
Extending the Hint Factory: Towards Modelling
Productivity for Open-ended Problem-solving

Mehak Maniktala∗
North Carolina State

University
mmanikt@ncsu.edu

Tiffany Barnes
North Carolina State

University
tmbarnes@ncsu.edu

Min Chi
North Carolina State

University
mchi@ncsu.edu

ABSTRACT
Determining when and whether to provide personalized sup-
port is a well-known challenge called the assistance dilemma.
A core problem in solving the assistance dilemma is the need
to discover when students are off-track or unproductive, so
that the tutor can intervene. Such a task is particularly
challenging for open-ended domains such as logic proofs,
and programming. In this paper, we present a data-driven
method to determine step-level productivity in a logic proof
tutor. This approach leverages and modifies the Markov
decision processes in the Hint Factory, a data-driven hint
generator, to develop four productivity metrics. Our results
provide evidence suggesting that, for each productivity met-
ric, students’ training productivity significantly correlates to
their posttest performance. We conclude with a discussion
outlining challenges posed when comparing these produc-
tivity metrics to a ground truth, and propose a preliminary
approach to address them.

Keywords
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1. INTRODUCTION
Intelligent Tutoring Systems (ITSs) provide individuals with
adaptive feedback and hints, improving learning [25]. Stud-
ies suggest that hints, when provided appropriately, can aug-
ment students’ learning experience [10, 22] and improve their
performance [7]. However, researchers often find that stu-
dents display poor help-seeking behavior [2, 21]; some abuse
hints to expedite problem completion, and some avoid seek-
ing help when they are in need [1, 20].

To deal with non-optimal help-seeking behavior, several ITSs
provide unsolicited assistance [3, 18, 13]. However, deter-
mining when to provide proactive assistance, i.e., unsolicited
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assistance in anticipation of future struggle, is particularly
challenging in open-ended domains where there are many
possible correct solutions. The assistance dilemma is a well-
recognized challenge in the domain of ITSs, where a trade-
off exists between giving and withholding information to
achieve optimal learning [14]. On one hand, providing assis-
tance may reduce frustration and save students’ time, but
may lead to shallow learning or a lack of motivation to learn
by oneself. On the other hand, withholding information can
encourage students to learn by themselves, but may lead
to frustration and wasted time [14, 16]. A core problem of
the assistance dilemma is the need to discover when students
are off-track or unproductive so that the tutor can intervene.
We hypothesize that developing a proactive hint policy for
a logic tutor, where tutor interventions are delivered upon
predictions of unproductivity in training, can improve stu-
dents’ logic proof strategies in a posttest without hints.

Contributions. In this paper, we present our novel, data-
driven approach to measure productivity in an open-ended
logic ITS. We extend the Hint Factory [24], a generalizable
data-driven method for hint generation, to define four met-
rics of productivity. We then present our preliminary anal-
ysis on evaluating these metrics in the logic tutor.

2. RELATED WORK
Several studies have used the term “unproductive” to refer
to undesirable behavior during training [12, 9, 19]. For ex-
ample, Beck and Gong [8] define unproductive persistence or
“wheel-spinning”based on whether or not a student achieved
mastery (three correct problems) in 10 problem attempts.
Their definition of unproductivity has been used in recent
studies to predict when an intervention can help students
by distinguishing between productive and unproductive be-
havior using decision trees [12] and Recurrent Neural Net-
works [9]. However, this definition of problem-level and
problem-completeness based productivity is not suitable for
our objective of guiding students toward efficient problem-
solving strategies at a finer step-level granularity, specifically
in open-ended domains.

McLaren et al. in a study on an open-ended inquiry-learning
program defined unproductive events as the actions taken
by the student that do not help them achieve the goal of a
particular level, i.e., the steps that students take that are
unlikely to advance their understanding of the concepts be-
ing taught [16]. Similar to this study, we define productivity
on a step level to identify student steps that are not likely
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to advance their problem-solving strategies. However, our
definition is different in that we did not use a pre-defined
domain-specific metric for efficient and inefficient strategies;
rather we focused on solution length or optimality, which is
valued across problem-solving domains.

In many multi-step open-ended but well-structured problem-
solving domains, shorter solutions are considered to be more
optimal than longer ones, and solving problems in less time
reflects both learning and fluency [15, 23, 26, 11]. We use
these basic assumptions about time and solution length to
design a data-driven, domain-agnostic approach to model
productivity on problem-solving steps. The Hint Factory is
a data-driven approach for hint generation. The approach
uses prior students’ transaction log data to form an inter-
action network and assign scores to problem-solving states
(snapshots of an on-going or completed proof) [24, 5]. A
core insight of the work in this paper is that we can similarly
use interaction networks to score productive problem-solving
steps without the need to model the domain.

3. METHOD & PRELIMINARY RESULTS
In this section, we define productivity, a data-driven mea-
sure quantifying how much a student’s most recent step
contributes to an efficient solution. We explore four new
productivity metrics defined using the combination of the
quality of each state (local or global), and the amount of
progress made in a step (absolute or relative). First, we
present the Hint Factory. Next, we present our extension of
the Hint Factory, and how we use it to define productivity.

3.1 Hint Factory
Hint Factory is a method for generating hints in multi-step
open-ended domains [6]. In the Hint Factory, historical stu-
dent solutions are used to form Markov decision processes
(MDP) from interaction networks, where vertices are ob-
served student problem-solving states (snapshots of their
on-going or completed proof), and edges are problem-solving
steps, i.e, a transition between states. The Hint Factory uses
value iteration, a reinforcement learning technique, given in
Equation 1, to assign an expected value LQV (s) to each state
s, where LR(s) is the state’s reward, γ is the discount fac-
tor, and Pa(s, s′) is the proportion of the observed solutions
in state s that lead to state s′ using the action (i.e. step) a.
In the Hint Factory, a large reward is set for the problem-
completion or goal states (100), penalties for incorrect states
(10), and a cost for taking each action (1) [5]. A non-zero
cost on actions causes the MDP to penalize longer solutions.

LQV (s) := LR(s) + γmax
a

∑
s′

Pa(s, s′)LQV (s′) (1)

3.2 State Quality - Extending the Hint
Factory metrics

In this section, we leverage the Hint Factory approach to
generate two quality metrics that determine the expected
values for each observed problem-solving state. The first
metric of state quality was defined as part our prior work
on the Hint Factory, which we label as local quality. Local
quality provides insights about how far a state is from the
closest goal state, weighted by the probabilities of transi-
tions, but it cannot provide information about whether the
state is on an efficient path to a solution.

GQV (s) := GR(s) + γ
∑
s′

Pa(s, s′)GQV (s′) (2)

Global Quality. We devised a novel, data-driven global
quality value function, GQV in Equation 2, to give higher
values to states on efficient solution paths. Equation 2 sums
GQV (s′) over all states s′ reachable from s, weighted by
Pa(s, s′), taking into account all future actions from a cur-
rent state, rather than just the one with the max expected
value. The global rewards GR are identical to LR for errors
and actions, but are different for goals, giving shorter, more
efficient solutions higher rewards. The global reward GR(g)
for each goal state g on a problem is GR(g) = 100− p ∗ δ(g)
where δ(g) is the difference between the solution length of
g and that of the shortest solution, and p is a penalty for
longer solutions. We set p = (100 − 80)/δmedian) where
δmedian is the difference between the median and shortest
solution lengths for each problem because median student
solution lengths are assigned a global reward of 80. Mean-
ing, the student’s performance with a median solution length
represents a low B grade. The proof of convergence for the
modified value iteration equation 2 is given in appendix A.

We now demonstrate the differences between local and global
quality metrics using solution trajectories (series of steps) of
varying solution lengths: Tshort, Tmedium, and Tlong in Fig-
ures 1 and 2. Tshort is the shortest solution (four steps),
with all nodes (logic statements) used. Note that a node is
said to be used if it contributes towards deriving the conclu-
sion of the problem. Tmedium has five steps with one unused
node D; and Tlong has eight steps, and all nodes used.

We generated interaction networks to determine the qual-
ity values for each problem using our historical data for N =
796 students. Figure 2 shows the quality values for the three
trajectories in Figure 1. The start state in Figure 2 consists
of the three given logic statements (the topmost state). Ar-
rows between states represent steps, i.e, transition between
states by logic rules applications. Non-start states are repre-
sented by a +(XYZ), where XYZ is the new logic statement
derived in a step. The start state has a high global quality,
but low local quality. The start state’s global quality is high
because all efficient paths contain it, but its local quality is
low because it is probabilistically farther away from goals
than any other state in the figure. The local quality for
states that are only found in incomplete attempts is lower
than that for the start state. The local quality of the goal
states on all three trajectories is 100. The global quality
value for the goal state in each solution trajectory differs,
with 100 for the Tshort goal (since it’s the most efficient), 95
for Tmedium, and 80 for Tlong goal states.

From the start state to the goal in Tshort, both local and
global quality state values increase monotonically since it is
the most efficient solution. Note that not all quality values
increase over every trajectory. For example, step Tmedium−
2’s pre-state (+A→ E) global quality is higher than that for
its post-state (+D) since the pre-state is on a more efficient
path, but the local quality increases from pre- to post-state.
Step Tlong−3’s pre-state (+¬E) has higher local and global
quality values than its post-state (+¬E → ¬A) since the
post-state is farther from and less likely to reach Tlong’s
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Figure 1: Three Solutions with Varying Number of Steps for a logic problem in Deep Thought

(a) Trajectory Tlong : Eight Steps
and all used nodes

(b) Trajectory Tshort: Four Steps
and all used nodes

(c) Trajectory Tmedium: Five
Steps and four used nodes

Figure 2: Illustration for the concepts of State Quality and Productive steps in 3 trajectories Tshort, Tmedium, and Tlong

goal than the pre-state is to Tshort’s closer goal. The global
quality decreases for two reasons: (1) Tlong goal is on a less
efficient path, and (2) global quality performs a weighted
sum over all the subsequent, previously-observed states in
the larger (unshown) interaction network, many of which
lead to incomplete attempts.

These examples demonstrate the differences between local
and global state quality metrics. The main strength of gen-
erating these quality values is the MDP approach which en-
sures that each state quality value is based not only on the
distance from a solution but also on the probability of tran-
sition at each of the successive steps. This allows us to rate
steps in a more probabilistic manner than a simplistic com-
parison based on the distance from the most efficient expert
solution.

3.3 Progress - Change in Quality

Since state quality is a measure of relative ”goodness”, we
compare the quality of the current state with that of the pre-
vious and start states to evaluate the productivity in a step.
In this section, we define two measures for progress: relative,
the change in state quality from the previous problem-state,
and absolute, the change in state quality from the start.

Relative progress is the difference between the quality values
of the current and previous states. Relative progress with
local quality identifies whether the previous or current state
is closer to the goal. When using the global quality values,
the relative progress identifies the state closer to a goal, and
provides additional information detailing which one of the
two is on a more efficient solution path.

Consider a valid, but long solution attempt. A relative
progress measure reveals whether a student is progressing
toward a solution in a step, but not whether their trajec-
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Quality-Progress Productivity Formula
Global-Absolute (GQVpost−state −GQVstart−state) ≥ 0
Global-Relative (GQVpost−state −GQVpre−state) ≥ 0
Local-Absolute (LQVpost−state − LQVstart−state) ≥ 0
Local-Relative (LQVpost−state − LQVpre−state) ≥ 0

Table 1: Step Productivity formula based on state Quality
values and step Progress

tory is efficient. Therefore, we define absolute progress as
the difference between the current and start states’ quality,
using either quality measure. Absolute progress using local
quality reveals whether a student’s current state is farther or
closer from any goal states than when they began working on
the proof. Global quality based absolute progress reveals the
amount of efficient progress a student has made between the
start and the goal. For example, if we compare the absolute
progress on two consecutive steps of a solution attempt, if a
student is taking efficient steps, then the absolute progress
will increase on every step.

3.4 Productivity - Quality & Progress
We define four kinds of productivity measures based on qual-
ity {Local, Global} and progress {Relative, Absolute}. A
step is considered productive if the progress of its post-state
using either quality measure is a non-negative number, and
unproductive otherwise, as shown in Table 1.

In consultation with an expert who has more than twenty
years of experience teaching discrete math, we labeled the
steps as productive or not in each of the three trajectories
(Tshort, Tmedium, Tlong) shown in Figure 1. Expert-assigned
unproductive steps in Figure 2 are displayed in red and oth-
ers are in green. According to the local quality and absolute
progress (local-absolute) productivity metric, all the steps
are productive because they eventually lead to a solution.
However, this metric is not sensitive to variations in the
solution lengths. When we use local-relative productivity,
only the Tlong−3 step is unproductive, as it is the only step
where a post-state is probabilistically farther from a solu-
tion than the pre-state. Using the global-relative measure,
steps Tmedium − 2 and Tlong − 3 are unproductive because
they have a pre-state on a more efficient path to the solution
than the post-state. The global-absolute metric is the only
measure that labels the four expert-identified unproductive
steps correctly. 1. Note that each type of productivity cap-
tures a different perspective on a step towards the solution.
Overall, the global-absolute productivity metric aligns per-
fectly with the expert’s labels for the sample trajectories.
However, using a panel of experts to rate each step would
provide a more robust assessment of the ground truth. A
major challenge in a manual inspection by a panel of experts
is our vast state-space (N = 72,560).

3.5 Selecting a Productivity Metric
1Note that these four unproductive states also correspond to
the four infrequently used (yellow) nodes in the student solu-
tion shown in Figure 1a. However, some unproductive nodes
have been observed to be frequently used, and some produc-
tive nodes to be infrequently used in our tutor, suggesting
that the use-frequency alone cannot determine productivity

Productivity Using Corr
Global-Absolute 0.328
Global-Relative 0.261
Local-Absolute 0.294
Local-Relative 0.236

Table 2: Correlation between students’ Training Productiv-
ity and Posttest Optimality (all correlations are significant
with p < 0.01)

To understand which one of the four productivity metrics is
most indicative of how students’ work in the tutor’s train-
ing section affects their posttest solution optimality, we con-
ducted a correlation test. Note, we evaluate students on
an optimality score, which is as an exponential decay func-
tion on normalized steps e−steps to account for the small
variance in the number of steps. Steps are normalized to
the interquartile range for each specific problem to account
for varying lengths/difficulties. Very short solutions with
step count less than or equal to Q1 (first quartile) have,
optimality = 1, and those with step count greater than Q3
(third quartile) have an optimality score of 0.36 or less based
on the exponential decay curve.

For each student in our dataset (N = 437), we computed
their posttest optimality and the proportion of training steps
that are productive using each productivity metric. We
then calculated the correlation between each type of training
productivity with posttest optimality using Pearson’s coef-
ficient. Table 2 shows that higher productivity in training is
significantly correlated to better posttest optimality for all
the productivity metrics. Among them, the global-absolute
metric is the most correlated with posttest optimality.

4. CONCLUSION & ADVICE SOUGHT
In this paper, we provide a unique extension of the Hint
Factory to determine productivity on a step-level in a logic
ITS. Outside the scope of this paper, we assessed the impact
of intervening with hints using a predictor of unproductivity
(global-absolute) in a controlled study with two conditions:
control and adaptive. Students in both conditions could re-
quest hints, but interventions using the predictor were given
only in the adaptive condition. We found that the adaptive
condition students had significantly better posttest optimal-
ity and time than their control peers. Our long term aim is
to assess the generalizabitily of this approach in other open-
ended domains such as programming, and to address the
assistance dilemma for open-ended problem-solving.

For this doctoral consortium, we would like advice on how to
further assess and compare the productivity metrics against
a ground truth. We plan to form a panel of experts to rate
a larger number of steps, but it is infeasible for them to rate
each step in our vast state-space. Do we employ data-driven
methods to determine the ground truth? I would like to dis-
cuss data-driven ways to evaluate the productivity metrics
such as using inferring rewards from Gaussian processes [4]
or using procedural solution generators [17].

Our preliminary results are promising, and through this con-
sortium, we seek to determine a method to assess the ground
truth of step-level productivity in the logic tutor.
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APPENDIX
A. PROOF OF CONVERGENCE FOR THE

MODIFIED BELLMAN BACKUP FUNC-
TION

Theorem: The modified Value iteration (Eqn 2) converges
to GQV ∗ for any initial estimate GQV , i.e.,

lim
k→∞

GQVk = GQV ∗ ∀GQV

For any estimate of the value function GQV , we define the
modified Bellman backup operator B̂ : R|S| → R|S|

B̂GQV (s) = GR(s) + γ
∑
s′∈S

Pa(s, s′)GQV (s′)

Before we provide the proof of convergence, we provide the
proof of contraction, i.e, for any two value functions GQV
and GQV’:

||B̂GQVk − B̂GQV ′k || ≤ γ||GQVk −GQV ′k ||

where the max norm:

||GQV || = max
s∈S
|GQV (s)|

||v − v′|| = Infinity norm (max difference over all states)

Proof of contraction:

||B̂GQV − B̂GQV ′||

=

∣∣∣∣∣
∣∣∣∣∣
[
GR(s) + γ

∑
s′∈S

Pa(s, s′)GQV (s′)

]
−

[
GR(s) + γ

∑
s′∈S

Pa′(s, s′)GQV ′(s′)

]

= γ

∣∣∣∣∣
∣∣∣∣∣
[∑
s′∈S

Pa(s, s′)GQV (s′)−
∑
s′∈S

Pa′(s, s′)GQV ′(s′)

]∣∣∣∣∣
∣∣∣∣∣

= γ

∣∣∣∣∣
∣∣∣∣∣
[∑
s′∈S

Pa(s, s′)(GQV (s′)−GQV ′(s′))

]∣∣∣∣∣
∣∣∣∣∣

≤ γmax
s

∑
s′∈S

Pa(s, s′)|GQV (s′)−GQV ′(s′)|

≤ γ
∑
s′∈S

Pa(s, s′)||GQV −GQV ′||

= γ||GQV −GQV ′||

since Pa(s, s′) are non-negative and sum to one

Proof of Convergence:

||GQVk+1 −GQV ∗||∞
=
∣∣∣∣∣∣B̂GQVk −GQV ∗

∣∣∣∣∣∣
∞

≤ γ ||GQVk = GQV ∗||∞ ≤ ...

≤ γk+1 ||GQV0 −GQV ∗||∞ −→ 0
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