
Automated Assessment of Computer Science Competencies
from Student Programs with Gaussian Process Regression

ABSTRACT
Recent years have seen a growing interest in learning analytics for
computer science education. The significant growth of computer
science enrollments coupled with the labor-intensive nature of
human assessment has fueled the demand for automated assessment
of student programs. Effective automated assessment tools can
bridge the gap between the demand for support and restricted
instructional resources by providing adaptive formative and
summative feedback. Following an evidence-centered assessment
design approach, we have devised an automated assessment
framework for middle grades computational thinking. We report on
an evaluation comparing regression models including ridge, lasso,
support vector, and Gaussian process regression models utilizing a
structural n-gram feature set to infer scores for students’ programs.
The results show that Gaussian process regression outperforms
other regression models with respect to mean squared error and
adjusted coefficient of determination. They also show that the
framework provides a promising approach with regard to dealing
robustly with noise to effectively model student computer science
competencies.

Keywords
Competency Modeling, Automated Program Assessment,
Computer Science Education

1. INTRODUCTION
Computer science (CS) has become a foundational skill for students
to thrive in a digital economy [14, 28]. To prepare students for
future studies and science and technology professions, it is essential
to ensure that they acquire robust CS competencies. A key strategy
for developing CS competencies is through programming.
However, learning how to program is challenging for novices [12,
13]. Hence, novice programmers need significant scaffolding to
support understanding and effective use of CS concepts. Effective
assessment of students’ understanding of essential CS concepts is
an important step in providing students with appropriate
scaffolding and feedback [11, 17]. Because the growth in demand
for CS education has outstripped the supply of qualified teachers,
providing every student with individualized, high-quality, and

timely support and feedback is challenging. Effective automated
assessment can guide adaptive formative and summative feedback
to support effective CS education.

In order to provide students and their instructors with reliable
automated assessments, we follow a hypothesis-driven learning
analytic approach [4] based on Evidence-Centered Assessment
Design (ECD) [20] to assess students’ competencies in CS concepts
as demonstrated in their programs. Following this approach, we
first identify CS concepts that students need to master in order to
solve a particular computational thinking-focused problem with a
block-based programming interface embedded in the ENGAGE
game-based learning environment (Figure 1). We then collect log
data from students’ interactions with the game. Content area
experts then analyze the structured log data as evidence of
knowledge (or lack thereof) of target CS concepts. Deriving
evidence from students’ proposed solutions, we assess their
mastery of identified CS concepts, such as creating appropriate
algorithms and programs, and appropriate usage of computer
science constructs, such as loops and conditionals. We encode
programs as structural n-grams to extract essential structural and
semantic information within them. Finally, we utilize regression
models including ridge, lasso, support vector regression (SVR), and
Gaussian process regression (GPR) models on the generated feature
set to infer students’ competencies for knowledge of CS concepts
and practices. We utilize GPR models to handle the remaining
noise in the dataset. Evaluation results suggest that the models
accurately model students’ CS competencies and are robust to
noise.

2. RELATED WORK
Two primary approaches have been explored for assessing text-
based programs: dynamic and static assessment [5,15]. In dynamic
assessment, programs are executed against pre-defined test data to
determine their correctness. Evaluation metrics include successful
compilation, consideration of security threats, correct outcome, and
efficiency metrics such as CPU runtime and clock time [15, 16, 25].
In contrast, static assessments are capable of assessing programs
that are not necessarily complete. To perform a static assessment,
an intermediate representation of the program needs to be generated
from the source code. Examples of intermediate representations are
textual representations, abstract syntax trees, control flow graphs,
and program dependence graphs. After forming the intermediate
representation, the representation is analyzed for its correctness,
efficiency, and quality [26]. Although block-based programming
differs from text-based programming in syntax and visual
representation, they can both be transformed into the same
intermediate representation. Therefore, the techniques used for

Bita Akram1, Hamoon Azizolsoltani1, Wookhee Min1, Eric Wiebe1, Anam Navied1,
Bradford Mott1, Kristy Elizabeth Boyer2, James Lester1

1North Carolina State University, Raleigh, North Carolina
{bakram, wmin, hazizso, wiebe, anavied, bwmott, lester}@ncsu.edu

2University of Florida, Gainesville, Florida
keboyer@ufl.edu

 Bita Akram, Hamoon Azizsoltani, Wookhee Min, Eric Wiebe,
Bradford Mott, Anam Navied, Kristy Elizabeth Boyer and James
Lester "Automated Assessment of Computer Science
Competencies from Student Programs with Gaussian Process
Regression" In: Proceedings of The 13th International
Conference on Educational Data Mining (EDM 2020), Anna N.
Rafferty, Jacob Whitehill, Violetta Cavalli-Sforza, and Cristobal
Romero (eds.) 2020, pp. 555 - 560

555 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

assessing one type of programming from this representation can be
readily adapted to assess the other type of programming [9, 10].

Limited previous work has focused on assessing students’
understanding of underlying CS concepts from their programs. In
this paper, we propose an automated assessment framework
designed following a hypothesis-driven learning analytics
approach to assess students’ programs based on their mastery of
underlying CS concepts for the particular problem at hand. We use
the underlying CS concepts to label students’ programs with their
grades. We then transform students’ programs to a feature set
containing salient features that can serve as evidence for students’
proficiency of this underlying CS concepts. Utilizing the labeled
data and the extracted feature set predictive models can identify
students’ mastery of CS concepts.

3. ENGAGE LEARNING ENVIRONMENT
To collect data on middle grade students’ programming
trajectories, we conducted a study with a game-based learning
environment, ENGAGE, that is designed to teach CS to middle
school students [2, 18]. The game features a rich, immersive 3D
storyworld (Figure 1), in which students play the role of a specialist
who is sent to investigate an underwater research facility that has
lost communication with the outside world through suspicious
activities of a rogue scientist. In the learning environment, students
navigate through a series of interconnected rooms by solving a set
of computational challenges. Each of the challenges can be solved
either by programming devices within the room or interacting with
devices in reference to their pre-written programs. Students
program the devices with a visual block-based programming
language interface (Figure 1, Right) [1, 19].

In this work, we focus on students’ problem-solving approaches
within a specific level of the game where students write a bubble
sort algorithm to order a set of containers (Figure 1). This room has
two devices: a containment device that holds six randomly
positioned containers and a lock device that opens only when the
containers are sorted in the increasing order. The player can exit the
room through a door by correctly implementing bubble sort and
executing the lock program when the containers are sorted. The
lock has a pre-written program that will check the positions of
containers and opens if they are in the correct position. The
containment device provides students with the necessary blocks for
implementing a bubble sort algorithm using a small robotic cart
inside the device’s protective housing. Students can choose from 6

types of readily available blocks to write their program. A sample
correct solution for this challenge is shown in Figure 1 (right).
Students need to test the correctness of their program in two steps.
First, they need to run the bubble sort device to sort the containers.
Second, they need to run the open lock program which checks if the
containers are sorted and opens the door accordingly.

4. METHODOLOGY
We utilize supervised learning to assess students’ programs. The
supervised learning approach consists of three primary steps. First,
we label the training dataset in accordance with a rubric designed
based on essential CS constructs. Second, we extract features from
students’ submitted program snapshots that represent their
understanding of CS constructs. This is accomplished with a novel
approach that encodes students’ programs in terms of structural n-
grams. Third, we create models induced from the structural n-gram-
based feature set to infer students’ scores. In this study, we utilize
a variety of regression models including linear, ridge, lasso, SVR,
and GPR models to predict students’ programs’ scores.

4.1 Data Annotation
We use evidence-centered assessment design (ECD) to create a
rubric for labeling students’ programs [22]. Following an ECD
approach, we identify explicit learning outcomes and measures to
inform our rubric [7]. The relevant CS concepts are identified and
used to develop the specifications of a rubric to assess students’
proficiency of identified CS concepts. Student actions during the
learning task are used as evidence for predicting mastery of the
identified CS concepts [24]. Following this approach, we design a
rubric that utilizes evidence rules specific to the bubble sort
challenge in the ENGAGE game-based learning environment. We
use this rubric to manually label students’ programs [3, 4].

As students interacted with the learning environment, all of their
interactions with the game were logged. For this study, we collected
data from five classrooms across three schools in the United States.
We collected data from 69 students’ interactions with the bubble
sort challenge in the game-based learning environment, for a total
of 1,570 programs that we used as the training dataset. In this
rubric, the range of possible scores is between 0 to 22. To validate
the labeling process, two human annotators with a computer
science background separately labeled 20% of the entire
submissions, achieving an inter-rater agreement of 0.856 using
Cohen’s kappa [8]. Before tagging the remainder of the corpus, all
instances that were tagged differently were discussed. Afterwards,

Figure 1. ENGAGE game-based learning environment. (Left) The bubble sort task in the game-based learning environment. (Right)
Program for the bubble sort task: the read-only code for opening the door and an example of a correct implementation of the
bubble sort written by a student.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 556

one annotator tagged the remainder of the dataset. The annotated
dataset is used as the corpus for our prediction task where the
assigned scores serve as the ground-truth for our data corpus.

4.2 Feature Engineering
In order to infer students’ scores based on their submitted
programs, we extract structural features that are representative of
the semantic information in students’ code. To extract features that
capture essential structural and semantic information stored within
the programs, we perform a structural n-gram encoding of the
programs’ abstract syntax trees (ASTs). Since the programs are
stored as programming snapshots, we first apply an intermediate
transformation from programming snapshots to their corresponding
ASTs [23]. We then encode the generated ASTs into their
corresponding structural n-grams. After generating the ASTs from
their corresponding programs, we use a structural n-gram encoding
to capture essential structural information characterized within the
programs. Two important structural information types in ASTs are
hierarchical and ordinal. The hierarchical information encodes
what blocks are nested under another (i.e., a vertical relationship in
AST), and the ordinal information encodes the placement order of
blocks (i.e., horizontal relationship in AST) that are nested under
the same parent node. We extract n-grams with varying lengths of
n to capture the most fine-grained structural information present in
an AST. We repeat the n-gram encoding process separately for
hierarchical feature extraction and ordinal feature extraction. We
then merge the two feature sets together to build the final feature
set containing both hierarchical and ordinal n-gram encodings
corresponding to each program keeping only one copy of the
generated unigrams. The occurrence of similar n-grams for n
values more than one (unigrams) in both hierarchical and vertical
encodings demonstrate presence of different structures in in the
AST and thus, both will be preserved.

Figure 2 shows an AST generated from a sample program along
with its partial hierarchical (left) and ordinal (right) n-gram
encoding. In Figure 2 (left), each colored circle shows the
hierarchical (top to bottom) n-gram encoding of a specific n. In this
example, we have hierarchical encoding of n-grams of size one
(green ovals), two (blue ovals) and three (the purple ovals). The
frequency values for each n-gram encoded feature are shown beside
the AST. All of the other n-gram feature values are zero since they
are not in this AST. Figure 2 (right) shows the same sample AST
with its ordinal (left to right) n-gram encoding. In this example, we

have an ordinal encoding of n-grams of size one (pink ovals), two
(purple ovals) and three (the green ovals). Similar to Figure 2 (left),
the frequency values for each n-gram feature is shown besides its
corresponding AST in Figure 2 (right).

 4.3 Inferring Program Scores
We trained a variety of regression models on the structural n-gram-
encoded features to infer the scores of students’ programs. In
particular, we used linear regression as the baseline regression
model, and four additional regression models: ridge, lasso, support
SVR, GPR models. Ridge and lasso regressions are characterized
by their utilization of L1 and L2 regularization, respectively, which
address overfitting and variance issues in comparison to linear
regression. We use SVR and GPR models since their utilization of
kernels makes them a suitable candidate for datasets similar to ours
where the number of features is relatively high compared to the
number of data points. Finally, we utilize GPR to handle the noise
resulting from the subjective nature of human grading [6, 27]. To
infer students’ program grades using the n-gram encoded feature
set (we set the maximum n to 4 for hierarchical n-grams and 3 for
ordinal n-grams in this work), we use a 5-fold cross-validation
approach to tune the hyperparameters of ridge, lasso, and SVR
regressions, and to identify the appropriate kernel for the GPR.
After the hyperparameter optimization process is complete, we use
10-fold cross-validation to train and evaluate each regression
model.

4.3.1 Linear Regression
Linear regression is a simple regression approach that works under
the assumption that there is a linear relationship between features
and the predicted value. The results of applying a 10-fold cross-
validation evaluation on the n-gram encoded feature set resulted in
a Mean Squared Error (MSE) of 3.03E+24 and an R-squared of
1.19E-23. The high MSE value reported by the linear model trained
with our feature set is understandable since the high number of
features in our dataset dramatically increases the complexity of the
model, which in turn causes overfitting of linear regression-based
predictive models to the training data.

4.3.2 Ridge Regression
To reduce the variance error, ridge regression includes a penalty
term in the optimization. We used the set [0.05, 0.1, 0.5, 1.0, 10] to
tune the value for l, the penalty coefficient, and found l=10 to be

Figure 2: AST generated from a sample program submitted for the bubble sort challenge and its hierarchical and ordinal n-gram
encoding. (Left) An AST and its partial hierarchical unigrams, bigrams, and 3-grams marked by green, blue and purple ovals
respectively on the left and the partial feature set generated from hierarchical n-gram encoding of the AST along with feature-level
frequencies on the right. (Right) An AST and its ordinal unigrams, bigrams, and 3-grams marked by green, blue and purple ovals
respectively on the left and the partial feature set generated from partial ordinal n-gram encoding of the AST along with feature-
level frequencies on the right.

557 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

the best value for our regression task. Applying ridge regression on
our dataset resulted in an MSE of 5.24 and an R-squared of 0.81.
We can see that ridge regression considerably outperformed
standard linear regression with respect to both MSE and R-squared.

4.3.3 Lasso Regression
Unlike ridge regression, lasso regression includes a penalty term
that allows the optimization process to shrink weights to zero if
necessary. As a result, lasso regression can reduce overfitting as
well as perform feature selection. We used the set [0.05, 0.1, 0.5,
1.0, 10] as in ridge regression to tune the value for l and found
l=0.05 to be the best value for l. Utilizing lasso regression resulted
in an MSE of 6.30 and an R-squared of 0.77, which also
outperformed standard linear regression models with respect to
both MSE and R-squared.

4.3.4 Support Vector Regression
Support vector regression (SVR) use kernels to transform data from
a non-linearly separable space to a linearly separable space. For our
regression task, we explored with linear, polynomial, and radial
basis function (RBF) kernels. For each kernel, we tuned the
hyperparameters of penalty parameter (C), epsilon, and kernel
coefficient (gamma). For polynomial kernels, we also tuned the
parameter of the kernel projection (coef0) and degree
hyperparameters. Utilizing 5-fold cross-validation, we found the
polynomial kernel with a degree of four to be the best kernel for
our dataset. Also, the grid search identified C=100, coef0=1,
degree= 4, epsilon=1, and gamma= 0.001 as the best parameters for
this kernel. Incorporating the SVR model resulted in an MSE of
5.09 and an R-squared of 0.82. SVR performed better than both
ridge and lasso regressions in terms of MSE and R-squared. This
could be due to the fact that kernel methods perform effectively on
datasets with a feature set that is relatively large compared to the
size of the dataset.

4.3.5 Gaussian Process Regression
GPRs provide an analytically tractable solution for regression
problems with an infinite or uncountable set of considered basis
functions [21]. We hypothesize that the GPR will outperform other
regression techniques due to its capability of handling noise and its
propriety for our dataset. To search the optimal kernel for GPR
models, we cross-validated the model for radial basis functions
(RBF), rational quadratic, and Matern kernels, and we found RBF
to perform the best on our dataset. To find the optimal set of
hyperparameters and prior parameters of the GPR, we follow the
process of maximizing the probability of observing data given
hyperparameters of the process (i.e., marginal likelihood). In this
work, we use a limited-memory BFGS optimization technique to
maximize the log marginal likelihood conditioned on the length
vectors and the noise level of the kernels.

Applying GPR resulted in an MSE of 1.71, and an R-squared of
0.94. GPR performed significantly better than other regression
models. Not only is GPR a kernel-based model similar to SVR, but
by adding an additional noise kernel it can also account for the
potential noise in our dataset. As a result, it is expected that the
GPR model outperformed other models in our prediction task.
Results of applying each of the regression models on the structural
n-gram encoded feature set is shown in Table 1.

Table 1. Average predictive performance of regression models
trained with the structural n-gram feature set

Regression MSE R2

Linear 3.03E+24 1.19E-23

Ridge 5.24 0.81

Lasso 6.30 0.77

SVR 5.09 0.82

GPR 1.71 0.94

5. CONCLUSION
Rapidly growing interest in computer science education and
students’ need for guided practice of CS concepts have created a
significant need for accurate and effective automated assessment.
In this work, we proposed a novel structural n-gram encoding
scheme to extract important structural and semantic information
from students’ programs. The n-gram encoding approach, coupled
with data labeled using the ECD-based rubric enables our
assessment framework to model evidence from programs that are
representative of students’ mastery of identified CS. We apply a
variety of regression models on the n-gram encoded feature set to
infer students’ program scores. The results of our prediction
demonstrate the effectiveness of the n-gram encoded feature set in
capturing important semantic and structural information in
students’ programs. All regression models performed better than
the baseline model, linear regression. Furthermore, GPR
outperformed other models in terms of both mean squared and R-
Squared errors. This confirms expectations since GPR models can
handle noisy data and are particularly efficient for datasets in which
the number of features is particularly high relative to the number of
data points. Our automated CS competency assessment framework
can be generalized to assess any well-structured programs in
learning environments that present students with well-structured
programming assignments. Furthermore, the ECD approach can
facilitate rubric design and assessment for non-expert CS teachers
while providing them with automated assessment of students’
programs.

Several directions for future work are promising. First, it will be
important to expand the assessment framework to accommodate
more open-ended programming assignments. Second, information
from successive submission of students can be extracted to analyze
students’ patterns of developing CS competencies.

6. ACKNOWLEDGMENTS
This research was supported by the National Science Foundation
under Grants DRL-1640141. Any opinions, findings, and
conclusions expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science
Foundation.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 558

7. REFERENCES
[1] Akram, B. 2019. Assessment of Students’ Computer

Science Focal Knowledge, Skills, and Abilities in Game-
Based Learning Environments. Ph.D. Dissertation. North
Carolina State University, Raleigh, NC.

[2] Akram, B., Min, W., Wiebe, E., Mott, B., Boyer, K., and
Lester, J. 2018. Improving Stealth Assessment in Game-
based Learning with LSTM-based Analytics. In
Proceedings of the 11th International Conference on
Educational Data Mining, 208–218.

[3] Akram, B., Min, W., Wiebe, E., Mott, B., Boyer, K., and
Lester, J. 2019. Assessing Middle School Students’
Computational Thinking Through Programming
Trajectory Analysis. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education,
1269–1269.

[4] Akram, B., Min, W., Wiebe, E., Navied, A., Mott, B.,
Boyer, K., and Lester, J. 2020. A conceptual assessment
framework for k-12 computer science rubric design. In
Proceedings of the 51th ACM Technical Symposium on
Computer Science Education, 1328.

[5] Ala-Mutka, K. 2005. A Survey of Automated
Assessment Approaches for Programming Assignments.
Computer Science Education 15, 2, 83–102.

[6] Amershi, S. and Conati, C. 2009. Combining
Unsupervised and Supervised Classification to Build
User Models for Exploratory Learning Environments.
Journal of Educational Data Mining, Article 1, 1, 18–71.

[7] Brennan, K., and Resnick, M. 2012. New frameworks for
studying and assessing the development of computational
thinking. Annual American Educational Research
Association meeting, Vancouver, BC, Canada, 1–25.

[8] Cohen, J. 1960. A Coefficient of Agreement for Nominal
Scales. Educational and Psychological Measurement 20,
1, 37–46.

[9] Emerson, A., Rodríguez, F., Mott, B., Smith, A., Min,
W., Boyer, K., Smith. C., Wiebe, E., and Lester, J. 2019.
Predicting Early and Often: Predictive Student Modeling
for Block-Based Programming Environments. In
Proceedings of the 12th Conference on Educational Data
Mining, 39–48.

[10] Emerson, A., Smith, A., Rodriguez, F., Wiebe, E., Mott,
B., Boyer, K., and Lester, C. 2020. Cluster-based
analysis of novice coding misconceptions in block-based
programming. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, 825–831.

[11] Fields, D., Giang, M., and Kafai, Y. 2014. Programming
in the wild: trends in youth computational participation in
the online scratch community. In Proceedings of the 9th
workshop in primary and secondary computing
education, ACM, 2–11.

[12] Grover, S., and Basu, S. 2017. Measuring Student
Learning in Introductory Block-Based Programming. In
Proceedings of the 48th ACM SIGCSE Technical
Symposium on Computer Science Education, 267–272.

[13] Grover, S., Basu, S., Bienkowski, M., Eagle, M., Diana,
N., and Stamper, J. 2017. A Framework for Using
Hypothesis-Driven Approaches to Support Data-Driven
Learning Analytics in Measuring Computational
Thinking in Block-Based Programming Environments.

ACM Transactions on Computing Education 17, 3, 14.
[14] Hansen, A., Dwyer, H., Iveland, A., Talesfore, M.,

Wright, L., Harlow, D., and Franklin, D. 2017. Assessing
Children’s Understanding of the Work of Computer
Scientists: The Draw-a-Computer-Scientist Test. In
Proceedings of the 48th ACM SIGCSE technical
symposium on computer science education, 279–284.

[15] Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O.
2010. Review of Recent Systems for Automatic
Assessment of Programming Assignments. In
Proceedings of the 10th Koli calling international
conference on computing education research, 86–93.

[16] Lajis, A., Baharudin, S., Kadir, D., Ralim, N., Nasir, H.,
and Aziz, N. 2018. A Review of Techniques in
Automatic Programming Assessment for Practical Skill
Test. Journal of Telecommunication, Electronic and
Computer Engineering 10, 2, 109–113.

[17] Meerbaum-Salant, O., Armoni, M., and Ben-Ario, M.
2013. Learning computer science concepts with scratch.
Computer Science Education 23, 3, 239–364.

[18] Min, W., Frankosky, M., Mott, B., Rowe, J., Wiebe, E.,
Boyer, K., and Lester, J. 2015. DeepStealth: Leveraging
Deep Learning Models for Stealth Assessment in Game-
based Learning Environments. In Proceedings of the 17th
International Conference on Artificial Intelligence in
Education, 277–286.

[19] Min, W., Frankosky, M., Mott, B., Wiebe, E., Boyer, K.,
and Lester, J. 2017. Inducing Stealth Assessors from
Game Interaction Data. In Proceedings of the 19th
International Conference on Artificial Intelligence in
Education, 212–223.

[20] Mislevy, R., Haertel, G., Riconscente, M., Rutstein, D.,
and Ziker, C. 2017. Evidence-Centered Assessment
Design. In Assessing Model-Based Reasoning using
Evidence- Centered Design. SpringerBriefs in Statistics,
19–24.

[21] Rasmussen, C.. 2004. Gaussian Processes in machine
learning. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 63–71.

[22] Rupp, A, Pearson, K., Sweet, S., Crawford, A., Levy, I.,
Fay, D., Kunze, K., Cisco, M., Mislevy, R., and Pearson,
J. 2012. Putting ECD into Practice: The Interplay of
Theory and Data in Evidence Models within a Digital
Learning Environment. Journal of Educational Data
Mining 4, 1 , 49–110.

[23] Shamsi, F., and Elnagar, A. 2012. An Intelligent
Assessment Tool for Students’ Java Submissions in
Introductory Programming Courses. Journal of
Intelligent Learning Systems and Applications 04, 01 ,
59–69.

[24] Snow, E., Haertel, G., Fulkerson, D. and Feng, M. 2010.
Leveraging evidence-centered assessment design in
large-scale and formative assessment practices. In
Proceedings of the 2010 Annual Meeting of the National
Council on Measurement in Education (NCME).

[25] Taherkhani, A., and Malmi, L. 2013. Beacon- and
Schema-Based Method for Recognizing Algorithms from
Students’ Source Code. Journal of Educational Data
Mining 5, 2, 69–101.

[26] Wang, T., Su, X., Wang, Y., and Ma, P. 2007. Semantic

559 Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020)

similarity-based grading of student programs.
Information and Software Technology 49, 2, 99–107.

[27] Zen, K., Iskandar, D,. and Linang O. 2011. Using Latent
Semantic Analysis for automated grading programming
assignments. In International Conference on Semantic
Technology and Information Retrieval, 82–88.

[28] 2016. K-12 Computer Science Framework. Retrieved
August 25, 2018 from http://www.k12cs.org.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 560

