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ABSTRACT 

The automatic evaluation of text-based assessment items, such as 

short answers or essays, is an open and important research 

challenge. In this paper, we compare several features for the 

classification of short open-ended responses to questions related 

to a large first-year health sciences course. These features include 

a) traditional n-gram models; b) entity URIs (Uniform Resource 

Identifier) and c) entity mentions extracted using a semantic 

annotation API; d) entity mention embeddings based on GloVe, 

and e) entity URI embeddings extracted from Wikipedia. These 

features are used in combination with classification algorithms to 

discriminate correct answers from incorrect ones. Our results 

show that, on average, n-gram features performed the best in 

terms of precision and entity mentions in terms of f1-score. 

Similarly, in terms of accuracy, entity mentions and n-gram 

features performed the best. Finally, features based on dense 

vector representations such as entity embeddings and mention 

embeddings obtained the best f1-score for predicting correct 

answers. 
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1. INTRODUCTION 
Due to the growth of Massive Open Online Courses (MOOCs) 

and increased class sizes in traditional higher education settings, 

the automatic evaluation of answers to open-ended questions has 

become an important challenge and one which has yet to be fully 

resolved. On the other hand, it has been shown that open-ended 

assessments are better able to capture a higher level of 

understanding of a subject than other machine-scored assessment 

items [24]. Still, MOOCs usually rely on multiple-choice 

questions since the evaluation of open-ended assessments 

requires more resources in massive online courses [32]. The 

human effort required to manually evaluate students' answers has 

escalated with the spread of large-scale courses that enroll several 

hundred, or even thousands of students. To tackle this challenge, 

we analyze textual responses to a set of open-ended questions 

designed to encourage deep responses from students. We explore 

the use of vector space models (VSMs) that represent each answer 

with a real-valued vector, and evaluate those models on the task 

of classifying student responses into correct and not-correct. In 

particular, we examine and evaluate different feature sets that can 

be automatically derived from students' answers and used to 

represent those answers as vectors in a high dimensional space. 

The examined features do not require handcrafting based on the 

particularities of specific questions. Our main objective is to 

examine and compare the predictive power of different text 

features, automatically extracted from a corpus of answers to 

open-ended questions, on multiple classification algorithms. 

We build VSMs using different text representations that result in 

either a sparse VSM (e.g., n-gram based VSM) or a dense VSM 

(e.g., VSM based on word embeddings). For sparse VSMs, we 

explore traditional n-gram features (unigrams, bigrams, trigrams, 

and n-grams that combine all of the previous features). We also 

investigate the usefulness of semantic annotations of students’ 

responses for the classification task. Semantic annotation adds 

machine-readable meaning in the form of entities [21]. Hence, it 

enables the association of students' answers with vectors of 

domain-specific entities. Semantic annotators often rely on open 

Web-based knowledge bases such as DBpedia [13], an RDF 

representation of Wikipedia's semi-structured content. For 

example, given the entity Aorta, identified by a semantic 

annotator, we obtain its associated Web resource from DBpedia 

(http://dbpedia.org/page/Aorta), which further links to other 

related entities and properties from DBpedia. We make use of two 

semantic annotators: DBpedia Spotlight [19] and TAGME [6]. 

We query each annotator with the students’ responses to obtain 

entities mentioned in the response. For each entity, we take the 

entity label and use it as entity mention feature, whereas the 



   

 

   

 

entity’s Uniform Resource Identifier (URI) is used as entity URI 

feature.  

To build a dense VSM, we rely on the entity mentions identified 

through semantic annotation and pre-trained word and entity 

embeddings. In particular, we retrieve vector representations of 

entity mentions using a GloVe model pre-trained on Wikipedia 

dumps [23]. Thus, our fourth feature set consists of entity mention 

embeddings based on GloVe. Finally, we represent entity URIs 

using a Wiki2Vec model trained on Wikipedia dumps to obtain 

another dense VSM. Hence, entity URI embeddings extracted 

from Wikipedia constitute our fifth feature set. 

Given the short length of most answers and large vocabularies 

providing sparse vectors, we decided to include the last two sets 

of features to produce dense vector representations. In fact, dense 

vectors have shown an increase in performance for several natural 

language processing tasks [15]. Both GloVe [23] and Word2vec 

models [20] learn vector representations of words (called word 

embeddings) based on context. In total, we compare five types of 

features (n-gram, entity mentions, entity URIs, mention 

embeddings and entity embeddings) to train classification models 

to automatically label each student answer as correct or incorrect. 

The rest of the paper is structured as follows: In Section 2, we 

present related work on automatic short answer grading. Then, we 

introduce our methodology, including the corpus description, our 

analysis pipeline and an in-depth description of our features. 

Section 5 describes the results of our experiments followed by the 

analysis of the effect of feature selection on our classifiers in 

Section 6. Finally, we discuss our findings and conclude the paper 

in Section 7 and 8. 

2. RELATED WORK 
One of the hot topics in the field of educational data mining is 

automatic short answer (response) grading (ASAG). In general, 

there are two kinds of ASAG approaches: response-based and 

reference-based [27]. In this paper, we analyze students' answers 

based on the response-based approach, which focuses only on 

students’ answers. In contrast, reference-based ASAG also rely 

on the comparison of the student answer to the model answer.  

Burrows et al. [4] classified all types of approaches to ASAG into 

five categories (eras): Concept mapping [8, 10, 12], Information 

extraction [5], Corpus-based methods [11], Machine learning, and 

Evaluation [28, 30]. In the Machine Learning approach, which is 

the approach followed in this study, the trend is to build models 

(supervised or unsupervised) through data mining and natural 

language processing techniques in order to assess students' 

answers.  

ASAG systems can also be categorized into semi-automatic 

(teacher-assisted) and fully-automatic systems. In semi-automatic 

systems, students' answers are processed (clustered) to facilitate 

the grading process. For example, Basu [1] applied k-medoids 

clustering to students' answers to ease the grading process. In 

another work, Jayashankar [9] proposed an integration of data 

mining and word clouds to help teachers evaluate student answers 

through visualization.  

Fully-automatic systems produce grades for each student, with or 

without additional feedback. Several features are considered in 

training these systems: lexical features (e.g. word length), 

syntactic features (e.g. sentence length and part-of-speech), 

semantic features (e.g. semantic annotations and triples), 

discursive features (e.g. referential expressions), statistical 

features (e.g. language modelling like n-grams and embeddings), 

and similarity features (e.g. cosine similarity).  

McDonald et al. [17, 18] evaluated Naive Bayes and Max Ent 

classifiers using a number of features like bag of words, word 

length, and word and character n-grams. Madnani et al. [14] used 

these types of features in combination with triples to examine the 

performance (accuracy) of 8 different classifiers and regressors 

(linear and nonlinear). In another work, Riordan et al. [26] 

combined n-gram features, answer length, and word and character 

embeddings to compare the performance of SVM (as a baseline) 

with neural architectures. In several approaches, features based 

on the similarity between the students’ responses and the teacher's 

response were used together with n-grams. For example, 

Sakaguchi et al. [27] used stacked generalization [31] to integrate 

response-based and reference-based models. In particular, 

Sakaguchi et al. first built a classifier based on sparse response-

based features (e.g. character n-gram and word n-gram); the 

obtained predictions were combined with dense reference-based 

features (e.g. BLEU [22]) to build another stacked classifier. Both 

classifiers were built as support vector regression (SVR) models. 

Zhang et al. [33] compared Deep Belief Networks (DBN) [2] to 

five classifiers such as Naive Bayes and Logistic Regression. The 

classifiers were trained on features extracted from three models, 

namely the Question model (e.g. question difficulty), the Student 

model (e.g. probability that a student learned a concept based on 

the student’s past performance), and the Answer model (e.g. 

length difference between student answer and model answer). 

The DBN performed better than the other classifiers in terms of 

accuracy, precision, and F-measure, but not recall. Roy et al. [25] 

developed an ASAG system that can grade answers in different 

domains. They relied on an ensemble classifier of student answers 

(question-specific approach) and a numeric classifier based on the 

similarity score between the model answer and students’ answers 

(question-agnostic approach). Their features were words, n-

grams, and similarity scores between student answers and model 

answer. Finally, Tack et al. [29] used ensemble learning of five 

classifiers based on lexical features (e.g., word length), syntactic 

features (e.g., sentence length), discursive features (e.g., number 

of referential expressions), and a number of psycholinguistic 

norms.  

In this work, we follow the response-based approach as we build 

classifiers based on students’ answers. Our approach differs from 

previous works in that we carry out ASAG (and more specifically 

classification) by comparing six classifiers trained with both 

sparse vector representations (based on n-grams and entities) and 

dense vectors representations (GloVe, Word2Vec). One 

additional difference is the use of semantic annotations (entity 

mentions and entity URIs) to build some of our vector space 

models. Finally, the features used in this work do not necessitate 

a huge feature engineering effort as they come directly from text 

or from the use of a semantic annotation API and an embedding 

model.   

3. METHODOLOGY 
We first give a description of the corpus used in our experiments, 

then we detail our overall approach as well as the metrics used in 

the evaluation phase. This is followed by an in-depth explanation 

of our features. 

3.1 Corpus Description 
Our data set is extracted from a corpus of student short-answer 

question (SAQ) responses drawn from a first-year human biology 



   

 

   

 

course (McDonald [16]). Among multiple elements in our data 

set, our experiments are based only on the labeled student 

responses to the survey and model answers (expected answers to 

the questions). Student SAQ responses and associated metadata 

were collected through a dialog system. 

From the initial data set, we selected a sub-set of student answers 

based on the following criteria:  

 Answers from the year 2012 only as this year is the one with 

the highest participation; out of 15,758 answers collected 

over 4 years, 7,548 originate from 2012.  

 Out of the 42 different unique questions, we only use 6 

questions that provide a reasonable number of responses as 

well as lengthy (deep) responses. We avoided questions that 

do not encourage answers that display deep understanding of 

the topic (e.g., yes-no questions, calculation questions or 

multiple choice questions). 

The questions asked are designed to encourage deep responses 

from students [3]. The students are expected to explain or 

describe the knowledge obtained during the course in their own 

words rather than giving answers by the book. Table 1 presents 

the questions used in the study and their expected answers. 

Table 1. Survey questions 

ID Question Model Answer 

Q.1 HR or heart rate is the 

number of times the heart 

beats each minute. A 

normal adult HR is 

around 72 beats/min. How 

would you check 

someone's HR? 

You could measure their 

pulse. 

Q.2 What is the pulse? The pulse is a pressure wave 

or a pulsatile wave generated 

by the difference between 

systolic and diastolic 

pressures in the aorta. 

Q.3 Inotropic state is a term 

that is sometimes used to 

describe the contractility 

of the heart. Can you 

describe what is meant by 

contractility? 

Contractility is the force or 

pressure generated by the 

heart muscle during 

contraction. 

Q.4 If you were 'building' a 

human being and you 

wanted to position 

receptors in the body to 

monitor blood pressure, 

where would you put 

them? 

You'd probably want to put 

them near vital organs and at 

the main outflow from the 

heart. It turns out that the 

main human baroreceptors are 

located in the carotid sinuses 

and aortic arch. 

Q.5 What feature of artery 

walls allows us to feel the 

pulse? 

Artery walls are thick and 

strong and not very compliant 

Q.6 Can you explain why you 

cannot feel a pulse in 

someone's vein? 

You cannot feel a pulse in 

veins because the blood flow 

in veins is not pulsatile 

 

The resulting sub-set amounts to 1,876 answers from 218 students 

to 6 questions. Note that not all students answered all the 

questions. Completing responses was voluntary, which accounts 

for the variability in the number of responses received to each 

question. In addition, the nature and quality of the responses are 

not necessarily representative of the class as a whole. Table 2 

presents descriptive statistics on the students’ answers to the 

selected subset of questions used in all the experiments. 

Table 2. Statistics on students’ answers per question 

Question Avg. 

words 

Min. 

words 

Max. 

words 

Answers Correct 

(%) 

Q.1 6 1 36 243 65.43% 

Q.2 9 1 82 422 17.54% 

Q.3 6 1 31 316 33.86% 

Q.4 4 1 34 151 54.97% 

Q.5 3 1 27 171 25.15% 

Q.6 9 1 34 361 31.86% 

 

Each of these questions is associated with a set of students’ 

answers. As an example, for question Q.6, we present the 

expected answer (i.e. Model answer), a deep response (Student 

Answer 1), and a simpler response (Student Answer 2): 

Model Answer: You cannot feel a pulse in veins because the 

blood flow in veins is not pulsatile 

Student Answer 1: The wave motion associated with the heart 

beat is stopped by the arteries and capillaries. Therefore, the vein 

has no pulse. 

Student Answer 2: The blood flow is continuous. 

Both student answers were labeled as correct by the human 

markers. Student Answer 1 would be considered a deeper answer 

than Student Answer 2, because it makes explicit the reasoning 

behind the answer, thus suggesting a better understanding of the 

topic.  

The students’ responses were manually evaluated by human 

markers with expertise in the domain of human biology. The 

annotators assigned a label negotiated through discussion. Such 

labels describe different aspects of an answer like quality of the 

response or correctness [16]. For example, answers may be 

labelled as incorrect, incomplete, and display disinterest in 

responding (dont-know label), among others. Further details on 

the labels used can be found in McDonald [16]. Table 3 displays 

some of those answers and the assigned labels. 

Table 3. Student Answers sample 

Question Student Answer Label 

Q.5 Lack of elastic tissue incorrect 

Q.6 idk lol dont-know 

Q.4 

 

In major arteries of the body, such as 

the common carotid or the aortic arch 

ok 

Q.3 ability to change volume incomplete 

Q.6 Ventricle contracts blood ejected into 

aorta, expanding vessel and increase 

pressure in vessel, wave of pressure 

cane felt is pulse 

correct 

 

For all of our experiments, we used model answer (expected 

answer) and student answers and re-labeled them as correct or 

not-correct. Correct answers comprise model answers plus all 

answers labeled as correct or ok. All other answers were re-

labeled as not-correct. The resulting data set is composed of 65% 

not-correct answers and 35% correct answers. 

 



   

 

   

 

3.2 Overall Approach 
Our general approach can be described as follows: 

1. Data pre-processing: in this step, we perform lemmatization 

and removal of punctuation marks and stop words (NLTK1 

stop words list) from the selected answers.  

2. Feature extraction: We consider five types of features: n-

gram, entity URIs, entity mentions, URI embeddings, and 

mention embeddings, which are detailed in section 4. We 

extract n-grams, entity URIs and entity mentions from 

student responses. Then, entity mentions are used to query a 

pre-trained GloVe model [23] to obtain mention 

embeddings. Likewise, entity URIs are used to query a pre-

trained Wiki2Vec model [34] to obtain entity embeddings. 

Both GloVe and Wiki2Vec are pre-trained on Wikipedia. 

3. Vector space model (VSM): For n-gram features, entity 

mentions, and entity URIs, we compute a vector 

representation of each answer by extracting a vocabulary 

from all students’ answers and using TF-IDF as the 

relevance metric to weight each feature in an answer. As for 

mention embeddings and entity embeddings, we generate 

VSMs by averaging embeddings over all mentions or URIs 

appearing in an answer. The output from this step is one 

VSM representation of all answers for each feature type. 

4. Classification task: we run several classification algorithms: 

the ZeroR algorithm as our baseline, Logistic regression, K-

nearest neighbors (IBK), Decision trees (J48), Naïve Bayes, 

Support vector machine (SVM), and Random forest. We 

train each classifier using the entire data set of answers 

regardless of the question to which they belong. The 

rationale is that all answers belong to the same domain, and 

thus can be expected to be in a shared semantic space. 

3.3 Evaluation Metrics 
The evaluation is performed through 10-fold cross validation on 

each classifier. The metrics used for this purpose include: 

 Accuracy: Percentage of correctly classified answers. 

 Area Under the Curve (AUC): Probability that a classifier 

will rank a randomly chosen positive instance higher than a 

randomly chosen negative instance. 

 Precision: Fraction of correctly classified answers within all 

classified instances.  

 Recall: Fraction of relevant answers successfully retrieved. 

 F1-score: Weighted harmonic mean of the precision and 

recall. It represents how precise and complete a classifier is. 

4. FEATURE DESCRIPTION 

4.1 N-gram Features 
We create a vector representation for each answer based on n-

grams. Table 4 shows some descriptive statistics on the obtained 

n-grams. We perform four experiments using different n-grams: 

unigrams, bigrams, trigrams, and the combination of all of them. 

To that end, four VSMs are built, one per n-gram group. Each 

vector holds the TF-IDF value of each item found in the answers. 

TF-IDF is calculated with the formula: 

                                                                 

1 https://www.nltk.org/ 

tf-idfi, j = 𝑡𝑓𝑖,𝑗  ×  (log
1+𝑛𝑑

1+𝑑𝑓𝑖
+ 1) 

Where tfi,j is the total number of occurrences of the term i in the 

student answer j, 𝒏𝒅 is the total number of documents (i.e. 

answers) and 𝒅𝒇𝒊 is the number of documents (i.e. answers) 

containing the term i. 

Table 4. Total number of n-grams in answers for all 

questions 

Answers Unigrams Bigrams Trigrams 

Unique 700 2114 4750 

Total 6364 2589 3383 

 

4.2 Entity URI Features 
These features are based on entity URIs extracted from answers 

using two semantic annotators: DBpedia Spotlight and TAGME 

(see Sect. 1). The basic unit in the built VSM is the URI of a 

DBpedia resource (e.g. http://dbpedia.org/page/Baroreceptor). 

We send get requests to both annotators with the answers to be 

analyzed, and receive, for each answer, a list of entity mentions 

and their associated URIs. Table 5 shows statistics on the number 

of entity URIs and mentions (lowercase) retrieved by each of the 

two annotators.  

Table 5. Number of entity URIs and mentions on all answers 

Semantic 

Annotator 

Entities Mentions 

 Unique Total Unique Total 

Spotlight 143 1620 188 1620 

TAGME 876 5054 806 5054 

 

Table 6 provides an example of retrieved entity mentions and 

URIs for an answer to Q.2. 

Table 6. Sample of retrieved entity URIs 

Answer Semantic 

Annotator 

Mention URI 

Recoil 

caused by 

pressure in 

arteries 

Spotlight Recoil dbpedia.org/page/Recoil 

Arteries dbpedia.org/page/Artery 

TAGME Recoil dbpedia.org/page/Recoil 

Pressure dbpedia.org/page/Pressure 

Arteries dbpedia.org/page/Artery 

 

We build a vector representation of each answer for each of the 

following configurations (i.e., vocabularies): 

 Spotlight_URI: Set of entity URIs retrieved from all answers 

using DBpedia Spotlight. 

 TAGME_URI: Set of entity URIs retrieved from all answers 

using TAGME. 

 Intersection: Set intersection between the entity URIs 

retrieved from all answers with both tools. 

 Union: Set union between the entity URIs retrieved from all 

answers with both tools. 

This produces four VSMs based on entity URIs. The resulting 

VSMs use TF-IDF as the metric for estimating the value of each 

entity URI for each answer. 



   

 

   

 

4.3 Entity Mention Features 
We use the annotations retrieved by Spotlight and TAGME, 

selecting entity mentions as the basic units for building VSMs. A 

mention is a sequence of words spotted in an answer and 

associated to a URI. This means that an entity mention can be a 

unigram, but also a bigram or trigram. We compute the TF-IDF 

of each entity mention present in an answer to build its vector 

representation. As in entity URI features, we have one vocabulary 

per configuration with four VSMs as the final output. The 

available configurations, based on mentions, used to build a 

vector representation of each answer, are analogous to those 

described for entity URIs, except that they are based on mentions 

(Spotlight_Mention, TAGME_Mention, Intersection and Union). 

4.4 Entity Embedding Features 
For this set of features, we rely on the Wiki2Vec2 model, a 

Word2Vec implementation pre-trained on Wikipedia, where 

Wikipedia hyperlinks are replaced with DBpedia entities (URIs). 

The model was presented by Zhou et al. [34] and is based on 100-

dimensional vectors. Word2Vec models can either learn to 

predict a word given its context (CBOW) or predict a context 

given a target word (Skip-gram) [20]. This creates a vector space 

in which similar words or entities are close to each other. 

Likewise, Wiki2Vec creates a vector space model in which 

similar DBpedia entities are close to each other. Given that our 

entity URIs reference DBpedia resources, we consider it a 

suitable match. For each configuration, we query the Wiki2Vec 

model with the entity URIs found in each answer to obtain their 

corresponding embeddings. Table 7 shows the percentage of 

entity URIs that are associated with an embedding vector in the 

Wiki2Vec model per configuration. We also show the percentage 

for the GloVe model which is presented in section 4.5. 

Table 7. Coverage of entity URIs and mentions on their 

corresponding models (Wiki2Vec and GloVe) 

Configuration % of entity URIs 

in Wiki2Vec 

% of entity 

mentions in GloVe 

Spotlight_URI 97.5 % 50.46% 

TAGME_URI 93.94 % 62.16% 

Intersection 97.11 % 49% 

Union 94.63 % 65.10% 

 

For each configuration, we have one VSM. In each VSM, we 

aggregate the entity embeddings per answer by calculating the 

average of the entity URI vectors. This produces a single 

embedding that represents the answer. 

4.5 Mention Embedding Features 
For the mention embedding features, we rely on word 

embeddings, where each word is an entity mention instead of an 

entity URI. We use the GloVe model [23] trained using 

Wikipedia dumps from 2014 and build vectors with 100 

dimensions (as for entity URI embeddings). Unlike Word2Vec, 

GloVe is a count-based model derived from a co-occurrence 

matrix. We query the GloVe model with the entity mentions found 

in each answer. The coverage of the model is given in Table 7.  

For each configuration, we have one VSM where each answer is 

represented as the average of the entity mention vectors. 

                                                                 

2 https://github.com/idio/wiki2vec 

5. RESULTS 
For each feature set, we trained six classification algorithms, and 

evaluated 120 different models. Due to the space limit, we present 

only the top two performing classifiers (Random forest and SVM) 

in terms of overall accuracy for each of our feature sets. ZeroR is 

also included as the baseline. 

5.1 N-gram Results 
Table 8 shows the accuracy (ACC) and AUC obtained using n-

gram features. Overall, the accuracy and AUC obtained with 

Random forest were always higher than with SVM. In particular, 

unigrams obtained the best accuracy of 88.40% as well as the 

highest AUC (.95) using Random forest. 

Table 8. Accuracy & AUC using n-gram features 

N-gram Random  

Forest 

SVM ZeroR 

ACC 

% 

AUC ACC 

% 

AUC ACC 

% 

AUC 

Unigrams 88.40 .95 84.44 .82 65.1 .50 

Bigrams 81.97 .87 79.93 .73 65.1 .50 

Trigrams 72.84 .68 72.12 .61 65.1 .50 

N-grams 85.58 .93 84.25 .80 65.1 .50 

 

Table 9 shows additional results for models cross-validated with 

n-gram features. For the correct label, our best classifier was 

Random forest using unigrams for the f1-score (.82) and trigrams 

or n-grams for best precision (.93). For the not-correct label, 

again, Random forest got the best results, using unigrams for both 

f1-score (.91) and precision (.88). 

Table 9. Precision, recall & f1-score using n-gram features 

Label Classifier N-gram Precision Recall F1 

Correct Random 

Forest 

Unigrams .89 .77 .82 

Bigrams .92 .53 .67 

Trigrams .93 .24 .38 

N-grams .93 .63 .75 

 SVM Unigrams .79 .76 .77 

Bigrams .85 .51 .64 

Trigrams .88 .23 .37 

N-grams .86 .65 .74 

 ZeroR Unigrams 0 0 0 

Bigrams 0 0 0 

Trigrams 0 0 0 

N-grams 0 0 0 

Not-

correct 

Random 

Forest 

Unigrams .88 .95 .91 

Bigrams .79 .98 .88 

Trigrams .71 .99 .83 

N-grams .83 .98 .90 

 SVM Unigrams .87 .89 .88 

Bigrams .79 .95 .86 

Trigrams .71 .98 .82 

N-grams .84 .95 .89 

 ZeroR Unigrams .65 1 .79 

Bigrams .65 1 .79 

Trigrams .65 1 .79 

N-grams .65 1 .79 

 



   

 

   

 

A visible drop in recall from unigrams to trigrams (difference of 

.53) can be spotted for the correct label in both SVM and Random 

Forest. Based on the number of elements in each n-gram feature 

(Table 4), we observe that the amount of bigrams and trigrams is 

notably lower than unigrams. This can, at least partially, explain 

the lower recall using these features. Another noticeable result is 

that while the results obtained with Random Forest and SVM 

exceed the baseline for the correct label in terms of precision, 

recall and f1-score, the results for the not-correct label are closer 

to the baseline. 

5.2 Entity Mention Results 
The highest accuracy among these feature sets was achieved by 

Random Forest with the Union configuration (88.58%), as shown 

on Table 10. Again, Random forest outperformed SVM in terms 

of accuracy and AUC for each configuration. 

Table 10. Accuracy & AUC using Entity mentions 

Tool Random Forest SVM ZeroR 

ACC 

% 

AUC ACC 

% 

AUC ACC 

% 

AUC 

Spotlight 

Mention 

78.61 .78 75.05 .67 65.1 .50 

TAGME 

Mention 

88.52 .95 85.22 .83 65.1 .50 

Intersection 78.48 .77 75 .67 65.1 .50 

Union 88.58 .95 85.34 .83 65.1 .50 

 

Given that our Random forest classifier performed better in 

general for entity mentions, we based our following analysis on 

its results (Table 11). For the correct label, the use of 

TAGME_Mention or Union provided the highest f1-score (.83), 

but the use of TAGME_Mention alone provided slightly better 

precision (.87). On the not-correct label, once again, 

TAGME_Mention and the Union achieved the highest f1-score 

(.91), but this time the Union alone gave slightly better precision 

(.90).  

Table 11. Precision, recall & f1-score using Entity mentions 

Label Classifier Tool Precision Recall F1 

Correct Random 

Forest 

Spotlight 

Mention 

.85 .47 .61 

TAGME 

Mention 
.87 .79 .83 

Intersection .84 .48 .61 

Union .86 .80 .83 

 SVM Spotlight 

Mention 

.77 .40 .53 

TAGME 

Mention 
.81 .75 .78 

Intersection .77 .40 .53 

Union .81 .76 .78 

 ZeroR Spotlight 

Mention 

0 0 0 

TAGME 

Mention 

0 0 0 

Intersection 0 0 0 

Union 0 0 0 

Not-

correct 

Random 

Forest 

Spotlight 

Mention 

.77 .96 .85 

TAGME 

Mention 

.89 .94 .91 

Intersection .77 .95 .85 

Union .90 .93 .91 

 SVM Spotlight 

Mention 

.75 .94 .83 

TAGME 

Mention 
.87 .91 .89 

Intersection .74 .93 .83 

Union .87 .91 .89 

 ZeroR Spotlight 

Mention 

.65 1 .79 

TAGME 

Mention 

.65 1 .79 

Intersection .65 1 .79 

Union .65 1 .79 

 

An explanation for the difference in performance between 

Spotlight_Mention and TAGME_Mention is the amount of 

mentions retrieved by each of the semantic annotators. Spotlight 

provided fewer annotations for the same answers than TAGME. 

In addition, our manual inspection of annotations revealed that 

TAGME tended to produce more accurate annotations than 

Spotlight. This suggests that higher quantity and quality of 

semantic annotations leads to a feature set that successfully 

differentiates between correct and not-correct answers.  

5.3 Entity URI Results 
The results presented in Table 12 show that Random forest 

provided highest accuracy and AUC on each configuration. The 

best accuracy and AUC were achieved by Random forest with 

TAGME_URI (86.60% and .94, respectively). 

Table 12. Accuracy & AUC using Entity URIs 

Tool Random 

Forest 

SVM ZeroR 

 ACC

% 

AUC ACC

% 

AUC ACC

% 

AUC 

Spotlight 

URI 

80.55 .84 77.60 .75 60.8 .45 

TAGME 

URI 
86.60 .94 84.74 .82 65.1 .45 

Intersection 77.03 .82 76.44 .74 59 .45 

Union 86.50 .94 82.80 .80 63.6 .45 

 

We notice that in terms of accuracy and AUC, TAGME_URI and 

Union on Random forest are slightly lower than 

TAGME_Mention and Union for Entity mention features.  

Focusing on Random forest as the best performing classifier, we 

observe that for the correct label, the use of TAGME_URI and 

union of entity URIs provided the best f1-score of .80 (Table 13). 

In terms of precision, the union of entity URIs had a better 

performance (.86). For the not-correct label, again on Random 

forest, TAGME_URI and the Union configurations get better f1-

score (.90). This time TAGME_URI alone provided the best 

precision (.88) for this label. 

We observed that in some cases, the same mention was associated 

to different entity URIs in two different answers and that only one 

of the URIs was correct. When this happens, it affects the quality 

of the vector representation of student answers by increasing the 

number of URIs in the VSM vocabulary, thus making the 

representation even sparser. 



   

 

   

 

Table 13. Precision, recall & f1-score using Entity URIs 

Label Classifier Tool Precision Recall F1 

Correct Random 

Forest 

Spotlight URI .82 .64 .72 

TAGME URI .84 .76 .80 

Intersection .77 .63 .69 

Union .86 .76 .80 

 SVM Spotlight URI .77 .62 .68 

TAGME URI .81 .73 .77 

Intersection .77 .61 .68 

Union .80 .71 .75 

 ZeroR Spotlight URI 0 0 0 

TAGME URI 0 0 0 

Intersection 0 0 0 

Union 0 0 0 

Not-

correct 

Random 

Forest 

Spotlight URI .80 .91 .85 

TAGME URI .88 .92 .90 

Intersection .77 .87 .82 

Union .87 .93 .90 

 SVM Spotlight URI .78 .88 .83 

TAGME URI .86 .91 .89 

Intersection .76 .87 .81 

Union .84 .90 .87 

 ZeroR Spotlight URI .61 1 .76 

TAGME URI .65 1 .79 

Intersection .59 1 .74 

Union .64 1 .78 

 

5.4 Entity Embedding Results 
Among models trained using entity embeddings, the highest 

accuracy and AUC were achieved by Random forest with the 

TAGME_URI configuration, as shown in Table 14. For this 

feature set, we observe that Random forest has higher accuracy 

with TAGME_URI and Union than SVM on the same 

configurations; but SVM gets higher accuracy than Random 

forest using Spotlight_URI and Intersection. However, the AUC 

for Random forest is still higher than for SVM in all the 

configurations. We can also observe an increase in accuracy and 

in AUC (although modest) for the baseline. 

Table 14. Accuracy & AUC using Entity embeddings 

Tool Random 

Forest 

SVM ZeroR 

ACC 

% 

AUC ACC 

% 

AUC ACC 

% 

AUC 

Spotlight URI 80.13 .86 81.13 .71 73.5 .50 

TAGME URI 82.67 .90 75.46 .70 63.7 .50 

Intersection 76.43 .81 79.64 .66 74.6 .49 

Union 82.45 .89 80.79 .69 73.5 .50 

 

Further inspection of the results obtained on cross-validated 

models (Table 15) reveals that this time, the highest results differ 

between classification algorithms. For the correct label, we 

obtained better f1-score with Random forest using the union of 

entity embeddings (.89). However, SVM provided better 

precision using Spotlight (.88). The not-correct label had both the 

best precision (.85 using the union of entity embeddings) and f1-

score (.87 using TAGME_URI) results using Random forest. 

Table 15. Precision, recall & f1-score using Entity 

embeddings 

Label Classifier Tool Precision Recall F1 

Correct Random 

Forest 

Spotlight URI .83 .92 .87 

TAGME URI .85 .64 .73 

Intersection .81 .90 .85 

Union .82 .97 .89 

 SVM Spotlight URI .88 .92 .88 

TAGME URI .74 .50 .60 

Intersection .82 .93 .88 

Union .82 .94 .88 

 ZeroR Spotlight URI .73 1 .85 

TAGME URI 0 0 0 

Intersection .75 1 .86 

Union .73 1 .86 

Not-

correct 

Random 

Forest 

Spotlight URI .68 .47 .56 

TAGME URI .82 .93 .87 

Intersection .56 .37 .44 

Union .85 .41 .55 

 SVM Spotlight URI .70 .50 .58 

TAGME URI .76 .90 .82 

Intersection .67 .39 .50 

Union .72 .45 .55 

 ZeroR Spotlight URI 0 0 0 

TAGME URI .64 1 .78 

Intersection 0 0 0 

Union 0 0 0 

 

Even though TAGME_URI provided better precision for the 

correct label, the union of entity embeddings got better f1-score 

and recall. The increase in f1-score can be related to the amount 

of entity URIs provided by the Union (set union of entity URIs 

from DBpedia Spotlight and TAGME). This suggests that more 

entities have a positive effect on performance. Similarly, as in 

accuracy, there was an increase in precision and f1-score on both 

labels for the baseline classifier.  

5.5 Mention Embedding Results 
Table 16 shows that when mention embeddings were used as 

features, SVM achieved the highest accuracy of 81.79% with the 

Union configuration. This is the first time that Random forest is 

surpassed by SVM in terms of accuracy, However, Random forest 

is still outperforming SVM in terms of AUC. 

Table 16. Accuracy & AUC using mention embeddings 

Tool Random 

Forest 

SVM ZeroR 

ACC

% 

AUC ACC

% 

AUC ACC

% 

AUC 

Spotlight 

Mention 

74.83 .74 75.83 .63 73.50 .50 

TAGME 

Mention 

80.85 .85 79.66 .76 63.69 .50 

Intersection 78.50 .73 79.52 .68 74.40 .48 

Union 79.80 .86 81.79 .71 73.50 .49 

 

As in entity embeddings, the highest results differ between 

classification algorithms. Table 17 presents detailed results for 

the performance of Random forest and SVM using mention 

embeddings.  For the correct label, the Random forest classifier 



   

 

   

 

with the union of mention embeddings had f1-score of .88 (the 

highest F1 value). For precision, SVM did better with either the 

intersection or union of mention embeddings (.83). The not-

correct label had both best precision (.86 using 

TAGME_Mention) and f1-score (.83 using the union of mention 

embeddings) with the SVM classifier. 

Table 17. Precision, recall & f1-score using mention 

embeddings 

Label Classifier Tool Precision Recall F1 

Correct Random 

Forest 

Spotlight 

Mention 

.78 .91 .84 

TAGME 

Mention 
.82 .61 .70 

Intersection .81 .93 .87 

Union .80 .98 .88 

 SVM Spotlight 

Mention 

.80 .90 .85 

TAGME 

Mention 

.78 .61 .69 

Intersection .83 .92 .87 

Union .83 .94 .88 

 ZeroR Spotlight 

Mention 

.73 1 .85 

TAGME 

Mention 

0 0 0 

Intersection .74 1 .85 

Union .73 1 .85 

Not-

correct 

Random 

Forest 

Spotlight 

Mention 

.55 .30 .39 

TAGME 

Mention 

.81 .92 .86 

Intersection .64 .36 .46 

Union .83 .30 .44 

 SVM Spotlight 

Mention 

.57 .36 .44 

TAGME 

Mention 
.80 .90 .85 

Intersection .65 .44 .52 

Union .75 .48 .58 

 ZeroR Spotlight 

Mention 

0 0 0 

TAGME 

Mention 
.64 1 .78 

Intersection 0 0 0 

Union 0 0 0 

 

6. FEATURE SELECTION 
In this section, we describe the results obtained when applying 

two feature selection methods to our dataset: mean decrease 

impurity (MDI) and mean decrease accuracy (MDA). Both 

methods employ random trees to measure the importance of a 

feature [7]. We trained different classifiers with the selected 

features and compared their results to the same classifiers without 

feature selection.  

First, we calculated the MDA and MDI scores for each feature in 

our data set and kept only features with scores strictly higher than 

0. Negative or zero MDA/MDI values were either detrimental or 

unhelpful to the performance of the classifiers. Table 18 shows 

the number of features before and after feature selection. 

Table 18. Number of remaining features with and without 

(WFS) feature selection 

 Technique 

Features WFS MDA MDI 

N-gram 700 90 205 

Entity Mention 665 99 179 

Entity URI 875 109 236 

Entity Embedding 100 83 84 

Mention Embedding 300 161 117 

  

Then, we trained and evaluated Random Forest, SVM, and ZeroR 

classifiers using each of the top performing configurations per 

feature set in terms of f1-score to compare the results obtained 

with and without feature selection. The obtained results (Figure 

1) show that in most cases, feature selection led to a slight 

increase in the accuracy of our classifiers. Specifically, MDA 

improved the accuracy of the classifiers in every case by as much 

as 4.9 for SVM using mention embeddings as features. However, 

overall Random forest generally remained the best, in terms of 

accuracy, with and without feature selection. 

 

Figure 1. Accuracy without feature selection (WFS) versus 

MDA & MDI 

7. DISCUSSION  
Overall, our Random forest classifiers proved the best in terms of 

accuracy and AUC. The only exception is with mention 

embeddings in which SVM did better in terms of accuracy by at 
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most 1 percentage point. Therefore, we base our conclusions only 

on Random forest. 

In terms of accuracy, there was not much difference between 

several feature sets as shown on Figure 2. The two best feature 

sets for accuracy were entity mentions with the union (88.58%) 

or TAGME configurations (88.52%) and n-gram features with the 

unigrams configuration (88.40%); these feature sets achieved the 

highest AUC (.95), as well. 

In terms of precision (Figure 3), n-grams outperformed other 

feature sets for the correct label (.93) and entity mentions 

obtained the best results for the not-correct label using the union 

and TAGME configurations (.90, .89).  

For F1-score (Figure 4), entity embeddings achieved the highest 

score for the correct label (.89 using the union configuration) 

closely followed by mention embeddings (union). Entity 

mentions (using the union or TAGME configurations) and 

unigrams did better for not-correct (.91)   followed by entity URIs 

(.90 with TAGME and union) and n-grams. 

 

Figure 2. Accuracy results 

When considering which class (correct, not-correct) we were best 

able to predict in terms of precision (Figure 3), we found that the 

detection of correct answers was better than not-correct answers, 

with differences ranging from .01 to .25 with Random forest. N-

gram features were better at detecting correct answers than not-

correct ones; while entity mentions did better for the not-correct 

(using union or TAGME) label. In 14 out of our 20 possible 

configurations, the classifiers were more precise in detecting 

correct answers. This is the case despite the unbalanced ratio of 

35% correct answers and 65% not-correct answers used for 

training. When we focus on the f1-score (Figure 4) we obtain 

better results for the not-correct label. We observe that the union 

configuration for entity embeddings and mention embeddings is 

the best for correct answers while entity mentions (TAGME or 

union) followed by unigrams outperform the other features for the 

not-correct answers.  

On average, unigrams are the best at differentiating between 

correct and not-correct labels in terms of precision while entity 

mentions (either with TAGME or Union) is preferred in terms of 

f1-score. 

The best configuration based on semantic annotations depends on 

the considered evaluation metric. Based on accuracy, features that 

use mentions (entity mentions and mention embeddings) 

performed better with either union or TAGME. The feature sets 

that use URIs (entity URIs and entity embeddings) performed 

better with URIs obtained using TAGME. In both cases, the use 

of TAGME alone obtains either the best result or is very close to 

the highest value. For f1-score, the use of TAGME for entity 

mentions and entity URIs provided the same results as the union 

for both labels; additionally, TAGME and union are also the best 

configurations for both entity mentions and entity URIs. Entity 

embeddings and mention embeddings had their best f1-score on 

the correct label using the union, but better f1-score for not-

correct using TAGME alone. When we average the f1-score for 

both labels, we obtain higher results with TAGME. The reason 

for very similar results with TAGME and the union is that the 

annotations provided by Spotlight were often a subset of those 

provided by TAGME.  

 

Figure 3. Precision results for Random forest 

Both entity and mention embeddings performed worse than n-

gram features and semantic annotations models based on 

accuracy. However, one interesting observation is that, for the 

correct label, entity and mention embeddings outperformed all 

features on f1-score (Figure 4). Entity embeddings obtained 

slightly better results (precision, f1-score and accuracy) compared 

to mention embeddings.  

Our feature selection efforts show that MDI did not consistently 

improve the overall accuracy of our classifiers. It was the MDA 

feature selection technique which provided improvement in all 

the cases. The increase in accuracy ranged from .3% to 4.9%.  
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Figure 4. F1-score results for Random Forest 

 

8. CONCLUSION 
In this paper, we compared several vector-based feature sets 

coupled with classifiers for the ASAG task.  

In general, we showed that on average, entity mention features 

(TAGME or union) are the top features in terms of f1-score while 

n-gram features (unigrams) are the best in terms of precision. For 

the detection of correct answers, we showed that n-gram features 

(trigrams and n-grams) and features based on embeddings (entity 

and mention embeddings with the union configuration) are the 

most effective in terms of precision and f1-score respectively. In 

terms of semantic annotations, TAGME provided the best 

accuracy for each feature with the exception of entity mentions, 

where the union configuration slightly outperformed TAGME 

alone. Finally, the MDA feature selection technique slightly 

improved the accuracy of all the classifiers. 

One of the main limitations of this study is the unbalanced set of 

labeled answers available in the corpus. Another limitation is 

associated with the configuration of semantic annotators as we 

only tested the default level of confidence for each annotator. One 

additional limitation, for mention embeddings specifically, is the 

relatively low coverage obtained using GloVe. We plan to address 

these limitations in future work by testing the proposed features 

against other available ASAG datasets. We also intend to 

experiment with varying the level of confidence and similar 

parameters of the semantic annotators. Another important step 

will be to exploit a combination of the current features to benefit 

from their respective strengths for the correct and not correct 

labels. Finally, we will explore other methods for response 

classification using additional features that exploit model answers 

and deep learning architectures. 
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