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ABSTRACT 
Recent years have seen a growing interest in learning analytics for 
computer science education. The significant growth of computer 
science enrollments coupled with the labor-intensive nature of 
human assessment has fueled the demand for automated assessment 
of student programs. Effective automated assessment tools can 
bridge the gap between the demand for support and restricted 
instructional resources by providing adaptive formative and 
summative feedback. Following an evidence-centered assessment 
design approach, we have devised an automated assessment 
framework for middle grades computational thinking. We report on 
an evaluation comparing regression models including ridge, lasso, 
support vector, and Gaussian process regression models utilizing a 
structural n-gram feature set to infer scores for students’ programs. 
The results show that Gaussian process regression outperforms 
other regression models with respect to mean squared error and 
adjusted coefficient of determination. They also show that the 
framework provides a promising approach with regard to dealing 
robustly with noise to effectively model student computer science 
competencies. 
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1. INTRODUCTION 
Computer science (CS) has become a foundational skill for students 
to thrive in a digital economy [14, 28]. To prepare students for 
future studies and science and technology professions, it is essential 
to ensure that they acquire robust CS competencies. A key strategy 
for developing CS competencies is through programming. 
However, learning how to program is challenging for novices [12, 
13]. Hence, novice programmers need significant scaffolding to 
support understanding and effective use of CS concepts. Effective 
assessment of students’ understanding of essential CS concepts  is 
an important step in providing students with appropriate 
scaffolding and feedback  [11, 17]. Because the growth in demand 
for CS education has outstripped the supply of qualified teachers, 
providing every student with individualized, high-quality, and 

timely support and feedback is challenging. Effective automated 
assessment can guide adaptive formative and summative feedback 
to support effective CS education. 

In order to provide students and their instructors with reliable 
automated assessments, we follow a hypothesis-driven learning 
analytic approach [4] based on Evidence-Centered Assessment 
Design (ECD) [20] to assess students’ competencies in CS concepts 
as demonstrated in their programs. Following this approach, we 
first identify CS concepts that students need to master in order to 
solve a particular computational thinking-focused problem with a 
block-based programming interface embedded in the ENGAGE 
game-based learning environment (Figure 1). We then collect log 
data from students’ interactions with the game. Content area 
experts then analyze the structured log data as evidence of 
knowledge (or lack thereof) of target CS concepts. Deriving 
evidence from students’ proposed solutions, we assess their 
mastery of identified CS concepts, such as creating appropriate 
algorithms and programs, and appropriate usage of computer 
science constructs, such as loops and conditionals. We encode 
programs as structural n-grams to extract essential structural and 
semantic information within them. Finally, we utilize regression 
models including ridge, lasso, support vector regression (SVR), and 
Gaussian process regression (GPR) models on the generated feature 
set to infer students’ competencies for knowledge of CS concepts 
and practices. We utilize GPR models to handle the remaining 
noise in the dataset.  Evaluation results suggest that the models 
accurately model students’ CS competencies and are robust to 
noise.   

2. RELATED WORK 
Two primary approaches have been explored for assessing text-
based programs: dynamic and static assessment [5,15]. In dynamic 
assessment, programs are executed against pre-defined test data to 
determine their correctness. Evaluation metrics include successful 
compilation, consideration of security threats, correct outcome, and 
efficiency metrics such as CPU runtime and clock time [15, 16, 25]. 
In contrast, static assessments are capable of assessing programs 
that are not necessarily complete. To perform a static assessment, 
an intermediate representation of the program needs to be generated 
from the source code. Examples of intermediate representations are 
textual representations, abstract syntax trees, control flow graphs, 
and program dependence graphs. After forming the intermediate 
representation, the representation is analyzed for its correctness, 
efficiency, and quality [26]. Although block-based programming 
differs from text-based programming in syntax and visual 
representation, they can both be transformed into the same 
intermediate representation. Therefore, the techniques used for 
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assessing one type of programming from this representation can be 
readily adapted to assess the other type of programming [9, 10].   

Limited previous work has focused on assessing students’ 
understanding of underlying CS concepts from their programs. In 
this paper, we propose an automated assessment framework 
designed following a hypothesis-driven learning analytics 
approach to assess students’ programs based on their mastery of 
underlying CS concepts for the particular problem at hand.  We use 
the underlying CS concepts to label students’ programs with their 
grades. We then transform students’ programs to a feature set 
containing salient features that can serve as evidence for students’ 
proficiency of this underlying CS concepts. Utilizing the labeled 
data and the extracted feature set predictive models can identify 
students’ mastery of CS concepts. 

3. ENGAGE LEARNING ENVIRONMENT 
To collect data on middle grade students’ programming 
trajectories, we conducted a study with a game-based learning 
environment, ENGAGE, that is designed to teach CS to middle 
school students [2, 18]. The game features a rich, immersive 3D 
storyworld (Figure 1), in which students play the role of a specialist 
who is sent to investigate an underwater research facility that has 
lost communication with the outside world through suspicious 
activities of a rogue scientist. In the learning environment, students 
navigate through a series of interconnected rooms by solving a set 
of computational challenges. Each of the challenges can be solved 
either by programming devices within the room or interacting with 
devices in reference to their pre-written programs. Students 
program the devices with a visual block-based programming 
language interface (Figure 1, Right) [1, 19].  

In this work, we focus on students’ problem-solving approaches 
within a specific level of the game where students write a bubble 
sort algorithm to order a set of containers (Figure 1). This room has 
two devices: a containment device that holds six randomly 
positioned containers and a lock device that opens only when the 
containers are sorted in the increasing order. The player can exit the 
room through a door by correctly implementing bubble sort and 
executing the lock program when the containers are sorted. The 
lock has a pre-written program that will check the positions of 
containers and opens if they are in the correct position. The 
containment device provides students with the necessary blocks for 
implementing a bubble sort algorithm using a small robotic cart 
inside the device’s protective housing. Students can choose from 6 

types of readily available blocks to write their program. A sample 
correct solution for this challenge is shown in Figure 1 (right). 
Students need to test the correctness of their program in two steps. 
First, they need to run the bubble sort device to sort the containers. 
Second, they need to run the open lock program which checks if the 
containers are sorted and opens the door accordingly.  

4. METHODOLOGY 
We utilize supervised learning to assess students’ programs. The 
supervised learning approach consists of three primary steps. First, 
we label the training dataset in accordance with a rubric designed 
based on essential CS constructs. Second, we extract features from 
students’ submitted program snapshots that represent their 
understanding of CS constructs. This is accomplished with a novel 
approach that encodes students’ programs in terms of structural n-
grams. Third, we create models induced from the structural n-gram-
based feature set to infer students’ scores. In this study, we utilize 
a variety of regression models including linear, ridge, lasso, SVR, 
and GPR models to predict students’ programs’ scores.  

4.1 Data Annotation 
We use evidence-centered assessment design (ECD) to create a 
rubric for labeling students’ programs [22]. Following an ECD 
approach, we identify explicit learning outcomes and measures to  
inform our rubric [7]. The relevant CS concepts are identified and 
used to develop the specifications of a rubric to assess students’ 
proficiency of identified CS concepts. Student actions during the 
learning task are used as evidence for predicting mastery of the 
identified CS concepts [24]. Following this approach, we design a 
rubric that utilizes evidence rules specific to the bubble sort 
challenge in the ENGAGE game-based learning environment. We 
use this rubric to manually label students’ programs [3, 4]. 

As students interacted with the learning environment, all of their 
interactions with the game were logged. For this study, we collected 
data from five classrooms across three schools in the United States. 
We collected data from 69 students’ interactions with the bubble 
sort challenge in the game-based learning environment, for a total 
of 1,570 programs that we used as the training dataset. In this 
rubric, the range of possible scores is between 0 to 22. To validate 
the labeling process, two human annotators with a computer 
science background separately labeled 20% of the entire 
submissions, achieving an inter-rater agreement of 0.856 using 
Cohen’s kappa [8]. Before tagging the remainder of the corpus, all 
instances that were tagged differently were discussed. Afterwards, 

Figure 1. ENGAGE game-based learning environment. (Left) The bubble sort task in the game-based learning environment. (Right) 
Program for the bubble sort task: the read-only code for opening the door and an example of a correct implementation of the 
bubble sort written by a student. 
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one annotator tagged the remainder of the dataset. The annotated 
dataset is used as the corpus for our prediction task where the 
assigned scores serve as the ground-truth for our data corpus. 

4.2 Feature Engineering 
In order to infer students’ scores based on their submitted 
programs, we extract structural features that are representative of 
the semantic information in students’ code. To extract features that 
capture essential structural and semantic information stored within 
the programs, we perform a structural n-gram encoding of the 
programs’ abstract syntax trees (ASTs). Since the programs are 
stored as programming snapshots, we first apply an intermediate 
transformation from programming snapshots to their corresponding 
ASTs [23]. We then encode the generated ASTs into their 
corresponding structural n-grams. After generating the ASTs from 
their corresponding programs, we use a structural n-gram encoding 
to capture essential structural information characterized within the 
programs. Two important structural information types in ASTs are 
hierarchical and ordinal. The hierarchical information encodes 
what blocks are nested under another (i.e., a vertical relationship in 
AST), and the ordinal information encodes the placement order of 
blocks (i.e., horizontal relationship in AST) that are nested under 
the same parent node. We extract n-grams with varying lengths of 
n to capture the most fine-grained structural information present in 
an AST. We repeat the n-gram encoding process separately for 
hierarchical feature extraction and ordinal feature extraction. We 
then merge the two feature sets together to build the final feature 
set containing both hierarchical and ordinal n-gram encodings 
corresponding to each program keeping only one copy of the 
generated unigrams.  The occurrence of similar n-grams for n 
values more than one (unigrams) in both hierarchical and vertical 
encodings demonstrate presence of different structures in in the 
AST and thus, both will be preserved. 

Figure 2 shows an AST generated from a sample program along 
with its partial hierarchical (left) and ordinal (right) n-gram 
encoding. In Figure 2 (left), each colored circle shows the 
hierarchical (top to bottom) n-gram encoding of a specific n. In this 
example, we have hierarchical encoding of n-grams of size one 
(green ovals), two (blue ovals) and three (the purple ovals). The 
frequency values for each n-gram encoded feature are shown beside 
the AST. All of the other n-gram feature values are zero since they 
are not in this AST. Figure 2 (right) shows the same sample AST 
with its ordinal (left to right) n-gram encoding. In this example, we 

have an ordinal encoding of n-grams of size one (pink ovals), two 
(purple ovals) and three (the green ovals). Similar to Figure 2 (left), 
the frequency values for each n-gram feature is shown besides its 
corresponding AST in Figure 2 (right).  

 4.3 Inferring Program Scores 
We trained a variety of regression models on the structural n-gram-
encoded features to infer the scores of students’ programs. In 
particular, we used linear regression as the baseline regression 
model, and four additional regression models: ridge, lasso, support 
SVR, GPR models. Ridge and lasso regressions are characterized 
by their utilization of L1 and L2 regularization, respectively, which 
address overfitting and variance issues in comparison to linear 
regression. We use SVR and GPR models since their utilization of 
kernels makes them a suitable candidate for datasets similar to ours 
where the number of features is relatively high compared to the 
number of data points. Finally, we utilize GPR to handle the noise 
resulting from the subjective nature of human grading [6, 27]. To 
infer students’ program grades using the n-gram encoded feature 
set (we set the maximum n to 4 for hierarchical n-grams and 3 for 
ordinal n-grams  in this work), we use a 5-fold cross-validation 
approach to tune the hyperparameters of ridge, lasso, and SVR 
regressions, and to identify the appropriate kernel for the GPR. 
After the hyperparameter optimization process is complete, we use 
10-fold cross-validation to train and evaluate each regression 
model. 

4.3.1 Linear Regression 
Linear regression is a simple regression approach that works under 
the assumption that there is a linear relationship between features 
and the predicted value. The results of applying a 10-fold cross-
validation evaluation on the n-gram encoded feature set resulted in 
a Mean Squared Error (MSE) of 3.03E+24 and an R-squared of 
1.19E-23. The high MSE value reported by the linear model trained 
with our feature set is understandable since the high number of 
features in our dataset dramatically increases the complexity of the 
model, which in turn causes overfitting of linear regression-based 
predictive models to the training data.  

4.3.2 Ridge Regression 
To reduce the variance error, ridge regression includes a penalty 
term in the optimization. We used the set [0.05, 0.1, 0.5, 1.0, 10] to 
tune the value for l, the penalty coefficient, and found l=10 to be 

Figure 2: AST generated from a sample program submitted for the bubble sort challenge and its hierarchical and ordinal n-gram 
encoding. (Left) An AST and its partial hierarchical unigrams, bigrams, and 3-grams marked by green, blue and purple ovals 
respectively on the left and the partial feature set generated from hierarchical n-gram encoding of the AST along with feature-level 
frequencies on the right. (Right) An AST and its ordinal unigrams, bigrams, and 3-grams marked by green, blue and purple ovals 
respectively on the left and the partial feature set generated from partial ordinal n-gram encoding of the AST along with feature-
level frequencies on the right. 
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the best value for our regression task. Applying ridge regression on 
our dataset resulted in an MSE of 5.24 and an R-squared of 0.81. 
We can see that ridge regression considerably outperformed 
standard linear regression with respect to both MSE and R-squared. 

4.3.3 Lasso Regression 
Unlike ridge regression, lasso regression includes a penalty term 
that allows the optimization process to shrink weights to zero if 
necessary. As a result, lasso regression can reduce overfitting as 
well as perform feature selection. We used the set [0.05, 0.1, 0.5, 
1.0, 10] as in ridge regression to tune the value for l and found 
l=0.05 to be the best value for l. Utilizing lasso regression resulted 
in an MSE of 6.30 and an R-squared of 0.77, which also 
outperformed standard linear regression models with respect to 
both MSE and R-squared. 

4.3.4 Support Vector Regression 
Support vector regression (SVR) use kernels to transform data from 
a non-linearly separable space to a linearly separable space. For our 
regression task, we explored with linear, polynomial, and radial 
basis function (RBF) kernels. For each kernel, we tuned the 
hyperparameters of penalty parameter (C), epsilon, and kernel 
coefficient (gamma). For polynomial kernels, we also tuned the 
parameter of the kernel projection (coef0) and degree 
hyperparameters. Utilizing 5-fold cross-validation, we found the 
polynomial kernel with a degree of four to be the best kernel for 
our dataset. Also, the grid search identified C=100, coef0=1, 
degree= 4, epsilon=1, and gamma= 0.001 as the best parameters for 
this kernel. Incorporating the SVR model resulted in an MSE of 
5.09 and an R-squared of 0.82. SVR performed better than both 
ridge and lasso regressions in terms of MSE and R-squared. This 
could be due to the fact that kernel methods perform effectively on 
datasets with a feature set that is relatively large compared to the 
size of the dataset.  

4.3.5 Gaussian Process Regression 
GPRs provide an analytically tractable solution for regression 
problems with an infinite or uncountable set of considered basis 
functions [21]. We hypothesize that the GPR will outperform other 
regression techniques due to its capability of handling noise and its 
propriety for our dataset. To search the optimal kernel for GPR 
models, we cross-validated the model for radial basis functions 
(RBF), rational quadratic, and Matern kernels, and we found RBF 
to perform the best on our dataset. To find the optimal set of 
hyperparameters and prior parameters of the GPR, we follow the 
process of maximizing the probability of observing data given 
hyperparameters of the process (i.e., marginal likelihood). In this 
work, we use a limited-memory BFGS optimization technique to 
maximize the log marginal likelihood conditioned on the length 
vectors and the noise level of the kernels.     

Applying GPR resulted in an MSE of 1.71, and an R-squared of 
0.94. GPR performed significantly better than other regression 
models. Not only is GPR a kernel-based model similar to SVR, but 
by adding an additional noise kernel it can also account for the 
potential noise in our dataset. As a result, it is expected that the 
GPR model outperformed other models in our prediction task. 
Results of applying each of the regression models on the structural 
n-gram encoded feature set is shown in Table 1.  

  

 

Table 1. Average predictive performance of regression models 
trained with the structural n-gram feature set 

Regression MSE R2 

Linear 3.03E+24 1.19E-23 

Ridge 5.24 0.81 

Lasso 6.30 0.77 

SVR 5.09 0.82 

GPR 1.71 0.94 

 

5. CONCLUSION 
Rapidly growing interest in computer science education and 
students’ need for guided practice of CS concepts have created a 
significant need for accurate and effective automated assessment.  
In this work, we proposed a novel structural n-gram encoding 
scheme to extract important structural and semantic information 
from students’ programs. The n-gram encoding approach, coupled 
with data labeled using the ECD-based rubric enables our 
assessment framework to model evidence from programs that are 
representative of students’ mastery of identified CS. We apply a 
variety of regression models on the n-gram encoded feature set to 
infer students’ program scores. The results of our prediction 
demonstrate the effectiveness of the n-gram encoded feature set in 
capturing important semantic and structural information in 
students’ programs. All regression models performed better than 
the baseline model, linear regression.  Furthermore, GPR 
outperformed other models in terms of both mean squared and R-
Squared errors. This confirms expectations since GPR models can 
handle noisy data and are particularly efficient for datasets in which 
the number of features is particularly high relative to the number of 
data points. Our automated CS competency assessment framework 
can be generalized to assess any well-structured programs in 
learning environments that present students with well-structured 
programming assignments. Furthermore, the ECD approach can 
facilitate rubric design and assessment for non-expert CS teachers 
while providing them with automated assessment of students’ 
programs.  

Several directions for future work are promising. First, it will be 
important to expand the assessment framework to accommodate 
more open-ended programming assignments. Second, information 
from successive submission of students can be extracted to analyze 
students’ patterns of developing CS competencies.  
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