
Protecting Confidential Virtual Machines from
Hardware Performance Counter Side Channels

Xiaoxuan Lou∗1, Kangjie Chen∗1, Guowen Xu†1, Han Qiu2, Shangwei Guo3, Tianwei Zhang1

1Nanyang Technological University, 2Tsinghua University, 3Chongqing University

{xiaoxuan001, kangjie001, tianwei.zhang}@ntu.edu.sg, †guowen.xu@foxmail.com,

qiuhan@tsinghua.edu.cn, swguo@cqu.edu.cn

Abstract—In modern cloud platforms, it is becoming more
important to preserve the privacy of guest virtual machines
(VMs) from the untrusted host. To this end, Secure Encrypted
Virtualization (SEV) is developed as a hardware extension to
protect VMs by encrypting their memory pages and register
states. Unfortunately, such confidential VMs are still vulnerable
to micro-architectural side channels, and Hardware Performance
Counters (HPCs) are a prominent information leakage source.
To make matters worse, currently there is no systematic defense
against the HPC side channels.

We introduce Aegis, a unified framework for demystifying
the inherent relations between the instruction execution and
HPC event statistics, and defending VMs against HPC side
channels with provable privacy guarantee and minimal perfor-
mance overhead. Aegis consists of three modules. Application
Profiler profiles the application offline and adopts information
theory to quantitatively estimate the vulnerability of HPC events.
Event Fuzzer leverages the fuzzing technique to automatically
generate interesting inputs, i.e., instruction sequences, that can
effectively alter the HPC observations. Event Obfuscator injects
noisy instructions into the protected VM based on the differential
privacy mechanisms for high efficiency and privacy. We present
three case studies to demonstrate that Aegis can defeat different
types of HPC side-channel attacks (i.e., website fingerprinting,
DNN model extraction, keystroke sniffing). Evaluations show that
Aegis can effectively decrease the attack accuracy from 90% to
2%, with only 3% overhead on the application execution time
and 7% overhead on the CPU usage.

I. INTRODUCTION

The maturity of cloud computing ecosystems prompts an

increased emphasis on the privacy guarantee, making it a

top concern along with the performance efficiency for cloud

service providers and customers. To protect the guest virtual

machine (VM) from the privileged but potentially malicious

hypervisor, a promising mechanism called Trusted Execution

Environment [45], [60] is utilized to realize confidential com-

puting in virtualization scenarios. This mechanism adopts a

hardware memory encryption engine to encrypt the VM’s

memory space transparently with a VM-specific key stored

in the hardware layer. Even the hypervisor cannot access

the encryption key and extract the memory content of the

VM. AMD Secure Encrypted Virtualization (SEV) [47] is the

first commercial realization of such a mechanism, and has

been widely applied in modern cloud services [3], [9]. Other

∗Co-first authors with equal contributions.
†Corresponding author

processor vendors have also released similar extensions, e.g.,

Intel TDX [13] and ARM CCA [6].

Encrypted virtualization can defeat most attacks that directly

break the confidentiality or integrity of VM data. However, it

is generally vulnerable to side-channel attacks, which use side-

channel information (e.g., execution time, memory footprints)

to infer the secrets in the encrypted environment. Although

the latest SEV-SNP version has provided multiple protections

[5] (e.g., Branch Target Buffer Isolation, disabling Instruction

Based Sampling) against certain transient-execution and side-

channel attacks, AMD admits that “it is not able to protect
against all possible side-channel attacks” [61]. Over the years,

a variety of attacks have been proposed to breach the confi-

dentiality of SEV systems, which establish side channels via

performance counters [72], cache occupancy [54], unprotected

I/O operations [51], [58], page faults [40], [50], [57], etc.

Among these attacks, Hardware Performance Counter

(HPC) side channels are particularly easy to exploit. HPCs are

implemented as a tool for software profiling, debugging and

system modeling. Security researchers also repurposed them

for malware and intrusion detection [28], [70], [78]. Unfortu-

nately, their capability of inspecting program’s behaviors can

be abused by the adversary to infer the secret from the victim

program [20], [38], [52], [69], [77], especially in the cloud

scenario where the malicious host can arbitrarily read the HPC

register values mapping to a victim VM. While SEV claims

HPC leakage can only reveal trivial information about the ap-

plication inside the VM and hence does not prevent it from the

hardware [61], its competitor Intel TDX seriously considers

HPC leakage as a target that must be prevented and proposes

specific hardware modifications to isolate virtualized guest

HPC registers from the malicious host [12]. We present three

case studies in Section III to show that HPC side channels can

indeed lead to more severe confidentiality attacks, e.g., leaking

the website access, keystroke, and machine learning models.

Hence, the confidential VM should well mitigate HPC leakage

to protect guest secrets, just as Intel TDX has done.

However, currently all public cloud platforms mainly adopt

SEV to achieve their confidential VM services, including

Azure confidential VM [7], Google cloud [10] and AWS EC2

[2], while TDX is only a preview version or even has not

been considered [8], [11]. Given AMD has announced that

SEV-SNP is the latest stable version, it seems that AMD has

no motivation to update the hardware design to prevent HPC

195

2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/24/$31.00 ©2024 IEEE
DOI 10.1109/DSN58291.2024.00031

side channels, which exposes almost existing confidential VM

systems to the security threat. As a result, the lack of hardware

defence against HPC side channels in SEV is an urgent

and practical security issue, which motivates us to design a

practical software-based solution to mitigate this vulnerability

for off-the-shelf platforms immediately.

Past efforts have been devoted to reinforce the encrypted

VMs and enclaves against different micro-architectural side

channels, e.g., CPU cache [33], [37], page faults [25], [62],

branch prediction [42], [49]. However, to the best of our

knowledge, there are no previous works to systematically and

comprehensively investigate the HPC side-channel defenses

against malicious hypervisor. This motivates us to design

an effective and efficient defense solution for the customers

to protect their sealed application from HPC side channels.

However, achieving this goal is not a trivial work and several

challenges must be carefully addressed. First, modern proces-

sors usually support a large number of HPC events (usually

in the thousands). This gives the adversary more flexibility

to establish the side channel. Meanwhile, it also gives the de-

fender more difficulties to analyze the possible threats. Second,

HPCs cannot count performance events precisely because of

the external interference, e.g., hardware interrupts, which may

mislead the identification of HPC value changes and result

in false analysis results. Finally, one common side-channel

defense strategy is to obfuscate the adversary’s observations.

A straightforward way is to inject random noise directly.

However, this method introduces extra noise into VMs, which

incurs additional performance overhead. Besides, randomly

injecting noise cannot provide a rigorous privacy guarantee.

Motivated by these challenges, we propose Aegis, a frame-

work that can automatically analyze the potential HPC side

channels of a victim application from customers, and ef-

fectively prevent HPC side-channel attacks with a provable

security guarantee. Aegis consists of three modules:

(1) Application Profiler. It is used to profile the protected

application and extract all vulnerable HPC events that can act

as attack surfaces. It gives us the first look at the application

and a comprehensive understanding on usable attack surfaces.

The vulnerability of different events are estimated and ranked

with information theory.

(2) Event Fuzzer. It is used to find out all possible instruction

gadgets that can alter the profiled vulnerable HPC events. We

model this as a bug identification task, and design an automatic

tool based on the fuzzing-like technique to generate interesting

“inputs”, i.e., instruction gadgets, to evaluate if the system

reports a “bug”, i.e., value change in the target HPC events.

(3) Event Obfuscator. It is located inside the victim VM

and injects specific numbers of instruction gadgets into the

execution flow of the VM as the noise to obfuscate HPC values

monitored from the outside attacker. The key insight is to

model the execution behaviors of the victim VM as statistical

data, and then inject random noise following a specific differ-
ential privacy mechanism. This reduces potential information

leakage and makes the victim’s activities indistinguishable

from the attacker’s observations. Meanwhile, the differential

privacy mechanism can theoretically guide us to identify the

optimal amount of noise, achieving desired privacy guarantee

with the minimal impact on the system.

Our framework Aegis is the first work aiming to system-

atically and comprehensively mitigate HPC side channels on

encrypted VMs. It is a general and provable solution that can

be readily deployed inside the VM for a strong privacy guaran-

tee. Two differential privacy mechanisms (Laplace and d∗) are

adopted to defeat attacks. Experimental results show that both

mechanisms can effectively reduce the attack accuracy from

> 90% to 2%, closing to random guess, while only introducing

about 3% overhead on the application execution time and 7%

overhead on the CPU usage.

II. BACKGROUND AND RELATED WORKS

A. Hardware Performance Counters

Modern processors implement a large spectrum of Hardware

Performance Counters (HPCs) in each CPU core to record

the occurrences of hardware-related events for processes and

the entire computer system. These counters provide developers

a useful tool for dynamic software profiling, debugging and

system modeling. However, HPCs also expose an exploitable

surface, where the attacker can obtain the execution behaviors

of a protected program in the system and further recover

sensitive information. Prior works showed the feasibility of

revealing secret keys from the cryptographic applications

based on HPCs [20], [69]. Furthermore, HPCs can also provide

high-resolution timing information to facilitate cache attacks

[52], [77] or even reveal the website accesses [38].

B. Secure Encrypted Virtualization

Secure Encrypted Virtualization (SEV) is a new feature in

AMD processors [47], which combines AMD-Virtualization

(AMD-V) and Secure Memory Encryption (SME) technolo-

gies to encrypt individual VMs with their own keys, aiming to

protect VMs from the untrusted hypervisor. A dedicated co-

processor, Platform Security Processor (PSP), is introduced

to generate distinct ephemeral keys for each VM, and en-

crypts VM’s data outside the processor. This extension can

effectively protect the secrets in VMs from physical attacks

(e.g., cold boot and DMA attacks) and privileged software

attacks, making the encrypted VM a total black-box to the

malicious hypervisor. A later SEV-ES [46] version further

encrypts VM’s CPU register state during world switches,

which prevents the malicious hypervisor directly accessing or

modifying VM states. The latest SEV-SNP [61] version finally

achieves integrity protection of VM memory with Reverse

Map Table and fixes vulnerabilities in two earlier versions.

Other processor vendors, e.g., Intel [13] and ARM [6], are

also working on these security features, which is a promising

direction for trustworthy cloud computing.

C. Fuzzing

Fuzzing is a popular software testing technique to automati-

cally find bugs in software applications [56]. A fuzzer typically

generates a significant number of test inputs and monitors

196

software execution over these inputs to detect abnormal behav-

iors. There are two common fuzzing strategies: (1) mutation-

based fuzzers [19], [41] select an initial set of inputs as the

seed, and then generate inputs by applying mutations, e.g.,

splicing, bit flipping. They usually require the analyst to have

prior domain knowledge. (2) Grammar-based fuzzers [21],

[39] exploit existing input specifications to generate a grammar

model to conduct inputs. They sometimes fail to reach certain

corners of the input space. Recently, hardware fuzzing has

become increasingly popular. Researchers adopt this technique

to find undocumented x86 instructions [32], discover side

channels [71], improve Meltdown [75] and Spectre attacks

[67]. Different from those works that use fuzzing to facilitate

hardware attacks, we apply it to defeat side channels.

D. Differential Privacy

This technology was originally used to protect statisti-

cal databases by withholding information about individuals

[34]. One popular Differential Privacy (DP) solution is ε-
DP. A randomized algorithm A : X → Z satisfies ε-DP

if for any adjacent datasets x, x′ and all Z ⊆ Z , it has:

P(A(x) ∈ Z) ≤ exp(ε) × P(A(x′) ∈ Z), where ε ≥ 0
indicates the privacy budget to control the level of privacy

protection. Chatzikokolakis et al. [24] proposed a generaliza-

tion of differential privacy called d-privacy. Compared to ε-
DP, d-privacy is more suitable for datasets with time series

correlations, giving better privacy guarantees under the same

privacy budget. Specifically, a metric d on a set X is defined

as a function d : X 2 → [0,∞). A randomized algorithm

A : X → Z satisfies (d, ε)-privacy if for all Z ⊆ Z , it

has: P(A(x) ∈ Z) ≤ exp(ε × d(x, x′)) × P(A(x′) ∈ Z).
DP has also been used to mitigate storage side channels [74]

and network side channels [80]. In this paper, we apply this

technique to defeat the HPC side channels. This is more

challenging as there are more possible leakage sources (e.g.,

a large number of vulnerable HPC events) and it is hard to

control the micro-architectural noise.

III. HPC SIDE CHANNELS

A. Threat Model

We consider an IaaS cloud scenario protected with en-

crypted virtualization feature, e.g., AMD SEV, which hence

establishes mutual distrust between the customer and the cloud

provider. The customer first asks to launch an encrypted VM

in the cloud and then perform remote authentication and

attestation to confirm if the hardware details and security

settings are correct. After the setting confirmation, the sensitive

data is sent to the encrypted VM through an encrypted

communication channel. As for the cloud provider, we assume

it is honest-but-curious, namely it will abide by the defined

service agreement but will also seek to gain more sensitive

information that it is not explicitly authorized to have. For

example, the hypervisor would provide correct register values

to guest VMs, including the HPC values. This assumption is

realistic for most commercial cloud platforms and has been

considered in prior works [50], [72].

Fig. 1: Training curves of three HPC side-channel attacks.

While the SEV protection prevents the malicious hypervi-

sor directly extracting the VM’s information (e.g., memory,

registers, instructions), some micro-architectural side channels

can still be constructed to infer the customer’s data. In this

paper, we mainly focus on the HPC side channels, where the

adversary only needs to monitor HPC events passively, making

this attack more stealthy than other active side-channel attacks.

Prior works have demonstrated that the adversary can leverage

HPCs to accurately extract the victim program’s secrets [20],

[38], [69], making them a severe threat to the confidentiality

of trusted computing systems.

B. Abstraction of HPC Side-channel Attacks

Following previous attacks on various side channels (e.g.,

power [27], CPU cache [79]), we also model the HPC side-

channel attacks as a machine learning task. In the offline stage,

the attacker can deploy a template application executing with

different secrets Y . Meanwhile, he profiles the application

execution behaviors and collects the HPC event leakage traces

X . Each trace x ∈ X is a time-series of length T , where every

time slice x[t] is a vector of monitored events, 1 ≤ t ≤ T .

Then the attacker trains a parameterized machine learning

model fθ to establish a mapping between X and Y , i.e.,

fθ : X �→ Y . In the online stage, when the actual victim

runs with a secret, the attacker monitors its HPC leakage x,

and is able to predict the secret as y = fθ(x).
Below we present three practical HPC side-channel attacks

against the encrypted VM. The attacks are implemented

on an AMD EPYC 7252 processor that supports the SEV

protection. The victim VM has the configurations of 4 CPUs,

8G memory and 80G disk, and is launched by the qemu

script from AMD [4]. Both the host platform and VM use the

Ubuntu 20.04 OS with kernel version 5.11.0. We assume the

attacker monitors four HPC events for each attack, as modern

processors are usually equipped with four HPC registers. In

this demonstration, the events we used are: RETIRED_UOPS,

LS_DISPATCH, MAB_ALLOCATION_BY_PIPE and

DATA_CACHE_REFILLS_FROM_SYSTEM, which cover

instruction retirements, operation dispatch and cache

accesses. The selection of these HPC events is determined

by the ranking results shown in Section VIII-A. These four

events would leak most information about the secrets sealed

in the confidential VM.

C. Website Fingerprinting Attack

First, we demonstrate an effective website fingerprinting

attack (WFA), where the attacker can precisely reveal the

website accesses in the encrypted VM. Previous works realized

this goal in various scenarios [31], [63], [64].

197

Event
Fuzzer

Application
Profiler

Event
Obfuscator

Offline Stage Online Stage

HPC

Event List

Target

Application

ISA

Specification

Vulnerable

HPC Events

Events-Gadgets

Database
Differential Privacy

Mechanisms

Prevent HPC

Attacks

Fig. 2: Overview of our Aegis framework.

Attack implementation. We design a compact CNN model to

fingerprint the website. The model consists of four convolution

layers and three fully-connected layers, and also employs com-

mon optimizations like batch normalization [43] and dropout

[66] layers. We select 45 websites from Alexa top-50 websites

[1] (excluding 5 blocked websites) as the attack targets, i.e.,

labels (Y) of the model. The attacker accesses each website

using the Chrome browser for 1000 times in the template VM.

These websites are accessed in a rolling sequence, which can

capture the variants of the sites over time and also avoid IP

address blocking by the web servers. At the same time, he

uses the host HPCs to sample the counts of four profiled events

(X). The sampling process lasts for 3 seconds with an interval

of 1ms, giving him a tensor with the size of 4 × 3000 for

each website access. We randomly select 70% and 30% of the

dataset for training and validation, respectively.

Attack results. Fig. 1a depicts the trends of model accuracy

and loss during the training. We can see that the attack accu-

racy improves very quickly until reaching a stable value (e.g.,

98.72%). The well-trained model is then used to predict 4500

actual website accesses (100 accesses for each website) in the

victim VM, which achieves an accuracy of 98.57%. It confirms

that HPCs can be used to conduct website fingerprinting

attacks with high fidelity and efficiency.

D. Keystroke Sniffing Attack

Another classic side-channel attack is the keystroke sniffing

attack (KSA), where the attacker aims to infer the keystrokes

entered by the victim user. Past works realized the attack with

different side channels (e.g., timing [65], memory [44]).

Attack implementation. As the timing characteristics of

keystroke actions can leak information about what those

keystrokes are [65], the attack target (Y) is set as the number

of keystrokes occurred during the period T , whose timing

patterns can be used to infer the keys pressed. The collected

leakage trace (X) is the same as WFA. The attacker can also

adopt the same CNN model in WFA to predict keystroke

actions. Following the settings in previous works [44], [74], we

use the tool xdotool [17] to simulate the keystroke actions.

It generates K keystrokes in 3 seconds, where K is a random

number between [0, 9]. This process is repeated 10,000 times

in the template VM, where the corresponding HPC event

leakage is captured simultaneously. We randomly select 70%

for training while the remaining is for validation.

Attack results. Fig. 1b shows the training curves of the

attacker’s model, where the prediction accuracy can finally

reach 95.21%. It also shows a very high sniffing accuracy

(95.48%) on the test set.

E. Model Extraction Attack

Our last case is the model extraction attack (MEA), which

steals the complete neural network architecture of a DNN

model. This attack has been realized with the remote-query

fashion [68], power [73] and cache [55], [76] side channels.

Attack implementation. The prediction label Y in MEA is a

sequence of layers forming the target DNN model architecture.

Hence, this attack should be modeled as a sequence-to-

sequence learning task instead of a classification task. We

design a RNN model with the CTC decoder [36] to solve

this problem. A bidirectional GRU [26] is adopted as the

RNN module, as it enables better long-term memory and fully

leverages temporal contexts. The best predicted layer sequence

is identified with the beam search, which reveals the target

model architecture. We select the 30 most commonly used

DNN models from the Pytorch official library [16]. We run the

inference execution of each model for 1000 times, collect the

HPC event sequences, and construct the training and validation

sets in a similar way as WFA. Then we train the RNN model

to predict the target layer sequence.

Attack results. Fig. 1c shows the model training results. The

prediction accuracy keeps increasing and finally stays at a

stable value (e.g., 91.8%). Note that the accuracy reflects the

statistics of the matched layers between prediction and label

sequences. The test on the victim VM also shows high attack

accuracy (i.e., 90.5%), indicating that the attacker can almost

extract the complete architecture of the target DNN model

running in the encrypted VM.

IV. FRAMEWORK OVERVIEW

We aim to design a defense framework for guest users to

protect their applications from HPC side channels. A user can

only deploy the defense inside his VM, but cannot control the

privileged software or hardware on the host server. He does

not know which performance counter(s) the attacker will use

for information extraction.

We introduce Aegis to achieve our defense goal. The basic

idea is to inject noisy instructions into the protected VM’s

execution flow, which can mask its secret from the HPC

events. Aegis has the following benefits. (1) Unified: given

a protected application, Aegis can mitigate different HPC

side channels, regardless of the extraction methodology or

performance counters used. (2) Provable: we can theoretically

guarantee the security of the defense under the given privacy

budget. (3) Automatic: the entire defense deployment can be

achieved automatically without any prior knowledge or human

efforts. Fig. 2 shows the workflow of Aegis, which consists

of three modules in the offline and online stages. The two

198

modules in the offline stage are only performed for one time,

and the analyzed results would be applied in the online stage.

Application Profiler (Section V). This module is used to pro-

file the target application with user-specified secrets in the VM,

and collect the corresponding leakage of all available HPC

events. It adopts information theory to quantify the correlation

between the secret data and each event, and identifies the HPC

events that are vulnerable as side channels. These events serve

as the target for us to defend against.

Event Fuzzer (Section VI). This module aims to automatically

find out the possible instruction gadgets that can alter the side-

channel observations of the HPC events identified from Ap-

plication Profiler. It takes a machine-readable ISA (Instruction

Set Architecture) specification and the list of vulnerable events

as the input. With a well-designed grammar model, the fuzzing

performs on a significantly reduced search space and finally

outputs the instruction gadgets that can disturb the values of

these vulnerable HPC events.

Event Obfuscator (Section VII). This module injects the

instruction gadgets, selected by Event Fuzzer into the protected

VM at runtime, which can effectively mask the HPC values

observed by the adversary outside the VM, and prevent side-

channel information leakage. To provide a provable security

guarantee, we introduce the differential privacy mechanisms

to regulate the number of injected instruction gadgets.

V. APPLICATION PROFILER

A. Challenges

The first step of Aegis is to identify possible attack surfaces

(e.g., HPC events) that can leak secrets from the target

application. There are several challenges to achieve this goal.

C1. Numerous HPC events. A modern processor usually

supports a large number of HPC events and any event can

be vulnerable to the victim application. For example, in our

experiment platforms, the Intel Xeon E5-1650 processor has

6166 usable events while the AMD EPYC 7252 processor has

1903 supported events. While each event should be fuzzed

with all possible combinations of instruction sequences (Sec-

tion VI), such numerous events place a heavy burden on the

comprehensive analysis of potential leakage sources.

C2. Heterogeneity and Non-determinism. The number and

type of available HPC events highly depend on the processor

family. Table I shows the statistics of HPC events from two

Intel CPUs and two AMD CPUs. We can see that CPUs from

the same family (e.g., Intel E5 family) share similar hardware

features (i.e., HPC events), while processors from different

families can vary greatly. Besides, it is well known that HPCs

cannot provide precise counts of system performance events,

because of the external interference, e.g., kernel interactions,

hardware interrupts [29]. This introduces extra noise to the

profiling process, which may mislead the observation of

changes in HPC values.

C3. Vulnerability quantification. Different events lead to

various levels of vulnerability to HPC side-channel attacks,

i.e., some events can leak more information about the target.

Hence, the quantification of event vulnerability is necessary to

HPC Statistics
Intel Xeon Intel Xeon AMD AMD
E5-1650 E5-4617 EPYC 7252 EPYC 7313P

of HPC Events 6166 6172 1903 1903

of Different Events / 14 / 0

TABLE I: Statistics of HPC events in various processors.

perform more efficient defense, as we can pay more attentions

to those more vulnerable events. However, this issue has never

been discussed before and it poses a practical challenge.

B. Profiling Design

We design an offline Application Profiler module to tackle

the above challenges and identify the vulnerable HPC events

for a given application executing specified secrets. Basically,

we launch a template VM on a template server where we have

the host privileges. This server should have a similar processor

model (i.e., in the same processor family) as the target cloud

server1 to guarantee the generality of the identified events.

Note that the template server can be either a local server

or provided by a third-party entity, which has no conflict of

interest (e.g., a government agency or a neutral authority). For

instance, the guest can rent a bare-metal server from public

cloud providers (e.g., AWS or Azure) to serve as the template

server, which can have much less resources than the target

cloud server and only the processor model needs to be similar.

Then we run the target application with a set of customer-

specified secrets in the template VM for multiple times and

monitor each available HPC event from the host. Finally, the

monitored results are automatically analyzed by the program

to rank the HPC events based on their vulnerability, i.e.,

information gain that can be used to extract the application.

After the profiling, we can be sure that, at least for the specified

secrets, all possible HPC events this application could trigger

have been exhaustively activated.

Monitoring setup. We need to first extract the full list of

available HPC events for the given processor model. This can

be achieved with a third-party tool libpfm4 [15]. Then we

configure the performance monitoring tool to measure each

count of events. In our implementation, we adopt the Linux

kernel interface perf_event_open, which can effectively

reduce the measurement noise as it interacts with the kernel

directly. We also set the pid and exclude_kernel at-

tributes to achieve VM-specific monitoring and prevent influ-

ence from the host kernel or other processes. For each time of

profiling, we simultaneously monitor four HPC events, which

is determined by the upper limit of available HPC registers

on the processor. It achieves a suitable trade-off between the

monitoring performance and accuracy, as the perf subsystem

uses time multiplexing [14] for monitoring when there are

more monitored events than available registers, which would

affect the value accuracy.

Warm-up profiling. We perform a warm-up profiling to com-

pact the event list and reduce the complexity of vulnerability

1The processor model of the cloud server is obtained from the AMD PSP
during the remote attestation.

199

CPU Processor
Percentage of various event types (%)

H S HC T R O

Intel Xeon 0.39 0.31 1.00 36.15 7.75 54.40
E5-1650 (100) (0) (100) (7.98) (99.37) (0)

AMD 1.26 1.00 3.26 87.17 5.20 2.11
EPYC 7252 (100) (0) (100) (1.57) (91.83) (0)

TABLE II: HPC event distribution, including events of Hard-

ware (H), Software (S), Hardware Cache (HC), Tracepoint (T),

Raw CPU (R) and Others (O). Data in brackets shows the

percentage remaining after the warm-up profiling.

analysis. The key idea is that a majority of HPC events cannot

reflect the activities inside a guest VM. To exclude those

events, we measure and compare the event counts when the

VM runs the application and when it is idle. The events

without any value changes in the counts will be removed

from the list, as they cannot reflect the application behaviors.

After this warm-up profiling, we only get less than 10% of the

events. Take the website fingerprinting analysis as an example,

in our two experiment platforms, only 738 (Intel) and 137

(AMD) events remain for further analysis after 5 repeated

warm-up profilings, where the results of each profiling are

almost the same.

To give more insights on the profiled HPC events, we

perform a comprehensive analysis and summarize different

types of HPC events in two CPU processors, as shown in

Table II. Note that Table II actually contains all available

events that can be monitored through perf subsystem, which

include events that are not collected through hardware features,

e.g., software (S)/tracepoint (T) events. But for the sake of

description simplicity, they are covered together and also

named as HPC events. We observe that the tracepoint events

(T) and other events (O) account for nearly 90% of the total

number. The tracepoint events measure the access states on

the tracepoints provided by the host kernel infrastructure, such

as most system calls, most of which cannot precisely capture

the application behaviors isolated inside the VM. The other
events mainly denote the cases at a low level, like hardware

breakpoints provided by the CPU, which are generally not

be invoked by normal VM applications. We also give the

remaining percentage of each event type after the warm-up

profiling in Table II, where the remaining events mainly consist

of hardware events (H/HC) and CPU raw events (R), while

software (S)/other (O) events and most tracepoint events (T)

are removed. It indicates that HPC leakages from sealed VM

applications are mainly reflected at the hardware level.

Event ranking. Our last stage is to profile and rank HPC

events based on their vulnerabilities. Given a specific event,

assume Y denote the set of customer-specified secrets executed

in the victim application, which contains Ny objects. X
denotes the profiled value traces for the given HPC event,

containing Nx = Ny ×m objects, which repeatedly performs

m measurements for each secret object. It can average out the

non-determined event values.

While the leakage trace x ∈ X is a time-series, we first

(a) Facebook.com (b) Q-Q plot (c) Ten websites

Fig. 3: The distribution of HPC event values.
extract the feature value of the sequence with Principle Com-

ponent Analysis (PCA) [59], which is a widely used feature

extraction method for processing high-dimensional data while

preserving most of the information. For the sake of simple

computation, we follow previous work [65] to fit the moni-

tored event values as a Gaussian-like unimodal distribution.

Our observation also shows that most event values indeed

distributed normally. Fig. 3a gives an example distribution over

the event DATA_CACHE_REFILLS_FROM_SYSTEM on the

website facebook.com. In Fig. 3b, we quantitatively compare

the real distribution of the event values to Gaussian distribution

N (0, 1) with the Q-Q plot [35]. The result confirms that the

HPC event values of a secret (e.g., a website access) indeed

follow the Gaussian distribution. Hence, we can naturally

assume that the probability of the event value x between the

target secret y ∈ Y , P (x|y), forms a univariate Gaussian

distribution N (μ, σ2), i.e., P (x|y) = 1
σ
√
2π

e−
1
2 (

x−μ
σ)2

. Fig.

3c shows the estimated distributions of the event values on 10

websites. Although the distributions of some websites overlap

slightly, they can still be classified easily, which explains the

high attack accuracy of WFA in Section III.
With Gaussian modelling of HPC event values, we can

then quantitatively estimate the information gain, i.e., mu-
tual information, induced by the given HPC event. First

the entropy of the probability distribution of secret y is

H(Y) = −∑
y∈Y P (y)logP (y). Then, given a event feature

value x0, the entropy of the probability distribution of secret

y is H(Y|X = x0) = −∑
y∈Y P (y|x0)logP (y|x0), where

P (y|x0) =
P (x0|y)P (y)∑
y∈Y P (x0|y)P (y) . Hence, the mutual information

can be computed as:

I(Y;X) = H(Y)−
∫

P (x0)H(Y|X = x0)dx0 (1)

where P (x0) =
∑

y∈Y P (x0|y)P (y). The computed I(Y;X)
is the metric to quantify vulnerability of the HPC events.

VI. EVENT FUZZER

For each identified vulnerable HPC event from Section V,

Aegis calls the offline module Event Fuzzer to search for the

instruction sequence gadgets, which can alter the HPC event

value, and obfuscate the adversary’s side-channel observation.

To make this process automatic and efficient, we propose to

use the fuzzing technique to find the qualified instructions.

A. Challenges
There exist a couple of challenges to achieve our goal.

C4. Lack of prior knowledge. Since previous works have

never systematically discussed the relationship between in-

struction execution and changes in HPC counts, we are totally

200

blind to the validity of instructions on obfuscating HPC values.

This poses a significant challenge, as we have to fuzz all

possible combinations of instructions without knowing their

effects ahead, which leads to an infinite search space.

C5. Undesired side effects. The instruction sequence may

exhibit unexpected side effects, which could fool the fuzzer

and mislead the testing path. For instance, the store in-

struction not only loads the target data into the memory,

but also changes the cache state. It creates multiple branches

of the code testing, which hence exponentially increases the

complexity of the fuzzing process.

C6. Inherited dirty state. To accelerate the search process

with high efficiency, all generated instruction gadgets are

fuzzed in an uninterrupted way. Unfortunately, such scheme

can leave the dirty state of the current gadget to the subsequent

ones. For example, following gadgets would inherit the cache

state of previous gadgets. Such dirty state entangles successive

gadgets, which greatly interferes the fuzzing process and often

results in false positive results.

B. Design Overview

The search of instruction gadgets is modeled as a fuzzing

problem. We consider the value change of identified HPC

events as a runtime bug, and the target is to generate more

efficient inputs (i.e., instruction gadgets) that can lead to such

bugs. Given the lack of prior knowledge, using mutation-based

fuzzing is not a reasonable choice, as we have no idea about

well-performing seeds. To combat that, we adopt grammar-

based fuzzing, which however requires a well-designed format

model to reduce the search space of inputs.

s0 s1

Trigger Seq.
Reset Seq.

Reset Seq.

Trigger Seq.

Fig. 4: State transition.

While the instruction gadget

aims to change the HPC event

to a specific state, we divide it

into two actions, as shown in

Fig. 4. (1) We first bring the

event to a known reset state
(S0) with a reset instruction sequence. For instance, to monitor

the event of cache references, we issue a clflush instruc-

tion to empty the cache line. (2) Then a trigger instruction
sequence is used to transition the event from (S0) to the

desired trigger state (S1), in which the value of monitored

HPC event is changed due to the effect of trigger instructions.

The combination of the reset and trigger sequences forms the

instruction sequence gadget for obfuscating the HPC events,

which hence can be considered as the format model for the

fuzzing input generation.

Fig. 5 shows the workflow of our Event Fuzzer, which con-

sists of the following steps. 1 We first clean up the machine-

readable ISA specification and remove all illegal instructions

for the platform microarchitecture. 2 We search for qualified

instruction gadgets for the profiled HPC events.The module

automatically generates the reset and trigger instruction se-

quences from the cleaned instruction list, and constructs the

gadgets following the fuzzing grammar, i.e., the input format

model discussed above. Then it executes the generated gadgets

and monitors the value change of the target HPC events. All

Profiled

Event List

ISA

Specification

 Cleanup

Instructions

 Generation + Execution Confirmation Filtering

Gadget

Generation

Event Counter

Monitoring
Confirmation

Mechanisms

Best

Gadgets

Events-Gadgets

Database

Fig. 5: Workflow of Event Fuzzer.

gadgets that can alter the event value are recorded as the

obfuscating factors. 3 We further validate the effectiveness

of the identified gadgets with multiple mechanisms, aiming to

remove the fuzzing paths invoked by undesired side effects

of instructions and mitigate the corner cases caused by the

inherited dirty state. 4 Finally we cluster the similar gadgets

and filter the best ones for the profiled HPC events. We

elaborate the details of each step as below.

C. Instruction Cleanup

We first sort out all possible instructions for the target ISA.

Note that this is a one-time step, and the cleaned list can be

used to fuzze all events. This paper mainly focuses on the

x86 architectures, but the methodology is applicable to other

ISA (e.g., ARM) as well. To this end, we obtain a machine-

readable x86 instruction list (namely the ISA specification)

from uops.info [18]. The list extends each instruction with

additional attributes (e.g., effective operand), resulting a large

number of instruction variants. It also gives comprehensive

information about each instruction variant, e.g., extension or

category, which will be used for filtering in Section VI-F.

This ISA specification list contains many illegal instructions

which cannot be executed on the given microarchitecture. To

remove those instructions, we transfer the ISA specification

to an assembly file, and test each instruction. The instructions

that cannot complete normally will be excluded from the list.

This process significantly reduces the number of instructions in

the assembly file. For both Intel and AMD processors, only a

small portion (24.16% and 24.31%) of instruction variants are

legal. The distribution of faults in the test is similar between

two processors, where the majority (98.84% and 98.69%) of

the faults are caused by illegal instructions.

D. Code Generation and Execution

This step aims to generate the instruction gadget that can

change the given HPC event to the state S1. Recall that the

instruction gadget consists of a reset sequence and trigger

sequence. We randomly sample instructions from the cleaned

list to form the sequences, and test their impact on the

HPC event. To reduce the fuzzing complexity, we select one

instruction for each sequence, and the fuzzing results confirm

that this is enough. Our methodology can be easily extended to

multi-instruction sequences with larger search spaces, which

will be considered as future work.

We adopt the RDPMC instruction to read HPC values before

and after the gadget to measure the corresponding changes.

An increased count value indicates that the gadget may affect

201

the monitoring HPC event. We take several techniques to

make the measurement accurate and stable. (1) To reduce the

system noise caused by external factors (e.g., interrupts), we

properly configure the operating system environment for code

execution. By pinning the process to a specific CPU core, we

can prevent core transitions from affecting the measurement

of HPC values. Besides, we also isolate this entire physical

core (e.g., using the Linux kernel parameter isolcpus) to

ensure that the process is not interrupted by the scheduler. (2)

To avoid data corruptions caused by running the instruction

gadgets, the code is placed in a dedicated page with the

address space between a special prolog and epilog. The prolog

saves all callee-saved registers, and creates one page of scratch

space on the stack in case some instructions may trash stack

values. Furthermore, it initializes all registers that will be

used as memory operands to the address of a pre-allocated

writable data page. This prevents the corruption of process

memory and ensures that executed instructions access the

same memory page. The epilog restores the registers and stack

state, so that the architectural change can be reverted. (3) To

ensure the correct measurement of HPC register values, we

inject serializing instructions (e.g., CPUID) around the code

to regulate the execution flow.

E. Result Confirmation

This step further validates if a gadget reported by the

above step is indeed an obfuscating factor to the given HPC

event. We analyze the identified gadgets to eliminate other

side effects that can also affect the HPC event values, e.g.,

unreliable reset sequence whose side effects act as the trigger

sequence (Challenge C5) or dirty state inherited from previous

executions (Challenge C6). To remove those incorrect gadgets,

we propose the following mechanisms.

Multiple executions. As the external factors (e.g., hardware

interrupts) can disturb the counts of HPC events, we opt to

run the same gadget for multiple times and take the median

of measured values. The number of repeated executions sets

a trade-off between the fuzzing efficiency and confirmation

accuracy: more repetitions increase the confidence of the

confirmed results, but also cause longer fuzzing time. In our

implementation, we set this parameter to 10, which is proved

to be an appropriate value for balancing the trade-off.

Repeated triggers. To ensure the HPC value change is indeed

caused by the trigger sequence, rather than other undesired

side effects of the reset sequence, we also execute the code

with only the reset sequence (cold path), in addition to the one

with both reset and trigger sequences (hot path), as shown in

Fig. 6. In each path, we repeat the instruction sequence(s) for

R times. The median of the measured count changes is denoted

as v1 and v2, and the cumulative count changes are denoted as

V1 and V2, respectively for the cold and hot paths. When these

values meet the constraints: V2 − V1 = (1 − λ1)R(v2 − v1)
and V2 > λ2V1, we confirm that the event value change is

mainly caused by the trigger sequence, i.e., transitioning the

state to S1, and the reset sequence can actually change the

Reset Sequence

Reset Sequence Trigger Sequence

×N

×N

Cold Path

[v1, V1]

Hot Path

[v2, V2]

RDPMC RDPMC

Fig. 6: Execution of repeated triggers.

state back to S0 in each execution. Our implementation sets

λ1 as a range of [-0.2, 0.2] and λ2 = 10.

Gadgets reordering. In order to perform fuzzing as fast

as possible, we execute a generated gadget shortly after the

previous one, which can cause the dirty state and affect the

measurement. To address the issue, we reorder all the gadgets

randomly and repeat the executions. We ignore those gadgets

that have different behaviors in the reordered test. This can

mitigate the influence of repetitive dirty states and remove

incorrect candidates with cross-validation.

F. Gadgets Filtering

For a specific HPC event, there can be different instruction

sequence gadgets that can disturb its count value. In practice,

certain events like the Retired Instruction can be

affected by nearly all instruction executions. Hence, we need to

filter the confirmed gadgets from the previous step and cluster

them into groups with the same features. This is achieved

by analyzing the properties of reset sequences and trigger

sequences, including the extension and ISA (e.g., BASE or

X87-FPU) to which the instruction belongs, and the general

category (e.g., arithmetic or logical) of the instruction. The

intuition of such scheme is that these properties can strongly

indicate the root cause of the executed instructions in the

underlying microarchitectural level. This step can considerably

reduce the number of reported gadgets, and alleviate the

burden of the following analysis. Besides, we also extract

the gadget that causes the highest value change for each

HPC event, as it can lead to larger disturbance to the HPC

monitoring with fewer instructions executed.

VII. EVENT OBFUSCATOR

A. Challenges and Insight

To achieve the defense against HPC side channels, we need

to tackle two challenges: (1) How to provide provable privacy

guarantee for the HPC event obfuscation? (2) How to defeat

the attack with minimal introduced noise and performance

overhead? The key insight of our methodology is to model the

HPC side-channel defense as a differential privacy problem.

Previous works have proposed similar methods to mitigate

storage side channels [74] and streaming traffic leakages [80],

showing the security of systems injected with differential

privacy noise can be guaranteed with theoretical proof.

Let x denote the captured HPC leakage trace and x[t] denote

a slice of leakage values at time t. Specifically, to prevent

information leakage, we change the HPC measurement from

x[t] to x̃[t] = x[t] + rt, where rt denotes the random noise

following specific distributions. With the injected noise (i.e.,

202

instruction sequence gadget) by the victim VM, the malicious

hypervisor cannot distinguish the actual behaviors from x̃[t].
The scale of the random noise rt can dominate the defense

effectiveness, and is also restricted by the VM performance:

larger amount of random noise can improve the privacy at the

cost of extra performance overhead. Therefore, we leverage

the differential privacy principle to theoretically identify the

minimal noise under a given privacy budget, which can reduce

the impact on the VM performance.

B. Differential Privacy Mechanisms

We describe two mechanisms to generate the random noise

guided by differential privacy.

Laplace Mechanism. This is the most fundamental mech-

anism for differential privacy, which is achieved by adding

controlled noise from the Laplace distribution. As a symmetric

version of the exponential distribution, the Laplace distribution

can be represented by its Probability Density Function (PDF):

Lap(b) = 1
2bexp(− |x−μ|

b), where μ is the location and b
is the scale. Consider a Laplace distribution with μ = 0,

b =
�x[t]

ε , and 	x[t] = max
(x[t],x[t]′∈X)

|x[t] − x[t]′|, where

x[t] and x[t]′ are two adjacent series at time slice t. For

each sequence x in the monitored HPC sequence set X , the

Laplace mechanism computes a noisy sequence x̃ as follows:

x̃[t] = x[t] + rt, rt ∼ Lap(
�x[t]

ε). For simplicity, we set 	x[t]

to 1, as the sequence data have been normalized. We have the

following theorem:

Theorem 1. The Laplace mechanism A(x[t]) = x[t] +

Lap(
�x[t]

ε) satisfies ε-DP.

Proof. Let rt be the noise injected to x[t], i.e., rt ∼
Lap(

�x[t]

ε). We have

P(A(x[t]) = Z) =
ε

2�x[t]

exp (
−ε|rt − x[t]|

�x[t]

). (2)

Similarly, P(A(x[t]′) = Z) = ε
2�x[t]

exp (−ε|rt−x[t]′|
�x[t]

). Thus,

P(A(x[t]) = Z)

P(A(x[t]′) = Z)
= exp (

ε(|rt − x[t]′| − |rt − x[t]|)
�x[t]

)

≤ exp (
ε(|x[t]− x[t]′|)

�x[t]

) = exp(ε).

(3)

d* Mechanism. This mechanism is extended from Chan et
al. [23] and a particular distance metric d∗ is used to achieve
d-privacy. Assume x and x′ are two HPC event sequences,
the d∗ metric is defined as: d∗(x, x′) =

∑
t≥1 |(x[t] − x[t −

1])− (x′[t]−x′[t−1])|. Let N denote the natural numbers and
D(t) ∈ N denote the largest power of two that divides t, i.e.,
D(t) = 2j if and only if 2j | t and 2j+1 � t. The d* mechanism
computes the noisy x̃[t] as follows: x̃[t] = x̃[G(t)] + (x[t] −
x[G(t)]) + rt, where

G(t) =

⎧⎨
⎩

0 if t = 1
t/2 if t = D(t) ≥ 2
t−D(t) if t > D(t)

(4)

rt ∼
{

Lap(1
ε
) if t = D(t)

Lap(�log2t�
ε

) otherwise
(5)

Guest User Space

Kernel

Module

RDPMC
Launching Signal

Guest
Kernel

Netlink

Socket

r
r x[t]

N
Noise Calculator

(d* mechanism)

r
r
N = r

Noise Calculator

(Laplace mechanism)

N

Noise Injector

Load

AMD64
Hardware

NAE

VMGEXIT

Hypervisor

#VC

VMRUN

Fig. 7: Workflow of Event Obfuscator.

Theorem 2. The d∗ mechanism satisfies (d∗, 2ε)-privacy.

Proof. It was proven by Xiao et al. [74]. We omit the proof

details here due to the page limit.

Comparisons. The Laplace mechanism is relatively simple

and exhibits acceptable privacy guarantee. Furthermore, it suits

for a much stricter threat model, where the malicious host

even controls and manipulates the calls reading the HPCs. In

comparison, for the d∗ mechanism, the noise added to each

x[t] is closely related to its previous sequences. This intuitively

increases the randomness between adjacent sequences, thereby

providing better privacy guarantee. However, it is not well

suitable for systems requiring high real-time processing speed.

Besides, given the limited number of available HPC registers

on the processor, the number of concurrently protected events

is also restricted. Therefore, d∗ mechanism is better suited

for reinforcing protection for multiple critical HPC events.

We implement both mechanisms in Aegis and experimentally

discuss their merits and demerits in Sec.VIII. In practical sce-

narios, customers can choose an appropriate strategy according

to the actual system conditions and demands.

C. Design Details

We implement the online Event Obfuscator as a portable

software suite in the victim VM. It is triggered by the cloud

customer whenever the critical applications to be protected are

launched. Fig. 7 shows the workflow of our implementation.

It consists of two components: (1) a kernel module is used

to launch the protection service and monitor the HPC values

for the computation of d∗-noise in the d∗ mechanism; (2) a

userspace daemon is used to calculate the amount of random

noise and inject it into the execution flow of the VM.

Specifically, the kernel module mainly plays the role of

a controller. After receiving the launching signal from the

user, it wakes up the userspace daemon. If Aegis adopts the

d∗ mechanism, the module also needs to monitor the real-

time HPC event values x with the RDPMC instruction. The

recorded HPC values are sent to the userspace daemon with the

netlink sockets for the subsequent noise generation, which

is computation-inefficient in the kernel mode. The userspace

daemon consists of two components: noise calculator and

noise injector. To support high injection rates, we need to

accelerate the calculation of noise value. Hence, the noise

calculator maintains a buffer to store the precomputed random

noise sequence r following Lap(1ε) for Laplace mechanism

or Eq. 5 for d∗ mechanism. Note that the random number r
is directly transferred from the uniform distribution in [0, 1],

203

while using library APIs introduces much longer latency. For

the Laplace mechanism, the calculated r is the noise. For the

d∗ mechanism, HPC values x[t] sent from the kernel module

are stored to calculate noise.

After the calculation, the noise injector is called to add

the identified amount of noise, i.e., instruction gadgets, into

the VM’s execution flow. In theory, we can obfuscate each

vulnerable HPC events by injecting its corresponding noise

gadgets. However, given it usually has hundreds of vulnerable

events, such method also introduces hundreds of injected

gadgets, which may lead to large performance overhead. In

the practical implementation, the identified gadget sets for

various HPC events usually have intersections, which allow

a gadget to interfere more than one event. For example, gad-

gets corresponding to HW_CACHE_L1D:WRITE can induce

changes in almost cache-related events. Therefore, the optimal

solution is to extract the smallest gadget set that can cover

the most vulnerable events. In our settings, to cover all 137

vulnerable HPC events, we only require 43 instruction gadgets,

which hence significantly reduces the overhead invoked by

instruction injection. By stacking these gadgets together, we

conduct a code segment that executes repeatedly to inject noise

to vulnerable HPC events. The number of repetitions of the

code execution is determined by the noise value computed

from the noise calculator. This will not affect the original

VM execution, and the incurred performance cost is acceptable

under a satisfactory privacy budget.

In our implementation, we explicitly pin Event Obfuscator

and protected applications to the same virtual CPU core, so

that the malicious hypervisor cannot arrange them to different

physical cores, and cannot distinguish to bypass our defense.

Note that with the protection of SEV, processes on the same

virtual CPU core are indistinguishable for the hypervisor even

it owns the highest privilege.

VIII. EVALUATION

A. Profiling Evaluation

With the warm-up profiling, we can compact the number of

vulnerable HPC events from M to N , where M denotes the

number of all available HPC events and N is the number of

filtered vulnerable events. In our settings, the value of M is

6166 for Intel CPU and 1903 for AMD CPU. Hence, the time

spent on this step is TW = (M× tw×2)/C, where C denotes

the number of available HPC registers that support concurrent

monitoring (e.g., C = 4 in our testbed), and tw denotes the

monitoring time for each HPC event (e.g., 1 second in our

implementations). Note that the profiling of M events should

be performed twice to compare their counts. As a result, the

warm-up profiling takes 0.85 hours on Intel CPU and 0.26

hours on AMD CPU.

To further estimate the vulnerability of filtered HPC events,

we compute the information gain induced by the event values

to infer the application secret. For each specified secret (i.e.,

45 websites, standard keystrokes or 30 DNN models used in

Section III) of the target application, given a specific HPC

event, the application is repeatedly executed for 100 times

(a) Website access. (b) Keystroke. (c) Model execution.

Fig. 8: The mutual information of each HPC event.

to launch the secret, e.g., visiting a selected website. Then

we repeat the operation for each HPC event profiled from

the warm-up profiling, which finally generates N × S × 100
leakage traces, where S is the size of the specified secret

set. Therefore, the time spent on this profiling step can be

calculated as TP = (N × S × 100 × tp)/C, where tp is the

profiling time for each event and still 1 second in our settings.

Specially, the three target applications in our experiments take

42.81 hours, 9.51hours and 28.54 hours, respectively. Note

that this time cost has large space for optimization, e.g., the

number of repeated executions can be reduced to 10 times,

which is enough for a rough analysis.

The mutual information is computed following Eq. 1. Fig. 8

shows the mutual information of each HPC event for website

accesses, keystrokes and DNN model executions occurred in

an SEV VM. A higher mutual information reflects higher

relevance between the event and the victim application, i.e., the

event is a more vulnerable attack surface. We can see that Fig.

8a and 8b drop much faster than Fig. 8c, meaning that for the

DNN model execution attack there are more vulnerable HPC

events. It is because DNN models invoke more interactions

with the underlying hardware, e.g., memory accesses and

logical calculation, which lead to more HPC leakages.

B. Fuzzing Evaluation

We run Event Fuzzer on two processors (i.e., Intel Xeon

E5-1650 and AMD EPYC 7252) and evaluate the performance

of the fuzzing process. For the Intel CPU, 3386 instructions

remain after the cleanup step, leading to a total of 33862 =
11, 464, 996 possible instruction gadgets. These gadgets are

repeatedly fuzzed for each profiled HPC event obtained from

Application Profiler, thus performing 738 repetitions. A full

fuzzing run terminated in 9.3 hours, which results in a through-

put of 253,314 gadgets per second. For the AMD processor,

while it similarly has 34072 = 11, 607, 649 usable gadgets,

the fuzzing process can be completed in just 2.2 hours, as

the processor has much less (i.e., 137) usable HPC events for

executing repetitions. The throughput of fuzzing is similar,

which reaches 235,449 gadgets per second. Table III shows

the detailed time consumption for each step in the fuzzing

process. It can be seen that the generation and execution of

gadgets take the most amount of fuzzing time, while other

three steps can be achieved in a short time.

After the filtering step, most HPC events only correspond to

hundreds or even dozens of usable gadgets, but there are still

multiple events corresponding to numerous (e.g., thousands of)

gadgets. Availability of more gadgets means we have more

204

CPU Processor
Time Consumption (seconds)

Cleanup Generation + Execution Confirmation Filtering

Intel Xeon E5-1650 < 1 33210 132 60
AMD EPYC 7252 < 1 7791 29 18

TABLE III: Time consumption for each fuzzing step.

(a) Train w/o noise (b) Train with noise (c) Real mutual info

Fig. 9: Impact of ε on various attacks.

choices to obfuscate the HPC event, but it also introduces

higher analysis complexity. In the Intel CPU, the mean and

median value of the gadgets for all events are 892 and

505, respectively. The event with the most fuzzed gadgets

(i.e., 9934) is MEM_LOAD_UOPS_RETIRED:L1_HIT. In

the AMD CPU, the mean and median are 617 and 440,

where the event with the most usable gadgets (i.e., 6219) is

RETIRED_MMX_FP_ INSTRUCTIONS:SSE_INSTR. It can

be seen that events related to the instruction numbers usually

tend to be more vulnerable, as they can be modified by most

executing instructions. This observation is matched with the

profiled results from the above Application Profiler.

C. Defense Effectiveness

To evaluate the effectiveness of Aegis against HPC side-

channel attacks, we vary the privacy budget ε, and measure

its impact on the attack accuracy. The experiment settings are

the same as shown in Section III. As the number of injected

instruction gadgets cannot be negative, each noise element

is truncated by a clip bound of [0, Bu], where the upper

bound Bu is determined empirically based on the profiling

of HPC events. For example, we set Bu = 2e4 for the event

RETIRED_UOPS. According to the attacker’s capabilities, we

consider the following two scenarios:

First, the attacker trains the attack model on clean data

collected from the template VM, as the victim VM is a black

box for him. Most realistic side-channel attacks follow this

case, including our attack cases in Sec.III. Figure 9a shows

the impact of privacy budget ε on the accuracy of three attacks

for the Laplace and d∗ mechanisms. The value of ε is set as

[2−3, 2−2, ..., 23]. From this figure, we can summarize four

remarks: (1) both mechanisms can effectively mitigate HPC

side-channel attacks, which decrease the attack accuracy from

> 90% to 2%; (2) a larger ε leads to a higher attack accuracy,

since it adds less noise; (3) with the same ε, d∗ mechanism

can provide stronger privacy guarantee, especially for large ε
(e.g., ε ≥ 20); (4) WFA and KSA are more sensitive to the

noise than MEA, as their accuracy decrease much faster with

the increase of noise. It may be because website accesses and

keystrokes have more similar leakage patterns that are easier

to be affected by the injected noise.

Fig. 10: Impact of ε on the latency overhead (upper) and CPU

usage (lower).

Second, we consider a more powerful attacker, who knows

the defense details adopted in the VM (e.g., the privacy

mechanism, the value of ε). In this case, the attacker can

train his attack model with noisy data to increase the model’s

robustness in the exploitation phase. Figure 9b shows the

attack accuracy of such models under the defense with our

Aegis, where ε ∈ [2−8, 2−7, ..., 23]. We observe that d∗

mechanism can still defeat these advanced attacks well, while

Laplace mechanism requires a smaller ε to suppress the attack

accuracy. We conclude that by slightly decreasing the privacy

budget, Aegis can still mitigate HPC attacks even when the

attack model is trained in a more robust approach. Given it

needs to inject more noise, the defense would induce much

larger overhead. However, as such an attacker is too strong

and is nearly impossible in the practical scenario, we would

not consider it in our following efficiency analysis.

Note that our defense is effective for all machine learning

based attack models, as the correlation between the HPC side

channels and the running secrets are significantly reduced.

Fig. 9c shows the value of real mutual information I(X ;X ′)
between the clean HPC leakage traces X and the noised HPC

leakage traces X ′ under different size of noise. It can be seen

that with the increased noise (i.e., smaller ε), the value of

I(X ;X ′) keeps decreasing to a small value. Hence, the mutual

information I(X ′;Y) between the noised trace X ′ and the

secret Y also decreases equivalently [30]. Therefore, although

we only show three attack cases in this paper, the effectiveness

of our method can be well guaranteed on other attacks.

D. Defense Efficiency

As keystrokes are transient actions that only take negligible

resources, we mainly focus on the defense against WFA and

MEA. We evaluate the efficiency of Aegis from latency

overhead and CPU usage. Figure 10 shows the overhead

invoked by various mechanisms.

First, we assess the impact of Aegis on the performance

of the protected applications in the VM. For each test, we

continually access 45 websites or run 30 DNN models to

measure the execution time. Figure 10 shows the average time

of loading a website and running a model inference under

two DP mechanisms with different ε values in Aegis. The

website loading time is recorded by the built-in development

tool in the Chrome browser, while the DNN model inference

time is measured by a timer written in python. From the

figure, we can find that (1) smaller ε leads to longer execution

205

Fig. 11: Attack accuracy with the random noise

time, as more noisy instructions are injected; (2) under the

same ε, d∗ mechanism induces more overhead than Laplace

mechanism. To guarantee privacy against attacks, we select

ε = 20 for Laplace mechanism (marked with shadow), which

causes 3.18% and 4.36% overhead on the execution time of

website accesses and model inferences. For d∗ mechanism,

ε = 23 is enough to mitigate attacks, where the execution

time increases by 3.94% and 4.95% for the two applications.

Hence, the time overhead introduced by Aegis is slight.

Second, we measure the impact of Aegis on the VM

resource consumption by monitoring its CPU utilization. As

Aegis injects instruction gadgets into the VM’s executions,

it may consume extra CPU resources with certain overhead.

According to the basic feature of differential privacy, i.e.,

the statistical characteristics of noisy result x̃ are similar to

the original data x, we speculate such cost penalty caused

by Aegis should be small. Figure 10 shows the CPU usage

of the victim VM under two DP mechanisms. The VM’s

CPU usage is measured from the host with the top tool

every 0.2 seconds and each usage value is the average of 5

experiments. Specifically, Aegis has smaller influence on the

website accesses, which may be because they involve fewer

CPU interactions. With Laplace mechanism, the CPU usage

penalty introduced by Aegis is 6.92% and 7.87% for website

accesses and model inferences. For d∗ mechanism, it is 7.64%

and 8.66%. Hence, Aegis only leads to a small CPU overhead.

IX. DISCUSSION

A. Alternative Defense Strategies

Constant HPC output. Setting the HPC output to a constant

can also mask HPC side channels. However, such method

is actually impractical in the real implementation. To make

the HPC output as a constant, we must add more counts

(i.e., noise) to the original HPC values, until reaching the

peak HPC value p in the leakage trace. It introduces much

more noise than our solution. For example, to obfuscate the

leakage of accessing www.youtube.com, setting the HPC event

(e.g., DATA_CACHE_REFILLS_FROM_SYSTEM) values to a

constant p totally introduces 595,371,616 event counts, while

our Laplace mechanism only introduces 33,090,214 events.

Hence, constant HPC output invokes nearly 18× more noise,

which is an overkill defense.

Random noise. Instead of the DP noise, simply adding

random noise can also obfuscate the HPC leakage. However,

this strategy has two limitations. First, such random noise

cannot provide a provable privacy guarantee, which still ex-

poses the encrypted VM to the leakage threat. Second, this

strategy usually introduces more noise than DP mechanisms

to achieve the same privacy protection. We use different scales

of random noise to obfuscate the HPC leakage and the attack

accuracy is shown in Fig. 11. The x-axis denotes the upper

bound of random noise in the range of [0, 0.5] × p, where

p denotes the peak HPC value in the leakage trace. In the

figure, we also label the amount of Laplace noise (ε = 20)

required to effectively defeat the attack, i.e., decreasing the

attack accuracy to < 5%. With the same amount of injected

noise, random noise mechanism can only decrease the attack

accuracy to 32%, which is much higher than DP mechanisms.

Besides, we also show the attack accuracy under the effective

defense with the DP noise. To achieve the same accuracy, the

upper bound of random noise needs to be at least 0.4p, which

introduces 4.37× more noise than the Laplace mechanism.

Isolating guest HPCs. The root cause of HPC side channels

is the sharing of HPC registers between the guest and host.

Hence, isolating guest HPCs from the malicious host can

fundamentally eliminate such side channels, as demonstrated

by Intel TDX. However, since this defense necessitates specific

hardware modifications, it is not feasible for existing SEV-

based systems, which motivates our software-based solution.

While our work can effectively and efficiently mitigate HPC

side channels on SEV VMs, it still introduces extra overhead

and is not the optimal solution for defending such hardware

side channels. Hence, we advocate for AMD to enhance their

hardware design, which is a promising alternative of our

software design to address this issue from the root.

B. Analysis with Multiple Tries

The injected noise to the HPC leakage traces actually can be

averaged out by the attacker by obtaining a group of leakage

traces corresponding to the same secret [30]. However, in the

practical scenario, the adversarial hypervisor cannot force the

user VM to repeatedly run the same secret for many times.

Hence, the adversary cannot collect multiple leakage traces

with the same secret to remove the impact of injected noise.

Besides, even if the adversary can collect such multiple traces,

the attack can be easily defeated by attaching a constant secret-

dependent noise to the execution so that the adversary cannot

average out the injected noise through analyzing multiple

leakage traces. Such method can well protect the user secrets

and also reduce the overhead of noise generation.

X. CONCLUSION

In this paper, we propose Aegis, a unified framework

that can mitigate HPC side-channel attacks with a provable

privacy guarantee and minimal performance overhead. It also

comprehensively profiles the vulnerability of HPC events, and

automatically demystifies the correlations between the specific

instruction gadgets and HPC event statistics. Our future works

aim to study the defense effect of noise gadgets with more in-

structions, and investigate the effectiveness of Aegis on more

fine-grained attacks, e.g., stealing cryptographic keys. Besides,

we also tend to generalize our framework to more micro-

architectural attacks, e.g., cache and memory side channels,

Meltdown [53] and Spectre [48] attacks, or the latest voltage

glitching attack [22].

206

XI. ACKNOWLODGEMENT

This research/project is supported by the National Research

Foundation, Singapore under its AI Singapore Programme

(AISG Award No: AISG2-PhD-2021-08-023[T]), the Cyber

Security Agency of Singapore under its National Cybersecu-

rity Research & Development Programme (Development of

Secured Components & Systems in Emerging Technologies

through Hardware & Software Evaluation <NRF-NCR25-

DeSNTU-0001>). Any opinions, findings and conclusions or

recommendations expressed in this material are those of the

author(s) and do not reflect the view of National Research

Foundation, Singapore and Cyber Security Agency of Singa-

pore.

REFERENCES

[1] Alexa top 1000 most visited websites. [Online]. https://www.htmlstrip.
com/alexa-top-1000-most-visited-websites.

[2] Amazon ec2 user guide. [Online]. https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/sev-snp.html.

[3] Amd expands confidential computing presence on google cloud.
[Online]. https://www.amd.com/en/press-releases/2022-05-25-amd-
expands-confidential-computing-presence-google-cloud.

[4] Amd secure encrypted virtualization (sev) github repository. [Online].
https://github.com/AMDESE/AMDSEV.

[5] Amd64 architecture programmer’s manual, volume 2: System program-
ming. [Online]. https://www.amd.com/system/files/TechDocs/24593.pdf.

[6] Arm confidential compute architecture. [Online]. https://www.arm.com/
architecture/security-features/arm-confidential-compute-architecture.

[7] Azure confidential vm options. [Online]. https://learn.microsoft.com/
en-us/azure/confidential-computing/virtual-machine-solutions.

[8] Azure linux virtual machines pricing. [Online]. https://azure.microsoft.
com/en-gb/pricing/details/virtual-machines/linux/.

[9] Confidential computing: an aws perspective. [Online].
https://aws.amazon.com/blogs/security/confidential-computing-an-
aws-perspective/.

[10] Google cloud confidential vm overview. [Online]. https:
//cloud.google.com/confidential-computing/confidential-vm/docs/
confidential-vm-overview.

[11] Google confidential vm supported configurations. [Online].
https://cloud.google.com/confidential-computing/confidential-vm/
docs/supported-configurations.

[12] Intel tdx module specification 1.5. [Online]. https://cdrdv2.intel.com/
v1/dl/getContent/733575.

[13] Intel® trust domain extensions (intel® tdx). [Online].
https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-trust-domain-extensions.html.

[14] Linux kernel profiling with perf: multiplexing and scaling events.
[Online]. https://perf.wiki.kernel.org/index.php/Tutorial#multiplexing
and scaling events.

[15] perfmon2 libpfm-4.11.0 released. [Online]. http://perfmon2.sourceforge.
net/.

[16] Pytorch models and pretrained weights. [Online]. https://pytorch.org/
vision/stable/models.html.

[17] Ubuntu manpage for xdotool. [Online]. https://manpages.ubuntu.com/
manpages/trusty/man1/xdotool.1.html.

[18] Andreas Abel and Jan Reineke. uops.info: Characterizing latency,
throughput, and port usage of instructions on intel microarchitectures.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 673–686, 2019.

[19] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik,
and Thorsten Holz. Redqueen: Fuzzing with input-to-state correspon-
dence. In NDSS, volume 19, pages 1–15, 2019.

[20] Sarani Bhattacharya and Debdeep Mukhopadhyay. Who watches the
watchmen?: Utilizing performance monitors for compromising keys
of rsa on intel platforms. In Proceedings of CHES, pages 248–266.
Springer, 2015.

[21] Tim Blazytko, Matt Bishop, Cornelius Aschermann, Justin Cappos,
Moritz Schlögel, Nadia Korshun, Ali Abbasi, Marco Schweighauser,
Sebastian Schinzel, Sergej Schumilo, et al. {GRIMOIRE}: Synthesizing
structure while fuzzing. In 28th USENIX Security Symposium (USENIX
Security 19), pages 1985–2002, 2019.

[22] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre
Seifert. One glitch to rule them all: Fault injection attacks against
amd’s secure encrypted virtualization. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages
2875–2889, 2021.

[23] T-H Hubert Chan, Elaine Shi, and et al. Private and continual release of
statistics. ACM Transactions on Information and System Security, 2011.

[24] Konstantinos Chatzikokolakis, Miguel E Andrés, and et al. Broadening
the scope of differential privacy using metrics. In Proceedings of PETs,
2013.

[25] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang.
Detecting privileged side-channel attacks in shielded execution with déjá
vu. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, pages 7–18, 2017.

[26] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Ben-
gio. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014.

[27] Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit
Raychowdhury, and Shreyas Sen. X-deepsca: Cross-device deep learn-
ing side channel attack. In Proceedings of the 56th Annual Design
Automation Conference 2019, pages 1–6, 2019.

[28] Sanjeev Das, Bihuan Chen, and et al. Ropsentry: Runtime defense
against rop attacks using hardware performance counters. Computers
& Security, 73:374–388, 2018.

[29] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Polychronakis,
and Fabian Monrose. Sok: The challenges, pitfalls, and perils of using
hardware performance counters for security. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 20–38. IEEE, 2019.

[30] Eloi de Chérisey, Sylvain Guilley, Olivier Rioul, and Pablo Piantanida.
Best information is most successful. Cryptology ePrint Archive, 2019.

[31] Wladimir De la Cadena, Asya Mitseva, and et al. Trafficsliver: Fighting
website fingerprinting attacks with traffic splitting. In Proceedings of
ACM CCS, 2020.

[32] Christopher Domas. Breaking the x86 isa. Black Hat, 2017.
[33] Xiaowan Dong, Zhuojia Shen, John Criswell, Alan L Cox, and Sandhya

Dwarkadas. Shielding software from privileged side-channel attacks. In
27th {USENIX} Security Symposium ({USENIX} Security 18), pages
1441–1458, 2018.

[34] Cynthia Dwork. Differential privacy. In Proceedings of ICALP, pages
1–12. Springer, 2006.

[35] Ramanathan Gnanadesikan and Martin B Wilk. Probability plotting
methods for the analysis of data. Biometrika, 55(1):1–17, 1968.

[36] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmid-
huber. Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks. In Proceedings of the 23rd
international conference on Machine learning, pages 369–376, 2006.

[37] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan
Haller, and Manuel Costa. Strong and efficient cache side-channel
protection using hardware transactional memory. In USENIX Security
Symposium, pages 217–233, 2017.

[38] Berk Gulmezoglu, Andreas Zankl, and et al. Perfweb: How to violate
web privacy with hardware performance events. In Proceedings of
ESORICS, pages 80–97, 2017.

[39] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. Codealchemist:
Semantics-aware code generation to find vulnerabilities in javascript
engines. In NDSS, 2019.

[40] Felicitas Hetzelt and Robert Buhren. Security analysis of encrypted
virtual machines. In ACM SIGPLAN Notices, 2017.

[41] Sam Hocevar. Zzuf. [Online]. https://github.com/samhocevar/zzuf/.
[42] Shohreh Hosseinzadeh, Hans Liljestrand, Ville Leppänen, and Andrew

Paverd. Mitigating branch-shadowing attacks on intel sgx using control
flow randomization. In Proceedings of the 3rd Workshop on System
Software for Trusted Execution, pages 42–47, 2018.

[43] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Interna-
tional conference on machine learning, pages 448–456. PMLR, 2015.

[44] Suman Jana and Vitaly Shmatikov. Memento: Learning secrets from
process footprints. In 2012 IEEE Symposium on Security and Privacy,
pages 143–157. IEEE, 2012.

207

[45] Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf. Trusted
execution environments: properties, applications, and challenges. IEEE
Security & Privacy, 18(2):56–60, 2020.

[46] David Kaplan. Protecting vm register state with sev-es. White paper,
2017.

[47] David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryp-
tion. White paper, 2016.

[48] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1–19. IEEE,
2019.

[49] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside sgx
enclaves with branch shadowing. In USENIX Security Symposium,
volume 19, pages 16–18, 2017.

[50] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. Crossline: Breaking”
security-by-crash” based memory isolation in amd sev. In Proceedings
of ACM CCS, 2021.

[51] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. Exploiting
unprotected I/O operations in AMD’s secure encrypted virtualization. In
28th USENIX Security Symposium (USENIX Security 19), pages 1257–
1272, 2019.

[52] Moritz Lipp, Daniel Gruss, and et al. Armageddon: Cache attacks on
mobile devices. In USENIX Security Symposium, 2016.

[53] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. Meltdown: Reading kernel memory from user space. In
27th USENIX Security Symposium (USENIX Security 18), pages 973–
990, 2018.

[54] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In 2015 IEEE
symposium on security and privacy, pages 605–622. IEEE, 2015.

[55] Xiaoxuan Lou, Shangwei Guo, Jiwei Li, Yaoxin Wu, and Tianwei Zhang.
Naspy: Automated extraction of automated machine learning models. In
International Conference on Learning Representations, 2021.

[56] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. The art, science,
and engineering of fuzzing: A survey. IEEE Transactions on Software
Engineering, 47(11):2312–2331, 2019.

[57] Mathias Morbitzer, Manuel Huber, and et al. Severed: Subverting amd’s
virtual machine encryption. In Proceedings of EuroSec, 2018.

[58] Mathias Morbitzer, Sergej Proskurin, Martin Radev, Marko Dorfhuber,
and Erick Quintanar Salas. Severity: Code injection attacks against
encrypted virtual machines. In 2021 IEEE Security and Privacy
Workshops (SPW), pages 444–455. IEEE, 2021.

[59] Karl Pearson. Liii. on lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin philosophical magazine
and journal of science, 2(11):559–572, 1901.

[60] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah.
Trusted execution environment: what it is, and what it is not. In 2015
IEEE Trustcom/BigDataSE/Ispa, volume 1, pages 57–64. IEEE, 2015.

[61] AMD SEV-SNP. Strengthening vm isolation with integrity protection
and more. White Paper, January, 2020.

[62] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-
sgx: Eradicating controlled-channel attacks against enclave programs.
In NDSS, 2017.

[63] Anatoly Shusterman, Lachlan Kang, and et al. Robust website finger-
printing through the cache occupancy channel. In USENIX Security
Symposium, 2019.

[64] Payap Sirinam, Mohsen Imani, and et al. Deep fingerprinting: Undermin-
ing website fingerprinting defenses with deep learning. In Proceedings
of ACM CCS, 2018.

[65] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis
of keystrokes and timing attacks on SSH. In 10th USENIX Security
Symposium (USENIX Security 01), 2001.

[66] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–
1958, 2014.

[67] M Caner Tol, Berk Gulmezoglu, Koray Yurtseven, and Berk Sunar.
Fastspec: Scalable generation and detection of spectre gadgets using
neural embeddings. In 2021 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 616–632. IEEE, 2021.

[68] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction apis. In
USENIX Security Symposium, pages 601–618, 2016.

[69] Leif Uhsadel, Andy Georges, and Ingrid Verbauwhede. Exploiting
hardware performance counters. In Proceedings of FDTC-Workshop,
2008.

[70] Xueyang Wang and Ramesh Karri. Reusing hardware performance
counters to detect and identify kernel control-flow modifying rootkits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 35(3):485–498, 2015.

[71] Daniel Weber, Ahmad Ibrahim, Hamed Nemati, Michael Schwarz, and
Christian Rossow. Osiris: Automated discovery of microarchitectural
side channels. In 30th USENIX Security Symposium (USENIX Security
21), pages 1415–1432, 2021.

[72] Jan Werner, Joshua Mason, and et al. The severest of them all: Inference
attacks against secure virtual enclaves. In Proceedings of ACM AsiaCCS,
2019.

[73] Yun Xiang, Zhuangzhi Chen, Zuohui Chen, Zebin Fang, Haiyang Hao,
Jinyin Chen, Yi Liu, Zhefu Wu, Qi Xuan, and Xiaoniu Yang. Open dnn
box by power side-channel attack. IEEE Transactions on Circuits and
Systems II: Express Briefs, 67(11):2717–2721, 2020.

[74] Qiuyu Xiao, Michael K Reiter, and Yinqian Zhang. Mitigating storage
side channels using statistical privacy mechanisms. In Proceedings of
ACM CCS, pages 1582–1594, 2015.

[75] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. Speechminer:
A framework for investigating and measuring speculative execution
vulnerabilities. arXiv preprint arXiv:1912.00329, 2019.

[76] Mengjia Yan, Christopher W Fletcher, and Josep Torrellas. Cache telepa-
thy: Leveraging shared resource attacks to learn DNN architectures. In
USENIX Security Symposium, 2020.

[77] Ning Zhang, Kun Sun, and et al. Truspy: Cache side-channel information
leakage from the secure world on arm devices. IACR Cryptol. ePrint
Arch., 2016:980, 2016.

[78] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. Cloudradar: A real-
time side-channel attack detection system in clouds. In Proceedings of
RAID, pages 118–140. Springer, 2016.

[79] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. Analyzing cache side
channels using deep neural networks. In Proceedings of the 34th Annual
Computer Security Applications Conference, pages 174–186, 2018.

[80] Xiaokuan Zhang, Jihun Hamm, and et al. Statistical privacy for
streaming traffic. In Proceedings of NDSS, 2019.

208

