACM SIGCOMM CCR, vol. 44, no. 4, pp. 187–198,
2015.

[5] E. Altman, F. Baccelli, and J. C. Bolot, “Discrete-time analysis of
adaptive rate control mechanisms,” in High Speed Networks and their
performance, pp. 121–140, H. G. Perros and Y. Viniotis, North Holland,
1994.

[6] M. Seufert, P. Casas, F. Wamser, N. Wehner, R. Schatz, and P. Tran-Gia,
“Application-layer monitoring of QoE parameters for mobile YouTube
video streaming in the field,” in IEEE Sixth International Conference
on Communications and Electronics (ICCE), pp. 411–416, July 2016.

[7] K. Miller, E. Quacchio, G. Gennari, and A. Wolisz, “Adaptation
algorithm for adaptive streaming over HTTP,” in Packet Video Workshop
(PV), 2012 19th International, pp. 173–178, IEEE, 2012.

[8] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” ACM
SIGCOMM CCR, vol. 45, no. 4, pp. 325–338, 2015.

[9] T. C. Thang, H. T. Le, A. T. Pham, and Y. M. Ro, “An evaluation of
bitrate adaptation methods for http live streaming,” IEEE J. Sel. Areas
Commun., vol. 32, pp. 693–705, April 2014.

[10] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hofeld, and P. Tran-Gia,
“A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Commun. Surveys Tuts, vol. 17, no. 1, pp. 469–492, 2015.

[11] J. Kua, G. Armitage, and P. Branch, “A Survey of Rate Adaptation
Techniques for Dynamic Adaptive Streaming Over HTTP,” IEEE Com-
mun. Surveys Tuts, vol. 19, no. 3, pp. 1842–1866, 2017.

[12] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan, and M. Chi-
ang, “A Scheduling Framework for Adaptive Video Delivery over
Cellular Networks,” in MOBICOM, pp. 389–400, ACM, 2013.

[13] Y. Xu, E. Altman, R. El-Azouzi, M. Haddad, S. Elayoubi, and
T. Jimenez, “Analysis of Buffer Starvation With Application to Objec-
tive QoE Optimization of Streaming Services,” IEEE Trans. Multimedia,
vol. 16, pp. 813–827, April 2014.

[14] Y. Xu, S. E. Elayoubi, E. Altman, and R. El-Azouzi, “Impact of flow-
level dynamics on QoE of video streaming in wireless networks,” in
INFOCOM, pp. 2715–2723, IEEE, 2013.

[15] V. Joseph, S. Borst, and M. I. Reiman, “Optimal Rate Allocation
for Video Streaming in Wireless Networks With User Dynamics,”
IEEE/ACM Trans. Netw., vol. 24, pp. 820–835, April 2016.

[16] S. Poojary, R. El-Azouzi, E. Altman, A. Sunny, I. Triki, M. Had-
dad., T. Jimenez, D. Tsilimantos, and S. Valentin, “Analysis of QoE
for Adaptive Video Streaming over Wireless Networks,” in Technical
Report, http://lia.univ-avignon.fr/chercheurs/elazouzi/Technical-report-
Wiopt18.pdf.

