
The Maconomy RESTful Web Services

Programmer’s Guide
2022

While Deltek has attempted to verify that the information in this document is accurate and
complete, some typographical or technical errors may exist. The recipient of this document is
solely responsible for all decisions relating to or use of the information provided herein.

The information contained in this publication is effective as of the publication date below and is
subject to change without notice.

This publication contains proprietary information that is protected by copyright. All rights are
reserved. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, or translated into another language, without the prior written
consent of Deltek, Inc.

This edition published December 2022.

© 2022 Deltek Inc.

Deltek’s software is also protected by copyright law and constitutes valuable confidential and
proprietary information of Deltek, Inc. and its licensors. The Deltek software, and all related
documentation, is provided for use only in accordance with the terms of the license agreement.
Unauthorized reproduction or distribution of the program or any portion thereof could result
in severe civil or criminal penalties. All trademarks are the property of their respective owners.

©Deltek Inc., All Rights Reserved ii Document revision 2.5

Revision Date Description

1.0 2015 First version of the programmer’s guide describing the now dep-
recated version of the Maconomy RESTful web services.

2.0 2021 Updated to cover Containers Web Service version 2.0 and addi-
tional new services.

2.1 2021 Configuration added to describe server.ini settings relevant for
the Maconomy RESTful web services covered.

2.2 2021 Updated to cover Containers Web Service version 3.0:
• Tree table panes are now supported and hence dot indices

have been introduced for pointing out Record Positions.
• Partial Data Responses extended to cover the new move

record patch operation.

Media Types covers the version parameter now part of the
custom media types.

Web Access Configuration extended with section about diagnostic
logging.

The different versions of the Maconomy RESTful web services
are now shortly described in Versions.

2.3 2021 Updated to cover Containers Web Service version 4.0:
• Filtering parameters may be supplied in the request body

instead of as query parameters.
• When no fields parameter is supplied, only key fields are

included in the filter response.
• For table panes with moveable records, the container

Specification exposes a moveMode property and targeted
title properties upTitle, downTitle, indentTitle, and
outdentTitle.

Updated to cover Root Web Service version 2.0.

©Deltek Inc., All Rights Reserved iii Document revision 2.5

2.4 2022 Updated to cover Containers Web Service version 5.0:
• An access hyperlink is included in container resources.
• Unless otherwise specified during Data Fields Slicing, only

key fields can be mentioned in update requests and only key
fields are included in data responses.

• Whenever applicable, container instance resources include
a data:some-key hyperlink.

Updated to cover Messages Web Service version 1.0.

Updated to cover Diagnostics Web Service version 1.0.

Updated to cover errorIds introduced in Error Responses.

2.5 2022 Updated to cover Containers Web Service version 6.0:
• For popup containers:

– A hidden field has been made available for popup
containers, indicating whether an enum value should
be selectable in a user interface or not.

– The Filtering parameters fields, restriction, and
orderBy are now also supported for popup containers.

– If no fields parameter is supplied in a popup container
filter request, only the value field will be included in
the response.

• Multi-column Table Sorting is now configurable for container
instances.

• Table Paging is now supported for data responses.
• Query parameters have been eradicated and request body

parameters are used instead. Consequently, the following
stand:
– Only the HTTP verb POST is applicable when following

a data:filter or data:enumvalues hyperlink.
– Instead of DELETE, the HTTP verb POST must be ap-

plied when following an data:delete hyperlink.
– The HTTP verb POST may also be applied when fol-

lowing an instance:data hyperlink.

Updated to cover the Maconomy User Resource introduced in
Authentication Web Service version 1.3.

©Deltek Inc., All Rights Reserved iv Document revision 2.5

CONTENTS

Contents

1 Introduction 1
1.1 REST . 1

1.1.1 Resources . 1
1.1.2 Hyperlinks . 2
1.1.3 Other Styles of Web Services . 2
1.1.4 Further Reading . 2

1.2 cURL . 3
1.3 Version History . 3

1.3.1 Changes in Maconomy 2.5.2 . 4
1.3.2 Changes in Maconomy 2.5.3 . 5
1.3.3 Changes in Maconomy 2.5.4 . 5
1.3.4 Changes in Maconomy 2.6 . 6
1.3.5 Changes in Maconomy 2.6.1 . 6

2 General 8
2.1 Proxy Requirements . 8
2.2 JSON . 9
2.3 Media Types . 9

2.3.1 Accept Request Header . 9
2.3.2 Content-Type Request Header . 10

2.4 Compression . 11
2.5 Language . 11
2.6 Formats . 12
2.7 Data Types . 12

2.7.1 Integer . 13
2.7.2 Real . 13
2.7.3 Amount . 13
2.7.4 Boolean . 13
2.7.5 String . 13
2.7.6 Date . 14
2.7.7 Time . 14
2.7.8 Enum . 14

©Deltek Inc., All Rights Reserved v Document revision 2.5

CONTENTS

2.7.9 Time Duration . 15
2.7.10 Auto Timestamp . 15

2.8 Authentication . 15
2.8.1 HTTP Basic Authentication . 15
2.8.2 Maconomy Reconnect Authentication 18
2.8.3 Kerberos . 19
2.8.4 OpenID Authentication . 20
2.8.5 Two-Factor Authentication . 22

2.9 Request Identification in APM Logs . 28
2.10 Client Identification in APM Logs . 30
2.11 Status Codes and Errors . 30

2.11.1 Error Responses . 33

3 Root Web Service 36
3.1 Handshake . 39
3.2 Installation . 39

4 Containers Web Service 43
4.1 Specification . 47

4.1.1 Actions . 50
4.1.2 Fields . 54
4.1.3 Foreign Keys . 57
4.1.4 Related Containers . 67

4.2 Access . 69
4.3 Filtering . 70

4.3.1 Filter Paging . 75
4.3.2 Filter Sorting . 76
4.3.3 Filter Fields Slicing . 76
4.3.4 Filter Restriction . 77

4.4 Container Instances . 78
4.4.1 Concurrency Tags . 81
4.4.2 Data Resource . 82
4.4.3 Data Fields Slicing . 85
4.4.4 Table Sorting . 85
4.4.5 Configuring an Instance . 86
4.4.6 Deleting an Instance . 89

4.5 Working with Data . 90
4.5.1 Record Positions . 90
4.5.2 Creating a Data Entry . 92
4.5.3 Loading a Data Entry . 97
4.5.4 Adding a Table Record . 101
4.5.5 Updating a Record . 103
4.5.6 Deleting a Record . 105
4.5.7 Moving a Table Record . 106

©Deltek Inc., All Rights Reserved vi Document revision 2.5

CONTENTS

4.5.8 Printing . 107
4.5.9 Applying an Application Action 109
4.5.10 Table Paging . 112
4.5.11 Partial Data Responses . 113

4.6 Warnings and Notifications . 117
4.6.1 HTML Entity Escaping . 121

4.7 Web Access Configuration . 121
4.7.1 Access Lists . 122
4.7.2 Web Access Contract . 124
4.7.3 Diagnostic Logging . 125

5 Popup Types Web Service 126

6 File Drop Web Service 129

7 Logging Web Service 133

8 User Settings Web Service 137

9 Authentication Web Service 141
9.1 Maconomy User Resource . 143

9.1.1 Change Role in User Session . 145
9.1.2 Create New User Session With Role 146

10 Messages Web Service 147

11 Diagnostics Web Service 155
11.1 Paths . 156
11.2 Cookies . 157
11.3 Timing . 159

12 Configuration 161
12.1 Root Web Service Configuration . 162

12.1.1 Version Information . 162
12.1.2 Shortnames . 162

12.2 Containers Web Service Configuration . 162
12.2.1 Container Instances Cache Mode 163
12.2.2 Container Instance Expiry . 165
12.2.3 Container Instances Limit . 165
12.2.4 Auto Position Fields . 165

12.3 Popup Types Web Service Configuration 166
12.4 File Drop Web Service Configuration . 166
12.5 Logging Web Service Configuration . 166
12.6 User Settings Web Service Configuration 166
12.7 Authentication Web Service Configuration 166

©Deltek Inc., All Rights Reserved vii Document revision 2.5

CONTENTS

12.8 Messages Web Service Configuration . 167
12.9 Diagnostics Web Service Configuration . 167

12.9.1 Test Paths . 167
12.9.2 Set-Cookie Values . 167

13 Versions 168
13.1 Root Web Service Versions . 168

13.1.1 Root Web Service Version 1 . 168
13.1.2 Root Web Service Version 2 . 168

13.2 Containers Web Service Versions . 168
13.2.1 Containers Web Service Version 1 168
13.2.2 Containers Web Service Version 2 169
13.2.3 Containers Web Service Version 3 169
13.2.4 Containers Web Service Version 4 169
13.2.5 Containers Web Service Version 5 170
13.2.6 Containers Web Service Version 6 170

13.3 Popup Types Web Service Versions . 170
13.3.1 Popup Types Web Service Version 1 170

13.4 File Drop Web Service Versions . 171
13.4.1 File Drop Web Service Version 1 171

13.5 Logging Web Service Versions . 171
13.5.1 Logging Web Service Version 1 . 171

13.6 User Settings Web Service Versions . 171
13.6.1 User Settings Web Service Version 1 171

13.7 Authentication Web Service Versions . 171
13.7.1 Authentication Web Service Version 1 171

13.8 Messages Web Service Versions . 172
13.8.1 Messages Web Service Version 1 172

13.9 Diagnostics Web Service Versions . 172
13.9.1 Diagnostics Web Service Version 1 172

Bibliography 173

Index 174

©Deltek Inc., All Rights Reserved viii Document revision 2.5

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The Maconomy RESTful web services are a collection of programmatic interfaces pro-
viding access to data and business functionality within the Deltek Maconomy ERP
product.

1.1 REST
Before going into details about the Maconomy RESTful web services, it is relevant to
quickly go over what REST is and the concepts and terminology associated with it.

REST stands for Representational State Transfer and refers to a certain architectural
style to be used when creating web services. A web service that is built on REST
principles is said to be RESTful.

1.1.1 Resources

A central concept in REST is the resource. A resource is a domain object that is uniquely
identified by a URL.

When accessing the URL of a resource, one gets a representation of the current state of
that resource back. The same resource may have multiple representations, for example,
XML or JSON. When interacting with a resource, a client program can choose the
representation it prefers.

Resources are accessed and manipulated (read, updated, deleted, and so on) by a fixed
set of HTTP verbs. The verbs used by the Maconomy RESTful web services are GET,
PUT, POST and DELETE [7]. Throughout this document, the GET verb is the one applicable,
if nothing else is mentioned.

©Deltek Inc., All Rights Reserved 1 Document revision 2.5

CHAPTER 1. INTRODUCTION

1.1.2 Hyperlinks

Hyperlinks are a well-known concept from the web and are also pervasive in RESTful
web services. Just like on a web page, hyperlinks there point to related resources.

Hyperlinks are also used to represent available state transitions. For example, to update
the state of a resource, the client program needs to follow some specific hyperlink.
Resources have hyperlinks for all available state transitions.

Each hyperlink has an associated link relation which is simply an identifier that tells
client programs what the hyperlink can be used for (for example, accessing a related
resource, updating, submitting, transferring). When writing client programs, one should
only rely on link relations and consider all URLs opaque. One should never attempt
to guess the URL pattern for any resource. Only the link relation of a hyperlink is
guaranteed to be stable.

The REST principle of enforcing client programs to dynamically discover the service
and its hyperlinks is referred to as Hypermedia as the Engine of Application State, or
HATEOAS in short.

1.1.3 Other Styles of Web Services

REST is often contrasted with other styles of web services exemplified by the SOAP
protocol.

Rather than interacting with stateful resources via a standard set of verbs and following
the standard HTTP application protocol used consistently across many web services from
different sources, a typical SOAP web service offers a list of custom procedures that may
be invoked over the network.

Instead of assigning each domain object a URL that can be used to retrieve and manipulate
the object, a SOAP web service uses ids to refer to domain objects. The ids must then
be supplied to appropriate procedure calls to operate on the objects. HTTP is only
incidentally used to transmit messages, but none of the useful features and properties of
the web architecture are leveraged.

Rather than being discoverable by representing the possible interactions as hyperlinks, a
typical SOAP web service relies on out-of-band means (such as detailed manuals and
specifications) to communicate the interaction protocol for the web service.

1.1.4 Further Reading

It is recommended that developers working with producing or consuming RESTful
web services read the book “REST in Practice: Hypermedia and Systems Architecture”
[12].

©Deltek Inc., All Rights Reserved 2 Document revision 2.5

CHAPTER 1. INTRODUCTION

1.2 cURL
This document uses the free cURL tool for all examples. If cURL is not already installed
on your machine (on macOS and Linux it is likely already installed), you can download
it from here: https://curl.se/.

On Windows, the built-in Command Prompt has poor support for quoting and escaping
URLs and other parameters to cURL. To use the cURL examples in this document, you
must install and use a shell that supports Bash-style quoting and escaping. An easy way
to do this is to install Git for Windows, which comes with the Git Bash shell emulator
and the cURL tool. Git for Windows can be found here: https://git-scm.com/

cURL allows a programmer to make HTTP requests from the command line, and is a
very valuable tool when developing client code that interacts with a web service. In this
document, cURL is used to provide working examples for the functionality, documenting
how to correctly interact with the service.

The full documentation is available from the cURL website, but the following table lists
the options used in this document.

Option Explanatory text

-i Include the HTTP response headers in the output.

-u USERNAME:PASSWORD Use the specified username and password as HTTP Basic
Authentication credentials.

-H 'HEADER: VALUE' Include the specified HTTP header in the request.

-d @FILE Make an HTTP POST request with the contents of given
file in the request body.

-X POST Make an HTTP POST request. If the -d option is not
used, the request will have an empty request body, else, if
the -d option is used, the -X POST can be left out.

-X DELETE Make an HTTP DELETE request.

1.3 Version History
The first version of the Maconomy RESTful web services was released with Maconomy
2.1.3 and consisted of a suite of web services that allowed for a number of different
interactions with a Maconomy installation. Central to the suite of web services is the
Containers Web Service allowing for interaction with the so-called Maconomy containers
which exposes all business functionality in Maconomy.

©Deltek Inc., All Rights Reserved 3 Document revision 2.5

https://curl.se/
https://git-scm.com/

CHAPTER 1. INTRODUCTION

1.3.1 Changes in Maconomy 2.5.2

In the version of the Maconomy RESTful web services released with Maconomy 2.5.2, a
major rewrite of the Containers Web Service has been carried out. The previous version
of the Containers Web Service (CWS1) used a model that in certain situations incurred
a non-negligible performance overhead. For each interaction, the server had to do a large
amount of recalculations.

To address this performance issue, a different interaction model is used in the improved
version of the Containers Web Service (CWS2). To interact with the data within a
container using CWS2, it is necessary to create a so-called container instance holding
important parts of the container’s state. This eliminates the need for the recalculations
that were necessary in CWS1 and has greatly improved performance. CWS2 now performs
on par with other APIs used by Maconomy clients. iAccess for Maconomy 2.5.2 uses
CWS2 and sees significant performance improvements.

In this document, we only describe how to work with CWS2. For a detailed description
of CWS1, we refer to the previous version of this document.

The most important changes to the Maconomy RESTful web services in Maconomy 2.5.2
are summarized below:

• A new Root Web Service has been added. From here, all other active RESTful web
services can be discovered in accordance with the HATEOAS principle.

• All web services now have their own custom media types. This allows for versioning
of the services and for client programs to stay compatible by requesting particular
versions. For backwards compatibility, some web services can still be addressed
with application/json in Accept and Content-Type headers. However, this is
discouraged and in the future, such requests may fail with 406 Not Acceptable
or 415 Unsupported Media Type.

• As described above, the Containers Web Service has been reimplemented in a new
version 2:

1. All interactions with a container’s data now go through a container instance
which needs to be created first (see Container Instances). This has led to a
significant performance improvement.

2. Two features have been added to significantly reduce the amount of data
transferred between the client program and the server:

– You can limit the number of fields returned in data responses (see Data
Fields Slicing). This is in particular relevant for containers where the
client program is only interested in a small subset of the container’s fields.

– Partial Data Responses is a new feature that, if enabled, causes the server
to reply with only changes to data instead of the full data response. This

©Deltek Inc., All Rights Reserved 4 Document revision 2.5

CHAPTER 1. INTRODUCTION

means that only the changed field values are communicated and unaltered
records are completely left out of the data response.

3. Printing where print layout selection is necessary now works for all containers.
Previously, prints where the client program had to select a print layout did
not work with the Containers Web Service.

4. Containers with variable state now work correctly. Previously, containers with
significant variable state malfunctioned to various degrees. Time Registration
is an example of such a container and so are containers where the client
program has to select in the card pane which records will be displayed in the
table pane.

1.3.2 Changes in Maconomy 2.5.3

In the version of the Maconomy RESTful web services released with Maconomy 2.5.3, the
Containers Web Service now fully supports data containers that have tree table panes
with hierarchically organized records. From a client program’s perspective, the main
differences are:

• JSON objects received as representations of table pane records now reflect any
hierarchical structure.

• Record Positions are pointed out by so-called dot indices.

• A new move record patch now occurs in connection with Partial Data Responses.

With the File Drop Web Service included in Maconomy 2.5.3, a file drop can no longer
be both resolved and retrieved by a client program. Instead a file drop can now either
be resolved or retrieved.

1.3.3 Changes in Maconomy 2.5.4

In the version of the Maconomy RESTful web services released with Maconomy 2.5.4,
Filtering and foreign key searching (see Foreign Keys) in the Containers Web Service
have changed in the following ways:

• The filtering parameters fields, restriction, orderBy, offset, and limit may
now be supplied as properties of a JSON object in the body of a filter or foreign
key search POST request instead of as query parameters.

• When no fields parameter is supplied with a filter or foreign key search request,
only key fields are included in the filter response.

Also, the Specification of a container’s table pane now holds more details about any
defined move action, allowing client programs to discover in advance if records may only
be moved around inside their current context.

©Deltek Inc., All Rights Reserved 5 Document revision 2.5

CHAPTER 1. INTRODUCTION

Finally, the version information exposed as part of a root resource representation in the
Root Web Service has been streamlined and thus extended with an application build
number.

1.3.4 Changes in Maconomy 2.6

In the version of the Maconomy RESTful web services released with Maconomy 2.6, the
Diagnostics Web Service has been introduced. The purpose of this service is to facilitate
a way of easily judging whether the system seems to be correctly configured.

Also, the Messages Web Service has been introduced, offering web-based clients a way
of viewing and interacting with the current set of system messages in the Maconomy
system.

In the Containers Web Service, container resources have been extended with an access
hyperlink, allowing the client program to retrieve information about the authenticated
user’s CRUD access rights (see Access). Besides this, only key fields can be mentioned
in update requests and only key fields are included in data responses, unless otherwise
specified in the Data Fields Slicing JSON object submitted on container instance cre-
ation. Also, whenever applicable, container instance resources include a data:some-key
hyperlink to be followed in cases where the client program wants to load the data entry
corresponding to some already known key (see Loading a Data Entry).

In general, an errorIds property has been introduced in Error Responses.

1.3.5 Changes in Maconomy 2.6.1

In the version of the Maconomy RESTful web services released with Maconomy 2.6.1, the
Filtering in the Containers Web Service has changed for popup containers. Aside from the
value, ordinal, and title field previously available for popup containers, a hidden field
has been made available, providing the client with information about whether an enum
value should be selectable in a user interface or not. Also, like for other containers, the
filtering parameters fields, restriction, and orderBy are now supported for popup
containers, and if no fields parameter is supplied in a popup container filter request,
only the value field will be included in the response.

Furthermore, for the Containers Web Service, Table Paging is now available for data
responses produced during data container interactions, and in order to make such paging
useful, the client program has also been enabled to control the order of table pane records
by configuring multi-column Table Sorting for container instances.

As a consequence of query parameters having been eradicated from the Containers Web
Service and request body parameters being used instead, the following stand:

• Only the HTTP verb POST is applicable when following a data:filter (or a
data:enumvalues) hyperlink (see Filtering).

©Deltek Inc., All Rights Reserved 6 Document revision 2.5

CHAPTER 1. INTRODUCTION

• Instead of DELETE, the HTTP verb POST must be applied when following a
data:delete hyperlink (see Deleting a Record).

• The HTTP verb POST may also be applied when following an instance:data
hyperlink (see Container Instances).

In the Authentication Web Service, an auth:maconomy hyperlink has been made available
from the root resource, enabling the client program to select the role assigned to the
authenticated user.

©Deltek Inc., All Rights Reserved 7 Document revision 2.5

CHAPTER 2. GENERAL

Chapter 2

General

This chapter covers some of the concepts that are relevant across all the Maconomy
RESTful web services.

2.1 Proxy Requirements
To be secure, the Maconomy RESTful web services must be deployed behind an SSL/TLS
termination proxy (a reverse proxy) encrypting the traffic between the server and the
client. Direct access via http must be blocked, and the client’s use of the https protocol
must be communicated to the web service by having the proxy set the following request
header:

X-Forwarded-Proto: https

In order to eliminate any header injection vulnerability, the reverse proxy must flush
the dominating X-Forwarded-Host header and populate it with the host information
expected to appear in the hyperlinks produced by the web services.

Also, if the path of the root resource of the Maconomy RESTful web services is configured
to something other than /, the reverse proxy must pass this information along using a
Maconomy-Forwarded-Base-Path request header. If, for example, the root resource is
available at /maconomy-api, the following header must be set by the reverse proxy:

Maconomy-Forwarded-Base-Path: maconomy-api

©Deltek Inc., All Rights Reserved 8 Document revision 2.5

CHAPTER 2. GENERAL

2.2 JSON
Every resource of the the Maconomy RESTful web services can be requested in a JSON
format [1, 4] only.1

JSON is a lightweight data interchange format derived from JavaScript. It is widely
used in RESTful web services and is prominent in dynamically typed languages such as
JavaScript, Ruby and Python. Mature tooling and library support is also available for
Java and .NET languages.

2.3 Media Types
Each Maconomy RESTful web service introduces one or more custom JSON media types
covering the JSON representations within the web service. A main purpose of these
custom media types is version handling as explained in this section.

In the chapters Root Web Service, Containers Web Service, Popup Types Web Service,
File Drop Web Service, Logging Web Service, User Settings Web Service, Messages Web
Service, and Diagnostics Web Service, the latest custom media type of the web service
described is specified.

2.3.1 Accept Request Header

Taking the Containers Web Service as an example, a client program signals that it wants
to interact with a version of the service compatible with version 6.0 by including the
following custom media type (or one that it is compatible with) in an Accept header on
the request:

application/vnd.deltek.maconomy.containers+json; charset=utf-8; version ←↩
=6.0

If the newest compatible version of the Containers Web Service available in the system
is version 6.0, a request with such an Accept header will be served by this version and
the following Content-Type header will be sent back on any successful payload carrying
response:

Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩
-8; version=6.0

In general, when a client program supplies a custom media type with parameter
version=x.y, the request must be served by version x.y′ of the web service for some
y′ ≥ y. If such compatible version happens to be available in the system, x.y′ will be the

1There are a few exceptions to this rule. For example, when downloading a file using the File Drop
Web Service, the format is determined by the actual file being downloaded. The media type of a PDF
file, for example, is application/pdf.

©Deltek Inc., All Rights Reserved 9 Document revision 2.5

CHAPTER 2. GENERAL

value of the version parameter of the custom media type sent back in a Content-Type
header on any successful payload carrying response. If no compatible service version
exists, a 406 Not Acceptable will be responded.

Note that leaving out a version parameter from the Accept header corresponds to
supplying a version parameter pointing out the latest version of the service. The latest
version will also be the one reached, if no Accept header is supplied at all.

In addition, note that since a request submitted towards version x.y of a web service
may in fact be served by version x.y′ for some y′ > y, the client program must be able to
cope with situations where a JSON object received in a response contains some extra
properties compared to a similar version x.y response.

Finally, note that there are resources within the Maconomy RESTful web services whose
representations are not provided in a JSON format. For example, in order to retrieve
a PDF document stored in some file drop on the server (see File Drop Web Service),
the media type application/pdf must be among the types acceptable for the client
program.

2.3.2 Content-Type Request Header

When a client program submits a request body towards some Maconomy RESTful web
service, the media type of the body’s content must always be provided in a Content-Type
header on the request.

For JSON formatted payloads, the Content-Type header on the request must be pop-
ulated with a custom media type that the one derived from the Accept header is
compatible with. That is, if the client program submits an Accept header which leads
to a custom media type with version=x.y being served, then the custom media type
sent in the Content-Type header on the same request must have version=x.y′ for some
0 ≤ y′ ≤ y.

For the Containers Web Service, for example, the following is a valid Content-Type
header for the client program to provide when submitting uncommitted record data
along with a foreign key search request (see Foreign Keys) being handled by a version
6.0 compatible version of the service:

Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩
-8; version=6.0

Leaving out the version parameter from a Content-Type header corresponds to supply-
ing a version parameter holding the latest version of the service.

For requests carrying non-JSON formatted payloads, the client program must provide
an appropriate standard media type in the Content-Type header. For example, when
resolving a file drop (see File Drop Web Service), a valid Content-Type request header

©Deltek Inc., All Rights Reserved 10 Document revision 2.5

CHAPTER 2. GENERAL

contains one of the following two standard media types: application/octet-stream or
multipart/form-data.

If the client program provides an invalid Content-Type header along with a payload
carrying request, a 415 Unsupported Media Type response is sent back. This is also
the response when the client program does not include a payload and a Content-Type
header when required.

2.4 Compression
The Maconomy RESTful web services support gzip compression via the standard HTTP
mechanism [5, section 14.4]. If a client program includes gzip in an Accept-Encoding
HTTP header on a request, the server will gzip compress the body of the response.
HTTP client library code normally handle compressed responses transparently. In cURL
it can be handled by using the --compress option.

2.5 Language
As described in the Root Web Service section, the state of the outermost root resource
includes a list of languages supported by the Maconomy system, for example:

"languages": [
{

"title": "Dansk (Danmark)",
"locale": "da_DK",
"tag": "da-DK"

},
{

"title": "English (United States)",
"locale": "en_US",
"tag": "en-US"

}
]

In this example, the system is configured to support two languages, Danish and US
English.

To specify the preferred language for a resource, include an Accept-Language HTTP
header in the request holding the relevant language tag. For example, to get the resource
state in US English include -H 'Accept-Language: en-US', or, to get the resource state
in Danish, include -H 'Accept-Language: da-DK'.

To unambiguously apply the language preference, it is recommended that client programs
include an Accept-Language HTTP header with all requests. The value of the header
should be the exact language tag value of one of the supported languages.

©Deltek Inc., All Rights Reserved 11 Document revision 2.5

CHAPTER 2. GENERAL

2.6 Formats
Preferred formats can be indicated by inclusion of a Maconomy-Format HTTP header in
a request. This is significant in the cases where the server will apply formatting to the
data. For example, when printing an expense sheet using the Containers Web Service,
the user’s date format and decimal separator should be used in the printed document.
Conversely, the formats do not apply to container data values that are independent of
the user’s locale and format preferences.

Consider the following example:

Maconomy-Format: date-format="dd-MM-yyyy", time-format="HH:mm", thousand- ←↩
separator=".", decimal-separator=",", number-of-decimals=2

This example shows all the possible format directives that the client program may specify.
Not all possible date and time formats are supported by the Maconomy system.

Directive Explanatory text

date-format This directive indicates how the server should format date
values.

time-format This directive indicates how the server should format time
values.

thousand-separator This directive indicates the character used as a thousand
separator.

decimal-separator This directive indicates the character used as a decimal
separator.

number-of-decimals This directive indicates the number of decimals to include.

2.7 Data Types
Maconomy uses eight primitive data types. For container data resources (see Containers
Web Service), these data types are embedded in JSON objects and are encoded in a
locale-independent way.

Several Maconomy data types use the number grammar rule of the JSON data interchange
format [4]. For reference the number grammar rule is defined as [11]:

number = [minus] int [frac] [exp]
decimal-point = %x2E ; .
digit1-9 = %x31-39 ; 1-9
e = %x65 / %x45 ; e E
exp = e [minus / plus] 1*DIGIT

©Deltek Inc., All Rights Reserved 12 Document revision 2.5

CHAPTER 2. GENERAL

frac = decimal-point 1*DIGIT
int = zero / (digit1-9 *DIGIT)
minus = %x2D ; -
plus = %x2B ; +
zero = %x30 ; 0

2.7.1 Integer

The integer data type consists of negative and non-negative integer values: {..., -1, 0, 1,
...}.

Integer values are represented as a JSON number that must conform to the number
grammar rule [4] with the additional restriction that the number must be an integer.
Integers should not include a fraction or exponent part. Numbers may be accepted if
they include a fraction and/or exponent part as long as they are integers. Examples of
acceptable values are 1000 and -549.

2.7.2 Real

The real data type is a floating point data type.

Real values are encoded as JSON numbers. Values must conform to the number grammar
rule [4]. Examples of acceptable values are 100, .892, 2e10, and 314159e-5.

2.7.3 Amount

The amount data type is used to represent monetary values as a number of hundredths
(cents).

Amount values are encoded as integers that represent the number of hundredths in the
amount value. The restrictions and recommendations for encoding integers in JSON also
apply to amounts. Examples of acceptable values are 0, 1000, -5795.

2.7.4 Boolean

The boolean data type consists of the values true and false.

Booleans are represented as the JSON values true and false.

2.7.5 String

The string data type is used to represent text. The character set used is determined
by the enclosing JSON document and may be indicated in the Content-Type header.
UTF-8 is the default. Note that Unicode characters may be escaped using the \uXXXX
where X is a hexadecimal digit.

String values are represented as JSON string values and must conform to the string
grammar rule [4]. Examples of acceptable values are "" and "Hello world".

©Deltek Inc., All Rights Reserved 13 Document revision 2.5

CHAPTER 2. GENERAL

2.7.6 Date

The date data type is used to represent a date that is composed of the year, month, and
day.

Date values are represented as a JSON string [4] whose contents conform to the date
format YYYY-MM-DD. YYYY is the year (for example, 2014). MM is the month (01 is January,
02 is February, ..., 12 is December). DD is the day of the month (01, 02, ..., 31). In
addition, to conforming to the format, a date value must be a valid date in the Gregorian
calendar.

The date data type also has a special null data value that is represented as an empty
string.

Examples of acceptable values are: "", "1950-04-05", "1945-04-25", "1946-12-16",
and "1945-11-15".

2.7.7 Time

The time data type is used to represent a time that is composed of hour, minutes, and
seconds.

Time values are represented as a JSON string [4] whose contents conform to the time
format hh:mm:ss where hh is the hour (00, 01, ..., 23), mm are the minutes (00, 01, ...,
59) and ss are the seconds (00, 01, ..., 59).

The time data type also has a special null data value that is represented as an empty
string.

Examples of acceptable values are: "", "10:59:23", and "19:21:49".

2.7.8 Enum

The enum data type (also called popup types in Maconomy) is a class of types. Each
particular enum type has a list of possible values. One example of an enum type is
CountryType, where the possible values are the countries available in the system.

In some contexts (for example, within expressions), enum values are written using the
notation PopupType'PopupLiteral, but in order to avoid the need to parse this enum
notation client-side, enum values are represented as a JSON string [4] that contains only
the enum literal value. For example, the value CountryType'Norway is encoded as the
literal string "norway".

All enum types have a special nil enum value which is represented as the string
"nil".

©Deltek Inc., All Rights Reserved 14 Document revision 2.5

CHAPTER 2. GENERAL

2.7.9 Time Duration

The time duration data type is a special purpose variant of the real data type. It has
the same JSON representation as the real data type, but it specifically represents a time
duration and should be formatted accordingly by client programs if the value is to be
presented in a user interface, print, or similar context.

2.7.10 Auto Timestamp

The auto timestamp data type is a special purpose variant of the string data type. It
has the same JSON and representation as the string data type.

2.8 Authentication
Most requests towards the Maconomy RESTful web services require authentication and
in this section the protocols currently supported are presented.

Authentication may entail transmission of credentials on a request and therefore, as
described in Proxy Requirements, the Maconomy web services must be deployed behind
an SSL/TLS termination proxy that encrypts the traffic between the server and the
client. If an SSL/TLS termination proxy is not deployed, the user credentials sent to the
Maconomy RESTful web services are vulnerable to eavesdropping by an attacker.

2.8.1 HTTP Basic Authentication

Requests towards the Maconomy RESTful web services can be authenticated using HTTP
Basic Authentication [8].

Any HTTP client library normally has the ability to send HTTP Basic Authentication
credentials to the server. However, for completeness, the following describes the simple,
underlying mechanism.

When a client program tries to interact unauthenticated with a resource requiring
authentication, the server responds with the status 401 Unauthorized and includes a
WWW-Authenticate HTTP header indicating the method of authentication to be used
to gain access to the resource. In the Maconomy case, this header looks something like
this:

WWW-Authenticate: Basic realm="Maconomy"

The token Basic in the header indicates that the server requires the client to use HTTP
Basic Authentication, and hence the client has to construct HTTP Basic Authentication
credentials and retry the request.

The following is a simple Python program illustrating how to compute such creden-
tials:

©Deltek Inc., All Rights Reserved 15 Document revision 2.5

CHAPTER 2. GENERAL

username = u"Administrator"
password = u"123456"

1. Combine the username and password separated by colon
combined = username + ":" + password

2. Encode the string into UTF-8 yielding sequence of bytes
utf8_bytes = combined.encode("utf-8")

3. Encode the byte sequence into Base64
base64_chars = base64.b64encode(utf8_bytes)

4. Prepend the result with the string "Basic " to indicate the ←↩
authentication method

authorization = "Basic " + base64_chars

In this example, the client program must retry the request, supplying the following
header:

Authorization: Basic QWRtaW5pc3RyYXRvcjoxMjM0NTY=

Note that Franks et al. [8] implicitly requires the credentials to be encoded as ISO-8859-1
by using the TEXT grammar rule defined in Fielding et al. [7]. However, most (but not all)
modern browsers encode the credentials as UTF-8. The Maconomy RESTful web services
follow the modern convention and require user credentials to be UTF-8 encoded. This
allows a wider range of special characters to appear in usernames and passwords.

Also note that while encoding the string as Base64 masks the password, it is trivially
reversible and completely insecure in itself. That is why the web service must be deployed
behind an SSL termination proxy to be secure (see Proxy Requirements).

Suppressing the Browser’s Login Prompt

Client programs that run in a web browser by default get the browser’s native login
prompt when the web service requires authentication. The reason is that when the
web browser detects the Basic authentication scheme in the WWW-Authenticate HTTP
response header, it automatically intercepts the response and shows its native login
prompt.

If a browser-based client program prefers to handle logins itself using a web UI instead of
the native login prompt, it must include the following custom HTTP request header:

Maconomy-Authentication: X-Basic

This causes the server to modify its subsequent WWW-Authenticate challenge to advertise
the X-Basic authentication scheme rather than the Basic authentication scheme:

©Deltek Inc., All Rights Reserved 16 Document revision 2.5

CHAPTER 2. GENERAL

WWW-Authenticate: X-Basic realm="Maconomy"

Note that the client program must still use the Basic authentication scheme, rather than
X-Basic, when it supplies the username and password via the Authorization HTTP
request header.

Expired User Passwords

If the user’s password has expired, a request fails with a 401 Unauthorized status and
the WWW-Authenticate HTTP header included in the response will indicate the custom
authentication method X-ChangePassword offered by the server:

WWW-Authenticate: X-ChangePassword realm="Maconomy"

The change password authentication method authenticates the request and changes the
user’s password. The credentials are computed in a way similar to the standard HTTP
Basic Authentication described above:

username = u"Anders Hansen"
old_password = u"123456"
new_password = u"654321"

1. Combine the username, old password and new password with the required ←↩
separators

combined = username + ":" + old_password + "\n" + new_password

2. Encode the string into UTF-8 yielding sequence of bytes
utf8_bytes = combined.encode("utf-8")

3. Encode the byte sequence into Base64
base64_chars = base64.b64encode(utf8_bytes)

4. Prepend the result with the string "X-ChangePassword " to indicate ←↩
the authentication method

authorization = "X-ChangePassword " + base64_chars

The difference here is that the combined credentials are appended with a single line feed
character followed by the new password. The line feed character is usually written as \n
in string literals in programming languages. Also, the token indicating the authentication
method is X-ChangePassword, rather than Basic.

In the above example, the client program can resolve the situation by retrying the request
with the following HTTP request header:

Authorization: X-ChangePassword QW5kZXJzIEhhbnNlbjoxMjM0NTYKNjU0MzIx

©Deltek Inc., All Rights Reserved 17 Document revision 2.5

CHAPTER 2. GENERAL

The user’s password is then changed to 654321 and the client program can use regular
HTTP Basic Authentication for the following requests.

Note that the X-ChangePassword authentication method may be used at any time to
allow a user to change his password.

2.8.2 Maconomy Reconnect Authentication

The Maconomy RESTful web services support a proprietary authentication mechanism
known as the Maconomy Reconnect Authentication. This authentication option allows
the client program to acquire a reconnect token on login and then use this token for
authentication in subsequent requests. Using reconnect tokens when issuing a series
of requests improves performance as the server then does not have to spend time on
expensive hash calculations doing password verification.

A client can have a Maconomy reconnect token returned either in an HTTP session
cookie or in a custom Maconomy-Reconnect HTTP header. If the client program is
browser-based, it is strongly recommend to use the HTTP session cookie option as it
offers protection against several kinds of session theft attacks while relieving the web
service client code from having to manage the login session.

HTTP Session Cookie

This is the workflow of using Maconomy Reconnect Authentication via an HTTP session
cookie:

1. The client program authenticates (for example, using HTTP Basic Authentication),
including the following header on the request:

Maconomy-Authentication: X-Cookie

2. The response received from the server includes a Set-Cookie header holding a
Maconomy reconnect token session cookie and a Maconomy-Cookie header holding
the name of that session cookie.

3. On subsequent requests, the client includes the following header, where <cookie
name> is replaced by the session cookie name received from the server:

Authorization: X-Cookie <cookie name>

4. Each response received from the server may include a Set-Cookie header which
updates the stored session cookie.

5. On the last request, the client includes the following header to indicate that the
server can log the user out and release any cached resources:

Maconomy-Authentication: X-Log-Out

©Deltek Inc., All Rights Reserved 18 Document revision 2.5

CHAPTER 2. GENERAL

6. The response received from the server includes a final Set-Cookie header that will
expire the session cookie, causing it to be deleted from the client’s cookie store.

A Maconomy reconnect token HTTP session cookie is always marked with httpOnly to
protect it from being accessed directly by client-side scripts. If the server detects that an
authentication request is performed on a secure channel, it also marks the cookie with
secure to prevent it from being used for unencrypted requests.

Maconomy-Reconnect HTTP header

This is the workflow of using Maconomy Reconnect Authentication via a Maconomy-Reconnect
HTTP header:

1. The client program authenticates (for example, using HTTP Basic Authentication),
including the following header on the request:

Maconomy-Authentication: X-Reconnect

2. The response received from the server includes a Maconomy-Reconnect header
holding a Maconomy reconnect token.

3. On subsequent requests, the client includes the following header, where <reconnect
token> is replaced by the reconnect token received from the server:

Authorization: X-Reconnect <reconnect token>

4. Each response received from the server may include a Maconomy-Reconnect header,
and the client must always use the most recently received reconnect token.

5. On the last request, the client includes the following header to indicate that the
server can log the user out and release any cached resources:

Maconomy-Authentication: X-Log-Out

2.8.3 Kerberos

Kerberos Domain Credentials

If a Maconomy system is set up to use Kerberos authentication, any HTTP Basic Authen-
tication credentials will, by default, be interpreted as Kerberos domain credentials.

As described in Installation, the state of an installation resource includes information
about enabled authentication schemes, and by examining this, a client program should
be able to figure out if and how to use Kerberos domain credentials. In a Kerberos
authentication enabled system, the JSON object held in the authentication property
of the installation resource state will look something like this:

©Deltek Inc., All Rights Reserved 19 Document revision 2.5

CHAPTER 2. GENERAL

{
"useDomainCredentialsForBasicAuthentication": true,
...,
"kerberos": {

"kdc": "PSO-DC.PSO.COM",
"realm": "PSO.COM",
"realms": {

"PSO.COM": {
"kdc": "PSO-DC.PSO.COM",
"name": "PSO.COM"

}
},
"serviceName": "MACONOMYSSO/PSO.COM"

},
...

}

The useDomainCredentialsForBasicAuthentication property holding the boolean
value true indicates that Kerberos authentication is enabled. Information about the
available Kerberos realms can be found in the kerberos property.

If a client program needs to use Maconomy credentials in a Kerberos authentication
enabled system, this has to be indicated by inclusion of the following HTTP request
header:

Maconomy-Authentication: X-Force-Maconomy-Credentials

Such a request header indicates to the server that any credentials sent with the request
are Maconomy credentials.

Kerberos Single Sign-On

If a Maconomy system is set up to use Kerberos Single Sign-On (SSO), the web service
offers authentication via the Negotiate mechanism [7]. The purpose of this mechanism is
to allow SSO by letting the client program, for example, the user’s web browser, obtain a
Kerberos ticket for the web service without user interaction. The web service forwards
these credentials to the Maconomy system for verification.

2.8.4 OpenID Authentication

If a Maconomy system is set up to use the OpenID Connect protocol [10] for authentication,
the web service accepts authorization codes issued by the configured OpenID provider
(for example, Microsoft Azure). This section assumes basic familiarity with the OpenID
protocol and in particular with the Authorization Code Flow [10, Section 3.1].

As described in Installation, the state of an installation resource includes information
about enabled authentication schemes, and in case of an openID Connect enabled system,

©Deltek Inc., All Rights Reserved 20 Document revision 2.5

CHAPTER 2. GENERAL

this reveals all relevant metadata required to initiate an Authorization Code Flow. For
example:

{
"useDomainCredentialsForBasicAuthentication": false,
"schemes": {

...,
"x-oidc-code": {

"name": "x-oidc-code"
},
...

},
"openIDProviders": [

{
"authorizationEndpoint": "https://login.microsoftonline.com/d2a26c48 ←↩

-d40f-4406-8a62-68073368e07c/oauth2/authorize",
"redirectURI": "https://login.microsoftonline.com/common/oauth2/ ←↩

nativeclient",
"clientID": "29074461-0743-4bc2-a7cc-1e983ac3f2e7"

}
],
...

}

The properties authorizationEndpoint, redirectURI, and clientID tell the client
program how to initiate an authentication request towards the given OpenID provider
(in this case Microsoft Azure) using the Authorization Code Flow.

The redirectURI property holds a redirect URI which is guaranteed to be accepted
by the OpenID provider and typically resolves to an empty web page. Such a redirect
URI can be used by so-called native clients having full control over an embedded user
agent and hence the ability to extract values returned via query or fragment parameters
directly from the location of the user agent. The Workspace Client is an example of such
a client, but in principle a smartphone app could operate in the same way. All non-native
clients (such as pure web apps) have to use a redirect URI of their own that has been
pre-registered with the OpenID provider.

Once the user has successfully authenticated with the identity provider and the client
program has obtained an authorization code, this code can be used as one-time authenti-
cation credentials using the X-OIDC-Code authorization scheme. The string put into the
Authorization request header must then follow the OIDC-Credentials production rule
given by the following grammar:

OIDC-Credentials = "X-OIDC-Code" SP Authz-Cookie
Authz-Cookie = <base64-encoded Authz-Grant (no newlines)>
Authz-Grant = "<" Redirect-URI ">" ":" Authz-Code
Redirect-URI = <URI-Reference, see [RFC3986], Section 4.1>
Authz-Code = *TEXT

©Deltek Inc., All Rights Reserved 21 Document revision 2.5

CHAPTER 2. GENERAL

For example, if a client program has obtained authorization code AABAQE1_2345 by use
of redirect URI https://example.com/oauth2/authorize, then the header to include
in the request will look like this:

Authorization: X-OIDC-Code ←↩
PGh0dHBzOi8vZXhhbXBsZS5jb20vb2F1dGgyL2F1dGhvcml6ZT46QUFCQVFFMV8yMzQ1

Here, the base64-encoded string following the authentication scheme token X-OIDC-Code
encodes the following string:

<https://example.com/oauth2/authorize>:AABAQE1_2345

Note that since OpenID credentials can only be used once, it is wise to also include
a Maconomy-Authentication header holding a reconnect directive in order to obtain
reconnect credentials to be used with subsequent requests (see Maconomy Reconnect
Authentication).

2.8.5 Two-Factor Authentication

If the Maconomy Two-Factor Authentication (2FA) system is enabled, a client program
must provide a second authentication factor along with the standard Authorization
HTTP header. Such second factor consists of a six-digit One-Time Password (OTP)
generated by a TOTP-compatible program running on some device, usually in the form
of a smartphone app (the first T in TOTP stands for time-based).

Since an OTP can be used only once, the user has to supply a new OTP for each and
every request. This is, unless the client program provides a header with the Maconomy
reconnect directive and uses reconnect tokens for authentication on subsequent requests
(see Maconomy Reconnect Authentication). No OTPs are required when using Maconomy
reconnect tokens.

The custom header field Maconomy-OTP is the one to be used by the client when sending
OTPs to the server. This header field is also the one used by the server when details
about authentication failures (OTP is found missing or invalid) need to be communicated
back to the client.

The format of a Maconomy-OTP header when included in a request (always along with an
Authorization header) can be described by the following ABNF:

Maconomy-OTP-Request = "Maconomy-OTP" ":" otp-request-directive
otp-request-directive = "authenticate" ";" "otp" "=" 1*DIGIT

/ "reset" [";" "method" "=" otp-reset-method]
[";" "token" "=" reset-token]

otp-reset-method = quoted-string
reset-token = quoted-string

©Deltek Inc., All Rights Reserved 22 Document revision 2.5

CHAPTER 2. GENERAL

The format of a Maconomy-OTP header when included in a response (always along with a
401 Unauthorized status) can be described by the following ABNF:

Maconomy-OTP-Response = "Maconomy-OTP" ":" otp-response-directive
otp-response-directive = "required" [";" "reset" "=" otp-reset-method]

[";" "enroll" "=" "<" URI-Reference ←↩
">"]

otp-reset-method = quoted-string
URI-Reference = <URI-reference, see [RFC3986], Section 4.1>

The authenticate Directive

The authenticate directive with an otp parameter in a Maconomy-OTP request header is
used by the client to provide an OTP as a second authentication factor. For example, for
the OTP 012345, the following custom header should be included in the request:

Maconomy-OTP: authenticate;otp=012345

The reset Directive

A Maconomy-OTP request header may also contain a reset directive, which is intended
for the cases where a user wants OTP settings reset in order to allow for re-enrollment
with a new 2FA device. As sending a reset token to the user via a trusted channel is part
of such reset procedure, the trusted channel preferred by the user can be specified in the
request header using a method parameter. For example, for email:

Maconomy-OTP: reset;method=email-token

As email-token is in fact the only reset method currently supported by Maconomy, this
method is also the one being applied by default.

If a requested reset procedure is successfully initiated (the Authorization header suc-
cessfully authenticates the user and an email address owned by the user is familiar to the
system), the server sends back a response with the following Maconomy-OTP header:

Maconomy-OTP: required;reset=email-token

The body of this response contains a message instructing the user to find a reset token in
an email sent to the user by the server. To finalize the reset procedure, the reset token
received must to be included in a subsequent request using a token parameter of the
reset directive (notice the double quotes around the token):

Maconomy-OTP: reset;token="<token>"

The server’s response to such reset token request contains a handy enrollment header,
see the required directive.

©Deltek Inc., All Rights Reserved 23 Document revision 2.5

CHAPTER 2. GENERAL

The required Directive

Whenever an OPT is required, but the client submits a request with either no OTP (this
is the case for reset requests, for example) or with an invalid OTP, the server sends back
a 401 Unauthorized response. This response carries an appropriate description of the
situation in its body and holds a Maconomy-OTP header with the required directive.

If an out-of-band reset process is currently in progress, the required directive is ac-
companied by a reset parameter specifying a reset method (see the reset directive),
whereas an enroll parameter is present if the user has no security token device currently
enrolled.

An enroll parameter in a Maconomy-OTP response header holds an enrollment URI
pointing to a Maconomy TOTP key resource. For example:

Maconomy-OTP: required;enroll=<http://SERVER/maconomy-api/auth/macoprod/ ←↩
totp/keyURI?account=Administrator&secret=FY5lYCVs8xIbqx8YDENI70nupSs%3 ←↩
D>

By following such an enrollment URI, the user is able to configure a preferred security
token device which can then provide all the OTPs ever needed.

TOTP Key Resource

A TOTP key resource is a web service endpoint that serves a shared TOTP secret in
different formats suitable for enrollment with a compatible device. URIs to key resources
are discovered via a Maconomy-OTP response header (see the required directive).

A TOTP key resource only supports the HTTP verb GET and no authentication is
required. Furthermore, an Accept request header holding one of the following values is
required:

Value Explanatory text

image/*, image/png A PNG image of a QR code encoding the shared TOTP secret
as a key URI is returned. The code is suitable for scanning
with a range of compatible smartphone apps.

application/json A JSON object containing the key URI in plain text is
returned.

A JSON object returned from a TOTP key resource contains the following fields:

©Deltek Inc., All Rights Reserved 24 Document revision 2.5

https://github.com/google/google-authenticator/wiki/Key-Uri-Format
https://github.com/google/google-authenticator/wiki/Key-Uri-Format

CHAPTER 2. GENERAL

Field Explanatory text

totp-key-uri A key URI encoding the shared TOTP secret.

URIs to TOTP key resources encode sensitive information, and thus client programs
must take measures to ensure that these URIs are not stored in browser histories or
elsewhere where an adversary could get access to them.

2FA Example

To exemplify the concepts of 2FA described above, let us imagine an ExpenseSheets
container filter request (see Filtering) towards the Containers Web Service in a 2FA
enabled Maconomy system (shortname macoprod):

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 401 Unauthorized
Maconomy-OTP: required;enroll=<http://SERVER/maconomy-api/auth/macoprod/ ←↩

totp/keyURI?account=Administrator&secret=FY5lYCVs8xIbqx8YDENI70nupSs%3 ←↩
D>

WWW-Authenticate: Basic realm="Maconomy"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "Mandatory two-factor authentication must be configured ←↩

.\nPlease scan the QR code using a supported smartphone app.",
"errorFamily": "service",
"errorSeverity": "error"

}

Here, the Maconomy-OTP header on the response indicates that the user has not yet
enrolled a security token device and that the following TOTP key URI should be followed
in order to do so:

http://SERVER/maconomy-api/auth/macoprod/totp/keyURI?account=Administrator ←↩
&secret=FY5lYCVs8xIbqx8YDENI70nupSs%3D

Using a compatible smartphone app, the user is supposed to scan the QR code in the
PNG image available at this URI and finish off the configuration of a security token app.

©Deltek Inc., All Rights Reserved 25 Document revision 2.5

https://github.com/google/google-authenticator/wiki/Key-Uri-Format

CHAPTER 2. GENERAL

When accomplished, the user is able to generate an OTP, say 980461, and repeat the
request with a Maconomy-OTP header carrying this OTP:

$ curl -i
-u 'Administrator:123456'
-H 'Maconomy-OTP: authenticate;otp=980461'
-H 'Maconomy-Authentication: X-Reconnect'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 200 OK
Maconomy-Reconnect: MDVkMmZkOT...JMTAJMTYwODAyMTk3Ng==
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{ ... }

Because a Maconomy-Authentication header with the reconnect directive X-Reconnect
was also included on the request, the response includes a Maconomy-Reconnect header
with a reconnect token. This reconnect token enables OTP free authentication on a
subsequent request (see Maconomy Reconnect Authentication):

$ curl -i
-H 'Authentication: X-Reconnect MDVkMmZkOT...JMTAJMTYwODAyMTk3Ng=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 200 OK
Maconomy-Reconnect: MDVkMmZkOT...JMTAJMTYwODAyMTk3Ng==
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{ ... }

With a security token device enrolled for the user, a TOTP key URI is no longer included
as an enroll parameter to the required directive in the Maconomy-OTP header set on
the response to a request carrying neither an OTP nor a reconnect token:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'

©Deltek Inc., All Rights Reserved 26 Document revision 2.5

CHAPTER 2. GENERAL

'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩
filter'

HTTP/1.1 401 Unauthorized
Maconomy-OTP: required
WWW-Authenticate: Basic realm="Maconomy"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "Two-factor authentication required.",
"errorFamily": "service",
"errorSeverity": "error"

}

Also, if the user at some point no longer wishes to (or is able to) use the enrolled security
token device, a reset procedure can be initiated by submitting an authenticated request
with a Maconomy-OTP header holding the reset directive:

$ curl -i
-u 'Administrator:123456'
-H 'Maconomy-OTP: reset'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 401 Unauthorized
Maconomy-OTP: required
WWW-Authenticate: Basic realm="Maconomy"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "Enter Token [15d7e2d749f92a3340e61d336ea]",
"errorFamily": "service",
"errorSeverity": "error"

}

As part of such a reset procedure, a reset token would normally be sent to the user via
email (the default trusted channel). However, in our example here, the reset procedure
initiated is a simplified procedure for demonstration purposes and therefore a reset token
has been included directly in the response body.

The user is now able to finalize the reset procedure by including the received reset
token 15d7e2d749f92a3340e61d336ea as a token parameter to the reset directive in a
Maconomy-OTP header (note the double quotes around the token) on an authenticated
request:

©Deltek Inc., All Rights Reserved 27 Document revision 2.5

CHAPTER 2. GENERAL

$ curl -i
-u 'Administrator:123456'
-H 'Maconomy-OTP: reset;token="15d7e2d749f92a3340e61d336ea"'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 401 Unauthorized
Maconomy-OTP: required;enroll=<http://SERVER/maconomy-api/auth/macoprod/ ←↩

totp/keyURI?account=Administrator&secret=PhImtxfDQI9l7RTMJ50ONBLJFgY%3 ←↩
D>

WWW-Authenticate: Basic realm="Maconomy"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "Mandatory two-factor authentication must be configured ←↩

.\nPlease scan the QR code using a supported smartphone app.",
"errorFamily": "service",
"errorSeverity": "error"

}

The user is now back where this example began.

Note that in any real world example, the reset token should never be sent directly back
to the user. By doing so, an attacker in possession of the user name and the password
would be able to remove the OTP-generating token and enroll the attacker’s own token.
The security of using OTPs would be completely undermined.

2.9 Request Identification in APM Logs
All requests originating from the Maconomy RESTful web services are assigned a request
id. This request id can be supplied by the client program via a Maconomy-RequestId
header on the request:

Maconomy-RequestId: REQUEST_ID

If no such Maconomy-RequestId header is included, the server supplies a request id. In
both cases, the assigned request id is communicated back in a Maconomy-RequestId
header on the response.

Note that request ids supplied be the server are unique across all requests, and that any
request id supplied by the client program should be one previously received from the
server.

The purpose of request ids is to ease debugging. All log entries within the Maconomy

©Deltek Inc., All Rights Reserved 28 Document revision 2.5

CHAPTER 2. GENERAL

Application Performance Monitoring (APM) framework refer to a request id, and by
giving the client program control over which id is assigned to a request, it becomes
possible to have log entries relating to the same user interaction refer to the same request
id. Request ids carefully assigned in this way allow the APM to make timing and statistics
based on user interactions rather than single requests.

For example, to associate an instance creation with a subsequent data entry load request
for the ExpenseSheets container using the Containers Web Service:

$ curl -i
-u 'Administrator:123456'
-H 'Maconomy-Authentication: X-Reconnect'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-X POST
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances'

HTTP/1.1 200 OK
Maconomy-Reconnect: Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ==
Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009e93
Maconomy-RequestId: 58d646d7-f2e5-4837-a1de-c3ef6fab9fe5
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "1701829c-7a34-464c-a7d4-e7f1d9a44537"

},
"links": {

...,
"data:any-key": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/1701829c-7a34-464c-a7d4-e7f1d9a44537/data;any ←↩
",

"rel": "data:any-key"
},
...

}
}

Here, no Maconomy-RequestId request header was included by the client program and
thus the server generated a new unique id for the request. This id appears in the
Maconomy-RequestId header on the response and can now be included on a subsequent
data entry load request:

©Deltek Inc., All Rights Reserved 29 Document revision 2.5

CHAPTER 2. GENERAL

$ curl -i
-H 'Authorization: X-Reconnect Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-H 'Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009 ←↩

e93'
-H 'Maconomy-RequestId: 58d646d7-f2e5-4837-a1de-c3ef6fab9fe5'
-X POST
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/1701829c-7a34-464c-a7d4-e7f1d9a44537/data;any'

HTTP/1.1 200 OK
Maconomy-Reconnect: YTg1ZGY3Ym...wCTEwCTE2MDYyMzE3Mzg=
Maconomy-Concurrency-Control: 8db720b5-015d-4cfe-926a-3edf96f3e724
Maconomy-RequestId: 58d646d7-f2e5-4837-a1de-c3ef6fab9fe5
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{ ... }

As expected, the request id received in the Maconomy-RequestId header on the response
matches the request id passed in the Maconomy-RequestId request header. In this case,
the server did not assign a new id to the request, but simply used the one passed by the
client program.

2.10 Client Identification in APM Logs
All requests originating from the Maconomy RESTful web services are assigned a client
name whose value can be controlled by the client program via a Maconomy-Client header
included on the request:

Maconomy-Client: CLIENT_NAME

The value of this header is included in the Client field on all log entries generated for the
request within the Maconomy Application Performance Monitoring (APM) framework. If
no Maconomy-Client header is included, the Client fields are populated with the value
Web.

2.11 Status Codes and Errors
Each response from a Maconomy RESTful web service contains an HTTP status code
telling whether the request was successful or not. If the request was unsuccessful, the
status code indicates what kind of failure occurred and can be used by the client program
to decide on how to proceed.

©Deltek Inc., All Rights Reserved 30 Document revision 2.5

CHAPTER 2. GENERAL

Most people have encountered the 404 Not Found status while browsing the web. The
three-digit integer status code 404 is the significant part used by the client program to
categorize the error. The status text Not Found is called the reason phrase and is there
to help humans understand the error. The numeric status code is standardized and has
a particular meaning, while the reason phrase may differ between web server software,
may be localized, and so on.

Status codes are categorized into status families by their first digit:

Status Codes Status Family Explanatory text

1xx Informational Request received, continuing process. This family
is not used in the Maconomy RESTful web service
interface.

2xx Success The action was successfully received, understood
and accepted.

3xx Redirect Further action must be taken to complete the
request.

4xx Client Error The request contains bad syntax or cannot be
fulfilled.

5xx Server Error The server failed to fulfill an apparently valid
request.

The following is a list of the status codes that are used by the Maconomy RESTful web
services:

Status Code Reason phrase Explanatory text

200 OK The request has succeeded. If the
request is a GET request, the response
is a representation of the requested
resource. If the request is a POST or
DELETE request, the response may be
the representation of the resource
that was affected by the request.

204 No Content The request has succeeded but the
response contains no content.

©Deltek Inc., All Rights Reserved 31 Document revision 2.5

CHAPTER 2. GENERAL

Status Code Reason phrase Explanatory text

400 Bad Request The request body or headers
contained malformed or incomplete
information. This usually indicates a
programming error in the client
program.

401 Unauthorized The request requires user
authentication and thus the client
program must retry the request with
valid credentials. See Authentication.

403 Forbidden The requested resource or action is
not permitted with the supplied
credentials.

404 Not Found The requested resource was not found.
It may or may not have existed at an
earlier point in time and was
subsequently deleted by another user.

405 Method Not Allowed The HTTP verb applied by the client
program is not allowed for the
resource. For example, a resource
may not support either the GET, the
POST, or the DELETE verb.

406 Not Acceptable The resource cannot be represented in
the media type specified in the
Accept request header.

408 Request Timeout The client did not produce a request
within the time that the server was
prepared to wait. The client may
retry the request.

409 Conflict The request could not be completed
because of a conflict with the current
state of the resource. This may
indicate that the resource was
updated by another user and the
client may thus refresh its current
state of the resource and retry the
request.

©Deltek Inc., All Rights Reserved 32 Document revision 2.5

CHAPTER 2. GENERAL

Status Code Reason phrase Explanatory text

413 Request Entity Too Large The request body was larger than the
maximum size supported by the
server.

414 Request-URI Too Long The request URI/URL was larger
than the maximum length supported
by the server.

415 Unsupported Media Type The server does not support the
media type specified in the
Content-Type request header.

422 Unprocessable Entity The request could not be completed
because of violated application
business logic.

500 Internal Server Error A catch-all status code for unexpected
errors.

Fielding et al. [7] contains a detailed specification of the semantics of each of the status
codes, except for 422 Unprocessable Entity which is adopted from Dusseault [6].

Note that when the Maconomy RESTful web services are deployed behind an HTTP
reverse proxy, the proxy server may use additional status codes. The status code 503
Service Unavailable may, for example, be used to indicate that the Maconomy system
is unreachable.

2.11.1 Error Responses

When an error occurs, the HTTP status code is typically used by client programs to
dispatch to the error handling appropriate for that particular type of error. What is
appropriate depends on the nature of the client program, but in many cases it makes
sense to log or display an error message. The body of the response to an unsuccessful
request contains a descriptive message along with other metadata that can be useful in
signalling the error.

The standard properties found in a JSON object enclosed in an error response are
these:

Property Explanatory text

errorFamily Name of the error family to which the error belongs. Find the
possible values below.

errorSeverity Indicates the severity of the error. Find the possible values below.

©Deltek Inc., All Rights Reserved 33 Document revision 2.5

CHAPTER 2. GENERAL

Property Explanatory text

errorMessage Error message appropriate for displaying in a user interface or for
reporting in some other way.

errorId Optional. Id uniquely identifying the error. It makes sense for the
client program to recognize the error using such error id instead of
using the unstable and possibly localized error message.

errorIds List of overridden ids for any error id held in errorId. If the error
has no id assigned, the errorIds list will be the empty one.
The order of the ids in the errorIds list goes from most specific to
more general, and any id held in errorId will be listed first.
Imagining the following pair of properties for some error:

"errorId": "B"
"errorIds": ["B", "A"]

Then, if a more specific error id, C, is introduced, the error
response will start carrying the following properties instead:

"errorId": "C"
"errorIds": ["C", "B", "A"]

In this way, the client program will still be able to recognize the
error as a B error.

The possible values of the errorFamily property are:

Error family Explanatory text

application An application error indicates that the request was unsuccessful
because it violated business logic in the Maconomy system.

service A service error indicates a technical problem or some other condition
not caused by the business logic. Interacting with a time sheet that
has been changed or deleted by someone else would for example
trigger a service error.

internal An internal error is an unexpected error that may indicate a problem
in the system setup or a bug in the web service. The server log files
usually contain messages indicating the underlying cause. An example
of this could be that the database is not running.

The possible values of the errorSeverity property are:

©Deltek Inc., All Rights Reserved 34 Document revision 2.5

CHAPTER 2. GENERAL

Error severity Explanatory text

fatal The fatal severity indicates an unexpected error where an invariant
was violated.

error The error severity indicates a regular error condition, for example, a
business constraint was violated.

warning The warning severity indicates a warning to the user about a
potential problem.

For example, if a client program tried to register 30 hours on a Monday in a time sheet
using the Containers Web Service, it would get back a 422 Unprocessable Entity
response with something like this in the body:

{
"errorFamily": "application",
"errorSeverity": "error",
"errorMessage": "You cannot enter more than 24 hours for a day",
"errorId": "A-9e047846",
"errorIds": [

"A-9e047846",
"S-cedeca11",
"S-bad7ac0b"

],
"focus": {

"paneName": "table",
"rowNumber": 0,
"fieldName": "numberday1"

}
}

The focus property is special for the Containers Web Service and is present because the
error relates to a particular record field. The idea is to allow the client program to put
focus in the problematic field and thereby help the user identify the cause of the error.
The problematic field can be identified by the information held in paneName, rowNumber,
and fieldName.

©Deltek Inc., All Rights Reserved 35 Document revision 2.5

CHAPTER 3. ROOT WEB SERVICE

Chapter 3

Root Web Service

The Maconomy RESTful Root Web Service is where it all begins. Starting from its root
resource available at path /BASEPATH (BASEPATH being the information passed by the
reverse proxy in a Maconomy-Forwarded-Base-Path header, see Proxy Requirements), a
client program should be able to discover all parts of the enabled Maconomy RESTful web
services by following hyperlinks. As described further in below sections, the Root Web
Service also exposes useful information like available languages and enabled authentication
schemes.

Now, this is the custom media type covering the JSON representations within the
encompassed version of the Root Web Service (see Media Types):

application/vnd.deltek.maconomy.root+json; charset-utf-8; version=2.1

Starting at the root resource, these are the possible properties of an acquired JSON
representation:

Property Explanatory text

timeInfo Information about the current point in time according to the server.

versions Version information regarding the installed system. This
information can be disabled (see Version Information).

languages Languages available in the system. See Language.

installations Information about the databases installed in the system. The
shortname of each installation can replace the {shortname}
placeholder in the template URL of the installation hyperlink
mentioned in the links property.
The information regarding installations can be disabled (see
Shortnames).

©Deltek Inc., All Rights Reserved 36 Document revision 2.5

CHAPTER 3. ROOT WEB SERVICE

Property Explanatory text

links Hyperlinks available from the root resource. Find the list of link
relations below.

The purposes of the hyperlinks available through the links property listed above are
explained here:

Link relation Explanatory text

handshake1 Reference to the handshake resource version 1. See Handshake.

installation Reference to the root resource of some installation. See Installation.

diagnostics Reference to the root resource of the Diagnostics Web Service.

self Reference to the root resource itself.

For example, for the base path /maconomy-api:

$ curl -i
-H 'Accept: application/vnd.deltek.maconomy.root+json; charset=utf ←↩

-8; version=2.1'
'http://SERVER/maconomy-api'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.root+json; charset=utf-8; ←↩

version=2.1

{
"timeInfo": {

"time": "2020-10-20T12:43:28.462Z[UTC]",
"zone": {

"id": "UTC",
"offset": {

"id": "Z",
"totalSeconds": 0

}
}

},
"versions": {

"apu": {
"major": "21",
"sp": "102",
"hotfix": "0",
"build": "99999999"

©Deltek Inc., All Rights Reserved 37 Document revision 2.5

CHAPTER 3. ROOT WEB SERVICE

},
"tpu": {

"major": "21",
"sp": "102",
"hotfix": "0",
"build": "99999999"

}
},
"languages": [

{
"title": "Dansk (Danmark)",
"locale": "da_DK",
"tag": "da-DK"

},
{

"title": "English (United States)",
"locale": "en_US",
"tag": "en-US"

}
],
"installations": [

{
"shortname": "macoprod",
"company": "Foo"

}
],
"links": {

"handshake1": {
"href": "http://SERVER/maconomy-api/handshake/1",
"rel": "handshake1"

},
"installation": {

"template": "http://SERVER/maconomy-api/installations/{shortname}",
"rel": "installation"

},
"diagnostics": {

"href": "http://SERVER/maconomy-api/diagnostics",
"rel": "diagnostics"

},
"self": {

"href": "http://SERVER/maconomy-api",
"rel": "self"

}
}

}

In this case the root resource JSON reveals that only one database installation is
available in the system, and only the languages Danish and US English are currently

©Deltek Inc., All Rights Reserved 38 Document revision 2.5

CHAPTER 3. ROOT WEB SERVICE

supported.

The handshake1 and the installation resource reachable from the root resource are
described in the next two sections respectively.

3.1 Handshake
The Workspace Client is able to discover information about how to connect to the
Maconomy server by following the hyperlink with link relation handshake1:

{
"href": "http://SERVER/BASEPATH/handshake/1",
"rel": "handshake1"

}

This is only for internal use by the Workspace Client and is not described in any further
detail in this document. Please note that the information exposed by the handshake
service is subject to change without further notice.

3.2 Installation
To discover the authentication schemes and RESTful web services available for some
installation among the ones listed in the installations property of the root resource
representation described above, one should follow the available hyperlink with link relation
installation, substituting an appropriate installation shortname into the {shortname}
placeholder:

{
"template": "http://SERVER/BASEPATH/installations/{shortname}",
"rel": "installation"

}

These are the possible properties of a JSON object representing an installation re-
source:

Property Explanatory text

authentication Information about enabled authentication schemes. See
Authentication.

links Hyperlinks available from the installation resource. Find the list
of link relations below.

These are the purposes of the hyperlinks available from an installation resource:

©Deltek Inc., All Rights Reserved 39 Document revision 2.5

CHAPTER 3. ROOT WEB SERVICE

Link relation Explanatory text

containers Reference to the root resource of the Containers Web Service.

popups Reference to the root resource of the Popup Types Web Service.

filedrop Reference to the root resource of the File Drop Web Service.

logging Reference to the root resource of the Logging Web Service.

configurations Reference to the root resource of the Configurations Web Service.

environment Reference to the root resource of the Environment Web Service.

usersettings Reference to the root resource of the User Settings Web Service.

authentication Reference to the root resource of the Authentication Web Service.

messages Reference to the root resource of the Messages Web Service.

analyzer Reference to the root resource of the Analyzer Web Service.

self Reference to the installation resource itself.

Note that the Popup Types, Configurations, Environment, and Analyzer Web Services are
not described in this document and their functionality may change in the future.

For example:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.root+json; charset=utf ←↩

-8; version=2.1'
'http://SERVER/maconomy-api/installations/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.root+json; charset=utf-8; ←↩

version=2.1

{
"authentication": {

"useDomainCredentialsForBasicAuthentication": true,
"kerberos": {

"kdc": "PSO-DC.PSO.COM",
"realm": "PSO.COM",
"realms": {

"PSO.COM": {
"kdc": "PSO-DC.PSO.COM",
"name": "PSO.COM"

}
},

©Deltek Inc., All Rights Reserved 40 Document revision 2.5

CHAPTER 3. ROOT WEB SERVICE

"serviceName": "MACONOMYSSO/PSO.COM"
},
"schemes": {

"basic": {
"name": "basic"

},
"x-changepassword": {

"name": "x-changepassword"
},
"x-reconnect": {

"name": "x-reconnect"
},
"x-cookie": {

"name": "x-cookie"
}

}
},
"links": {

"containers": {
"href": "http://SERVER/maconomy-api/containers/macoprod",
"rel": "containers"

},
"popups": {

"href": "http://SERVER/maconomy-api/popups/macoprod",
"rel": "popups"

},
"filedrop": {

"href": "http://SERVER/maconomy-api/filedrop/macoprod",
"rel": "filedrop"

},
"logging": {

"href": "http://SERVER/maconomy-api/logging/macoprod",
"rel": "logging"

},
"configurations": {

"href": "http://SERVER/maconomy-api/configurations/macoprod",
"rel": "configurations"

},
"environment": {

"href": "http://SERVER/maconomy-api/environment/macoprod",
"rel": "environment"

},
"usersettings": {

"href": "http://SERVER/maconomy-api/usersettings/macoprod",
"rel": "usersettings"

},
"authentication": {

"href": "http://SERVER/maconomy-api/auth/macoprod",
"rel": "authentication"

©Deltek Inc., All Rights Reserved 41 Document revision 2.5

CHAPTER 3. ROOT WEB SERVICE

},
"messages": {

"href": "http://SERVER/maconomy-api/messages/macoprod",
"rel": "messages"

},
"analyzer": {

"href": "http://SERVER/maconomy-api/analyzer/macoprod",
"rel": "analyzer"

},
"self": {

"href": "http://SERVER/maconomy-api/installations/macoprod",
"rel": "self"

}
}

}

In the system of this example, all the Maconomy RESTful web services have been enabled,
and hyperlinks allowing the client program to discover these services are available in the
links property.

The following chapters address the RESTful web services possibly discoverable from an
installation resource.

©Deltek Inc., All Rights Reserved 42 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Chapter 4

Containers Web Service

The Maconomy RESTful Containers Web Service exposes data and functionality through
so-called containers which are an abstraction giving a uniform interface to all functionality
within the Maconomy system. Each container is made up of a number of panes where
the following three types of panes are available:

Card panes which contain a single record. Examples in Maconomy include the Jobs
container and the expense sheet header part of the ExpenseSheets container.

Table panes which contain zero or more records. A table pane where the ordering of the
records is based on assigned line numbers is said to have line-number control. When
the records of such a table pane are hierarchically organized, the pane is called a
tree table pane. In Maconomy, the expense sheet lines part of the ExpenseSheets
container is an examples of a line-number controlled table pane, and the job budget
lines part of the JobBudgets container is an example of a tree table pane.

Filter panes which, like tables, contain zero or more records. Filter panes present
available data entries and allow the client program to select subsets of the potential
content by applying certain restrictions. See Filtering.

The containers currently supported by the Containers Web Service are the ones whose
panes structure fulfills the following conditions:

• At least one pane must be defined.

• At most one pane of each type must be defined.

• If a table pane is defined, then a card pane must also be defined.

That is, a container having, for example, a filter and a table pane but no card pane
defined will not be accessible through the Containers Web Service.

The following complementary terms are used throughout this document:

©Deltek Inc., All Rights Reserved 43 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Data container denotes any container for which a card and possibly a table pane are
defined. Most data containers also have a filter pane defined.

Popup container denotes any container for which only a filter pane is defined and
where the records of this filter pane are the values of some enum type.

Search container denotes any container for which only a filter pane is defined and
which is used for searching in Maconomy (see Foreign Keys).

Now, to begin the survey of the functionality of the Containers Web Service, this is the
custom media type covering the JSON representations within the encompassed version
of the service (see Media Types):

application/vnd.deltek.maconomy.containers+json; charset=utf-8; version ←↩
=6.0

Earlier versions of the service are not addressed in any further detail in this docu-
ment.

As mentioned in the previous chapter (see Installation), the root resource of the Containers
Web Service can be accessed by following the hyperlink with link relation containers
available from an installation resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME",
"rel": "containers"

}

These are the properties that are present in an acquired JSON representation of such
root resource:

Property Explanatory text

containerNames Names of the containers accessible through the Containers Web
Service. Each of these names can replace the {container}
placeholder in the template URL of the container hyperlink
mentioned in the links property.

links Hyperlinks available from the root resource of the Containers Web
Service. Find the list of link relations below.

The purposes of the hyperlinks available through the links property listed above are
these:

©Deltek Inc., All Rights Reserved 44 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Link relation Explanatory text

container Reference to a specific container resource. Find a description of this
below.

self Reference to the root resource of the Containers Web Service itself.

For example, acquiring a representation of the macoprod system’s Containers Web Service
root resource:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"containerNames": [

...,
"employees",
...,
"expensesheets",
...,
"jobs",
...

],
"links": {

"container": {
"template": "http://SERVER/maconomy-api/containers/macoprod/{ ←↩

container}",
"rel": "container"

},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod",
"rel": "self"

}
}

}

Here, Employees, ExpenseSheets, and Jobs are a few examples of Maconomy containers
accessible through the Containers Web Service in the system approached.

To interact with a specific container among the ones listed in the containerNames

©Deltek Inc., All Rights Reserved 45 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

property, one should follow the hyperlink with link relation container, substituting the
name of the chosen container into the {container} placeholder:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/{container}",
"rel": "container"

}

These are the properties of a JSON object representing a container resource:

Property Explanatory text

meta containerName: Name of the container.

links Hyperlinks available from the container resource. Find the list of link
relations below.

The purposes of the hyperlinks available through the links property listed above are
these:

Link relation Explanatory text

specification Reference to the specification resource of the container. See
Specification.

access Reference to the access resource of the container. See Access.

data:filter Reference to the filter resource of the container. See Filtering.

instance:create Reference to the action of creating an instance of the container.
See Container Instances.

self Reference to the container resource itself.

For example, for the ExpenseSheets container:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

©Deltek Inc., All Rights Reserved 46 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

{
"meta": {

"containerName": "expensesheets"
},
"links": {

"specification": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/specification",
"rel": "specification"

},
"access": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/access",

"rel": "access"
},
"data:filter": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/filter",

"rel": "data:filter"
},
"instance:create": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances",

"rel": "instance:create"
},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets",

"rel": "self"
}

}
}

The following four sections each relates to one of the hyperlinks available from a con-
tainer resource, namely to the specification, the access, the data:filter, and the
instance:create hyperlink respectively.

4.1 Specification
Every container accessible through the Containers Web Service interface has a specification
resource.

The specification resource can be used to programmatically determine the following:

• Names, titles, and entities of the panes in the container.

• Whether a table pane is a tree table pane with hierarchically organized records.

©Deltek Inc., All Rights Reserved 47 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

• Whether the records of a line-number controlled table pane can be moved around
only inside its current context or across the entire table pane.

• Names and titles of the actions supported by each pane.

• Names, titles, and data types of the fields comprising the records in each pane.

• Foreign keys of each pane relating their records to other records.

• Relevant hyperlinks for other containers somehow related to the container.

For example, to correctly interpret and manipulate records in the panes of a container,
a client program must read the specification resource to gain the necessary knowledge
about the data types of the record fields.

A representation of the specification resource for a container is acquired by following
the hyperlink with link relation specification available from the container’s root
resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

specification",
"rel": "specification"

}

The response to a specification request is called a specification response, and the
JSON object held in its body has the following properties:

Property Explanatory text

meta containerName: Name of the container.

panes Specification of the panes defined for the container. The
properties of the object held for each pane are described in the
table below.

relatedContainers References to other containers that are considered related to
the container. See Related Containers.

links self: Hyperlink referring to the container specification
resource itself.

The possible properties of the value of the panes property are card, table, and filter,
representing a card, a table and a filter pane respectively. Their values are objects
describing a pane of the given type:

©Deltek Inc., All Rights Reserved 48 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

paneName Name of the pane.

title Title of the pane. A human-readable text appropriate for displaying
in a user interface.

entity Name of the entity containing the data of the pane. This information
about which entity the pane is based on is relevant when doing
foreign key look-ups and searches, see Foreign Keys.

isTreeView Only present for table panes and then indicates whether the pane is
a tree table pane with hierarchically organized records.

moveMode Only present for table panes for which the move action is defined and
then carries one of two values:

• insideContext: Indicates that it is only allowed to move a
record of the table pane to a position inside its current context,
that is, to a position leaving its parental relation unchanged.

• full: Indicates that it is allowed to move a record of the table
pane both to a position inside and outside its current context.

The move action is identified by action:move and as for any other
action defined, a specification of the move action can be found in the
actions property.

actions Specification of the actions defined for the pane. See Actions.

fields Specification of the fields comprising the data records of the pane.
See Fields.

foreignKeys Specification of the foreign keys defined for the pane. See Foreign
Keys.

For example, for the ExpenseSheets container:
$ curl -i

-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

specification'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": {

"containerName": "expensesheets"

©Deltek Inc., All Rights Reserved 49 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

},
"panes": {

"filter": {
"paneName": "filter",
"title": "List of Expense Sheets",
"entity": "expensesheetheader",
"actions": { ... },
"fields": { ... },
"foreignKeys": { ...}

},
"card": {

"paneName": "card",
"title": "Expense Sheets",
"entity": "expensesheetheader",
"actions": { ... },
"fields": { ... },
"foreignKeys": { ...}

},
"table": {

"paneName": "table",
"title": "Expense Sheet Lines",
"entity": "expensesheetline",
"isTreeView": false,
"actions": { ... },
"fields": { ... },
"foreignKeys": { ...}

},
},
"relatedContainers": { ... },
"links" : {

"self": {
"href": "http://SERVER/containers/macoprod/expensesheets/ ←↩

specification",
"rel": "self"

}
}

}

This JSON tells us that the ExpenseSheets container has all three types of panes: a filter,
a card, and a table pane. Obviously, only the high-level structure of the specification
response has been shown here. The full response is substantially larger and some of
the omitted parts are revealed during the elaboration taking place in the following
sections.

4.1.1 Actions

Specifying a card or a table pane (does not apply to filter panes) includes specifying the
gross list of actions available for that pane. Whether a specific action among these actions

©Deltek Inc., All Rights Reserved 50 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

can actually be invoked during interaction with a particular data entry is determined by
examining if a hyperlink with a matching link relation is available from the current state
of that resource. More specifically, enabled pane actions can be discovered in the links
property held in the JSON objects representing pane data within a full data response, see
Data Resource. Such action discovery is a good example of the principles of HATEOAS
put into practice.

Specifications of actions supported by a given container data pane can be found in the
actions property of the JSON object representing that pane’s specification. For any but
the actions action:init-row, action:init-create-row, and action:move, these are
the properties of an action specification JSON object:

Property Explanatory text

title Human-readable text describing the action. This text is appropriate for
displaying in a user interface.

rel Uniquely identifies the action within the container and specifies the link
relation associated with any hyperlink representing the action.

The properties of a JSON object representing the specification of one of the actions
action:init-row, action:init-create-row, or action:move that may be defined for
a line-number controlled table pane are slightly different:

For the actions action:init-row and action:init-create-row, these are the proper-
ties of a JSON object representing their specification:

Property Explanatory text

insertTitle Human-readable text describing the action of adding a record at an
existing position in the line-number controlled table pane.

appendTitle Human-readable text describing the action of adding a record to the
end of the line-number controlled table pane.

rel Either the value action:init-row or action:init-create-row,
specifying the link relation associated with any hyperlink
representing the action.

For the action action:move, these are the properties of a JSON object representing its
specification:

©Deltek Inc., All Rights Reserved 51 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

upTitle Human-readable text describing the action of moving a record
upwards in the line-number controlled table pane.

downTitle Human-readable text describing the action of moving a record
downwards in the line-number controlled table pane.

indentTitle Human-readable text describing the action of indenting a record in
the line-number controlled table pane. This property is only present
when a full mode move action is defined, see the moveMode
property described above.

outdentTitle Human-readable text describing the action of outdenting a record in
the line-number controlled table pane. This property is only present
when a full mode move action is defined, see the moveMode
property described above.

rel The value action:move, specifying the link relation associated with
any hyperlink representing the action.

Defined actions which can be discovered through a container’s specification resource each
falls into one of the following two groups of actions:

Standard actions are a collection of predefined actions that seem natural for data
organized in panes of records:

Link relation Explanatory text

action:init Initializing a record in a data pane without line-number
control. See Creating a Data Entry and Adding a Table
Record.

action:init-create Initializing and creating a record in a data pane without
line-number control. See Creating a Data Entry and
Adding a Table Record.

action:init-row Initializing a record in a table pane with line-number
control. See Adding a Table Record.

action:init-create-row Initializing and creating a record in a table pane with
line-number control. See Adding a Table Record.

action:create Creating an already initialized data pane record. See
Creating a Data Entry and Adding a Table Record.

action:update Updating a data pane record. See Updating a Record.

action:delete Deleting a data pane record. See Deleting a Record.

©Deltek Inc., All Rights Reserved 52 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Link relation Explanatory text

action:move Moving a record in a table pane with line-number
control to another position. See Moving a Table Record.

action:print Printing a data pane record. See Printing.

Application actions relate to the specific business logic implemented by the container
to which the data pane belongs. The value of their rel property can be any
action:xxx where the xxx does not cause any overlap with the standard actions.
See Applying an Application Action for more details on the usage of application
actions.

Here is a fuller version of the table pane’s actions property which was omitted from
the ExpenseSheets specification JSON above:

"actions": {
"action:init-row": {

"insertTitle": "Insert Expense Sheet Line",
"appendTitle": "Add Expense Sheet Line",
"rel": "action:init-row"

},
"action:init-create-row": {

"insertTitle": "Insert Expense Sheet Line",
"appendTitle": "Add Expense Sheet Line",
"rel": "action:init-create-row"

},
"action:create": {

"title": "Save Expense Sheet Line",
"rel": "action:create"

},
"action:update": {

"title": "Save Expense Sheet Line",
"rel": "action:update"

},
"action:delete": {

"title": "Delete Expense Sheet Line",
"rel": "action:delete"

},
"action:move": {

"title": "Move Expense Sheet Line",
"rel": "action:move"

},
"action:print": {

"title": "Print Expense Sheet Line",
"rel": "action:print"

},
"action:createjobfavorite": {

©Deltek Inc., All Rights Reserved 53 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"title": "Create favorite",
"rel": "action:createjobfavorite"

},
...

}

Due to the table pane of the ExpenseSheets container being subject to line-number
control, the action:init-row and action:init-create-row actions are here present
instead of the action:init and action:init-create actions. Also notice how the JSON
objects for these two actions hold the two properties insertTitle and appendTitle
instead of just a title property. The specified action:createjobfavorite action is an
example of one of the application actions specifically related to expense sheets.

4.1.2 Fields

Another important part of specifying a container pane is specifying the fields comprising
the records of that pane. The specification of the record’s fields is held in the fields
property of the JSON object representing the pane’s specification and these are the
possible properties of the JSON object holding a field specification:

Property Explanatory text

name Identifier used to reference the field in representations. This is
intended for use by software and is normally not displayed in a
user interface.

title Human-readable name of the field. The title is an appropriate
label for the field in a user interface.

key Indicates whether the field is a key field. The key fields of a
record uniquely identifies it.

type Data type of the field. This is important information as it tells
the client program how to interpret and represent values of the
field when interacting with records. The data type is one of
these: integer, real, amount, boolean, string, date, time,
enum, timeduration, or autotimestamp. The specifics of each
format are detailed in the Data Types section.

enumType Only present for fields having the enum data type and then
contains the name of the enum type. The value may, for
example, be used when client programs need to construct
expressions used in filter restrictions.

©Deltek Inc., All Rights Reserved 54 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

subtypeContainer Only present for fields having the enum data type and then
contains the name of the container supplying the possible
values for the enum type. To find hyperlinks relevant for the
subtype container, client programs should go through the
relatedContainers property, see Related Containers.

maxLength Only present for string fields and then specifies the maximum
length of the field value.

multiLine Indicates whether a string field can contain newline characters
(\u000a), thus spanning multiple lines.

create Indicates whether the field is editable at the time a record is
created. If false, a client program is not permitted to change
the value of the field in the template record obtained from the
initialization operation.

update Indicates whether the field can be modified by the client
program after the record has been created.

autoSubmit Indicates to the client program whether it should automatically
update the resource when a user finishes editing the field.

mandatory Indicates whether the field is mandatory and must be filled
out. If mandatory, string, date, and time fields cannot be
blank and numeric fields must be non-zero.

secret Indicates whether the contents of the field must not be
displayed unmasked in a user interface. This could be the case
for a password field, for example.

unfilterable Indicates whether the field cannot act as part of a filter
restriction.

suggestions Indicates how the client should present inline searches from the
field in a user interface. These are the possible values:

• onDemand: Inline search on demand.
• automatic: A search-as-you-type style inline search.
• none: No inline search.
• standard: The client program should apply its own

preferred default and use the behavior of either
onDemand, automatic, or none.

references Lists which foreign keys the field participates in. See Foreign
Keys.

©Deltek Inc., All Rights Reserved 55 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Here, for example, are some of the JSON objects specifying record fields of the table
pane in the ExpenseSheets container:

"fields": {
...,
"activitynumber": {

"title": "Activity No.",
"name": "activitynumber",
"type": "string",
"key": false,
"create": true,
"autoSubmit": false,
"mandatory": false,
"maxLength": 255,
"multiLine": false,
"secret": false,
"suggestions": "onDemand",
"update": true,
"unfilterable": false,
"references": [

"activitynumber_expensemileageactivity",
"activitynumber_activity"

]
},
"text": {

"title": "Description",
"name": "text",
"type": "string",
"key": false,
"create": true,
"autoSubmit": false,
"mandatory": false,
"maxLength": 255,
"multiLine": false,
"secret": false,
"suggestions": "none",
"update": true,
"unfilterable": false,
"references": []

},
"currency": {

"title": "Currency",
"name": "currency",
"type": "enum",
"key": false,
"subtypeContainer": "popup_currencytype",
"create": true,
"autoSubmit": false,
"mandatory": true,

©Deltek Inc., All Rights Reserved 56 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"multiLine": false,
"secret": false,
"suggestions": "none",
"update": true,
"unfilterable": false,
"enumType": "CurrencyType",
"references": []

},
...

}

The fields activitynumber and text are both string fields, whereas the field currency
is a field of enum type having the container popup_currencytype as the source of its
values.

4.1.3 Foreign Keys

Foreign keys describe associations between data in the system and can be used to navigate
to related resources and/or to provide suggestions for values for one or more record fields
through so-called foreign key searching.

As opposed to a simple filter search (see Filtering) where the client program is interacting
with just a single filter pane, two container panes are in play when doing a foreign key
search:

1. The host pane from where the search is launched.

2. The search pane providing the search result.

The role of the host pane is to provide the server with a restriction based on the
uncommitted value of the record from where the search was launched. For example, when
searching for a task on an expense sheet line, then only tasks related to the job currently
selected on that expense sheet line should be included in the search result.

For each pane of a given container, the foreignKeys property of that pane’s specification
JSON holds the specifications of the foreign keys defined. These are the possible properties
of a foreign key JSON object:

Property Explanatory text

name Name of the foreign key.

title Title of the foreign key. A text appropriate for displaying in a
user interface.

©Deltek Inc., All Rights Reserved 57 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

incomplete Indicates whether the foreign key is incomplete. Incomplete
foreign keys can be used for searching only and cannot be
navigated like complete foreign keys can. Find further
explanation below.

searchContainer Only present for searchable foreign keys and then holds the
name of the container providing the search results.
Note that a self foreign key will never have this property. Find
further explanation of self foreign keys below.

searchPane Only present for searchable foreign keys and then holds the
name of the pane within the search container providing the
search results. The search pane will always be the filter pane
and its name is included here for convenience only.
Note that a self foreign key will never have this property. Find
further explanation of self foreign keys below.

fieldReferences List of JSON objects specifying the field references comprising
the foreign key relationship. Find the properties of a field
reference JSON object below.

switchField Only present for conditional foreign keys and then holds the
name of the enum type field whose value determines whether the
foreign key is enabled. Find further explanation of conditional
foreign keys below.

switchValue Only present for conditional foreign keys and then holds the
enum literal value that must be assigned to the switch field in
order for the foreign key to be enabled. Find further explanation
of conditional foreign keys below.

links Hyperlinks available for the foreign key. Find the list of link
relations below.

A field reference JSON object listed in the above mentioned fieldReferences property
contains the following properties:

Property Explanatory text

field Name of the field in the container pane that maps to a field in a
foreign container pane.

foreignField Name of the field in a foreign container pane being referred.

©Deltek Inc., All Rights Reserved 58 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

supplement Indicates if the field reference is only a supplement and thus not
really participating in the foreign key relationship. Find further
description of a supplement field reference below.

These are the purposes of the hyperlinks possibly available from a foreign key JSON
object:

Link relation Explanatory text

data:search Reference to the action of performing a foreign key search. Find
further description below.

data:key Reference to the action of navigating a complete foreign key. Find
further description below.

For example, the following JSON object specifying the activitynumber_activity foreign
key for the table pane was left out from the ExpenseSheets specification JSON presented
earlier:

{
"name": "activitynumber_activity",
"title": "Activity",
"incomplete": false,
"searchContainer": "find_activity",
"searchPane": "filter",
"fieldReferences": [

{
"field": "activitynumber",
"foreignField": "activitynumber",
"supplement": false

},
{

"field": "activitytextvar",
"foreignField": "activitytext",
"supplement": true

}
],
"links": {

"data:search": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/search/table;foreignkey=activitynumber_activity",
"rel": "data:search"

},

©Deltek Inc., All Rights Reserved 59 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"data:key": {
"template": "http://SERVER/maconomy-api/containers/macoprod/{ ←↩

container}/instances/{instance}/data;activitynumber={0}",
"fields": [

"activitynumber"
],
"rel": "data:key"

}
}

}

Here, the first of the two field references specified in the fieldReferences property shows
that the activitynumber field on expense sheet lines references the activitynumber
field found on activities. For the second field reference, you can see that this, with the
boolean value true in its supplement property, is marked as a supplement. A supplement
field reference is not directly participating in the foreign key relationship, but is included
only as a signal to the client program to assign the value back during a foreign key
search. In this particular case, whenever the user has chosen an activity among some
activitynumber_activity foreign key search result, the client program must assign the
value of this activity’s activitytext field back to the activitytextvar field on the
expense sheet line.

That the searchContainer property for the activitynumber_activity foreign key
holds the container name find_activity indicates that the foreign key can be used
for searching and that these searches are performed by use of the filter pane within
the find_activity container. Being a search container, the find_activity container
is among the containers mentioned in the table pane’s relatedContainers property,
and there a hyperlink leading to its specification can be found (see Related Containers).
Besides being useful in discovering the entity to which the foreign fields of the field
references refer, the search container’s specification is also important for the client
program’s ability to interpret foreign key search results.

In order to actually perform a foreign key search from a record within some pane, the
client program must follow the data:search hyperlink available from the links property
of the foreign key’s JSON object:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/search/ ←↩

PANE;foreignkey=FOREIGN_KEY",
"rel": "data:search"

}

The client program must authenticate (see Authentication) and apply the HTTP verb
POST with the uncommitted value of the record from where the search was initiated in the
request body. Like with a filter request, the client program can have any Filter Paging,
Filter Sorting, Filter Fields Slicing, and Filter Restriction applied to the search.

©Deltek Inc., All Rights Reserved 60 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

The response to a successful data:search request is called a search response and except
from a missing self hyperlink its structure is similar to that of a search container filter
response, see Filtering.

For the activitynumber_activity foreign key, for example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-H 'Content-Type: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-d '{

"data": {
"expensesheetnumber": "10760001",
"description": "",
"employeenumber": "11",
...

}
}'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

search/table;foreignkey=activitynumber_activity'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": {

"containerName": "find_activity"
},
"panes": {

"filter": {
"meta": {

"paneName": "filter",
"rowCount": 25,
"rowOffset": 0

},
"records": [

{
"data": {

"activitynumber": "101",
...,
"activitytext": "Consulting",
...

},
"links": {

"data:same-key-some-container": {

©Deltek Inc., All Rights Reserved 61 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"template": "http://SERVER/maconomy-api/containers/macoprod ←↩
/{container}/instances/{instance}/data;activitynumber=101",

"rel": "data:same-key-some-container"
}

}
},
{

"data": {
"activitynumber": "102",
...,
"activitytext": "Preparation",
...

},
"links": {

"data:same-key-some-container": {
"template": "http://SERVER/maconomy-api/containers/macoprod ←↩

/{container}/instances/{instance}/data;activitynumber=102",
"rel": "data:same-key-some-container"

}
}

},
...

]
}

}
}

As described in Filtering, the links property of each record represented in this search
response mentions a data:same-key-some-container hyperlink. These hyperlinks are
referencing the action of loading the given container data entry and their usage is further
described in Loading a Data Entry.

A foreign key is said to be complete whenever the composition of the field values partici-
pating in its references (supplement fields excluded) uniquely identifies a foreign resource.
With the number being a unique identifier of an activity, the activitynumber_activity
foreign key is an example of such complete foreign key, and this is indicated by the
boolean value false in its incomplete property.

Not surprisingly, a complete foreign key can be used for navigating from one resource
to another, and this is done by following the data:key hyperlink available from its
specification:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/{container}/ ←↩

instances/{instance}/data;KEY_FIELD_NAME_1={0};KEY_FIELD_NAME_2 ←↩
={1};...",

"fields": [
"KEY_FIELD_NAME_1",

©Deltek Inc., All Rights Reserved 62 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"KEY_FIELD_NAME_2",
...

],
"rel": "data:key"

}

The client program must replace the {container} placeholder in the template URL by
the name of the container it wishes to navigate to (this container must of course be based
on the same entity as referred to by the foreign fields of the field references). Also, the
{instance} placeholder must be replaced by the id of an instance of the container chosen
(see Container Instances). Finally, the field values making up the foreign key reference
(excluding supplement fields) must be substituted into the template URL. The indices of
the field names in the array held in the fields property of the hyperlink object indicate
which of the numbered placeholders each field value should replace.

As with any of the hyperlinks described in Loading a Data Entry, the client pro-
gram must authenticate using a reconnect token (see Maconomy Reconnect Authenti-
cation) valid for the container instance and apply the HTTP verb POST with a valid
Maconomy-Concurrency-Control header enclosed (see Concurrency Tags).

The response to a successful data:key request is a full data response (see Data Re-
source).

For example, for the activitynumber_activity foreign key, the data:key hyperlink for
navigating to the activity referenced by an expense sheet line looks like this:

{
"template": "http://SERVER/maconomy-api/containers/macoprod/{container}/ ←↩

instances/{instance}/data;activitynumber={0}",
"fields": [

"activitynumber"
],
"rel": "data:key"

}

Choosing Activities as the target container, the substituted data:key template URL
could look something like this:

http://SERVER/maconomy-api/containers/macoprod/activities/instances/ ←↩
c953cdd8-2806-4e61-b3cd-3022ab8aea50/data;activitynumber=102

As opposed to the foreign key activitynumber_activity discussed above, the foreign
key taskname_expensemileagetasklistline is an example of an incomplete foreign
key defined for the table pane of the ExpenseSheets container:

"taskname_expensemileagetasklistline": {
"name": "taskname_expensemileagetasklistline",
"title": "Task",

©Deltek Inc., All Rights Reserved 63 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"incomplete": true,
"searchContainer": "find_tasklistline",
"searchPane": "filter",
"fieldReferences": [

{
"field": "taskname",
"foreignField": "taskname",
"supplement": false

},
{

"field": "tasknamevar",
"foreignField": "description",
"supplement": true

}
],
"links": {

"data:search": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/search/table;foreignkey= ←↩
taskname_expensemileagetasklistline",

"rel": "data:search"
}

}
}

The incompleteness of the taskname_expensemileagetasklistline foreign key reflects
the fact that an expense sheet line relates to a task which cannot be identified solely from
information stored directly on the expense sheet line. Aside from the name of the task,
the identification takes the name of the list to which it belongs, and the latter is only
indirectly available via the job pointed to by the expense sheet line’s jobnumber field.
Such incomplete foreign keys can only be used for searching and therefore the links
property does not mention any data:key hyperlink.

This is the self foreign key also defined for the table pane of the ExpenseSheets
container:

"self": {
"name": "self",
"title": "Expense Sheet",
"incomplete": false,
"fieldReferences": [

{
"field": "instancekey",
"foreignField": "instancekey",
"supplement": false

}
],
"links": {

©Deltek Inc., All Rights Reserved 64 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"data:key": {
"template": "http://SERVER/maconomy-api/containers/macoprod/{ ←↩

container}/instances/{instance}/data;instancekey={0}",
"fields": [

"instancekey"
],
"rel": "data:key"

}
}

}

As it occurs from this JSON, the self foreign key cannot be used for searching. A self
foreign key expresses the fact that the key of any entity can be seen as a foreign key to
that entity itself, and its purpose is to enable the client program to relate a given record
of the hosting container pane with the exact same record in the card pane of some other
container. Obviously, the foreign card pane must be based on the same entity as the
hosting container pane. A self foreign key can be particularly useful when working with
multiple containers whose card panes are based on the same entity.

Conditional Foreign Keys

Any foreign key whose JSON object includes the two properties switchField and
switchValue is called a conditional foreign key. This because the validity of these foreign
keys is conditional on whether the value of the record field mentioned in the switchField
property equals the literal value mentioned in the switchValue property.

As the ExpenseSheets container is not able to deliver any conditional foreign keys, we
instead turn our eyes towards the GeneralJournal container to find examples. Now,
in the GeneralJournal container, one of the fields defined for the table pane is the
accountnumber field:

{
"name": "accountnumber",
"title": "Account No.",
"key": false,
"type": "string",
"maxLength": 255,
"multiLine": false,
"create": true,
"update": true,
"autoSubmit": false,
"mandatory": false,
"secret": false,
"unfilterable": false,
"suggestions": "automatic",
"references": [

"accountnumber_account",
"accountnumber_customer",

©Deltek Inc., All Rights Reserved 65 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"companycustomer",
"accountnumber_vendor",
"companyvendor"

]
}

Here all five of the referenced foreign keys are conditional foreign keys whose validity
depends on the value of the record’s typeofentry field. In this example, take a look at
the specification for the accountnumber_account foreign key:

{
"name": "accountnumber_account",
"title": "Account",
"incomplete": false,
"searchContainer": "find_account",
"searchPane": "filter",
"fieldReferences": [

{
"field": "accountnumber",
"foreignField": "accountnumber",
"supplement": false

}
],
"switchField": "typeofentry",
"switchValue": "g",
"links": {

"data:search": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

generaljournal/search/table;foreignkey=accountnumber_account",
"rel": "data:search"

},
"data:key": {

"template": "http://SERVER/maconomy-api/containers/macoprod/{ ←↩
container}/instances/{instance}/data;accountnumber={0}",

"fields": [
"accountnumber"

],
"rel": "data:key"

}
}

From this it appears that the accountnumber_account foreign key is only applicable
in cases where a record holds the literal value g in its typeofentry field. If a different
value is filled into that field, the accountnumber_account foreign key is no longer valid.
Similarly, the foreign keys accountnumber_customer and companycustomer have the
switch value r, and the foreign keys accountnumber_vendor and companyvendor the
switch value p.

©Deltek Inc., All Rights Reserved 66 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

When searching from the accountnumber field, the client program must in turn consider
the conditional foreign keys involving the accountnumber field and apply the first (if
any) foreign key for which the switch value matches the (uncommitted) value of the
record’s typeofentry field.

4.1.4 Related Containers

The purpose of the relatedContainers property in a data container’s specification is
to provide the client program with some handy references for each container considered
related to the container. Container c is considered related if it matches at least one of
two descriptions:

1. c is a popup container supplying values for an enum type and is mentioned in
the subtypeContainer property of some field specification within the container
specification.

2. Some foreign key searches are performed through c as it is mentioned in the
searchContainer property of some foreign key specification within the container
specification.

A related container JSON object held in a relatedContainers property has the following
two properties:

Property Explanatory text

meta containerName: Name of the related container.

links Hyperlinks available for the related container. Find the list of link
relations below.

These are the purposes of the hyperlinks available from a related container JSON
object:

Link relation Explanatory text

specification Reference to the specification resource of the related container,
see Specification.

data:enumvalues Only available for subtype containers in which case it is a
reference to be followed in order to gain knowledge on the
possible enum values. Find further details below.

For the ExpenseSheets container, for example, this is some of the contents of the table
pane’s relatedContainers property earlier omitted:

©Deltek Inc., All Rights Reserved 67 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"relatedContainers": {
...,
"popup_currencytype": {

"meta": {
"containerName": "popup_currencytype"

},
"links": {

"specification": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

popup_currencytype/specification",
"rel": "specification"

},
"data:enumvalues": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
popup_currencytype/filter",

"rel": "data:enumvalues"
}

}
},
...,
"find_activity": {

"meta": {
"containerName": "find_activity"

},
"links": {

"specification": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

find_activity/specification",
"rel": "specification"

}
}

},
...

}

As expected, both a specification and a data:enumvalues hyperlink are available
for popup_currencytype since this refers to the subtype container of the table pane’s
currency field. For find_activity which the foreign key activitynumber_activity
specifies as the name of its search container, only a specification hyperlink is avail-
able.

To get the list of possible values for some field of a given enum type, the data:enumvalues
hyperlink available from the subtype container’s entry within the relatedContainers
property can be followed:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/POPUP_CONTAINER/ ←↩

filter",

©Deltek Inc., All Rights Reserved 68 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"rel": "data:enumvalues"
}

The data:enumvalues link relation can be seen as an alias for the popup container’s
data:filter link relation and its usage is thus similar to what is described for data:filter
in Filtering.

4.2 Access
No data:any-key hyperlink will ever be available from a container instance resource (see
Container Instances), if the authenticated user is not granted read access to the given
container. Similarly, no action:init hyperlink will ever be available, if the user is not
granted create access.

For a given container, a client program is able to retrieve information about an authenti-
cated user’s CRUD access rights by following the hyperlink with link relation access
available from the container’s root resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/access",
"rel": "access"

}

The client program must authenticate (see Authentication) and apply the HTTP verb
GET.

The JSON object held in the body of a response to an access request has the following
properties:

Property Explanatory text

meta containerName: The name of the container.

access read: Indicates whether the authenticated user is allowed to read data
from the container.
create: Indicates whether the authenticated user is allowed to create new
container entries.
update: Indicates whether the authenticated user is allowed to update
container entries and execute application actions.
delete: Indicates whether the authenticated user is allowed to delete
entries from the container.

links self: Hyperlink referring to the access resource itself.

Note that if the authenticated user is not granted read access to a container, it is implied

©Deltek Inc., All Rights Reserved 69 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

that the user is not granted create, update, or delete access either – that is, if the read
property carries the value false, then so are the remaining access properties.

For the ExpenseSheets container, for example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

access'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": {

"containerName": "expensesheets"
},
"access": {

"read": true,
"create": true,
"update": true,
"delete": true

},
"links": {

"self": {
"href": "http://SHORTNAME/containers/macoprod/expensesheets/access",
"rel": "self"

}
}

}

This response tells us that the Administrator user is granted full CRUD access to expense
sheets.

4.3 Filtering
For a data container, the purpose of defining a filter pane is to allow for client programs
to search for data entries within the container itself.

For a popup container, each record of its filter pane comprises an enum value. All
relevant information is available through these entries and none of them form a basis for
further interaction.

For a search container, its filter pane allows for client programs to search for data

©Deltek Inc., All Rights Reserved 70 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

entries within other data containers whose card pane is based on the same entity.
Interactions with any of these data entries have to happen against some instance of a
data container.

Now, a client program interacts with the filter pane of a container by following the
hyperlink with link relation data:filter available from the container’s resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/filter",
"rel": "data:filter"

}

In order to access a filter resource, the client program must authenticate (see Authentica-
tion) and apply the HTTP verb POST. Relevant filter parameters are communicated to
the server by inclusion of appropriate JSON properties in the request body, see Filter
Paging, Filter Sorting, Filter Fields Slicing, and Filter Restriction.

The response to a data:filter request is called a filter response, and the JSON object
held in its body has the following properties:

Property Explanatory text

meta containerName: The name of the container.

panes filter: JSON object representing filter pane contents. Find its properties
below.

links self: Hyperlink referring to the filter resource itself.

These are the properties of the JSON object within a filter response representing filter
pane contents:

Property Explanatory text

meta paneName: The name of the filter pane.
rowCount: The number of filter pane records returned (see Filter Paging).
rowOffset: The offset of the returned filter pane records (see Filter
Paging).

records List of filter pane record JSON objects each exposing a container data
entry. Find the possible properties of these objects below.

The properties of the filter pane record JSON objects listed in the records property,
each exposing a container data entry, are these:

©Deltek Inc., All Rights Reserved 71 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

data A selection of field values appropriate for displaying in the user interface
from where the filter request was initiated. The fields mentioned will be
the key fields plus any extra fields explicitly specified in a fields
parameter on the request (see Filter Fields Slicing).

links Only present for search and data containers, at which point it presents a
hyperlink referencing the action of loading the container data entry. For
search containers, this is a data:same-key-some-container hyperlink,
and for data containers, a data:same-key-some-instance hyperlink.
See Loading a Data Entry for further details on how to use these two
kinds of hyperlinks.

For the ExpenseSheets container, for example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

filter'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": {

"containerName": "expensesheets"
},
"panes": {

"filter": {
"meta": {

"paneName": "filter",
"rowCount": 25,
"rowOffset": 0

},
"records": [

{
"data": {

"expensesheetnumber": "10760001"
},
"links": {

"data:same-key-some-instance": {

©Deltek Inc., All Rights Reserved 72 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"template": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/{instance}/data;expensesheetnumber=10760001",

"rel": "data:same-key-some-instance"
}

}
},
...

]
}

},
"links": {

"self": {
"href": "http://SHORTNAME/containers/macoprod/expensesheets/filter",
"rel": "self"

}
}

}

Here we see information about expense sheet number 10760001 accompanied by the
data:same-key-some-instance hyperlink for the client program to follow in order to
interact with that particular expense sheet (see Loading a Data Entry).

As another example, for the popup_currencytype popup container:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod/popup_currencytype/ ←↩

filter'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": {

"containerName": "popup_currencytype"
},
"panes": {

"filter": {
"meta": {

"paneName": "filter",
"rowCount": 28,
"rowOffset": 0

},
"records": [

{

©Deltek Inc., All Rights Reserved 73 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"data": {
"value": "nil"

}
},
{

"data": {
"value": "dkk"

}
},
{

"data": {
"value": "eur"

}
},
...

]
}

},
"links": {

"self": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

popup_currencytype/filter",
"rel": "self"

}
}

}

A nil value like the one listed here is defined for all enum types in order to allow for
the cases where no value has been chosen for an enum field. In user interfaces, it makes
sense to display possible enum values as a dropdown.

Besides a value property carrying a representation of the corresponding enum value (see
Enum), the data JSON object of a popup filter pane record may include zero or more
among three other properties depending on the fields parameter passed along with the
filter request (see Filter Fields Slicing):

Property Explanatory text

value The value of the enum value represented by the filter pane record
(see Enum).

ordinal The integer ordinal of the enum value represented by the filter pane
record. This uniquely identifies the enum value among the others
of the same type.

title A human-readable name of the enum value represented by the filter
pane record.

©Deltek Inc., All Rights Reserved 74 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

hidden Indicates whether the enum value represented by the filter pane
record should be available for selection in a user interface or not.

A specification of the available popup record fields can of course be obtained by following
the specification hyperlink for the given popup container (see Specification).

In the four sub-sections below, the following supported filter pane searching features are
described:

• Paging

• Sorting

• Fields slicing

• Restriction

4.3.1 Filter Paging

You may have noticed that your client program receives exactly 25 records in every filter
response even though the system being polled contains more than 25 data entries. This
is because the filter resource splits the results into pages. Filter paging can be controlled
by two paging parameters supplied as JSON properties in the request body:

Parameter Explanatory text

limit If n > 0, the amount of records included in the response will not exceed
n. If 0, all records will be included in the response.

offset If n ≥ 0, the first n records will be skipped.

For data and search containers, the default limit applied is 25, and for popup containers
it is 0. The default offset applied is 0 for all containers.

For example, providing the following paging parameters with a filter request, the response
will contain up to 11 records, starting from record number 8 when counting from 0:

{
"limit": 11,
"offset": 8

}

As another example, the following paging parameters will make a filter response contain
any amount of records, starting from record number 20 when counting from 0:

©Deltek Inc., All Rights Reserved 75 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

{
"limit": 0,
"offset": 20

}

4.3.2 Filter Sorting

The filter resource allows the client program to control the order in which record objects
are presented in a filter response. A preferred sorting can be specified by the client
program through an orderBy parameter supplied as a JSON property in the request
body.

A preferred sorting must be passed as a list of JSON objects with the following proper-
ties:

Property Explanatory text

field Name of field that should participate in a multi-column sorting of the
records.

ascending If true, the sorting order applied for the field of the given name will be
ascending, otherwise, if false, it will be descending. If left out, the
ascending order will be applied.

For example, the client program will receive an ExpenseSheets filter response with the
represented records sorted first descending by the value in their DateSubmitted field and
second ascending by the value in their EmployeeName field when passing the following in
the request body:
{

"orderBy": [
{

"field": "DateSubmitted",
"ascending": false

},
{

"field": "EmployeeName"
}

]
}

4.3.3 Filter Fields Slicing

The filter resource also allows the client program to control which fields are included in
the record representations within the filter response. A key field is always part of the

©Deltek Inc., All Rights Reserved 76 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

response, but otherwise a field is included only if it is mentioned among the list of field
names passed via a fields JSON property in the request body. Performance benefits
can be achieved by limiting the amount of fields included to the ones that are actually
relevant to the client program.

For example, the record JSON objects received in an ExpenseSheets filter response will
at least contain the properties Description and EmployeeName, if the client program
passes the following fields parameter:

{
"fields": [

"EmployeeName",
"Description"

]
}

As ExpenseSheetNumber is a key field, the record JSON objects will also hold an
expensesheetnumber property.

4.3.4 Filter Restriction

Finally, the filter resource allows the client program to supply an expression restricting
the filter record JSON objects returned in a way similar to how a WHERE clause works
in SQL. The syntax used for these expressions is the Expression Language also used in
MDML and other XML specification languages in Maconomy (see the MDML Language
Reference [5] for a full description of the Expression Language). A restricting expression
is provided by the client program through a restriction parameter supplied as a JSON
property in the request body.

For example, by passing the following restriction parameter along with an ExpenseSheets
filter request, the filter records represented in the response will all be pointing to sheets
that were created some time after July 1, 2014:

{
"restriction": "CreateDate > date(2014,7,1)"

}

As another example, the following restriction parameter should be supplied, if only
filter records pointing to expense sheets that have been submitted for approval and are
related to employees whose name begins with “Bob” are of interest:

{
"restriction": "Submitted and EmployeeName like \"Bob*\""

}

©Deltek Inc., All Rights Reserved 77 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

4.4 Container Instances
To interact with the data entries within some data container, the client program must
first create an instance of that container. A container instance is a resource holding the
state of a container (variable values, whether the different actions are currently enabled
or disabled, and so on), and by letting the client program carry out its data interactions
against such an instance, the server does not have to spend time on expensive state
recalculations on each request (this is in fact the main difference between the first version
of the Containers Web Service and later versions).

A new container instance is created by following the hyperlink with link relation
instance:create available from the container resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

",
"rel": "instance:create"

}

Container instance creation requires authentication, and since an instance only lives
within the scope of a login session, the client program is required to authenticate using
Maconomy Reconnect Authentication in order to obtain a reconnect token that can be
used for authentication on subsequent requests towards the created container instance.
Also, the client program must apply the HTTP verb POST and possibly include an instance
configuration JSON object (see Configuring an Instance) in the request body.

The body contained in the response to a container instance creation request representing
the created instance is a JSON object with the following properties:

Property Explanatory text

meta containerName: Name of the container.
containerInstanceId: The identifier of the container instance.

links Hyperlinks available from the container instance resource. Find the list of
link relations below.

These are the purposes of the hyperlinks possibly available from a container instance
JSON object:

Link relation Explanatory text

action:init Reference to the action of initializing a card
pane record, see Creating a Data Entry.

©Deltek Inc., All Rights Reserved 78 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Link relation Explanatory text

action:init-create Reference to the action of initializing and
creating a card pane record, see Creating a Data
Entry.

data:any-key Reference to the action of loading an unspecified
(yet deterministic) container data entry, see
Loading a Data Entry.

data:some-key Reference to the action of loading a specific
container data entry, see Loading a Data Entry.

instance:data Reference to the container data entry currently
loaded, see Data Resource.

instance:data-refresh Reference to the action of re-loading the already
loaded container data entry, see Data Resource.

instance:configuration Reference to the configuration currently applied
to the container instance, see Configuring an
Instance.

instance:configuration-update Reference to the action of updating the
configuration applied to the container instance,
see Configuring an Instance.

instance:delete Reference to the action of deleting the container
instance, see Deleting an Instance.

self Reference to the container instance resource
itself.

For example, for the ExpenseSheets container:

$ curl -i
-u 'Administrator:123456'
-H 'Maconomy-Authentication: X-Reconnect'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-X POST
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances'

HTTP/1.1 200 OK
Maconomy-Reconnect: Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ==
Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009e93
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

©Deltek Inc., All Rights Reserved 79 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "7dc0b114-ecf3-4441-940e-cf93dcf58620"

},
"links": {

"action:init": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card/inits",

"rel": "action:init"
},
"action:init-create": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card",

"rel": "action:init-create"
},
"data:any-key": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data;any ←↩
",

"rel": "data:any-key"
},
"instance:data": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data",

"rel": "instance:data"
},
"instance:data-refresh": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
refresh",

"rel": "instance:data-refresh"
},
"instance:configuration": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/ ←↩
configuration",

"rel": "instance:configuration"
},
"instance:configuration-update": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/ ←↩
configuration",

"rel": "instance:configuration-update"
},
"instance:delete": {

©Deltek Inc., All Rights Reserved 80 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620",

"rel": "instance:delete"
},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620",

"rel": "self"
}

}
}

Here the reconnect token Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ== (dots denoting that
only an abbreviation of the token has been included here) held in the response header
Maconomy-Reconnect-Token is what needs to be used for Maconomy Reconnect Authen-
tication on a later request towards the created container instance, as mentioned above.
The concurrency tag d2a39243-a63f-4bd5-8eab-676952009e93 held in the response
header Maconomy-Concurrency-Control will be explained next, whereas the sections
covering the topics of the hyperlinks in the links property can be found in the table
above.

4.4.1 Concurrency Tags

The Maconomy system has a concurrency control mechanism that prior to each update
to the database compares the values known to the client program with the values stored
in the database. If the values differ, the update is rejected and the client program is told
that data has been changed by someone else. This is known as the DataChanged check
and is meant to protect against unintended overwrites of updates made by others and to
ensure that update decisions are never based on outdated information.

Now, how does this DataChanged check suffice in preventing undesirable database updates
in the Containers Web Service setup where updates are performed towards container
instances and not directly towards the database? Entailing a comparison of the state of
the container instance with that of the database, the DataChanged check seems sufficient
as long as client programs are in sync with their container instances.

It may happen that a client program comes out of sync with a container instance though.
This either as a consequence of the container instance accidentally being shared between
different interaction flows (for example, in two different browser tabs) or because the
client program has missed some relevant update information communicated back in an
earlier response.

To ensure that a client program and a server agree on the state of a container in-
stance, concurrency tags are being exchanged through Maconomy-Concurrency-Control
HTTP headers. The response to each request involving a container instance con-
tains a Maconomy-Concurrency-Control header carrying the concurrency tag uniquely

©Deltek Inc., All Rights Reserved 81 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

identifying the container instance state that resulted from the request. Similarly,
each possibly state modifying request towards a container instance must include a
Maconomy-Concurrency-Control header, passing the most recently received concur-
rency tag. The request will proceed only if the actual state of the container instance on
the server matches the concurrency tag received from the client program.

In those cases where a client program provides an invalid concurrency tag when a
Maconomy-Concurrency-Control header is required or where the DataChanged check
fails, the request is rejected by the server and a 409 Conflict response is returned.

Hyperlinks mentioning one of the following link relations are all referencing some action
for which a valid concurrency tag must be supplied in a Maconomy-Concurrency-Control
header on the request:

data:any-key

data:key

data:same-key

data:same-key-some-instance

data:same-key-some-container

instance:configuration-update

instance:data-refresh

action:xxx

The Maconomy-Concurrency-Control header is not allowed with any other requests. If
applied anyway, the server will respond with a 400 Bad Request response.

4.4.2 Data Resource

A main component of a container instance is its data resource where all information
related to the data entry currently in focus is gathered.

How a data entry gets loaded into the data resource of a container instance is covered
in Creating a Data Entry and Loading a Data Entry. In the sections Adding a Table
Record, Updating a Record, Deleting a Record, Moving a Table Record, Printing, and
Applying an Application Action you can find descriptions on how to perform different
actions on a data entry once loaded.

The current state of the data resource of a container instance can be acquired by following
the instance:data hyperlink available from a JSON object representing the container
instance:

©Deltek Inc., All Rights Reserved 82 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data",
"rel": "instance:data"

}

Authentication is required and, as explained in the beginning of Container Instances, a
reconnect token valid for the container instance in question must be used for this (see
Maconomy Reconnect Authentication). The HTTP verb applied may be either GET or
POST where in the latter case, the client program is able to include paging parameters in
the request body (see Table Paging).

If no data entry is currently held in the data resource, the response to an instance:data
request is a 204 No Content. Otherwise, the client program receives a so-called data
response with a data entry JSON representation in the body holding the following
properties:

Property Explanatory text

meta containerName: The name of the container.
containerInstanceId: The identifier of the container instance.

panes Representation of the data entry’s card and table pane contents held in a
card and a table property respectively. Find the properties of a JSON
object representing pane contents below.

links Hyperlinks available from the data resource. Find the list of link relations
below.

These are the properties of a JSON object within a data response representing pane
contents:

Property Explanatory text

meta paneName: The name of the card or table pane.
rowCount: The number of data pane records returned. This will always be
1 for a card pane, but for a table pane, the number depends on the actual
amount of records and any Table Paging applied.
rowOffset: The offset of the data pane records returned. This will always
be 0 for a card pane, but for a table pane, the number depends on any
Table Paging applied.

©Deltek Inc., All Rights Reserved 83 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

records List of JSON objects each representing a record within the data pane.
Each JSON object has a data property holding a name/value entry for
every record field included. Note that only key fields are included, unless
otherwise specified by the current Data Fields Slicing.
For table panes, the order in which the JSON objects are listed depends
on any Table Sorting applied.
For tree table panes with hierarchically organized records, each JSON
object in the list may also hold a records property with the same
characteristics as this outermost records property.
Since a card pane always carries exactly one record, the list contains
exactly one JSON object in case of a card pane.
Note that the records property often is replaced by a recordsPatch
property in Partial Data Responses.

links Hyperlinks available for the data pane. Each of these hyperlinks is a
reference to one of the actions described in Actions.
Note that the links property often is replaced by a linksPatch in
Partial Data Responses.

The purposes of the hyperlinks available from the outermost links property of a data
response are these:

Link relation Explanatory text

data:same-key Reference to the action of loading the data entry exposed in the
data response into the data resource, see Loading a Data Entry.

data:restore Reference to the action of loading the data entry exposed in the
data response into the data resource of some other container
instance, see Loading a Data Entry. This may be relevant in cases
where an auto log-out forces restoration.

self Hyperlink referring to the data resource itself.

To refresh the data entry currently held in the data resource of a container instance,
the client program must follow the hyperlink with link relation instance:data-refresh
also available from the JSON object representing the container instance:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/refresh",
"rel": "instance:data-refresh"

©Deltek Inc., All Rights Reserved 84 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

}

Again, the client program must authenticate using a reconnect token valid for the
container instance in use (see Maconomy Reconnect Authentication), and since an
instance:data-refresh request may cause a change in the state of that container
instance, the client program must provide a valid concurrency tag (see Concurrency
Tags). The client program must apply the HTTP verb POST and possibly include paging
parameters in the request body (see Table Paging).

If no data entry has been loaded, the response to an instance:data-refresh request is
a 204 No Content one. Otherwise, a data response reflecting the refreshed state of the
loaded data entry is returned. If contracted as described in Partial Data Responses, this
may be a partial data response.

4.4.3 Data Fields Slicing

For a lot of data containers, the amount of fields defined for their data panes is huge,
and since in many cases only a smaller subset of these fields are of actual interest to the
client program, by default, only key fields are included in data responses. This to avoid
that a lot of unnecessary data is potentially being transmitted.

If some non-key fields within a data pane are of interest to the client program, these
fields should be picked out at the time when the client program is acquiring the container
instance. Key fields are always considered of interest and will be included, no matter if
they have been picked out by the client program or not.

Except for key fields, fields that are not specifically picked out by the client program
cannot be mentioned in later update requests (see Updating a Record) and they are all
left out of any data response (see Data Resource). Record fields thus excluded are said
to be victims of data fields slicing.

See Configuring an Instance for further details on how a data fields slicing is actually
configured.

4.4.4 Table Sorting

If the client program wishes to receive the JSON objects representing table pane records
in a certain order in data responses, a multi-column sorting can be specified at the
time of container instance creation. Further details on how this is done can be found in
Configuring an Instance.

Note that for tree table panes, any configured multi-column sorting will be applied on
each level of records.

Note that whenever a multi-column sorting of table pane records has been configured
for a container instance, Adding a Table Record or Moving a Table Record using that

©Deltek Inc., All Rights Reserved 85 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

container instance may be a bit confusing, since the added or moved record will show up
at the position resulting from the sorting being applied.

4.4.5 Configuring an Instance

In Data Fields Slicing and Table Sorting it is described how, for a container instance,
the client program is able to configure which record fields are exposed in data responses
and which multi-column sorting is applied to any table pane record JSON objects of
these.

Such data fields slicing and table sorting can be specified during container instance
creation by passing a so-called instance configuration JSON object of the following
structure in the body of an instance:create request:

{
"panes" : {

"card" : {
"fields" : CARD_FIELD_NAMES

},
"table" : {

"fields" : TABLE_FIELD_NAMES,
"orderBy" : SORT_ORDERS

}
}

}

Here, CARD_FIELD_NAMES and TABLE_FIELD_NAMES denote a list of field names for the
card and table pane respectively and indicate the fields of interest in each pane. The
SORT_ORDERS denotes a value similar to the one described in Filter Sorting.

For example, if the client program was in fact only interested in the Description field
of expense sheets and the Text field of their lines and wanted the latter ordered first
descending by EntryDate and then ascending by Text, the following JSON object could
have been included in the body of the instance:create request for the ExpenseSheets
container we saw above:

{
"panes" : {

"card" : {
"fields" : ["Description"]

},
"table" : {

"fields" : ["Text"],
"orderBy" : [

{ "field": "EntryDate", "ascending": false },
{ "field": "Text" }

]
}

©Deltek Inc., All Rights Reserved 86 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

}
}

If necessary, the client program can see the data fields slicing and table sorting cur-
rently applied for a given container instance by following the instance:configuration
hyperlink available from the container instance resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/configuration",
"rel": "instance:configuration"

}

As any other container instance request, such a request requires the client program to
authenticate using a reconnect token valid for the given container instance (see Maconomy
Reconnect Authentication). Since the request does not cause any changes to the state
of the container instance, no concurrency tag is required nor allowed (see Concurrency
Tags).

The response to an instance:configuration request is called an instance configuration
response, and the JSON object held in its body is an instance configuration JSON object
extended with the following two properties:

Property Explanatory text

meta containerName: Name of the container.
containerInstanceId: The identifier of the container instance.

links Hyperlinks available from the instance configuration response. Find the
list of link relations below.

These are the purposes of the hyperlinks available from an instance configuration re-
sponse:

Link relation Explanatory text

instance:configuration-update Reference to the action of updating the
configuration of the container instance. Find
further explanation below.

self Reference to the instance configuration resource
itself.

For example, with the above instance configuration JSON object passed on ExpenseSheets

©Deltek Inc., All Rights Reserved 87 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

instance creation, a succeeding instance:configuration request would unfold some-
thing like this:

$ curl -i
-H 'Authorization: X-Reconnect Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/configuration'

HTTP/1.1 200 OK
Maconomy-Reconnect: YTNkNTAzN2...JMTAJMTYwNjgyNjUxNg==
Maconomy-Concurrency-Control: 9d497fb1-3533-4927-963b-ee204aa837be
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "7dc0b114-ecf3-4441-940e-cf93dcf58620"

},
"panes": {

"card": {
"fields": [

"description",
"expensesheetnumber"

]
},
"table": {

"fields": [
"instancekey",
"text"

],
"orderBy" : [

{
"field": "entrydate",
"ascending": false

},
{

"field": "text",
"ascending": true

}
]

}
},
"links": {

"instance:configuration-update": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

©Deltek Inc., All Rights Reserved 88 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/ ←↩
configuration",

"rel": "instance:configuration-update"
},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/ ←↩
configuration",

"rel": "self"
}

}
}

Besides the field Description mentioned during creation of the container instance, the
card pane’s fields list mentions the key field ExpenseSheetNumber. Similarly, the key
field InstanceKey appears together with Text in the table pane’s fields list.

The client program can update the configuration of an existing container instance
by following the instance:configuration-update hyperlink available from either the
container instance resource or some instance configuration response:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/configuration",
"rel": "instance:configuration-update"

}

As always, the client program must authenticate using a valid reconnect token (see
Maconomy Reconnect Authentication), and since an instance:configuration-update
request may cause a change to the state of the container instance, a valid concurrency
tag must also be provided (see Concurrency Tags). The client program must apply the
HTTP verb POST, and an instance configuration JSON object representing the new data
fields slicing and table sorting must be included in the request body.

The response to an instance:configuration-update request is an instance configura-
tion response reflecting the new configuration.

4.4.6 Deleting an Instance

In order to avoid occupying unnecessary space on the server, it is very important that
client programs delete their container instances as soon as these are no longer needed.
Even though there will be arrangements in place on the server attending the task of
cleaning out container instances that have been lying around untouched for too long, it is
of course much preferred if client programs have the matters taken care of instantly.

A container instance can be deleted by following the hyperlink with link relation
instance:delete available from the container instance resource:

©Deltek Inc., All Rights Reserved 89 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE",
"rel": "instance:delete"

}

Such a request requires authentication using a reconnect token appropriate for the
container instance (see Maconomy Reconnect Authentication), but no concurrency tag is
needed. The HTTP verb to apply is DELETE.

The response to an instance:delete request is a 204 No Content response.

4.5 Working with Data
This section covers all the different kinds of interactions a client program can do with
data within data containers reachable through the Containers Web Service. Common for
these interactions is that they all go via a container instance, as explained in Container
Instances.

4.5.1 Record Positions

In order to be able to update (see Updating a Record), delete (see Deleting a Record),
move (see Moving a Table Record), print (see Printing) or otherwise process (see Applying
an Application Action) a record within a data container pane, a way of pointing out
existing records is needed. Furthermore, in case of a line-number controlled table pane,
the client program also needs a way of specifying the target position of a record that is
about to be either added (see Adding a Table Record) or moved (see Moving a Table
Record).

Position of an Existing Record

Regardless of whether the records of some pane are hierarchically organized or not (a
card pane’s single record is never hierarchically organized, but the records within a tree
table pane always are), the position of an existing record is pointed out by a so-called
dot index:

Letting ir denote an existing record r’s flat index among its sibling records, then in the
cases where r is residing at the outermost level, r’s dot index Ir is simply given by ir. If
instead r is a child of some other record r′, then Ir is given by the following:

Ir′ .ir

For example, having a records structure like the following, the dot indices of the records
will be as noted on the right:

©Deltek Inc., All Rights Reserved 90 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

A 0
B 0.0
C 0.1

D 0.1.0
E 0.2

F 1
G 2

Dot indices that only differ in their last index are called sibling dot indices, and for two
sibling dot indices Ia and Ib with last index ia and ib respectively, Ia is said to be less
than Ib, if ia < ib. Similarly, Ia is said to be greater than Ib, if ia > ib. For example, 0.1
and 0.4 are sibling dot indices where the first is less than the second and the second is
greater than the first.

Dot index incrementation is the operation where the last index of the dot index is
incremented by one. For dot indices whose last index is greater than zero, decrementation
refers to the operation where the last index of the dot index is decremented by one. For
example, incrementing the dot index 0.1 results in the dot index 0.2, and decrementing
0.2 results in 0.1.

A Target Position

Target positions are also pointed out by dot indices. Aside from dot indices pointing
out positions where other records are already residing, the following are also valid target
position dot indices:

• In case of an empty pane, the dot index 0.

• Any dot index pointing out the position just after some last record r.

A dot index pointing out a position where no record resides is called an end dot index,
and the client program is allowed to replace its last index by the token end. For example,
the position as the above record E’s first child can be targeted by supplying either the
end dot index 0.2.0 or the end dot index 0.2.end.

Notice that in cases of move operations (see Moving a Table Record), the target position
relates to the records structure as it looks prior to any changes. For example, if record C
in the above records structure is requested to be moved to 0.2.end, it will actually end
up at the position with dot index 0.1.0:
A 0

B 0.0
E 0.1

C 0.1.0
D 0.1.0.0

F 1
G 2

©Deltek Inc., All Rights Reserved 91 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

4.5.2 Creating a Data Entry

Creating a new data entry in a data container corresponds to creating a new card pane
record.

Creating a new card pane record comprises the following two steps:

1. Submit an initialization request and obtain a record template holding default field
values.

2. Submit a creation request supplying the possibly adjusted version of the record
template.

In order to allow the client program to do an initialization request without proceeding
with a creation request (one could, for example, imagine a user never reaching the point
of hitting the save button in a client interface), the initialization state triggered by the
initialization request will not affect the state of the container instance. Instead the
initialization state is stored in a separate temporary resource which is then presented to
the client program for further interaction.

The hyperlink to follow in order to acquire a new temporary initialization resource for a
card pane record is the one with link relation action:init available from the container
instance resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/inits",
"rel": "action:init"

}

As always when working with a container instance, the client program must authenticate
using a valid reconnect token (see Maconomy Reconnect Authentication), and since an
action:init request may rely on the state of the container instance, the client program
must also supply a valid concurrency tag (see Concurrency Tags). The client program
must apply the HTTP verb POST and the body of the request must be kept empty.

The response to an action:init request has a JSON object in the body representing
the created temporary initialization resource. These are the properties of such a JSON
object:

Property Explanatory text

meta containerName: Name of the container.
containerInstanceId: Identifier of the container instance.
paneName: Name of the container pane.

data JSON object holding a name/default value entry for each field of a record
within the container pane.

©Deltek Inc., All Rights Reserved 92 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Property Explanatory text

links Hyperlinks available from the record initialization resource. Find the list
of link relations below.

The purposes of the hyperlinks available from a card pane record initialization resource
are these:

Link relation Explanatory text

action:create Reference to the action of creating the record just initialized. Find
further details about this below.

self Hyperlink referring to the record initialization resource itself.

For example, to initialize a new expense sheet:
$ curl -i

-H 'Authorization: X-Reconnect Zjk1YjUzMT...JMTAJMTYwMjY4MDE4NQ=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-H 'Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009 ←↩

e93'
-X POST
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/inits'

HTTP/1.1 200 OK
Maconomy-Reconnect: MmYxZGUyNz...JMTAJMTYwNjE3MTM5Mw==
Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009e93
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "7dc0b114-ecf3-4441-940e-cf93dcf58620",
"paneName": "card"

},
"data": {

"expensesheetnumber": "",
"description": "",
"employeenumber": "11",
"companynumber": "",
"createdby": "",

©Deltek Inc., All Rights Reserved 93 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"createddate": "",
...

},
"links": {

"action:create": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card/inits/0cf5c664-0fdd-4720-8505-8e15a3b6c8e9",

"rel": "action:create"
},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card/inits/0cf5c664-0fdd-4720-8505-8e15a3b6c8e9",

"rel": "self"
}

}
}

Here the concurrency tag d2a39243-a63f-4bd5-8eab-676952009e93 supplied by the
client program being the same as the one received from the server witnesses that the
expense sheet initialization has not changed the state of the container instance, but just
triggered the creation of a new initialization resource.

Once the record template received as part of the initialization resource representation has
been adjusted to reflect the characteristics of the new card pane record, the actual record
creation can be accomplished by making the client program follow the action:create
hyperlink available from the initialization resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/inits/INIT",
"rel": "action:create"

}

Besides authenticating using a valid reconnect token (see Maconomy Reconnect Authen-
tication), the client program must apply the HTTP verb POST with the updated card
pane record template in the body and the valid Maconomy-Concurrency-Control header
enclosed (see Concurrency Tags). If relevant, paging parameters are passed through extra
JSON properties in the body of the request (see Table Paging).

The response to a successful action:create request is a data response (see Data Resource)
and subsequently the newly created data entry is the one referenced by the data resource
of the container instance.

Note that any temporary initialization resource vanishes as soon as the state of the
container instance changes (like if the record creation is completed, for example) or if the
client program is instructed to perform another record initialization.

©Deltek Inc., All Rights Reserved 94 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Accomplishing the creation of the expense sheet initialized above:

$ curl -i
-H 'Authorization: X-Reconnect MmYxZGUyNz...JMTAJMTYwNjE3MTM5Mw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-H 'Maconomy-Concurrency-Control: d2a39243-a63f-4bd5-8eab-676952009 ←↩

e93'
-H 'Content-Type: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-d '{

"data": {
"expensesheetnumber": "",
"description": "Yet another expense sheet",
"employeenumber": "11",
"companynumber": "",
"createdby": "",
"createddate": "",
...

}
}'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/inits/0 ←↩
cf5c664-0fdd-4720-8505-8e15a3b6c8e9'

HTTP/1.1 200 OK
Maconomy-Reconnect: NDZhZmNiNG...JMTAJMTYwNjE3NTAxMw==
Maconomy-Concurrency-Control: 8a610472-b72a-4369-a124-6c1057c32f0c
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "7dc0b114-ecf3-4441-940e-cf93dcf58620"

},
"panes": {

"card": {
"meta": {

"paneName": "card",
"rowCount": 1,
"rowOffset": 0

},
"records": [

{
"data": {

"expensesheetnumber": "10760004",
"description": "Yet another expense sheet",

©Deltek Inc., All Rights Reserved 95 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"employeenumber": "11",
"companynumber": "1",
"createdby": "Administrator",
"createddate": "2020-11-24",
...

}
}

],
"links": {

"action:init": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card/inits",

"rel": "action:init"
},
"action:init-create": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/card",

"rel": "action:init-create"
},
...

}
},
"table": {

"meta": {
"paneName": "table",
"rowCount": 0,
"rowOffset": 0

},
"records": [],
"links": {

"action:init-row": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/table/inits",

"rel": "action:init-row"
},
"action:init-create-row": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/ ←↩
panes/table",

"rel": "action:init-create-row"
}

}
}

},
"links": { ... }

}

©Deltek Inc., All Rights Reserved 96 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

As you can see, the new expense sheet has been assigned the number 10760004 and the
updated concurrency tag witnesses the fact that the new sheet is now the one in focus
within the container instance.

Since expense sheet 10760004 does not yet have any expense sheet lines, the records
property of the table pane’s JSON object holds an empty list. Both hyperlinks available
from the links property there relate to expense sheet line creation and is further described
in Adding a Table Record.

The action:init and the action:init-create hyperlink available from the links
property of the card pane’s JSON object are similar to the ones available from the
container instance resource. The appearance of these hyperlinks in both places is a
general thing and nothing particular for expense sheets.

In situations without any great need of a card pane record template, initialization and
creation can be combined into a single request by following the action:init-create
hyperlink available from the container instance resource:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card",
"rel": "action:init-create"

}

The usage of the action:init-create hyperlink is similar to what was just described
for the action:create hyperlink. Aside from a data JSON property carrying appropri-
ate field name/values for the new card pane record, relevant paging parameter JSON
properties (see Table Paging) should be included in the request body.

4.5.3 Loading a Data Entry

A client program is able to interact with a data entry within a data container only if
that entry is the one currently being referenced by the data resource of a container
instance.

In Creating a Data Entry it was described how new data entries go into focus once
created, and in this section it is disclosed where hyperlinks to follow in order to load an
already existing data entry can be discovered.

If the client program follows the hyperlink with link relation data:any-key available
from a container instance resource, an unspecified (yet deterministic) data entry is loaded
into the data resource of the container instance:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data;any",
"rel": "data:any-key"

}

©Deltek Inc., All Rights Reserved 97 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

The client program must authenticate using a valid reconnect token (see Maconomy
Reconnect Authentication), and since a data:any-key request affects the state of the
container instance, the client program must also supply a valid concurrency tag (see
Concurrency Tags). The client program must apply the HTTP verb POST and paging
parameters may be included in the request body (see Table Paging).

The response to a data:any-key request is a data response holding the JSON represen-
tation of the current state of the data entry put into focus (see Data Resource).

For example, doing a data:any-key request against the ExpenseSheets container in-
stance we acquired in Container Instances:

$ curl -i
-H 'Authorization: X-Reconnect NDZhZmNiNG...JMTAJMTYwNjE3NTAxMw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-H 'Maconomy-Concurrency-Control: 8a610472-b72a-4369-a124-6 ←↩

c1057c32f0c'
-X POST
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data;any'

HTTP/1.1 200 OK
Maconomy-Reconnect: YTg1ZGY3Ym...wCTEwCTE2MDYyMzE3Mzg=
Maconomy-Concurrency-Control: 8db720b5-015d-4cfe-926a-3edf96f3e724
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": {

"containerName": "expensesheets",
"containerInstanceId": "7dc0b114-ecf3-4441-940e-cf93dcf58620"

},
"panes": {

"card": {
"meta": {

"paneName": "card",
"rowCount": 1,
"rowOffset": 0

},
"records": [

{
"data": {

"expensesheetnumber": "10760001",
"description": "Expenses, expenses, expenses...",
"employeenumber": "11",
"companynumber": "1",
...

©Deltek Inc., All Rights Reserved 98 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

}
}

],
"links": {

...,
"action:submitexpensesheet": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf5862/data/panes ←↩
/card/0/action;name=submitexpensesheet",

"rel": "action:submitexpensesheet"
},
...

}
},
"table": {

"meta": {
"paneName": "table",
"rowCount": 32,
"rowOffset": 0

},
"records": [...],
"links": { ... }

}
},
"links": {

"data:same-key": {
"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩

expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data; ←↩
expensesheetnumber=10760001",

"rel": "data:same-key"
},
"data:restore": {

"template": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/{instance}/data;expensesheetnumber=10760001",

"rel": "data:restore"
},
"self": {

"href": "http://SERVER/maconomy-api/containers/macoprod/ ←↩
expensesheets/instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data",

"rel": "self"
}

}
}

Besides an updated concurrency tag, here are examples of the data:same-key and the
data:restore hyperlink always available from a full data response.

The data:same-key hyperlink is meant for the client program to follow if it at some
point becomes relevant to load the data entry represented in the data response into the

©Deltek Inc., All Rights Reserved 99 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

data resource of the container instance again:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data;KEY",
"rel": "data:same-key"

}

The data:restore hyperlink, however, is useful, if the container instance gets lost for
some reason (for example, if the user gets logged out due to inactivity) and the client
program needs to restore its state using a new container instance:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/{instance}/data;KEY",
"rel": "data:restore"

}

Once the {instance} placeholder in the data:restore template URL has been re-
placed by the id of some new container instance, the usage of the data:same-key
and data:restore hyperlinks is similar to what was described for the data:any-key
hyperlink above.

Unless the container contains exactly one entry, a data:any-key hyperlink is normally
not very useful, as the client program typically wants to interact with a specific data
entry and not just some unspecified (yet deterministic) entry. In cases where the client
program already knows the key of some specific data entry, the data:some-key hyperlink
also available from a container instance resource may come in handy:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data;KEY_FIELD_NAME_1={0};KEY_FIELD_NAME_2 ←↩
={1};...",

"fields": [
"KEY_FIELD_NAME_1",
"KEY_FIELD_NAME_2",
...

],
"rel": "data:some-key"

}

Here the fields property holds an array listing the names of the fields participating in a
data key for the container, and the index of a field’s name within this array indicates which
of the numbered placeholders in the template URL its value should replace. Once an
entire key has been substituted into the template URL, the usage of the data:some-key
hyperlink is similar to what was described for the data:any-key hyperlink above.

©Deltek Inc., All Rights Reserved 100 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

In cases where the client program does not know the keys of desired data entries
beforehand, filter panes are very useful. In Filtering it is described how these panes
allow the client program to discover hyperlinks referencing specific data entries. For data
containers where the records of a filter pane can be thought of as thumbnails describing
the container’s data entries, a data:same-key-some-instance hyperlink is available
from each record presented in a filter response:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/{instance}/data;KEY",
"rel": "data:same-key-some-instance"

}

Just like with the data:restore hyperlink described above, a container instance id must
be substituted into the {instance} placeholder, but besides from that, the usage of
a data:same-key-some-instance hyperlink is similar to what was described for the
data:any-key hyperlink above.

Since no search container ever hosts any actual data (remember that a search con-
tainer is a container with only a filter pane defined), Filtering describes how the hy-
perlink available from each record presented in a search container filter response is
not a data:same-key-some-instance but instead a data:same-key-some-container
hyperlink:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/{container}/ ←↩

instances/{instance}/data;KEY",
"rel": "data:same-key-some-container"

}

Here, the {container} placeholder must be replaced by the name of a data container
whose card pane is based on the same entity as the search container, and the {instance}
placeholder must be replaced by an id of an instance of that data container. Aside from
this, the usage of a data:same-key-some-container hyperlink is similar to what was
described for the data:any-key hyperlink above.

As mentioned in Foreign Keys, the data entry navigation hyperlinks available from any
search response are data:same-key-some-container hyperlinks as well. There you
can also see how a client program can navigate to data entries by use of the data:key
hyperlink available for any complete foreign key.

4.5.4 Adding a Table Record

Similar to Creating a Data Entry, adding a new record to a table pane of the data entry
currently in focus comprises a step of initialization and a step of actual creation.

©Deltek Inc., All Rights Reserved 101 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

For table panes without line-number control, the link relation of the hyperlink to follow
in order to perform a record initialization is action:init, just like for card panes:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/table/inits",
"rel": "action:init"

}

Whenever applicable, an action:init hyperlink will be available from the table pane’s
JSON object within a full data response (see Data Resource) and its usage is entirely
as described in Creating a Data Entry. The same goes for the action:init-create
hyperlink to be followed in order to perform a merged action of table pane record
initialization and creation:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/table",
"rel": "action:init-create"

}

Obviously, the client program has no influence on where a new record ends up in a table
pane without line-number control.

For a table pane with line-number control, specifically specifying where in the pane
the new record shall appear is part of the game. In such line-number control cases,
the hyperlinks to look for in the table pane’s JSON object within a full data re-
sponse is an action:init-row and an action:init-create-row hyperlink instead of
an action:init and an action:init-create hyperlink respectively:

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/table/inits",
"rel": "action:init-row"

}

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/table",
"rel": "action:init-create-row"

}

The usage of an action:init-row and an action:init-create-row hyperlink is sim-
ilar to that of an action:init and an action:init-create hyperlink except from a
requirement that the request body carries a JSON property row specifying the preferred
position for the new record.

©Deltek Inc., All Rights Reserved 102 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

In accordance with what is described in Record Positions, the target position of the new
record must be one of the following:

• A dot index pointing out an already existing record r.

• A valid end dot index.

In the first case, the record r and all its sibling records positioned at larger dot indices
are shifted one down (their dot index is incremented by one), and then the new record is
inserted where record r used to reside. In the second case, the new record is appended at
the position pointed out by the given end dot index.

For example, in order to insert a new first line into the non-empty expense sheet currently
selected, the following row parameter should be provided:

{
"row": 0

}

Just like for action:init, the response to an action:init-row request presents an
action:create hyperlink, that the client program needs to follow in order to actually
create the new record.

If an invalid position is supplied when adding a new record, the server responds with
a 400 Bad Request response. If the request is successfully processed, a data response
is returned, and, if contracted as described in Partial Data Responses, this may be a
partial one.

4.5.5 Updating a Record

A common need when working with a data container is to be able to update certain field
values within some record belonging to either a card or a table pane.

The hyperlink to follow in order to update the card pane record within the data entry
currently in focus is the action:update hyperlink available from the card pane’s JSON
object within a full data response (see Data Resource):

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/0",
"rel": "action:update"

}

Aside from authenticating using a reconnect token valid for the container instance in use
(see Maconomy Reconnect Authentication), the client program must apply the HTTP
verb POST with a JSON object in the request body carrying a data property describing
the field values to be updated and possibly also an offset and a limit property (see

©Deltek Inc., All Rights Reserved 103 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Table Paging). Of course an appropriate Maconomy-Concurrency-Control header needs
to be enclosed in the request as well (see Concurrency Tags).

The response to a successful update request on a card pane record is a data response, and,
if contracted as described in Partial Data Responses, this may be a partial one.

Here is an example of updating the description of expense sheet number 10760001
currently in focus:

$ curl -i
-H 'Authorization: X-Reconnect N2U1NWY4YT...JMTAJMTYwNzYwMDk5MA=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-H 'Maconomy-Concurrency-Control: 915ed0db-8fc5-450b-93c7- ←↩

f03b1b91345c'
-d $'{

"data": {
"description": "Expenses, expenses, expenses, expenses..."

}
}'
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0'

HTTP/1.1 200 OK
Maconomy-Reconnect: ODI2NjJhNz...JMTAJMTYwNzYwNDk4OQ==
Maconomy-Concurrency-Control: 386508e9-0f1b-4d7d-8fb4-927b76de1303
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": { ... },
"panes": {

"card": {
"meta": { ... },
"records": [

{
"data": {

"expensesheetnumber": "10760001",
"description": "Expenses, expenses, expenses, expenses...",
...

}
}

],
"links": { ... }

},
"table": { ... }

},
"links": { ... }

}

©Deltek Inc., All Rights Reserved 104 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Now, for a record belonging to a table pane of the data entry currently in focus, the
hyperlink to follow in order to update some of its field values is the action:update
hyperlink available from the table pane’s JSON object within a full data response:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table/{row}",
"rel": "action:update"

}

Once the {row} placeholder has been replaced by the dot index pointing out the table
pane record to be updated (see Record Positions), the usage is similar to what was
described for the card pane record above.

If an invalid dot index is substituted into the {row} placeholder of the action:update
template URL, the server responds with a 400 Bad Request response. Otherwise, the
response is similar to the one received on a card pane record update request.

4.5.6 Deleting a Record

Deleting the record from the card pane of the data entry currently in focus corresponds
to deleting the entire data entry (for example, if you delete an expense sheet, all of its
lines are also deleted), and the hyperlink to follow in order to do so is the one with link
relation action:delete available from the card pane’s JSON object within a full data
response (see Data Resource):

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/0/delete",
"rel": "action:delete"

}

Aside from authenticating using a reconnect token valid for the container instance in use
(see Maconomy Reconnect Authentication), the client program must apply the HTTP
verb POST and include a valid concurrency tag in a Maconomy-Concurrency-Control
header (see Concurrency Tags). The request body must be kept empty.

The response to a successful delete request for a card pane record is a 204 No Content
response. Subsequently, until a new data entry has been loaded, this is also the response
when acquiring the data resource of the container instance (see Data Resource).

To have a record deleted from a table pane of the data entry currently in focus, the client
program must follow the action:delete hyperlink available from the table pane’s JSON
object within a full data response:

©Deltek Inc., All Rights Reserved 105 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table/{row}/delete",
"rel": "action:delete"

}

Once the {row} placeholder has been replaced by the dot index pointing out the table
pane record to be deleted (see Record Positions), the usage is similar to what was
described for the card pane record above, except from paging parameters being allowed
in the request body (see Table Paging).

If an invalid dot index is substituted into the {row} placeholder of the action:delete
template URL, the server responds with a 400 Bad Request response. Otherwise, the
response to a successful delete request for a table pane record is a data response. If
contracted as described in Partial Data Responses, this data response may be a partial
one.

4.5.7 Moving a Table Record

Sometimes it makes sense to have a record within a line-number controlled table pane
moved to a different position. The hyperlink to follow in order to move a table pane
record around within the data entry currently in focus has the link relation action:move
and is available from the table pane’s JSON object within a full data response (see Data
Resource):

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table/{row}/move",
"rel": "action:move"

}

Letting r denote the record to be moved, the {row} placeholder within the template
URL mentioned here must be replaced by the dot index currently pointing out record r
(see Record Positions).

In accordance with what is described in Record Positions, the new position for record r
must be chosen among the target positions whose dot index fulfills one of the following
two conditions:

• A dot index pointing out a record r′ different from record r and any of r’s descendant
records.

• A valid end dot index.

In the first case, record r (with all its descendant records) is moved to the position just
above record r′. In the second case, record r (again with all its descendant records) is

©Deltek Inc., All Rights Reserved 106 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

moved to the position pointed out by the given end dot index. Record indices are then
adjusted in the way naturally closing the gap left by r.

Note that if record r is moved to a target position corresponding to an outdent, then
for some tree table panes (the one defined for the JobBudgets container, for example),
records that used to be siblings of r and positioned at larger dot indices will be moved,
one by one, to the end position among r’s child records.

Note that for other tree table panes (the one defined for the PeriodicSumJobBudgets
container, for example), the target dot index supplied with the move request must point
to a position within record r’s current context. That is, for some tree table panes, a
record cannot be moved to a position changing its parental relation. Whether the move
action is restricted in such ways can be discovered by inspection of the property moveMode
found in the pane’s specification, see Specification.

Besides authenticating using a reconnect token valid for the container instance in use
(see Maconomy Reconnect Authentication), the client program must include a valid
concurrency tag in a Maconomy-Concurrency-Control header (see Concurrency Tags)
and apply the HTTP verb POST. A row JSON property carrying the dot index pointing
out r’s target position and any relevant paging parameter JSON properties (see Table
Paging) must be included in the request body.

If either the dot index substituted into the {row} placeholder of the action:move template
URL or the dot index carried by the row JSON property in the request body is found
invalid, the server responds with a 400 Bad Request response. Otherwise, the response
to a successful move request is a data response (if contracted as described in Partial Data
Responses, this data response may be a partial one).

For example, using the following substituted action:move template URL and request
body JSON object, the second line of the expense sheet currently in focus would be
converted into the last:

http://SERVER/maconomy-api/containers/macoprod/expensesheets/instances/7 ←↩
dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/table/1/move

{
"row": "end"

}

4.5.8 Printing

Printing is one of the standard actions (see Actions) and is available from both card
and table pane records (in most cases, printing from any table pane record is equivalent
to printing from the card pane record). When a printing request is received on the
server, generation of a PDF file with contents appropriate for the pane record in focus is
triggered. The generated PDF file can be retrieved by following the URL shared with
the client program through a Link header on the response.

©Deltek Inc., All Rights Reserved 107 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

The hyperlink to follow in order to initiate printing from the card pane record of the data
entry currently in focus is the action:print hyperlink available from the card pane’s
JSON object within a full data response (see Data Resource):

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/0/print",
"rel": "action:print"

}

Besides authenticating using a reconnect token valid for the container instance in use
(see Maconomy Reconnect Authentication), the client program must include a valid
concurrency tag in a Maconomy-Concurrency-Control header (see Concurrency Tags).
The HTTP verb to apply is POST and paging parameters can be included in the request
body (see Table Paging).

The response to a successful action:print request from the card pane record is a
data response carrying a Link header with a URL as described above. If contracted as
described in Partial Data Responses, this data response may be a partial one.

This example shows how to acquire the expense sheet currently in focus as a PDF file by
submitting a printing request from its header:

$ curl -i
-H 'Authorization: X-Reconnect OTg1MDE1MD...JMTAJMTYwNzYyNjY1NA=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-H 'Maconomy-Concurrency-Control: 8fd63a4a-c8e3-485b-b330- ←↩

dc599e729daa'
-X POST
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0/print ←↩
'

HTTP/1.1 200 OK
Maconomy-Reconnect: MzA0NjI2Nz...JMTAJMTYwNzYyODc0NQ==
Maconomy-Concurrency-Control: eb6c18e7-bcfb-4144-baa4-e2ab5f763a98
Link: <http://SERVER/maconomy-api/filedrop/macoprod/download ←↩

/5125049317486823446>;rel=file;type=application/pdf
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": { ... },
"panes": {

"card": { ... },
"table": { ... }

},

©Deltek Inc., All Rights Reserved 108 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

"links": { ... }
}

According to the value of the Link header displayed here, the expense sheet as a PDF
file can be downloaded using the following URL:

http://SERVER/maconomy-api/filedrop/macoprod/download/5125049317486823446

Now, to initiate printing from a table pane record instead, the client program must follow
the action:print hyperlink available from the table pane’s JSON object within a full
data response:

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table/{row}/print",
"rel": "action:print"

}

Once the {row} placeholder has been replaced by the dot index pointing out the table
pane record from which the printing should be initiated (see Record Positions), the usage
is similar to what was described for the card pane record above.

If an invalid dot index is substituted into the {row} placeholder of the action:print
template URL, the server responds with a 400 Bad Request response. Otherwise, the
response is similar to the one received when printing from a card pane record.

4.5.9 Applying an Application Action

As described in Actions, a varying amount of so-called application actions are defined
for the panes of a data container. These actions relate to the specific business logic
implemented by the container.

Some application actions may require that one or several arguments are provided by the
client program (these requirements are not discoverable through the Containers Web
Service but must be known from out-of-band means). The client program provides such
arguments by means of an arguments JSON property in the request body:

{
"arguments": {

"ARGUMENT_1_NAME": "ARGUMENT_1_VALUE",
"ARGUMENT_2_NAME": "ARGUMENT_2_VALUE",
...

}
}

All argument values must be expressed using the Expression Language also used for
filtering restrictions (see the MDML Language Reference [5] for a full description of the

©Deltek Inc., All Rights Reserved 109 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Expression Language). For example, if an application action takes a date as argument
and the name of this argument is day, then the client program would have to include a
JSON object like the following in the body of every request for that action:

{
"arguments": {

"day": "date(2020,12,31)"
}

}

Some application actions may also consume one or several file resources. Such file
resources must be provided to the server through appropriate Maconomy-File-Callback
headers on the request using the following format:

Maconomy-File-Callback = "Maconomy-File-Callback" ":" 1#file-uri-value
file-uri-value = "<" URI-Reference ">"
URI-Reference = <URI-reference, see [RFC3986], Section 4.1>

In cases where multiple file resources are required, the client program has the choice of
either including one Maconomy-File-Callback header per resource or including all of the
URI references comma-separated within the same header (see section 4.2 in [7]).

For any application action that consumes one or more file resources, it is mandatory that
resources are first uploaded to file drops on the server using the File Drop Web Service and
then URLs pointing to these created file drops can be passed in Maconomy-File-Callback
headers on the actual application action request. For example, imagine that a receipt
has been uploaded to a file drop identified by the following URL:

http://SERVER/maconomy-api/filedrop/macoprod/upload/3404797840542625411

Then, if needed, this receipt can be provided to the server by inclusion of the following
header on the request:

Maconomy-File-Callback: <http://SERVER/maconomy-api/filedrop/upload/ ←↩
macoprod/3404797840542625411>

Now, for the card pane record of the data entry currently in focus, the card pane’s JSON
object within a full data response will present an action:APP_ACTION hyperlink for each
application action enabled at that point (see Data Resource):

{
"href": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/instances ←↩

/INSTANCE/data/panes/card/0/action;name=APP_ACTION",
"rel": "action:APP_ACTION"

}

©Deltek Inc., All Rights Reserved 110 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Besides authenticating using a reconnect token valid for the container instance in use
(see Maconomy Reconnect Authentication), the client program must include a valid
concurrency tag in a Maconomy-Concurrency-Control header (see Concurrency Tags)
and apply the HTTP verb POST. As described above, an arguments property carrying
the required arguments must be included in a JSON object in the request body and file
resources to be consumed must be appropriately described in Maconomy-File-Callback
headers. Paging parameters may also be included in the request body (see Table
Paging).

The response to a successful action:APP_ACTION request for the card pane record is a
data response that, if contracted as described in Partial Data Responses, may be a partial
one. Also, for those of the application actions producing one or several file resources, the
response will carry Link headers providing pointers to these resources.

For an example of an application action hyperlink, see the action:submitexpensesheet
hyperlink included in the card pane JSON object within the data:any-key response in
Loading a Data Entry:

{
"href": "http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0/ ←↩
action;name=submitexpensesheet",

"rel": "action:submitexpensesheet"
}

As the link relation indicates, this hyperlink must be followed in order to submit the
expense sheet currently in focus.

Also for the table pane records of the data entry currently in focus, the table pane’s
JSON object within a full data response presents an action:APP_ACTION hyperlink for
each application action enabled at that point (see Data Resource):

{
"template": "http://SERVER/BASEPATH/containers/SHORTNAME/CONTAINER/ ←↩

instances/INSTANCE/data/panes/table/{row}/action;name=ACTION",
"rel": "action:APP_ACTION"

}

Once the {row} placeholder has been replaced by the dot index pointing out the table
pane record to which the application action should be applied (see Record Positions),
the usage is similar to what was described for the card pane record above.

If an invalid dot index is substituted into the {row} placeholder of the action:APP_ACTION
template URL, the server responds with a 400 Bad Request response. Otherwise, the
response is similar to one received on a card pane record application action request.

©Deltek Inc., All Rights Reserved 111 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

4.5.10 Table Paging

Since table pane records are often presented in pages in user interfaces with limited space,
the client program is able to limit the table pane records described in a data response
(see Data Resource) to a subrange of the available records. Like with Filter Paging,
the client program specifies such a subrange by including appropriate paging parameter
JSON properties in the request body. Both for offset and limit, the default value
applied is 0.

When loading a data entry by either creating a new one (see Creating a Data Entry)
or following a hyperlink loading an existing data entry (see Loading a Data Entry),
paging parameters pointing out the first page of table pane records are typically passed
in the request body. Once the data entry has been loaded, the subsequent pages of
table pane records can then be acquired by repeatedly following the instance:data
hyperlink available from a JSON object representing the container instance (see Container
Instances), applying the HTTP verb POST and including appropriate paging parameters in
the request body. For example, implementing pages of 10 table pane records, the following
paging parameters should be passed with the request loading the data entry:

{
"limit": 10,
"offset": 0

}

Then, to acquire the next 10 table pane records, the following paging parameters should
be passed with a subsequent instance:data request:

{
"limit": 10,
"offset": 10

}

When performing an action on a loaded data entry (see Adding a Table Record, Updating
a Record, Deleting a Record, Moving a Table Record, Printing, Applying an Application
Action), the range of table pane records described in the data response should not just
cover some current table pane records page but rather must cover the entire range of
pages acquired by the client program up until then. This in order to enable correct
patching of the client program’s locally maintained data entry state. Continuing the
above example, assuming that the client program has acquired only two pages by now,
the following paging parameters should be included in the body of any data entry action
request:

{
"limit": 20,
"offset": 0

}

©Deltek Inc., All Rights Reserved 112 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Note that any record position passed by the client program must always be relative to
the complete list of table pane records and not to any subrange pointed out by paging
parameters.

4.5.11 Partial Data Responses

Where Data Fields Slicing applies to data responses in general, the concept of partial
data responses helps economize the amount of data sent back in responses to requests
potentially modifying the state of the data entry currently loaded. A full data response
carries a representation of the current state of the data entry loaded, whereas a partial
data response only carries a representation of the state changes that were triggered by
the request. With a partial data response at hand, the client program should be able to
patch the changes into its locally maintained data entry state.

In order to indicate to the server that a partial data response is preferred, the client
program must include the following header on the request:

Maconomy-Response-Type: patch

If, in fact, the client program does not even care to receive a partial response, including
the following request header makes the server send back a 204 No Content in response
to a successful request:

Maconomy-Response-Type: none

This none option may be useful, for example, during imports where the client program is
often indifferent to actual state changes but interested in knowing whether each request
was successfully completed or not.

A full data response is always sent back by the server, if either the request includes
no Maconomy-Response-Type header or if the partial response requested by the client
program cannot be derived.

A full and a partial data response differ in that the JSON object representing data
pane contents in the latter may have a recordsPatch property instead of the records
property and a linksPatch property instead of the links property.

The purpose of the properties recordsPatch and linksPatch is to feed the client program
with the patches needed to be carried out on the given data pane’s records and hyperlinks
respectively in order to bring the client program’s state up to date. Record patches must
always be applied in the order they are received, and it is important to understand that
each record patch modifies the client program’s state and that the subsequent patch must
be applied to the modified state. That is, given the record patches rp1, rp2, ..., and rpn

and the client state cs, then apply rp1 to cs and get cs1, apply rp2 to cs1 and get cs2,
..., and apply rpn to csn−1 and get csn.

©Deltek Inc., All Rights Reserved 113 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

The JSON objects listed in a recordsPatch property each represents a data pane record
patch and follows one of the four properties patterns described below.

A JSON object representing an update record patch has the following properties:

Property Explanatory text

operation The value update, specifying that the record found at the dot index
mentioned in row must have its fields updated according to the
changes described in record.

row Dot index of the record to be updated (see Record Positions).

record JSON object with a data property holding field name/value pairs
describing the record changes to be applied.

A JSON object representing a delete record patch has the following properties:

Property Explanatory text

operation The value delete, specifying that first the record found at the dot
index mentioned in row must be deleted, and then any sibling record
residing at a larger dot index must be shifted one up (its dot index is
decremented by one).

row Dot index of the record to be deleted (see Record Positions).

A JSON object representing an insert record patch has the following properties:

Property Explanatory text

operation The value insert, specifying that first any record found at the dot
index mentioned in row or at any greater sibling dot index must be
shifted one down (its dot index is incremented by one), and then the
record for which a representation is found in record must be inserted
at the dot index mentioned in row.

row Dot index at which a record must be inserted (see Record Positions).

record JSON object representing the record to be inserted. The structure of
the JSON object is equal to the structure of the JSON objects held in
the records property of a full data response (see Data Resource).

©Deltek Inc., All Rights Reserved 114 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

A JSON object representing a move record patch has the following properties:

Property Explanatory text

operation The value move, specifying that the client program must apply what
corresponds to a delete record patch followed by an insert record patch.
First, the client program must apply what corresponds to a delete
record patch where the dot index mentioned in rowDelete specifies
which record to delete. Keeping the record just deleted, the client
program must then apply what corresponds to an insert record patch
where the record to insert is the one just deleted and the dot index
mentioned in rowInsert specifies where to insert the record.

rowDelete Dot index of the record to be deleted (see Record Positions).

rowInsert Dot index at which the record deleted must be inserted (see Record
Positions).

Note that a dot index mentioned in some JSON object representing a table pane record
patch will always be relative to the complete list of table pane records and not to any sub-
range pointed out by paging parameters passed on the request (see Table Paging).

The JSON objects listed in a linksPatch property each represents a data pane hyperlink
patch and follows one of the two properties patterns described below.

A JSON object representing a delete hyperlink patch has the following properties:

Property Explanatory text

operation The value delete, specifying that the hyperlink with the link relation
mentioned in rel must be deleted.

rel Link relation to which the delete hyperlink patch relates.

A JSON object representing an insert hyperlink patch has the following properties:

Property Explanatory text

operation The value insert, specifying that the hyperlink held in link must be
inserted under the link relation mentioned in rel.

rel Link relation to which the insert hyperlink patch relates.

link Hyperlink to be inserted.

©Deltek Inc., All Rights Reserved 115 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Note that if the server wants the client program to replace all the records or hyperlinks
of a data pane, these new values are communicated via the usual data pane properties
records and links.

For example, deleting the top most line from the expense sheet currently in focus,
requesting a partial data response:

$ curl -i
-H 'Authorization: X-Reconnect M2E4YjcyMD...JMTAJMTYwNzQ3MDUxMw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-H 'Maconomy-Response-Type: patch'
-H 'Maconomy-Concurrency-Control: bbb50752-b063-4a26-b01c-44 ←↩

fb728c4ea0'
-X DELETE
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/table/0'

HTTP/1.1 200 OK
Maconomy-Reconnect: M2E4YjcyMD...JMTAJMTYwNzQ3MTg5MA==
Maconomy-Concurrency-Control: 82391514-59b3-4e79-b66a-7b447a68c0e0
Content-Type: application/vnd.deltek.maconomy.containers+json; charset=utf ←↩

-8; version=6.0

{
"meta": { ... },
"panes": {

"card": {
"meta": { ... },
"recordsPatch": [],
"linksPatch": []

},
"table": {

"meta": { ... },
"recordsPatch": [

{
"operation": "delete",
"row": 0

},
{

"operation": "update",
"row": 0,
"record": {

"data": {
"linenumber": 1

}
}

},

©Deltek Inc., All Rights Reserved 116 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

{
"operation": "update",
"row": 1,
"record": {

"data": {
"linenumber": 2

}
}

},
{

"operation": "update",
"row": 2,
"record": {

"data": {
"linenumber": 3

}
}

},
...

],
"linksPatch": []

}
},
"links": { ... }

}

This partial response tells the client program to first delete the record at index 0, to then
update linenumber to 1 on the record now at index 0, to then update linenumber to
2 on the record now at index 1, to then update linenumber to 3 on the record now at
index 2, and so on.

4.6 Warnings and Notifications
The Maconomy server may raise warnings and notifications during execution.

Whereas any notification message is included as a Maconomy-Notification header on
the response, there is a bit more to warnings.

A Maconomy warning is meant to allow the user to continue or abort an operation, and
in traditional Maconomy clients this has been implemented by a synchronous callback
where the server sits waiting for a signal to either continue or abort. Besides the potential
performance impact of possibly keeping entries locked in the database while waiting for
the user’s answer, such a protocol is just not naturally implemented in an HTTP-based
interface, and therefore a different successive warnings acceptance mechanism has been
implemented in the Containers Web Service.

By default, the Containers Web Service automatically accepts any warning from the Ma-

©Deltek Inc., All Rights Reserved 117 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

conomy server and includes the messages of the accepted warnings as Maconomy-Warning
headers on the response. This default behavior, where the operation is continued no
matter what warning occurs, is also the behavior obtained when the client program
includes the following request header:

Maconomy-Warning-Callback: accept

If it is desired that any application warning should cause the operation to abort, the
following header should be included:

Maconomy-Warning-Callback: reject

With this request header, the status 422 Unprocessable Entity is responded if a
warning is raised, and the message of the warning is included as a Maconomy-Warning
response header.

Now, in between the two ends of accept and reject, we have a successive warnings
acceptance variant triggered by the following request header:

Maconomy-Warning-Callback: reject-but

The reject-but variant’s function can be described by the following steps:

1. The client program submits a request holding zero or more Maconomy-Warning
headers.

2. The server starts/continues execution. One of the following two happens next:

a. The server reaches warning wi (i− 1 being the amount of warnings already
reached). If the value of the ith Maconomy-Warning header on the request turns
out to match the message of the observed warning, execution continues, taking
us back to 2. Otherwise, the server rolls back execution and returns a response
holding the messages of the warnings w1, ..., wi as Maconomy-Warning headers.
Depending on whether no or some conflicting ith Maconomy-Warning header
was found on the request, the response carries the status 422 Unprocessable
Entity or 409 Conflict respectively. If the client program afterwards adopts
the responded Maconomy-Warning headers and resubmits the request, you are
taken back to 1.

b. Execution completes. Depending on whether there are zero or more unvisited
Maconomy-Warning headers on the request, the server returns a response car-
rying a Success status or the status 409 Conflict respectively. The response
includes Maconomy-Warning headers representing the warnings accepted dur-
ing execution. See 2a for further details on the warnings handling.

In essence, when the reject-but variant has been chosen, a 422 Unprocessable
Entity response signals that the next warning is ready for the user to accept, whereas

©Deltek Inc., All Rights Reserved 118 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

a 409 Conflict response signals that the client program has provided at least one
Maconomy-Warning header that is not in sync with how things actually work.

For example, a happy path of successive warnings acceptance deleting a job from the
Jobs container:

First request, including reject-but in a Maconomy-Warning-Callback header:

$ curl -i
-H 'Authorization: X-Reconnect YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-H 'Maconomy-Warning-Callback: reject-but'
-H 'Maconomy-Concurrency-Control: ad139f04-b298-43eb-a902-6 ←↩

dcc1164338b'
-X DELETE
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0'

HTTP/1.1 422 Unprocessable Entity
Maconomy-Reconnect: YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw==
Maconomy-Warning: "Budgets exist for this job. Delete it anyway?"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "Budgets exist for this job. Delete it anyway?",
"errorFamily": "application",
"errorSeverity": "warning",
"focus": {

"fieldName": "jobnumber",
"paneName": "card"

}
}

Second request, accepting the first warning by including it in a Maconomy-Warning
header:

$ curl -i
-H 'Authorization: X-Reconnect YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-H 'Maconomy-Warning-Callback: reject-but'
-H 'Maconomy-Warning: Budgets exist for this job. Delete it anyway?
-H 'Maconomy-Concurrency-Control: ad139f04-b298-43eb-a902-6 ←↩

dcc1164338b'
-X DELETE
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0'

©Deltek Inc., All Rights Reserved 119 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

HTTP/1.1 422 Unprocessable Entity
Maconomy-Reconnect: YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw==
Maconomy-Warning: "Budgets exist for this job. Delete it anyway?"
Maconomy-Warning: "The job is referenced from one or more other jobs. ←↩

These references will be blanked - proceed?"
Content-Type: application/json; charset=utf-8

{
"errorMessage": "The job is referenced from one or more other jobs. ←↩

These references will be blanked - proceed?",
"errorFamily": "application",
"errorSeverity": "warning",
"focus": {

"fieldName": "jobnumber",
"paneName": "card"

}
}

Third and final request, also accepting the second warning by including it in another
Maconomy-Warning header:

$ curl -i
-H 'Authorization: X-Reconnect YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw=='
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.containers+json; ←↩

charset=utf-8; version=6.0'
-H 'Maconomy-Warning-Callback: reject-but'
-H 'Maconomy-Warning: Budgets exist for this job. Delete it anyway?
-H 'Maconomy-Warning: The job is referenced from one or more other ←↩

jobs. These references will be blanked - proceed?
-H 'Maconomy-Concurrency-Control: ad139f04-b298-43eb-a902-6 ←↩

dcc1164338b'
-X DELETE
'http://SERVER/maconomy-api/containers/macoprod/expensesheets/ ←↩

instances/7dc0b114-ecf3-4441-940e-cf93dcf58620/data/panes/card/0'

HTTP/1.1 204 No Content
Maconomy-Reconnect: YzcyZWUxZm...JMTAJMTYwNzk4MTYzMw==
Maconomy-Concurrency-Control: 13e6cb3f-0a62-4906-a1ff-fad2b2046a2a
Maconomy-Warning: "Budgets exist for this job. Delete it anyway?"
Maconomy-Warning: "The job is referenced from one or more other jobs. ←↩

These references will be blanked - proceed?"

As done in this example, Maconomy-Warning headers must be provided by the client pro-
gram in the exact same order as they were received in the response from the server.

©Deltek Inc., All Rights Reserved 120 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

4.6.1 HTML Entity Escaping

Before including a Maconomy warning or notification message in a Maconomy-Warning
or Maconomy-Notification response header respectively, the Containers Web Service
HTML entity escapes the message using the following rules:

Character Decimal value Escape entity

" 34 "

& 38 &

' 39 '

, 44 ,

< 60 <

> 62 >

c Below 32 or above 126 &#xx;, x being the hexadecimal value of c

c None of the above c

In order to be recognizable to the server, the Maconomy-Warning headers included in a
request by a client program should be identical to the ones received from the server.

The standards says that an HTTP header value should never contain any non-ASCII
characters, and with the HTML entity escaping just described, it is ensured that at
least Maconomy-Warning and Maconomy-Notification HTTP headers will live up to
this requirement.

4.7 Web Access Configuration
Just like any Maconomy client, the Containers Web Service is subject to the core access
control setup in Maconomy. However, since any of the additional data filtering provided
by the screen layouts of other clients is lacking, some containers or record fields normally
not exposed may in fact be available through the Containers Web Service.

To address this issue, a REST API-specific access control mechanism has been introduced.
This mechanism is based on web access rules specified inside a webaccess.ini file
located in a Definitions folder in the Maconomy server’s custom search path (in order
for changes to the webaccess.ini to take effect, the Coupling Service needs to be
restarted):

/CustomizationDir/Custom.<shortname>/Definitions/
/CustomizationDir/Custom/Definitions/

©Deltek Inc., All Rights Reserved 121 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

/CustomizationDir/Solution/Definitions/

The web access rules specified are appropriately matched against containers and record
fields accessed through the Containers Web Service. Accessing a container for which
access is not granted according to the web access rules results in a 403 Forbidden
response. For the censored record fields, none of these appear in any of the responses
returned by the Containers Web Service.

The following two sections contain further details on how web access rules are specified
inside a webaccess.ini file.

4.7.1 Access Lists

Web access rules are specified inside a webaccess.ini file by use of so-called access lists.
These access lists come in pairs of an include and an exclude list and with the following
semantics:

• If only an include list is specified, access is granted only if the container/field
name matches one of the listed patterns.

• If only an exclude list is specified, access is granted only if the container/field does
not match any of the listed patterns.

• If both an include and an exclude list have been specified, access is granted only
if the container/field name either does not match any of the patterns listed in the
exclude list or matches one of the patterns in the include list. The patterns in
the include list are thus exemptions from the exclude list.

Now, an access list may contain zero or more patterns delimited by a whitespace, and it
may be distributed across multiple lines by putting a backslash (\) at the end of each
line except for the last, for example:

<access-list> = <pattern#1> <pattern#2> \
<pattern#3> \
<pattern#4> <pattern#5>

Each pattern in an access list is one of three kinds:

• A literal pattern.

• A wildcard pattern consisting of literal string segments separated by wildcards in
the form of an asterisk (*).

• A regular expression pattern surrounded by forward slashes (/) and conforming to
the Java regex pattern syntax [2].

Note that all access list patterns are case-insensitive.

©Deltek Inc., All Rights Reserved 122 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Since managing long lists of access list patterns can be a challenge, it is possible to create
named lists. The syntax of a named list is similar to that of access lists described above,
for example:

<list-name> = <pattern#1> <pattern#2>

The contents of a named list can be referenced from some access list by prefixing the
name of the list by $.

For example:

List declaration Explanatory text

my-list = <pattern#1> <pattern#2> Declares the named list my-list.

another-list = $my-list <pattern#3> Declares another named list
another-list which includes the
patterns of my-list.

data.exclude = $my-list Assigns the patterns of my-list to the
exclude list data.exclude.

filter.include = $another-list Assigns the patterns of another-list
to the include list filter.include.

Container Level

The patterns in container level access lists must match container names formatted as
this:

<namespace>:<container>

Here are a few examples of patterns that can be found in container level access lists:

Pattern Explanatory text

maconomy:jobs The literal pattern matching the Maconomy Jobs container.

maconomy:* The wildcard pattern matching all Maconomy containers.

/maconomy\:.*/ The regular expression pattern matching all Maconomy containers.

*:Jobs The wildcard pattern matching the Jobs container in any
namespace.

©Deltek Inc., All Rights Reserved 123 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

Field Level

The patterns of field level access lists must match field names formatted as this:

<namespace>:<container>/<pane>.<field>

Field level access rules can be specified either for a specific container or across all
containers.

Note that since a client program must have access to all key fields of a container, field
level access rules must grant access to these.

Here are a few examples of patterns that can be found in field level access lists:

Pattern Explanatory text

maconomy:jobs/filter.JobNumber The literal pattern matching the field
JobNumber in the filter pane of the Maconomy
Jobs container.

maconomy:jobs/* The wildcard pattern matching all fields in all
panes of the Maconomy Jobs container.

/.nameofuser The wildcard pattern matching the field
NameOfUser in any container pane.

4.7.2 Web Access Contract

The contract around the web access control mechanism is that the Containers Web Service
makes any container specification, filtering, or data request subject to the web access
rules derivable from the following pairs of container level access lists respectively:

• specification.include
• specification.exclude

• filter.include
• filter.exclude

• data.include
• data.exclude

Also, record fields are censored according to the web access rules derivable from the
following pair of field level access lists:

©Deltek Inc., All Rights Reserved 124 Document revision 2.5

CHAPTER 4. CONTAINERS WEB SERVICE

• field.include
• field.exclude

For example, to disallow filtering access to all Find_ containers except from the Maconomy
Find_Activity container, the following filter access lists could be included:

filter.exclude = maconomy:find_*
filter.include = maconomy:find_activity

As another example, inclusion of the following will make the fields BankAccountNumber
and BasicSalary invisible for all containers:

field.exclude = */*.bankaccountnumber */*.basicsalary

4.7.3 Diagnostic Logging

In order to get diagnostic logging of which access rules are evaluated during Containers
Web Service requests, add the following logger to configuration/logback.xml on the
Coupling Service:

<logger name=" com.maconomy.webservices.common.access" additivity="false">
<level value="DEBUG" />
<appender-ref ref="FILE" />

</logger>

With the above logger, each access rule evaluation results in a line being written to
log/coupling/maconomy.log with the following structure:

DEBUG c.m.w.c.access.McAccessConfiguration {Data|Filter|Specification ←↩
|Field} access {granted|denied} to '{name}' by access rules: { ←↩
accessRules}

©Deltek Inc., All Rights Reserved 125 Document revision 2.5

CHAPTER 5. POPUP TYPES WEB SERVICE

Chapter 5

Popup Types Web Service

The purpose of the Maconomy RESTful Popup Types Web Service is to allow client
programs to get hold of the name of the popup container providing the values available
for a given enum type (see Containers Web Service for a definition of a popup container).
As described in the Fields section, the subtypeContainer property of a specification
JSON object for an enum type field holds exactly this information, but the values of an
enum type may also come in handy in situations where no field of that type is at hand.
The Popup Types Web Service facilitates a uniform way of gaining knowledge of the
popup container corresponding to a given enum type. Once knowing the popup container
name, the enum values can be acquired by following the data:filter hyperlink available
from the popup container’s resource (see Filtering).

This is the custom media type covering the JSON representations within the encompassed
version of the Popup Types Web Service (see Media Types):

application/vnd.deltek.maconomy.popups+json; charset=utf-8; version=1.1

The root resource of the Popup Types Web Service can be accessed by following the
hyperlink with link relation popups available from an installation resource (see Installa-
tion):

{
"href": "http://SERVER/BASEPATH/popups/SHORTNAME",
"rel": "popups"

}

For example, for the macoprod system:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.popups+json; charset= ←↩

utf-8; version=1.1'

©Deltek Inc., All Rights Reserved 126 Document revision 2.5

CHAPTER 5. POPUP TYPES WEB SERVICE

'http://SERVER/maconomy-api/popups/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.popups+json; charset=utf-8; ←↩

version=1.1

{
"links": {

"popup": {
"template": "http://SERVER/maconomy-api/popups/macoprod/{popup}",
"rel": "popup"

},
"self": {

"href": "http://SERVER/maconomy-api/popups/macoprod",
"rel": "self"

}
}

}

The hyperlink with link relation popup available from the JSON object of a popups
response is the one to follow in order to acquire knowledge of some enum type:

{
"template": "http://SERVER/BASEPATH/popups/SHORTNAME/{popup}",
"rel": "popup"

}

Besides substituting the name of the enum type of interest into the {popup} placeholder of
the hyperlink’s template URL, the client program must authenticate (see Authentication)
and apply the HTTP verb GET.

If an invalid enum type name is substituted into the popup template URL, the server
responds with a 404 Not Found. Otherwise, the client program receives a 200 OK
response with a JSON object in the body holding the following properties:

Property Explanatory text

meta popupTypeName: Name of the enum type.
popupContainerName: Name of the popup container providing the values
available for the enum type.

links self: Hyperlink referring to the enum type resource itself.

For example, for the currencies enum type:

$ curl -i

©Deltek Inc., All Rights Reserved 127 Document revision 2.5

CHAPTER 5. POPUP TYPES WEB SERVICE

-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.popups+json; charset= ←↩

utf-8; version=1.1'
'http://SERVER/maconomy-api/popups/macoprod/currencytype'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.popups+json; charset=utf-8; ←↩

version=1.1

{
"meta": {

"popupTypeName": "currencytype",
"popupContainerName": "popup_currencytype"

},
"links": {

"self": {
"href": "http://SERVER/maconomy-api/popups/macoprod/currencytype",
"rel": "self"

}
}

}

This response reveals that the Popup_CurrencyType container is the one providing values
in the system for the enum type CurrencyType.

©Deltek Inc., All Rights Reserved 128 Document revision 2.5

CHAPTER 6. FILE DROP WEB SERVICE

Chapter 6

File Drop Web Service

The purpose of the Maconomy RESTful File Drop Web Service is to facilitate that a
client program can hand over files to the Maconomy server. This may, for example, be
relevant for some application actions in the Containers Web Service (see Applying an
Application Action).

The crux of the File Drop Web Service is the so-called file drops, each being a temporary
file store on the Maconomy server to which a single file can be uploaded.

The state space of a file drop has the following two options:

Unresolved which denotes the case where no file has yet been uploaded to the file drop.

Resolved which denotes the case where some file has been uploaded to the file drop.
Note that each file drop can only be resolved once and that a resolved file drop can
never go back to being unresolved.

Now, this is the custom media type covering the JSON representations within the
encompassed version of the File Drop Web Service (see Media Types):

application/vnd.deltek.maconomy.filedrop+json; charset=utf-8; version=1.1

The root resource of the File Drop Web Service can be accessed by following the hyperlink
with link relation filedrop available from an installation resource (see Installation):

{
"href": "http://SERVER/BASEPATH/filedrop/SHORTNAME",
"rel": "filedrop"

}

For example, for the macoprod system:

$ curl -i
-H 'Accept-Language: en-US'

©Deltek Inc., All Rights Reserved 129 Document revision 2.5

CHAPTER 6. FILE DROP WEB SERVICE

-H 'Accept: application/vnd.deltek.maconomy.filedrop+json; charset= ←↩
utf-8; version=1.1'

'http://SERVER/maconomy-api/filedrop/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.filedrop+json; charset=utf ←↩

-8; version=1.1

{
"links": {

"new": {
"href": "http://SERVER/maconomy-api/filedrop/macoprod/new",
"rel": "new"

}
}

}

In general, the JSON representation of the root resource returned in response to a
filedrop request has a links property presenting a new hyperlink:

{
"href": "http://SERVER/BASEPATH/filedrop/SHORTNAME/new",
"rel": "new"

}

This new hyperlink is the one to follow in order to create a new file drop on the server.

File drop creation requires authentication (see Authentication) and the client program
must apply the HTTP verb POST. The request body must be kept empty.

For example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.filedrop+json; charset= ←↩

utf-8; version=1.1'
-X POST
'http://SERVER/maconomy-api/filedrop/macoprod/new'

HTTP/1.1 201 Created
Location: http://SERVER/maconomy-api/filedrop/macoprod/upload ←↩

/3404797840542625411
Content-Type: application/vnd.deltek.maconomy.filedrop+json; charset=utf ←↩

-8; version=1.1

{
"location": "http://SERVER/maconomy-api/filedrop/macoprod/upload ←↩

/3404797840542625411"

©Deltek Inc., All Rights Reserved 130 Document revision 2.5

CHAPTER 6. FILE DROP WEB SERVICE

}

In general, the response to a successful file drop creation request has status 201 Created
and a JSON object in the body with the following structure:

{
"location": "http://SERVER/BASEPATH/filedrop/SHORTNAME/upload/FILEDROP"

}

Here, the location property holds a URL identifying the created file drop. This location
URL is also included in a Location header on the response, as seen in the example
above.

When a new file drop has been created, the client program can upload a file to it using
either a binary or a multipart/form-data data format. In both cases it takes submission
of an authenticated (see Authentication) POST request towards the file drop’s location
URL.

If the client program decides to POST the binary data comprising the contents of some
file towards a file drop’s location URL, the following two HTTP headers must also be
included on the request:

Content-Type: application/octet-stream

Content-Disposition: attachment; filename="FILENAME"

The first of these headers tells the server that the request body contains unstructured
binary data, whereas the second brings the client program’s suggestion for a file name to
be used by the server when storing the file. For example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Content-Type: application/octet-stream'
-H 'Content-Disposition: attachment; filename="receipt.jpg"'
--data-binary '@receipt.jpg'
'http://SERVER/maconomy-api/filedrop/macoprod/upload ←↩

/3404797840542625411'

HTTP/1.1 204 No Content

The 204 No Content response means that the request was successful and that the file
drop is now resolved.

Note that if the client program tries to upload another file to a resolved file drop, then
the request fails with a 409 Conflict response. For example:

©Deltek Inc., All Rights Reserved 131 Document revision 2.5

CHAPTER 6. FILE DROP WEB SERVICE

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Content-Type: application/octet-stream'
-H 'Content-Disposition: attachment; filename="receipt.jpg"'
--data-binary '@receipt.jpg'
'http://SERVER/maconomy-api/filedrop/macoprod/upload ←↩

/3404797840542625411'

HTTP/1.1 409 Conflict
Content-Type: application/json; charset=utf-8

{
"errorFamily": "service",
"errorMessage": "Cannot upload file. A file has already been uploaded to ←↩

this file drop.",
"errorSeverity": "error"

}

Since the File Drop Web Service also supports the multipart/form-data media type,
the client program is able to upload a file to a file drop using a classical HTML form
[see 9, for technical details] as well. In that case, it is mandatory that the file part of
the form is named file. For the file drop from the example above, an HTML form for
uploading a file to it could have looked something like this:

<form action="http://SERVER/maconomy-api/filedrop/macoprod/upload ←↩
/3404797840542625411"

method="post"
enctype="multipart/form-data">

<input type="file" name="file"><!-- name must be "file" -->
<input type="submit" value="Upload file">

</form>

©Deltek Inc., All Rights Reserved 132 Document revision 2.5

CHAPTER 7. LOGGING WEB SERVICE

Chapter 7

Logging Web Service

The Maconomy RESTful Logging Web Service provides the client program with the pos-
sibility of contributing additional log entries to the Application Performance Monitoring
(APM) framework. Such log entries can be used to provide additional insight into the
performance of the client program.

This is the custom media type covering the JSON representations within the encompassed
version of the Logging Web Service (see Media Types):

application/vnd.deltek.maconomy.logging+json; charset=utf-8; version=1.1

The root resource of the Logging Web Service can be accessed by following the hyperlink
with link relation logging available from an installation resource (see Installation):

{
"href": "http://SERVER/BASEPATH/logging/SHORTNAME",
"rel": "logging"

}

For example, for the macoprod system:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.logging+json; charset= ←↩

utf-8; version=1.1'
'http://SERVER/maconomy-api/logging/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.logging+json; charset=utf-8; ←↩

version=1.1

{
"enabled": true,

©Deltek Inc., All Rights Reserved 133 Document revision 2.5

CHAPTER 7. LOGGING WEB SERVICE

"links": {
"entries": {

"href": "http://SERVER/maconomy-api/logging/macoprod/entries",
"rel": "entries"

}
}

}

In general, the JSON representation of the root resource returned in response to a
logging request has an enabled property indicating whether the APM framework is
enabled plus a links property presenting an entries hyperlink:

{
"href": "http://SERVER/BASEPATH/logging/SHORTNAME/entries",
"rel": "entries"

}

This entries hyperlink is the one to follow in order to contribute a log entry to the
APM framework.

Log entry contribution requires authentication (see Authentication) and the client program
must apply the HTTP verb POST. The body of the request must contain the log entry to
be contributed as a JSON object with the following properties:

Property Explanatory text

name Name of the log entry. If the name contains no colons (:), the
namespace WebService will be prepended.

level Log level of the log entry. Possible values are ERROR, WARNING, INFO,
DEBUG, or TRACE.

duration Duration of the log entry (in milliseconds). Mutually exclusive with
elapsed. Find an explanation of when duration is the correct choice
below.

elapsed Elapsed time of the log entry (in milliseconds). Mutually exclusive
with duration. Find an explanation of when elapsed is the correct
choice below.

start Optional. Start time of the log entry (in Unix Epoch milliseconds). If
not specified, a start time will be calculated from the start time of
any parent log entry and the duration of already logged sibling log
entries (see the children property below).

audit Optional. Set it to the boolean value true if the log entry should be
marked as an audit event, otherwise leave it out or set it to the
boolean value false.

©Deltek Inc., All Rights Reserved 134 Document revision 2.5

CHAPTER 7. LOGGING WEB SERVICE

Property Explanatory text

entries JSON object with additional custom key-value pairs relevant for the
log entry.

children Optional. List of JSON objects with properties as described in this
table. Each object represents a so-called child log entry and will be
logged with a parent reference pointing to the log entry.

Here, if the time reported in a log entry was spent entirely within the client program (no
time was spent interacting with some Maconomy RESTful web service), then it should
be specified as a duration. Otherwise it should be specified as elapsed time.

Also, it is strongly recommended that the client program repeats the Maconomy-RequestId
header received on the response to the latest web service request to which the contributed
log entry relates:

Maconomy-RequestId: REQUEST_ID

This ensures that the log entry (and its children) is associated with the current interaction
flow (see Request Identification in APM Logs).

To control the client name stored with the log entry (and its children), a Maconomy-Client
request header should be included (see Client Identification in APM Logs):

Maconomy-Client: CLIENT_NAME

The response to a successful log entry contribution request is a 204 No Content re-
sponse.

For example:

$ curl -i
-H 'Maconomy-RequestId: 5fa7f168-5e89-4043-87cb-fe79883d0f57'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.logging+json; charset= ←↩

utf-8; version=1.1'
-H 'Content-Type: application/vnd.deltek.maconomy.logging+json; ←↩

charset=utf-8; version=1.1'
-d $'{

"name" : "Test",
"level" : "INFO",
"elapsed" : 1234,
"audit" : true,
"entries" : {

"Message" : "Something happened"
}

©Deltek Inc., All Rights Reserved 135 Document revision 2.5

CHAPTER 7. LOGGING WEB SERVICE

}'
'http://SERVER/maconomy-api/logging/macoprod/entries'

HTTP/1.1 204 No Content

©Deltek Inc., All Rights Reserved 136 Document revision 2.5

CHAPTER 8. USER SETTINGS WEB SERVICE

Chapter 8

User Settings Web Service

The Maconomy RESTful User Settings Web Service offers a simple mechanism for storing
user-specific settings on the server. Settings are stored as JSON documents identified by
document keys chosen freely by the client program. The server only accepts and produces
valid JSON, but the schema is otherwise unconstrained. A user settings document can
only be accessed by the Maconomy user who created it.

This is the custom media type covering the JSON representations within the encompassed
version of the User Settings Web Service (see Media Types):

application/vnd.deltek.maconomy.usersettings+json; charset=utf-8; version ←↩
=1.1

The root resource of the User Settings Web Service can be accessed by following the
hyperlink with link relation usersettings available from an installation resource (see
Installation):

{
"href": "http://SERVER/BASEPATH/usersettings/SHORTNAME",
"rel": "usersettings"

}

As the root resource carries user-specific information, accessing it requires authentication
(see Authentication).

The JSON object contained in the response to a successful usersettings request has a
links property from where the following kinds of hyperlinks are available:

Link relation Explanatory text

user-settings:key-template Reference to the action of creating a new user
settings document. Find further details below.

©Deltek Inc., All Rights Reserved 137 Document revision 2.5

CHAPTER 8. USER SETTINGS WEB SERVICE

Link relation Explanatory text

user-settings:key:DOCUMENT_KEY Reference to the user settings document
identified by the alphanumeric key
DOCUMENT_KEY. Depending on the amount of
settings documents created by the
authenticated user, the root resource state may
contain zero or more hyperlinks of this kind.
Find further details below.

For example, for the macoprod system:
$ curl -i

-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.usersettings+json; ←↩

charset=utf-8; version=1.1'
'http://SERVER/maconomy-api/usersettings/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.usersettings+json; charset= ←↩

utf-8; version=1.1

{
"links": {

"user-settings:key-template": {
"template": "http://SERVER/maconomy-api/usersettings/macoprod/{ ←↩

document-key}",
"rel": "user-settings:key-template"

}
}

}

Since only a user-settings:key-template hyperlink is available from this response, ap-
parently, no settings documents have yet been created for the Administrator user.

In order to create a new user settings document, the client program must follow the
user-settings:key-template hyperlink available form the root resource:
{

"template": "http://SERVER/BASEPATH/usersettings/SHORTNAME/{document-key ←↩
}",

"rel": "user-settings:key-template"
}

Here, the {document-key} placeholder within the template URL must be replaced by
an alphanumeric key identifying the new settings document.

©Deltek Inc., All Rights Reserved 138 Document revision 2.5

CHAPTER 8. USER SETTINGS WEB SERVICE

Besides authenticating (see Authentication), the client program must apply the HTTP
verb PUT and include a valid JSON representation of the new settings document in the
request body.

The response to a successful user-settings:key-template request is a 204 No Content
response. If the JSON representation in the request body is malformed, a 400 Bad
Request is returned.

For example, adding a helloworld settings document:

$ curl -i
-u 'Administrator:123456'
-H 'Accept: application/vnd.deltek.maconomy.usersettings+json; ←↩

charset=utf-8; version=1.1'
-H 'Content-Type: application/vnd.deltek.maconomy.usersettings+json ←↩

; charset=utf-8; version=1.1'
-d $'{

"key": 42,
"hello": "world"

}'
-X PUT
'http://SERVER/maconomy-api/usersettings/macoprod/helloworld'

HTTP/1.1 204 No Content

With a helloworld settings document thus added, a hyperlink specifically referencing
this document is available from the root resource:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.usersettings+json; ←↩

charset=utf-8; version=1.1'
'http://SERVER/maconomy-api/usersettings/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.usersettings+json; charset= ←↩

utf-8; version=1.1

{
"links": {

"user-settings:key-template": {
"template": "http://SERVER/maconomy-api/usersettings/macoprod/{ ←↩

document-key}",
"rel": "user-settings:key-template"

},
"user-settings:key:helloworld": {

"template": "http://SERVER/maconomy-api/usersettings/macoprod/ ←↩
helloworld",

©Deltek Inc., All Rights Reserved 139 Document revision 2.5

CHAPTER 8. USER SETTINGS WEB SERVICE

"rel": "user-settings:key:helloworld"
}

}
}

An existing user settings document can be acquired by submitting an authenticated (see
Authentication) GET request towards the URL provided with its hyperlink available from
the root resource:

{
"href": "http://SERVER/BASEPATH/usersettings/SHORTNAME/DOCUMENT_KEY",
"rel": "user-settings:key:DOCUMENT_KEY"

}

For example, retrieving our helloworld settings document:

$ curl -i
-u 'Administrator:123456'
-H 'Accept: application/vnd.deltek.maconomy.usersettings+json; ←↩

charset=utf-8; version=1.1'
'http://SERVER/maconomy-api/usersettings/macoprod/helloworld'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.usersettings+json; charset= ←↩

utf-8; version=1.1

{
"key": 42,
"hello": "world"

}

If instead the HTTP verb PUT is applied like described for the hyperlink with link relation
user-settings:key-template, the user settings document is replaced by the JSON
object provided in the request body.

If instead the HTTP verb DELETE is applied, the user settings document is deleted from
the system. For example, deleting our helloworld settings document:

$ curl -i
-u 'Administrator:123456'
-H 'Accept: application/vnd.deltek.maconomy.usersettings+json; ←↩

charset=utf-8; version=1.1'
-X DELETE
'http://SERVER/maconomy-api/usersettings/macoprod/helloworld'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.usersettings+json; ←↩
charset=utf-8; version=1.1

©Deltek Inc., All Rights Reserved 140 Document revision 2.5

CHAPTER 9. AUTHENTICATION WEB SERVICE

Chapter 9

Authentication Web Service

Aside from authenticating towards third party systems, the Maconomy RESTful Authen-
tication Web Service offers the client program to change the role in the current session
of the Maconomy authenticated user or create a new session for the user with a certain
role. In this document, only the user roles functionality of the web service is covered in
details.

This is the custom media type covering the JSON representations within the encompassed
version of the Authentication Web Service (see Media Types):

application/vnd.deltek.maconomy.authentication+json; charset=utf-8; ←↩
version=1.3

The root resource of the Authentication Web Service can be accessed by following the
hyperlink with link relation authentication available from an installation resource (see
Installation):

{
"href": "http://SERVER/BASEPATH/auth/SHORTNAME",
"rel": "authentication"

}

As the root resource carries system-specific information, accessing it requires authentica-
tion (see Authentication).

The JSON object contained in the response to a successful authentication request has
a links property from where the following kinds of hyperlinks are available:

©Deltek Inc., All Rights Reserved 141 Document revision 2.5

CHAPTER 9. AUTHENTICATION WEB SERVICE

Link relation Explanatory text

auth:maconomy Hyperlink referring to resource exposing information
about the Maconomy authenticated user. This is
described in further details below.

auth:THIRD_PARTY_SYSTEM Hyperlink referring to the action of authenticating
towards the third party system identified by
THIRD_PARTY_SYSTEM. This is not described any
further in this document.

auth:renew Hyperlink referring to the action of renewing some
authentication towards a third party system. This is
not described any further in this document.

auth:logout Hyperlink referring to the action of logging out of
some third party system. This is not described any
further in this document.

For example, for the macoprod system:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.authentication+json; ←↩

charset=utf-8; version=1.3'
'http://SERVER/maconomy-api/auth/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.authentication+json; charset ←↩

=utf-8; version=1.3

{
"links": {

"auth:maconomy": {
"href": "http://SERVER/maconomy-api/auth/macoprod/maconomy",
"rel": "auth:maconomy"

},
"auth:business-objects": {

"href": "http://SERVER/maconomy-api/auth/macoprod/business-objects",
"rel": "auth:business-objects"

},
"auth:renew": {

"href": "http://SERVER/maconomy-api/auth/macoprod/renew",
"rel": "auth:renew"

},
"auth:logout": {

"href": "http://SERVER/maconomy-api/auth/macoprod/logout",

©Deltek Inc., All Rights Reserved 142 Document revision 2.5

CHAPTER 9. AUTHENTICATION WEB SERVICE

"rel": "auth:logout"
}

}
}

Here, the presence of an auth:business-objects hyperlink signals that Business Objects
have been enabled for the macoprod system and the client program will be able to
authenticate towards Business Objects by following this hyperlink. We also see an
auth:maconomy hyperlink and, contrary to other auth hyperlinks, the usage of this will
be described in the following.

9.1 Maconomy User Resource
For a Maconomy authenticated user (see Authentication), the role currently assigned to
the user’s session impacts which data and actions are made available to the user. Acquiring
the Maconomy user resource by following the auth:maconomy hyperlink available from
the root resource of the Authentication Web Service, the client program is presented
with information about the currently authenticated user:

{
"href": "http://SERVER/BASEPATH/auth/SHORTNAME/maconomy",
"rel": "auth:maconomy"

}

The client program must of course authenticate (see Authentication) and the HTTP verb
to apply is GET.

The response to a successful auth:maconomy request is called a Maconomy user response
and carries a JSON object in the body with the following properties:

Property Explanatory text

name Name of the authenticated user.

roles List of JSON objects each representing a role available for the
authenticated user. Find their properties below.

role Instance key of the role currently assigned to the authenticated user’s
session.

links Hyperlinks available from the Maconomy user resource. Find the list of
link relations below.

A JSON object listed in the above mentioned roles property represents a role available
for the authenticated user and contains the following two properties:

©Deltek Inc., All Rights Reserved 143 Document revision 2.5

CHAPTER 9. AUTHENTICATION WEB SERVICE

Property Explanatory text

name Name of the user role.

key Instance key of the user role.

The purposes of the hyperlinks available from the links property of a Maconomy user
response are these:

Link relation Explanatory text

maconomy:change-role-in-session Reference to the action of changing the role of
the authenticated user’s session, see Change
Role in User Session.

maconomy:new-session-with-role Reference to the action of creating a new
session for the authenticated user and have
some given role assigned, see Create New User
Session With Role.

self Reference to the Maconomy user resource
itself.

For example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.authentication+json; ←↩

charset=utf-8; version=1.3'
'http://SERVER/maconomy-api/auth/macoprod/maconomy'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.authentication+json; charset ←↩

=utf-8; version=1.3

{
"name": "Administrator",
"roles": [

{
"name": "Standard",
"key": "RoleInstanceKeyAdministratorStandard"

},
{

"name": "Advanced",
"key": "8074a573-3a1e-4f1d-98f2-bdbed8292f8f"

©Deltek Inc., All Rights Reserved 144 Document revision 2.5

CHAPTER 9. AUTHENTICATION WEB SERVICE

}
],
"role": "RoleInstanceKeyAdministratorStandard",
"links": {

"maconomy:change-role-in-session": {
"template": "http://SERVER/maconomy-api/auth/macoprod/maconomy/ ←↩

change-role-in-session;role={role}",
"rel": "maconomy:change-role-in-session"

},
"maconomy:new-session-with-role": {

"template": "http://SERVER/maconomy-api/auth/macoprod/maconomy/new- ←↩
session-with-role;role={role}",

"rel": "maconomy:new-session-with-role"
},
"self": {

"href": "http://SERVER/maconomy-api/auth/macoprod/maconomy",
"rel": "self"

}
}

}

With this Maconomy user response, we are informed that the user authenticated is
Administrator and that the role currently assigned to the authenticated user is the
one with instance key RoleInstanceKeyAdministratorStandard, that is, the Standard
role. Aside from the currently assigned Standard role, the Advanced role is listed as an
available role for the Administrator.

Just as expected, the JSON delivered within the above Maconomy user response
also carries a links property exposing a maconomy:change-role-in-session and a
maconomy:new-session-with-role hyperlink. How following these hyperlinks can make
the Advanced role the one assigned to the authenticated user is described in the next
two sub-sections.

9.1.1 Change Role in User Session

By following the maconomy:change-role-in-session hyperlink available from the JSON
of a Maconomy user response, the client program is able to change the role assigned to
the authenticated user’s session:

{
"template": "http://SERVER/BASEPATH/auth/SHORTNAME/maconomy/change-role- ←↩

in-session;role={role}",
"rel": "maconomy:change-role-in-session"

}

The {role} placeholder within the template URL mentioned here must be replaced by
the instance key of the user role to be assigned. As described above, the names and

©Deltek Inc., All Rights Reserved 145 Document revision 2.5

CHAPTER 9. AUTHENTICATION WEB SERVICE

instance keys of the roles available for the authenticated user are exposed in the roles
property of the JSON received in the user response.

Once the template URL has been resolved, the client program must authenticate using
Maconomy Reconnect Authentication and apply the HTTP verb POST.

If either an invalid instance key is substituted into the {role} placeholder of the template
URL or if an authentication scheme different from a Maconomy reconnect one is applied,
the server responds with a 400 Bad Request. Otherwise, the response to a successful
maconomy:change-role-in-session request is a Maconomy user response exposing the
accomplished role assignment.

The new role will be in play when the reconnect information held in the response to the
maconomy:change-role-in-session request is applied on a subsequent request.

9.1.2 Create New User Session With Role

By following the maconomy:new-session-with-role hyperlink available from the JSON
of a Maconomy user response, the client program is able to create a new session for
the authenticated user with a certain role assigned without deleting the existing user
session:

{
"template": "http://SERVER/BASEPATH/auth/SHORTNAME/maconomy/new-session- ←↩

with-role;role={role}",
"rel": "maconomy:new-session-with-role"

}

The {role} placeholder within the template URL mentioned here must be replaced by
the instance key of the user role to be assigned in the new session. As described above,
the names and instance keys of the roles available for the authenticated user are exposed
in the roles property of the JSON received in the user response.

Once the template URL has been resolved, the client program must authenticate using
Maconomy Reconnect Authentication and apply the HTTP verb POST.

If either an invalid instance key is substituted into the {role} placeholder of the template
URL or if an authentication scheme different from a Maconomy reconnect one is applied,
the server responds with a 400 Bad Request. Otherwise, the response to a successful
maconomy:new-session-with-role request is a Maconomy user response.

The new user session can be exploited by applying the reconnect information held in the
received Maconomy user response on a subsequent request. The previous user session
will still be available through the previous reconnect information.

©Deltek Inc., All Rights Reserved 146 Document revision 2.5

CHAPTER 10. MESSAGES WEB SERVICE

Chapter 10

Messages Web Service

The Maconomy RESTful Messages Web Service offers a way for web-based clients to
view and interact with the current set of system messages in the Maconomy system.
System messages are server defined messages in text or HTML format that can be used to
communicate relevant information to the users such as upcoming maintenance windows
or important business-related deadlines.

This is the custom media type covering the JSON representations within the encompassed
version of the Messages Web Service (see Media Types):

application/vnd.deltek.maconomy.messages+json; charset=utf-8; version=1.0

Whenever a system message is returned from the Messages Web Service, its text is returned
in the language being the best match between the locale specified in an Accept-Language
header on the request and the languages in which the message is available. If no such
match is found, a default version of the message is returned. It is up to the author of a
system message to choose the language of its default version.

In addition to the Messages Web Service, the following header will be present on a
response from a Maconomy RESTful web service whenever new system messages appear
for the user logged in:

Maconomy-Messages-Changed: system=<Comma-separated ids of new messages>

The messages with the ids included in such a response header can be subsequently
retrieved from the Messages Web Service as described later in this chapter.

Note that system messages are an optional feature. It is therefore always safe for a client
program to ignore any Maconomy-Messages-Changed response header and never read
system messages from the Messages Web Service.

In addition, note that the information about new messages is only kept on the server for
a limited period of time. A user returning after a prolonged period of inactivity without

©Deltek Inc., All Rights Reserved 147 Document revision 2.5

CHAPTER 10. MESSAGES WEB SERVICE

having to log in again might not receive any notifications about system messages that
appeared while the user was away. The minimum guaranteed lifetime of these notifications
is controlled by the setting cache.mailbox-lifetime in settings.ini.

Finally, note that on load balanced multi-node systems, it is possible for a user to receive
multiple notifications for the same system message. A client program can avoid notifying
the user of the same message more than once by only fetching messages in the new scope
and updating the scope of each message to visible or hidden as soon as it has been
shown to the user. Find further details on how to do this later in this chapter.

Now, the root resource of the Messages Web Service can be accessed by following
the hyperlink with link relation messages available from an installation resource (see
Installation):

{
"href": "http://SERVER/BASEPATH/messages/SHORTNAME",
"rel": "messages"

}

These are the properties present in an acquired JSON representation of such root
resource:

Property Explanatory text

scopes List of possible values for the optional scope parameter to be
substituted into the template URL of the system hyperlink
mentioned in the links property. Find the scope parameter values
and their semantics listed below.

links Hyperlinks available from the root resource of the Messages Web
Service. Find the list of link relations below.

The supported scope parameter values and their semantics are as follows:

Scope Explanatory text

all Fetch all system messages, regardless of their scope.

new Fetch only new system messages.

visible Fetch all visible system messages, including new ones. When no scope
parameter is supplied, this is the value applied by default.

hidden Fetch only hidden system messages.

©Deltek Inc., All Rights Reserved 148 Document revision 2.5

CHAPTER 10. MESSAGES WEB SERVICE

The purposes of the hyperlinks available through the links property of the root resource
representation are as follows:

Link relation Explanatory text

system Reference to the system messages resource. Find a description of this
below.

self Reference to the root resource of the Messages Web Service itself.

For example, for the macoprod system:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.messages+json; charset= ←↩

utf-8; version=1.0'
'http://SERVER/maconomy-api/messages/macoprod'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.messages+json; charset=utf ←↩

-8; version=1.0'

{
"scopes": [

"all",
"new",
"visible",
"hidden"

],
"links": {

"system": {
"template": "http://SERVER/maconomy-api/messages/macoprod/system{? ←↩

scope}",
"rel": "system"

},
"self": {

"template": "http://SERVER/maconomy-api/messages/macoprod",
"rel": "self"

}
}

}

A hyperlink with link relation system is the one to follow in order to get hold of the
system messages currently available within some scope:

{
"template": "http://SERVER/BASEPATH/messages/SHORTNAME/system{?scope}",

©Deltek Inc., All Rights Reserved 149 Document revision 2.5

CHAPTER 10. MESSAGES WEB SERVICE

"rel": "system"
}

Besides substituting the {?scope} placeholder of the hyperlink’s template URL in
accordance with the semantics of the possible scope parameter values described above,
the client program must authenticate (see Authentication) and apply the HTTP verb
GET.

If an invalid scope parameter value is substituted into the {?scope} placeholder, the
server responds with a 400 Bad Request. Otherwise, the client program receives a 200
OK response with a JSON object in the body holding the following properties:

Property Explanatory text

messages List of JSON objects representing the system messages matching the
selected scope for the authenticated user. Find the properties of each
such message object below.

links Hyperlinks available from the system messages resource. Find the list of
link relations below.

These are the properties of a system message JSON object:

Property Explanatory text

text Message text, possibly in HTML format.

language Language of the message text.

id Id of the message. This can replace the {id} placeholder in
the template URL of the message hyperlink mentioned in the
links property.

validFrom Date/time in ISO 8601 format from when the message is valid.

validTo Date/time in ISO 8601 format to when the message is valid.

scope Current scope of the message. Either new, visible, or
hidden.

availableLanguages List of languages in which the message is available.

The purposes of the hyperlinks available through the links property of a system messages
resource representation are as follows:

©Deltek Inc., All Rights Reserved 150 Document revision 2.5

CHAPTER 10. MESSAGES WEB SERVICE

Link relation Explanatory text

message Reference to a specific system message resource. Find a description
of this below.

self Reference to the system messages resource itself.

For example:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.messages+json; charset= ←↩

utf-8; version=1.0'
'http://SERVER/maconomy-api/messages/macoprod/system?scope=visible'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.messages+json; charset=utf ←↩

-8; version=1.0

{
"messages": [

{
"text": "This is the english system message",
"language": "en",
"id": "ID",
"validFrom": "1970-01-01T00:00:00Z",
"validTo": "2030-01-01T00:00:00Z",
"scope": "new",
"availableLanguages": [

"en",
"da"

]
}

],
"links": {

"message": {
"template": "http://SERVER/maconomy-api/messages/macoprod/system/{id ←↩

}",
"rel": "message"

},
"self": {

"href": "http://SERVER/maconomy-api/messages/macoprod/system?scope= ←↩
visible",

"rel": "self"
}

}
}

©Deltek Inc., All Rights Reserved 151 Document revision 2.5

CHAPTER 10. MESSAGES WEB SERVICE

A hyperlink with link relation message is the one to follow in order to interact with a
specific system message:

{
"template": "http://SERVER/BASEPATH/messages/SHORTNAME/system/{id}",
"rel": "message"

}

Besides substituting the id of a system message into the {id} placeholder of the hyperlink’s
template URL, the client program must authenticate (see Authentication) and apply the
HTTP verb GET.

If an invalid message id substituted into the message template URL, the server responds
with a 404 Not Found. Otherwise, the client program receives a 200 OK response with a
JSON object in the body holding the following properties:

Property Explanatory text

message A message JSON object like the one described above representing the
system message acquired.

links Hyperlinks available from the system message resource. Find the list of
link relations below.

The purposes of the hyperlinks available through the links property of a system message
resource representation are as follows:

Link relation Explanatory text

make-new Reference to the action of changing the scope of the system message
to new. Find a description of this below.

make-visible Reference to the action of changing the scope of the system message
to visible. Find a description of this below.

make-hidden Reference to the action of changing the scope of the system message
to hidden. Find a description of this below.

self Reference to the system message resource itself.

For example, to fetch the message identified by ID:
$ curl -i

-u 'Administrator:123456'

©Deltek Inc., All Rights Reserved 152 Document revision 2.5

CHAPTER 10. MESSAGES WEB SERVICE

-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.messages+json; charset= ←↩

utf-8; version=1.0'
'http://SERVER/maconomy-api/messages/macoprod/system/ID'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.messages+json; charset=utf ←↩

-8; version=1.0

{
"message": {

"text": "This is the english system message",
"language": "en",
"id": "ID",
"validFrom": "1970-01-01T00:00:00Z",
"validTo": "2030-01-01T00:00:00Z",
"scope": "new",
"availableLanguages": [

"en",
"da"

]
},
"links": {

"make-visible": {
"href": "http://SERVER/maconomy-api/messages/macoprod/system/ID/make ←↩

-visible",
"rel": "make-visible"

},
"make-hidden": {

"href": "http://SERVER/maconomy-api/messages/macoprod/system/ID/make ←↩
-hidden",

"rel": "make-hidden"
},
"self": {

"href": "http://SERVER/maconomy-api/messages/macoprod/system/ID",
"rel": "self"

}
}

}

A hyperlink with link relation make-SCOPE is the one to follow in order to change the
scope of a system message to SCOPE:

{
"href": "http://SERVER/BASEPATH/messages/SHORTNAME/system/ID/make- ←↩
SCOPE",
"rel": "make-SCOPE"

}

©Deltek Inc., All Rights Reserved 153 Document revision 2.5

CHAPTER 10. MESSAGES WEB SERVICE

Besides authenticating (see Authentication), the client program must apply the HTTP
verb POST.

If the system message turns out to have the scope indicated by the link relation already,
the server responds with a 304 Not Modified. Otherwise, the client program receives a
204 No content response.

Of course only hyperlinks referring to applicable message scope actions are included
in the representation of a system message resource. In the above example with a new
system message, only a make-visible and a make-hidden hyperlink will be available
from the links property.

To change the scope of the above message identified by ID to visible:

$ curl -i
-u 'Administrator:123456'
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.messages+json; charset= ←↩

utf-8; version=1.0'
-X POST
'http://SERVER/maconomy-api/messages/macoprod/system/ID/make- ←↩

visible'

HTTP/1.1 204 No Content

©Deltek Inc., All Rights Reserved 154 Document revision 2.5

CHAPTER 11. DIAGNOSTICS WEB SERVICE

Chapter 11

Diagnostics Web Service

The purpose of the Maconomy RESTful Diagnostics Web Service is to facilitate a way of
easily judging whether the system seems to be correctly configured.

This is the custom media type covering the JSON representations within the encompassed
version of the Diagnostics Web Service (see Media Types):

application/vnd.deltek.maconomy.diagnostics+json; charset=utf-8; version ←↩
=1.0

The root resource of the Diagnostics Web Service can be accessed by following the
hyperlink with link relation diagnostics available from the root resource of the Root
Web Service:

{
"href": "http://SERVER/BASEPATH/diagnostics",
"rel": "diagnostics"

}

For example:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.diagnostics+json; ←↩

charset=utf-8; version=1.0'
'http://SERVER/maconomy-api/diagnostics'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.diagnostics+json; charset= ←↩

utf-8; version=1.0

{
"links": {

©Deltek Inc., All Rights Reserved 155 Document revision 2.5

CHAPTER 11. DIAGNOSTICS WEB SERVICE

"paths": {
"href": "http://SERVER/maconomy-api/diagnostics/paths",
"rel": "paths"

},
"cookies:server": {

"href": "http://SERVER/maconomy-api/diagnostics/cookies/server",
"rel": "cookies:server"

},
"timing": {

"href": "http://SERVER/maconomy-api/diagnostics/timing",
"rel": "timing"

},
"self": {

"href": "http://SERVER/maconomy-api/diagnostics",
"rel": "self"

}
}

}

For further description of the paths, the cookies:server, and the timing hyperlink
available from the JSON object of a diagnostics response, see the next three sections
respectively.

11.1 Paths
The hyperlink with link relation paths available from the diagnostics root resource is
the one to follow in order to verify whether certain paths are being handled correctly by
the reverse proxy:

{
"href": "http://SERVER/BASEPATH/diagnostics/paths",
"rel": "paths"

}

For example:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.diagnostics+json; ←↩

charset=utf-8; version=1.0'
'http://SERVER/maconomy-api/diagnostics/paths'

HTTP/1.1 200 OK
Content-Type: application/vnd.deltek.maconomy.diagnostics+json; charset= ←↩

utf-8; version=1.0

{

©Deltek Inc., All Rights Reserved 156 Document revision 2.5

CHAPTER 11. DIAGNOSTICS WEB SERVICE

"links": {
"paths:path-0": {

"href": "http://SERVER/maconomy-api/diagnostics/paths/0/slashes/ ←↩
first;matrix=x%2Fy/second",

"rel": "paths:path-0"
},
"self": {

"href": "http://SERVER/maconomy-api/diagnostics/paths",
"rel": "self"

}
}

}

Each hyperlink with link relation paths:path-INDEX available from the JSON object of
a paths response is the one to follow in order to carry out a certain path test:
{

"href": "http://SERVER/BASEPATH/diagnostics/paths/INDEX/PATH",
"rel": "paths:path-INDEX"

}

Which paths:path-INDEX hyperlinks are included can be configured via a setting in
settings.ini, see Test Paths. Note that no restart of the Coupling Service is needed in
order for an updated setting value to catch on.

If the path submitted when following some paths:path-INDEX hyperlink survives all the
way to the server without getting malformed, the server sends back a 204 No Content
response. Otherwise, the client program receives a 400 Bad Request response.

For example, following the above paths:path-0 hyperlink:
$ curl -i

-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.diagnostics+json; ←↩

charset=utf-8; version=1.0'
'http://SERVER/maconomy-api/diagnostics/paths/0/slashes/first; ←↩

matrix=x%2Fy/second'

HTTP/1.1 204 No Content

In this case, the successful response means that an encoded slash (%2F) is being handled
correctly by the reverse proxy.

11.2 Cookies
The hyperlink with link relation cookies:server available from the diagnostics root
resource is the one to follow in order to initiate the verification of whether cookies are
transmitted correctly back and forth through the reverse proxy:

©Deltek Inc., All Rights Reserved 157 Document revision 2.5

CHAPTER 11. DIAGNOSTICS WEB SERVICE

{
"href": "http://SERVER/BASEPATH/diagnostics/cookies/server",
"rel": "cookies:server"

}

Besides a cookies property listing information about the cookies included on the response
in the form of Set-Cookie headers, a links property in the JSON object carried in the
body of a cookies:server response presents the hyperlink to be followed next in the
cookies test.

For example:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.diagnostics+json; ←↩

charset=utf-8; version=1.0'
'http://SERVER/maconomy-api/diagnostics/cookies/server'

HTTP/1.1 200 OK
Set-Cookie: Maconomy-Diagnostics-Cookie="MjgyOTIzMD...TEwCTE1NTMyNDg5NTI="
Content-Type: application/vnd.deltek.maconomy.diagnostics+json; charset= ←↩

utf-8; version=1.0

{
"cookies": [

{
"name": "Maconomy-Diagnostics-Cookie",
"value": "MjgyOTIzMD...2CTEwCTE1NTMyNDg5NTI=",
"maxAge": -1,
"secure": false,
"version": 0,
"httpOnly": false

}
],
"links": {

"cookies:client": {
"href": "http://SERVER/maconomy-api/diagnostics/cookies/client",
"rel": "cookies:client"

},
"self": {

"href": "http://SERVER/maconomy-api/diagnostics/cookies/server",
"rel": "self"

}
}

}

Following the hyperlink with link relation cookies:client available from the JSON
object of a cookies:server response will finish the cookies test:

©Deltek Inc., All Rights Reserved 158 Document revision 2.5

CHAPTER 11. DIAGNOSTICS WEB SERVICE

{
"href": "http://SERVER/BASEPATH/diagnostics/cookies/client",
"rel": "cookies:client"

}

The client program must include Cookie headers corresponding to the Set-Cookie
headers received from the server when carrying out the initial part of the cookies
test.

If the expected cookies are received by the server, the server responds with a 204 No
Content. Otherwise, the client program receives a 400 Bad Request response. In the
latter case, the cookie descriptions held in the above cookies property can help unravel
whether the problem lies in submitting the cookies from or to the server.

For example:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.diagnostics+json; ←↩

charset=utf-8; version=1.0'
-H 'Cookie: Maconomy-Diagnostics-Cookie="MjgyOTIzMD... ←↩

TEwCTE1NTMyNDg5NTI='
'http://SERVER/maconomy-api/diagnostics/cookies/client'

HTTP/1.1 204 No Content

Note that it is possible to configure which Set-Cookie headers are included on a
cookies:server response via a setting in settings.ini, see Set-Cookie Values. Note
that no restart of the Coupling Service is needed in order for an updated setting value to
catch on.

11.3 Timing
The hyperlink with link relation timing available from the diagnostics root resource is
the one to follow in order to trigger a response time measurement:

{
"href": "http://SERVER/BASEPATH/diagnostics/timing",
"rel": "timing"

}

The server will send back a 204 No Content response with the following two custom
HTTP headers:

• A Maconomy-Diagnostics-Time-Enter header carrying an ISO-8601 representa-
tion of the point in time at which the request arrived at the Coupling Service.

©Deltek Inc., All Rights Reserved 159 Document revision 2.5

CHAPTER 11. DIAGNOSTICS WEB SERVICE

• A Maconomy-Diagnostics-Time-Exit header carrying an ISO-8601 representation
of the point in time at which the response left the Coupling Service.

For example:

$ curl -i
-H 'Accept-Language: en-US'
-H 'Accept: application/vnd.deltek.maconomy.diagnostics+json; ←↩

charset=utf-8; version=1.0'
'http://SERVER/maconomy-api/diagnostics/timing'

HTTP/1.1 204 No Content
Maconomy-Diagnostics-Time-Enter: 2021-10-29T09:04:03.744Z
Maconomy-Diagnostics-Time-Exit: 2021-10-29T09:04:04.117Z

Note that Maconomy-Diagnostics-Time-Enter and Maconomy-Diagnostics-Time-Exit
headers can be requested on any web service response by submitting the following header
along with the request:

Maconomy-Diagnostics-Time: on

©Deltek Inc., All Rights Reserved 160 Document revision 2.5

CHAPTER 12. CONFIGURATION

Chapter 12

Configuration

In this chapter, the settings relevant for each of the Maconomy RESTful web services
covered in this document are described.

Some of these settings are set by MConfig in server.ini during installation of the
Maconomy system. The settings in server.ini should never be changed manually and
any additional settings should instead be set in settings.ini located in the settings
folder.

An overall setting set by MConfig is the one specifying the port at which the web services
are exposed:

web.port

By default, the web services are exposed at port 8080.

MConfig also configures whether the Maconomy web services are in overall enabled or
not. This is done using the following setting:

web.services.enabled

In addition to this common setting, the enablement of each individual web service can
be controlled manually in settings.ini using settings of the following form:

web.services.<web-service>.enabled

These enablement settings are described in the below sub-sections.

Whether or not the web services accept secure requests (HTTPS protocol) only can be
controlled by setting the following to either true or false:

web.https-only

©Deltek Inc., All Rights Reserved 161 Document revision 2.5

CHAPTER 12. CONFIGURATION

The HTTPS-only option is enabled by default only if proxy encryption has been en-
abled:

web.proxy.encryption

Consult the settings.ini file for further information.

12.1 Root Web Service Configuration
The Root Web Service is enabled by default. To disable it, the following setting must be
set to false:

web.services.root.enabled

12.1.1 Version Information

By default, version information regarding the system installed is part of the representation
of the Root Web Service’s root resource. To exclude the version information, the following
setting must be set to false:

web.services.root.versions.visible

12.1.2 Shortnames

By default, installation shortnames are part of a representation of the Root Web Service’s
root resource. In order to hide these shortnames, the following setting must be set to
false:

web.services.root.installations.visible

12.2 Containers Web Service Configuration
The Containers Web Service is disabled by default. To enable it, the following setting
must be set to true:

web.services.containers.enabled

Whenever the Containers Web Service is enabled, the very first version as well as any
later version of the service (for example, the version 3 covered in this document) are
enabled by default.

The very first version of the Containers Web Service can be disabled by setting the
following setting to false:

©Deltek Inc., All Rights Reserved 162 Document revision 2.5

CHAPTER 12. CONFIGURATION

web.services.containers.v1.enabled

All later versions of the Containers Web Service can be disabled by setting the following
setting to false:

web.services.containers.v2.enabled

12.2.1 Container Instances Cache Mode

Container Instances can be cached either in the database, in-memory, or in Redis.
This is controlled by assigning the value database, memory, or redis to the following
setting:

web.services.containers.instances.cache.mode

The default cache mode is database and this should only be changed after advice from
Maconomy Development. Further details on the configuration of each of the three cache
modes can be found in the three sub-sections below.

Whether the bytes representing a container instance are compressed before they are put
into the container instances cache can be controlled by the following setting:

web.services.maconomy-containers.instances.cache.compression.enabled

Compression is enabled by default and this should only be changed after advice from
Maconomy Development.

Database

If database is the cache mode selected, two cleaning settings become relevant. The
first of these must be set if another privileged user than the one used by the batch
framework should be used when cleaning out expired container instances from the
database cache:

web.services.containers.instances.cache.database.cleaner.login.name

The other setting must be set if the seconds between cleanings of the database instances
cache should be different from 60:

web.services.containers.instances.cache.database.cleaner.interval.secs

©Deltek Inc., All Rights Reserved 163 Document revision 2.5

CHAPTER 12. CONFIGURATION

In-memory

If memory is the cache mode selected, container instances are cached in-memory, making
it very important that requests from a particular client always arrive at the same server
node. When multiple server nodes exist, a load balancer configured to use sticky sessions
is required.

For the in-memory container instances cache mode, the concurrency level of the underlying
in-memory cache implementation can be controlled by the following setting:

web.services.containers.instances.cache.memory.concurrency-level

The default value none as well as any integer less than zero mean that the default value
of the underlying in-memory cache implementation is used. This setting should only be
changed after advice from Maconomy Development.

Also, for an in-memory container instances cache, the following eight metrics (six his-
tograms and two timers) are maintained:

Identifier Explanatory text

sessions-count A histogram describing the distribution of the
amount of user sessions.

instances-per-session-count A histogram describing the distribution of the
amount of container instances registered within
each user session in the cache.

instances-total-count A histogram describing the distribution of the total
amount of container instances in the cache.

bytes-per-instance-count A histogram describing the distribution of the
amount of bytes taken up by each container
instance in the cache.

bytes-per-session-count A histogram describing the distribution of the
amount of bytes taken up by each user session in
the cache.

bytes-total-count A histogram describing the distribution of the total
amount of bytes taken up by the cache.

instance-read-time A timer tracking how many seconds it took to read
some container instance from the cache.

instance-write-time A timer tracking how many seconds it took to
write some container instance to the cache.

The data for the metric with identifier xxx can be found on the server in a CSV file

©Deltek Inc., All Rights Reserved 164 Document revision 2.5

CHAPTER 12. CONFIGURATION

named McMemoryInstancesCache.xxx.csv.

The more frequent the histograms are updated, the more accurate statistics they provide.
However, increasing the frequency of histogram updates also increases the base CPU
load. The amount of seconds between updates of the histograms can be controlled by
the following setting:

web.services.containers.instances.cache.memory.metrics.interval.secs

If you set the update interval to -1, no histogram updates are done at all. The default
update interval is 1 second.

Redis

If redis is the cache mode selected, container instances are cached in Redis [3]. The
Redis URI used will be redis://localhost:6379 unless another is stated using the
following setting:

web.services.containers.instances.cache.redis.uri

12.2.2 Container Instance Expiry

By default, a container instance expires when it has lied untouched in the cache for more
than 10 minutes. If a different expiry is desired, the following setting must be set:

web.services.containers.instances.cache.instance-expiry.minutes

12.2.3 Container Instances Limit

By default, 25 container instances are allowed per user session. If a different limit is
desired, the following setting must be set:

web.services.containers.instances.cache.max-instances.per-session

Whenever the limit is exceeded, the least recently used container instance registered for
the given user session will be removed.

If the setting is set to none or some negative integer, there is no limit on the amount of
container instances per user session.

12.2.4 Auto Position Fields

By default, any auto position field which is not a key field is left out of table pane
specifications and table pane records. If no auto position fields should be left out, the
following setting must be set to false:

©Deltek Inc., All Rights Reserved 165 Document revision 2.5

CHAPTER 12. CONFIGURATION

web.services.containers.filter-out.auto-position-fields.enabled

This setting affects the efficiency of Partial Data Responses and should only be changed
after advice from Maconomy Development.

12.3 Popup Types Web Service Configuration
The Popup Types Web Service is disabled by default. To enable it, the following setting
must be set to true:

web.services.popups.enabled

12.4 File Drop Web Service Configuration
The File Drop Web Service is disabled by default. To enable it, the following setting
must be set to true:

web.services.filedrop.enabled

If the File Drop Web Service is not enabled, the client program will not be able to hand
over files to the Maconomy Server in connection with execution of application actions in
the Containers Web Service (see Applying an Application Action).

12.5 Logging Web Service Configuration
The Logging Web Service is disabled by default. To enable it, the following setting must
be set to true:

web.services.logging.enabled

12.6 User Settings Web Service Configuration
The User Settings Web Service is disabled by default. To enable it, the following setting
must be set to true:

web.services.user-settings.enabled

12.7 Authentication Web Service Configuration
The Authentication Web Service is disabled by default. To enable it, the following setting
must be set to true:

©Deltek Inc., All Rights Reserved 166 Document revision 2.5

CHAPTER 12. CONFIGURATION

web.services.authentication.enabled

12.8 Messages Web Service Configuration
The Messages Web Service is disabled by default. To enable it, the following setting must
be set to true:

web.services.messages.enabled

12.9 Diagnostics Web Service Configuration
The Diagnostics Web Service is disabled by default. To enable it, the following setting
must be set to true:

web.services.diagnostics.enabled

12.9.1 Test Paths

The paths:path-INDEX hyperlinks described in Paths reflects the comma separated
paths assigned to the following setting:

web.services.diagnostics.paths

Its default value is slashes/first;matrix=x%2Fy/second, leading to the exposure of
just a single paths:path-INDEX hyperlink:

{
"href": "http://SERVER/BASEPATH/diagnostics/paths/0/slashes/first;matrix ←↩

=x%2Fy/second",
"rel": "paths:path-0"

}

The purpose of this hyperlink is to allow verification of an encoded slash (%2F) being
handled correctly by the reverse proxy.

12.9.2 Set-Cookie Values

A response received by the client program when following the cookies:server hyperlink
described in Cookies, by default, includes exactly one Set-Cookie header which has
been known to cause problems in the past. This can be overridden by assigning comma-
separated Set-Cookie values to the following setting:

web.services.diagnostics.cookies

©Deltek Inc., All Rights Reserved 167 Document revision 2.5

CHAPTER 13. VERSIONS

Chapter 13

Versions

For each Maconomy RESTful web service encompassed in this document, this chapter
contains a section providing short descriptions of the different service versions.

13.1 Root Web Service Versions

13.1.1 Root Web Service Version 1

Version 1.0 covers the first version of the Root Web Service which was introduced in
Maconomy 2.5.2.

Note that version 1 is deprecated from Maconomy 2.5.4 and will no longer be accessible
from Maconomy 2.7.

13.1.2 Root Web Service Version 2

From version 2.0, which was introduced in Maconomy 2.5.4, the version information
exposed as part of a root resource representation has been made similar for APU and
TPU and thus an application build number is also included.

From version 2.1, which was introduced in Maconomy 2.6, an errorIds property is
introduced in Error Responses.

13.2 Containers Web Service Versions

13.2.1 Containers Web Service Version 1

Version 1.0 covers the first version of the Containers Web Service which was introduced
in Maconomy 2.1.3 With the interaction model used in version 1, the server has to
do a large amount of recalculations for each interaction and hence later versions are
recommended.

©Deltek Inc., All Rights Reserved 168 Document revision 2.5

CHAPTER 13. VERSIONS

Note that version 1 is deprecated from Maconomy 2.5.2 and will no longer be accessible
from Maconomy 2.7.

13.2.2 Containers Web Service Version 2

From version 2.0, which was introduced in Maconomy 2.5.2, a completely different
interaction model is being used. Interaction with container data using version 2 is done
through so-called Container Instances holding important parts of the container’s state
and this eliminates the need for the large amount of recalculations necessary in version 1.
Version 2 has a greatly improved performance over version 1 and in fact performs on par
with other APIs used by Maconomy clients. iAccess for Maconomy 2.5.2 uses version 2
and sees significant performance improvements.

Note that version 2 is deprecated from Maconomy 2.5.3 and will no longer be accessible
from Maconomy 2.7.

13.2.3 Containers Web Service Version 3

From version 3.0, which was introduced in Maconomy 2.5.3, data containers having tree
table panes with hierarchically organized records are fully supported. This means that
JSON objects received as representations of table pane records reflect any hierarchical
structure and Record Positions are pointed out by so-called dot indices. A move record
patch now occurs in Partial Data Responses returned for move requests.

Note that version 3 is deprecated from Maconomy 2.5.4 and will no longer be accessible
from Maconomy 2.7.

13.2.4 Containers Web Service Version 4

From version 4.0, which was introduced in Maconomy 2.5.4, Filtering parameters may
be supplied as properties of a JSON object in a POST request body instead of as query
parameters. Also, when the client program does not supply any fields parameter, only
key fields (instead of all fields) are included in the filter response.

Also from version 4.0, the moveMode property exposed as part of a table pane’s specification
allows a client program to discover in advance if records may only be moved around inside
their current context. Furthermore, the targeted title properties upTitle, downTitle,
indentTitle, and outdentTitle in action:move specifications facilitate more accurate
action descriptions in user interfaces.

From version 4.1, which was introduced in Maconomy 2.6, an errorIds property is
introduced in Error Responses.

Note that version 4 is deprecated from Maconomy 2.6 and will no longer be accessible
from Maconomy 2.7.

©Deltek Inc., All Rights Reserved 169 Document revision 2.5

CHAPTER 13. VERSIONS

13.2.5 Containers Web Service Version 5

From version 5.0, which was introduced in Maconomy 2.6, an access hyperlink is included
in container resources, allowing the client program to retrieve information about the
authenticated user’s CRUD access rights.

Also from version 5.0, only key fields can be mentioned in update requests and only key
fields are included in data responses, unless otherwise specified in the Data Fields Slicing
JSON object submitted on container instance creation.

Also from version 5.0, a data:some-key hyperlink is included in container instance
resources and can be followed in cases where the client program wants to load the data
entry corresponding to some already known key (see Loading a Data Entry).

Note that version 5 is deprecated from Maconomy 2.6.1 and will no longer be accessible
from Maconomy 2.7.

13.2.6 Containers Web Service Version 6

From version 6.0, which was introduced in Maconomy 2.6.1, the Filtering has changed for
popup containers. Aside from the value, ordinal, and title field previously available
for popup containers, a hidden field has been made available, providing the client with
information about whether an enum value should be selectable in a user interface or
not. Also, like for other containers, the filtering parameters fields, restriction,
and orderBy are now supported for popup containers, and if no fields parameter is
supplied in a popup container filter request, only the value field will be included in the
response.

Also from version 6.0, Table Paging is available for data responses and the client program
is able to control the order of table pane records by configuring multi-column Table
Sorting for container instances. As a consequence of query parameters being eradicated
and request body parameters being used instead, the following stand:

• Only the HTTP verb POST is applicable when following a data:filter (or a
data:enumvalues) hyperlink (see Filtering).

• Instead of DELETE, the HTTP verb POST must be applied when following a
data:delete hyperlink (see Deleting a Record).

• The HTTP verb POST may also be applied when following an instance:data
hyperlink (see Container Instances).

13.3 Popup Types Web Service Versions

13.3.1 Popup Types Web Service Version 1

Version 1.0 covers the first version of the Popup Types Web Service which was introduced
in Maconomy 2.5.2.

©Deltek Inc., All Rights Reserved 170 Document revision 2.5

CHAPTER 13. VERSIONS

From version 1.1, which was introduced in Maconomy 2.6, an errorIds property is
introduced in Error Responses.

13.4 File Drop Web Service Versions

13.4.1 File Drop Web Service Version 1

Version 1.0 covers the first version of the File Drop Web Service which was introduced in
Maconomy 2.1.3.

From version 1.1, which was introduced in Maconomy 2.6, an errorIds property is
introduced in Error Responses.

13.5 Logging Web Service Versions

13.5.1 Logging Web Service Version 1

Version 1.0 covers the first version of the Logging Web Service which was introduced in
Maconomy 2.5.1.

From version 1.1, which was introduced in Maconomy 2.6, an errorIds property is
introduced in Error Responses.

13.6 User Settings Web Service Versions

13.6.1 User Settings Web Service Version 1

Version 1.0 covers the first version of the User Settings Web Service which was introduced
in Maconomy 2.1.3.

From version 1.1, which was introduced in Maconomy 2.6, an errorIds property is
introduced in Error Responses.

13.7 Authentication Web Service Versions

13.7.1 Authentication Web Service Version 1

Version 1.0 covers the first version of the Authentication Web Service which was introduced
in Maconomy 2.1.3.

From version 1.1, which was introduced in Maconomy 2.6, a 401 Unauthorized is only
returned when the Maconomy authentication cannot be carried through. When something
regarding a third party authentication goes wrong, a 500 Server Error is returned
instead.

©Deltek Inc., All Rights Reserved 171 Document revision 2.5

CHAPTER 13. VERSIONS

From version 1.2, which was also introduced in Maconomy 2.6, an errorIds property is
introduced in Error Responses.

From version 1.3, which was introduced in Maconomy 2.6.1, an auth:maconomy hyperlink
is available from the root resource, enabling the client program to administer the role
assigned to the authenticated user.

13.8 Messages Web Service Versions

13.8.1 Messages Web Service Version 1

Version 1.0 covers the first version of the Messages Web Service which was introduced in
Maconomy 2.6.

13.9 Diagnostics Web Service Versions

13.9.1 Diagnostics Web Service Version 1

Version 1.0 covers the first version of the Diagnostics Web Service which was introduced
in Maconomy 2.6.

©Deltek Inc., All Rights Reserved 172 Document revision 2.5

BIBLIOGRAPHY

Bibliography

[1] JSON. URL http://www.json.org.

[2] Regular expressions in JDK 8. URL https://docs.oracle.com/javase/8/docs/
api/java/util/regex/Pattern.html.

[3] Redis. URL https://redis.io/.

[4] ECMA-404: The json data interchange format, October 2013. URL http://www.
ecma-international.org/publications/standards/Ecma-404.htm.

[5] CMdml. Deltek Maconomy—MDML Language Reference Guide. Deltek Inc.

[6] L. Dusseault. HTTP Extensions for Web Distributed Authoring and Versioning
(WebDAV). RFC 4918 (Proposed Standard), June 2007. URL http://www.ietf.
org/rfc/rfc4918.txt.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft Standard), June
1999. URL http://www.ietf.org/rfc/rfc2616.txt.

[8] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and
L. Stewart. HTTP Authentication: Basic and Digest Access Authentication. RFC
2617 (Draft Standard), June 1999. URL http://www.ietf.org/rfc/rfc2617.txt.

[9] L. Masinter. Returning Values from Forms: multipart/form-data. RFC 2388
(Proposed Standard), August 1998. URL https://tools.ietf.org/rfc/rfc2388.
txt.

[10] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. OpenID
Connect Core 1.0 incorporating errata set 1, 2014. URL http://openid.net/
specs/openid-connect-core-1_0.html.

[11] Ed. T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 7159 (Proposed Standard), March 2014. URL http://www.ietf.org/rfc/
rfc7159.txt.

[12] Jim Webber, Savas Parastatidis, and Ian Robinson. REST in Practice: Hypermedia
and Systems Architecture. O’Reilly Media, 2010.

©Deltek Inc., All Rights Reserved 173 Document revision 2.5

http://www.json.org
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://redis.io/
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ietf.org/rfc/rfc4918.txt
http://www.ietf.org/rfc/rfc4918.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
https://tools.ietf.org/rfc/rfc2388.txt
https://tools.ietf.org/rfc/rfc2388.txt
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html
http://www.ietf.org/rfc/rfc7159.txt
http://www.ietf.org/rfc/rfc7159.txt

INDEX

Index

2FA, 22

Accept-Encoding (HTTP header), 11
Accept-Language (HTTP header), 11
access (link relation), 46, 69
access list (web access conf.), 122
access rule (web access conf.), 121
action, 50
action:APP_ACTION (link relation), 53,

82, 110, 111
action:create (link relation), 52, 82,

93, 94
action:delete (link relation), 52, 82,

105
action:init (link relation), 52, 78, 82,

92, 97, 102
action:init-create (link relation), 52,

79, 82, 97, 102
action:init-create-row (link relation),

51, 52, 82, 102
action:init-row (link relation), 51, 52,

82, 102
action:move (link relation), 51, 53, 82,

106
action:print (link relation), 53, 82, 108,

109
action:update (link relation), 52, 82,

103
amount (data type), 13
analyzer (link relation), 40
APM, 133
application action, 53, 109
Application Performance Monitoring (APM),

133

application/octet-stream (file drop),
131

arguments (application action), 109
auth:logout (link relation), 142
auth:maconomy (link relation), 142
auth:renew (link relation), 142
auth:THIRD_PARTY_SYSTEM (link relation),

142
authentication, 15
authentication (link relation), 40, 141
AuthenticationWeb Service, 141, 166
Authorization (HTTP header), 16–19,

21, 22
auto timestamp (data type), 15

Basic (HTTP header directive), 15
boolean (data type), 13

card (container pane), 43
client name, 30
complete (foreign key), 62
compression, 11
concurrency tag (container instance), 81
conditional foreign key, 65
configurations (link relation), 40
container, 43
container (link relation), 45, 46
container instance, 78
containers (link relation), 40, 44
Containers Web Service, 43, 162
Content-Disposition (HTTP header),

131
cookies:client (link relation), 158
cookies:server (link relation), 157

©Deltek Inc., All Rights Reserved 174 Document revision 2.5

INDEX

cURL, 3

data container, 44, 70
data fields slicing (container instance),

85
data resource (container instance), 82
data response, 83
data type, 12
data:any-key (link relation), 79, 82, 97
data:enumvalues (link relation), 67, 68
data:filter (link relation), 46, 69, 71,

126
data:key (link relation), 59, 62, 82
data:restore (link relation), 84, 100
data:same-key (link relation), 82, 84,

100
data:same-key-some-container (link re-

lation), 62, 72, 82, 101
data:same-key-some-instance (link re-

lation), 72, 82, 101
data:search (link relation), 59, 60
data:some-key (link relation), 79, 100
DataChanged check, 81
date (data type), 14
DELETE (HTTP verb), 1
diagnostics (link relation), 37, 155
Diagnostics Settings Web Service, 167
dot index, 90

end dot index, 91
entries (link relation), 134
enum (data type), 14
environment (link relation), 40
error, 33
error family, 34
error id, 34
error severity, 34

field, 54
field reference (foreign key), 58
file drop, 129
File Drop Web Service, 129, 166
filedrop (link relation), 40, 129
filter (container pane), 43, 70

filter fields slicing, 75, 76
filter paging, 75
filter response, 71
filter restriction, 75, 77
filter sorting, 75, 76
filtering, 70
foreign key, 57
foreign key search, 57, 60
format, 12

GET (HTTP verb), 1
gzip, 11

handshake1 (link relation), 37, 39
HATEOAS, 2, 51
HTTP Basic Authentication, 15
HTTP verbs, 1
hyperlink, 2
Hypermedia as the Engine of Application

State (HATEOAS), 2

incomplete (foreign key), 58, 63
initialization, 92
installation (link relation), 37, 39
instance (container instance), 78
instance configuration (container instance),

86
instance configuration response (container

instance), 87
instance:configuration (link relation),

79, 87
instance:configuration-update (link

relation), 79, 82, 87, 89
instance:create (link relation), 46, 78,

86
instance:data (link relation), 79, 82
instance:data-refresh (link relation),

79, 82, 84
instance:delete (link relation), 79, 89
integer (data type), 13

JSON, 9

Kerberos, 19

©Deltek Inc., All Rights Reserved 175 Document revision 2.5

INDEX

language, 11
language tag, 11
line-number control, 43, 102, 106
link relation, 2
literal pattern (web access conf.), 122
logging (link relation), 40, 133
Logging Web Service, 133, 166

Maconomy Reconnect Authentication, 18
Maconomy user resource, 143
Maconomy user response, 143
Maconomy-Authentication (HTTP header),

16, 18–20
Maconomy-Client (HTTP header), 30
Maconomy-Concurrency-Control (HTTP

header), 81
Maconomy-Cookie (HTTP header), 18
Maconomy-Diagnostics-Time (HTTP header),

160
Maconomy-Diagnostics-Time-Enter (HTTP

header), 159
Maconomy-Diagnostics-Time-Exit (HTTP

header), 160
Maconomy-File-Callback (HTTP header),

110
Maconomy-Format (HTTP header), 12
Maconomy-Forwarded-Base-Path (HTTP

header), 8
Maconomy-Notification (HTTP header),

117, 121
Maconomy-OTP (HTTP header), 22
Maconomy-Reconnect (HTTP header), 18,

19
Maconomy-RequestId (HTTP header), 28,

135
Maconomy-Response-Type (HTTP header),

113
Maconomy-Warning (HTTP header), 118,

121
Maconomy-Warning-Callback (HTTP header),

118
maconomy:change-role-in-session (link

relation), 144, 145

maconomy:new-session-with-role (link
relation), 144, 146

make-hidden (link relation), 152
make-new (link relation), 152
media type, 9, 36, 44, 126, 129, 132, 133,

137, 141, 147, 155
message (link relation), 151
messages (link relation), 40, 148
Messages Web Service, 147, 167
multipart/form-data (file drop), 132

named list (web access conf.), 123
new (link relation), 130
nil (enum data type), 74
notification, 117

One-Time Password (OTP), 22
OpenID, 20
ordinal (enum data type), 74
OTP, 22

paging parameters, 75
pane (container pane), 43
partial data response, 113
paths (link relation), 156
paths:path-INDEX (link relation), 157,

167
popup (link relation), 127
popup container, 44, 70, 126
Popup Types Web Service, 126, 166
popups (link relation), 40, 126
POST (HTTP verb), 1
printing, 107
PUT (HTTP verb), 1

real (data type), 13
reconnect token, 18
record patch (partial data response), 113
record position, 90
regular expression pattern (web access

conf.), 122
related container, 67
representation, 1
Representational State Transfer (REST),

1

©Deltek Inc., All Rights Reserved 176 Document revision 2.5

INDEX

request id, 28
resolved (file drop), 129
resource, 1
REST, 1
RESTful, 1
reverse proxy, 8
Root Web Service, 36, 162

search container, 44, 70
search container (foreign key), 58, 60
search pane (foreign key), 58
self foreign key, 64
server.ini, 161
Set-Cookie (HTTP header), 18
settings.ini, 161
sibling dot indices, 91
Single Sign-On (SSO), 20
specification, 47
specification (link relation), 46, 48,

67
specification response, 48
SSO, 20
standard action, 52, 92, 101, 103, 105–

107
status code, 30
status family, 31
string (data type), 13
supplement (foreign key), 60
switch field (foreign key), 58, 65
switch value (foreign key), 58, 65
system (link relation), 149

table (container pane), 43
table paging, 112
table sorting (container instance), 85
time (data type), 14
time duration (data type), 15
Time-based One-Time Password (TOTP),

22
timing (link relation), 159
TOTP, 22
tree table pane (container pane), 43
Two-Factor Authentication (2FA), 22

unresolved (file drop), 129

User Settings Web Service, 137, 166
user-settings:key-template (link re-

lation), 137, 138
user-settings:key:DOCUMENT_KEY (link

relation), 138, 140
usersettings (link relation), 40, 137

warning, 117
web access configuration, 121
webaccess.ini (web access conf.), 121
wildcard pattern (web access conf.), 122
WWW-Authenticate (HTTP header), 15–

17

X-Basic (HTTP header directive), 16
X-ChangePassword (HTTP header direc-

tive), 17
X-Cookie (HTTP header directive), 18
X-Force-Maconomy-Credentials (HTTP

header directive), 20
X-Forwarded-Host (HTTP header), 8
X-Log-Out (HTTP header directive), 18,

19
X-OIDC-Code (HTTP header directive),

21
X-Reconnect (HTTP header directive),

19

©Deltek Inc., All Rights Reserved 177 Document revision 2.5

	Introduction
	REST
	Resources
	Hyperlinks
	Other Styles of Web Services
	Further Reading

	cURL
	Version History
	Changes in Maconomy 2.5.2
	Changes in Maconomy 2.5.3
	Changes in Maconomy 2.5.4
	Changes in Maconomy 2.6
	Changes in Maconomy 2.6.1

	General
	Proxy Requirements
	JSON
	Media Types
	Accept Request Header
	Content-Type Request Header

	Compression
	Language
	Formats
	Data Types
	Integer
	Real
	Amount
	Boolean
	String
	Date
	Time
	Enum
	Time Duration
	Auto Timestamp

	Authentication
	HTTP Basic Authentication
	Maconomy Reconnect Authentication
	Kerberos
	OpenID Authentication
	Two-Factor Authentication

	Request Identification in APM Logs
	Client Identification in APM Logs
	Status Codes and Errors
	Error Responses

	Root Web Service
	Handshake
	Installation

	Containers Web Service
	Specification
	Actions
	Fields
	Foreign Keys
	Related Containers

	Access
	Filtering
	Filter Paging
	Filter Sorting
	Filter Fields Slicing
	Filter Restriction

	Container Instances
	Concurrency Tags
	Data Resource
	Data Fields Slicing
	Table Sorting
	Configuring an Instance
	Deleting an Instance

	Working with Data
	Record Positions
	Creating a Data Entry
	Loading a Data Entry
	Adding a Table Record
	Updating a Record
	Deleting a Record
	Moving a Table Record
	Printing
	Applying an Application Action
	Table Paging
	Partial Data Responses

	Warnings and Notifications
	HTML Entity Escaping

	Web Access Configuration
	Access Lists
	Web Access Contract
	Diagnostic Logging

	Popup Types Web Service
	File Drop Web Service
	Logging Web Service
	User Settings Web Service
	Authentication Web Service
	Maconomy User Resource
	Change Role in User Session
	Create New User Session With Role

	Messages Web Service
	Diagnostics Web Service
	Paths
	Cookies
	Timing

	Configuration
	Root Web Service Configuration
	Version Information
	Shortnames

	Containers Web Service Configuration
	Container Instances Cache Mode
	Container Instance Expiry
	Container Instances Limit
	Auto Position Fields

	Popup Types Web Service Configuration
	File Drop Web Service Configuration
	Logging Web Service Configuration
	User Settings Web Service Configuration
	Authentication Web Service Configuration
	Messages Web Service Configuration
	Diagnostics Web Service Configuration
	Test Paths
	Set-Cookie Values

	Versions
	Root Web Service Versions
	Root Web Service Version 1
	Root Web Service Version 2

	Containers Web Service Versions
	Containers Web Service Version 1
	Containers Web Service Version 2
	Containers Web Service Version 3
	Containers Web Service Version 4
	Containers Web Service Version 5
	Containers Web Service Version 6

	Popup Types Web Service Versions
	Popup Types Web Service Version 1

	File Drop Web Service Versions
	File Drop Web Service Version 1

	Logging Web Service Versions
	Logging Web Service Version 1

	User Settings Web Service Versions
	User Settings Web Service Version 1

	Authentication Web Service Versions
	Authentication Web Service Version 1

	Messages Web Service Versions
	Messages Web Service Version 1

	Diagnostics Web Service Versions
	Diagnostics Web Service Version 1

	Bibliography
	Index

