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ABSTRACT
We introduce DeepPerfEmb, or DPE, a new deep-learning
model that captures dense representations of students’ on-
line behaviour and meta-data about students and educa-
tional content. The model uses these representations to pre-
dict student performance. We evaluate DPE on standard
datasets from the literature, showing superior performance
to the state-of-the-art systems in predicting whether or not
students will answer a given question correctly. In partic-
ular, DPE is unaffected by the cold-start problem which
arises when new students come to the system with little to
no data available. We also show strong performance of the
model when removing students’ histories altogether, rely-
ing in part on contextual information about the questions.
This strong performance without any information about the
learners’ histories demonstrates the high potential of using
deep embedded representations of contextual information in
educational data mining.

1. INTRODUCTION
The testing effect, the effect of including practice assess-
ments as part of a students’ learning phase, is known to
have a strong positive influence on the knowledge acquisi-
tion process [2].

While the importance of regular practice and question an-
swering is established, it is essential to balance it against
the time constraints that students and instructors are fac-
ing [11]. The issue of having to teach and evaluate“too much
[...] in too short a time” [10] is long-standing and leads to
teachers having to make instructional choices with the in-
formation they have available [12]. It is thus important to
identify factors that could help intelligent systems to ask
the right question to the right students to maximise their
knowledge gain in a limited time.

Extensive research has focused on building better student
modeling to work towards this goal. Most of these ap-
proaches focus on extracting information from individuals’

histories of answers given, both right and wrong, to ques-
tions evaluating certain skills [4, 19, 18, 7]. Recent work has
taken into account other factors, such as item-skills relation-
ships, the relationship between a question and the skill it is
meant to evaluate citedas3h, or individual item difficulty [17]
in predicting student performance .

Deep knowledge tracing, which represents the state of the
art in student performance, does not take into account the
wealth of instance-specific interactions a student has with
a given question, such as requesting assistance before at-
tempting to answer it or the amount of time taken before
answering.

We propose DeepPerfEmb, a deep learning model whose aim
is to learn dense representations of this information and use
it to improve the task of performance prediction. Our con-
tribution is two-fold: we firstly argue that instance-specific
information can be leveraged by such a model to reach a very
high level of performance on predicting student correctness.
We also introduce a variant of the model using exclusively
contextual data, showing its ability to learn dense represen-
tations of these data points and perform strongly on the
same task, despite having very limited information about
the students’ actions.

2. BACKGROUND
In the educational data mining field, there has been exten-
sive research on attempting to model a learner’s understand-
ing of defined skills. Generally, this task is achieved through
using observations related to a student’s question-answering
history. This information is used to estimate the student’s
mastery of the skills evaluated by the questions and is gen-
erally evaluated by using the model to predict whether or
not they will answer a given question correctly. Such mod-
els are known as Knowledge Tracing (KT) models. Bayesian
Knowledge Tracing (BKT), one of the most widespread clas-
sical method, models each students’ knowledge as the latent
variable of a Hidden Markov Model built using students’
answering histories [4]. Such methods also rely on an evalu-
ation of the probability of slipping, when a student answers
incorrectly despite having mastered the skill, and guessing,
when a correct answer is given without having mastered it.

More recently, many different approaches to knowledge trac-
ing have been researched, mainly relying on extracting in-
formation from a vast amount of students’ attempts at an-
swering questions [7, 18]. Some of these models occasionally
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focus on or integrate other factors, such as modelling stu-
dent forgetting [23] and estimated difficulty of question [15]
or the possibility for a single question to relate to multi-
ple, distinct types of knowledge [3]. These approaches often
serve as the basis to intelligent learning schedulers, aiming
to optimise the distribution of questions asked to students
to maximise their knowledge gain [22, 25].

In recent years, deep learning has been utilised in order to
produce better-performing variants of previous approaches.
Notably, DeepIRT [27] and Deep Knowledge Tracing [19],
have been introduced. These techniques, themselves a re-
finement on previous models, replace some of the prior build-
ing blocks with deep neural architectures while retaining the
same foundational approach. Unlike more traditional meth-
ods, deep-learning based approaches rarely explicitly model
the impact of forgetting, guessing or slipping, instead rely-
ing on the model to capture implicit information about these
factors.

Online intelligent tutoring systems, such as the Assistment
platform[20], have been invaluable in providing a large amount
of data to train and evaluate such models. In addition to the
information about students’ attempts, failures and successes
in answering questions, they generate a wealth of data about
other aspects of the tutoring system. Notably, such systems
may provide the user with the possibility of requesting assis-
tance in answering the question, in the form of hints. It has
been noted that such additional features are under-utilised
in KT models and improve their performance when taken
into account [26].

The focus of most of this prior work has been on exploiting
the history of user answers, both right and wrong, in order to
predict the likelihood that they have mastered a given skill.
Such approaches reach a high level of performance and can
accurately model the relationships between the skills evalu-
ated [19, 16]. However, they encounter issues with students
with relatively little or no interaction, and some of them ex-
clude any student who has attempted to answer fewer than
10 questions [15, 3]. This issue is known as the cold start
problem.

However, point-of-time snapshots of data contain a lot of ad-
ditional information that has known little exploration. Such
information, which we broadly refer to as contextual in-
formation, includes data directly related to the students’
context, such as their school, the question they are solving,
and the time it takes them to attempt to answer a ques-
tion. We believe that such a method is complementary to
approaches focusing on students’ history in understanding
the cognitive process of learning through assessment.

Prior work on deep neural networks has highlighted their
ability to learn good embedding representations for discrete
data [6]. This paper demonstrates that a modified version
of this approach is able to outperform state-of-the-art KT
model in the specific task of predicting student correctness.
We show that our model learns a powerful representation of
the data it receives as input, outperforming the state of the
art, leading to a better understanding of how the questions
asked to students can affect their performance.

3. PROPOSED METHOD
Our goal is to highlight how contextual data can be lever-
aged to improve question-correctness prediction. In order
to do so, we use a deep learning model whose main purpose
is to learn representations of this data in order to predict
question-correctness. We then set out to leverage interpre-
tation methods in order to understand which factors are
considered important in making these predictions.

3.1 Data
We use two widely used public datasets made available by
the Assistments online tutoring platform [20]: ASSIST2009
[5] and ASSISTChall [1].
Each dataset is composed of hundreds of thousands of stu-
dent interaction, with each interaction corresponding to a
snapshot taken at the moment a student attempts to an-
swer a question. Each snapshot contains a large amount of
information, represented by multiple variables.

Two categories of data are present in each snapshot:

• Meta-data, or contextual data: Information about
the overall context around the student and the ques-
tion they are currently taking. Broadly, these are:

– Information about the student’s background (school
ID, teacher ID...)

– Information about the current question (problem
set ID, question ID, skill evaluated ID, whether
or not the question can be scaffolded...)

• Current instance-specific data: Information about
the question the student is currently attempting. Broadly,
these are:

– Information about the student’s help requests (hints
requested, whether he has seen the final hint, where
the questions stands in a scaffolding...)

– Information about the time spent on the current
question (time before first interaction, total time
with question...)

Both datasets do not contain exactly the same information.
ASSIST09 contains additional information in the form of
both interaction data, such as time-to-first action and to-
tal time on question, and contextual meta data, notably
relative to individual students’ background, such as the spe-
cific assignment set they are working on or the ID of their
class. Additionally, ASSISTChall is notable due to the pres-
ence of scaffolded questions. Scaffolding is an alternative
to hints in making it simpler for a student to answer a harder
question [21]. A scaffolded question is a question that can
be decomposed into simpler questions (the scaffolding ques-
tions). The data contains variables describing the scaffold-
ing status of an interaction: whether a question is the start
of a scaffolding and whether it is part of one.
For the purpose of our experiments, we consider scaffold-
ing to be a type of contextual data as an attribute of the
question being asked.

Due to the nature of the information contained in our snap-
shots, they contain both categorical and continuous vari-
ables:
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Figure 1: Simplified view of full model

Figure 2: Simplified view of meta-data only model

Categorical variables, in this case, represent information
that belongs to a finite number of defined categories, such
as the skill being evaluated, the ID of the problem set the
student is working through or the first action that they took
on the current question (whether he requested a hint or at-
tempted to answer it).
Continuous variables, on the other hand, represent infor-
mation that can be measured, such as how long it takes for
the user to first interact with the question after seeing it.
For this work, ordinal variables, such as how many hints
a student has received, are treated the same as continuous
variables.

3.2 Preprocessing
We apply four major preprocessing steps to the data. For
all of them except the removal of non-attempt snapshots, we
use the data preprocessing utilities in the fastai2 library [8].

3.2.1 Removal of information leaks
Both datasets contain some variables that are perfectly cor-
related with student correctness. These are values such as
the hint variable, which indicates that this interaction re-
sulted in the user requesting a hint instead of trying to an-
swer the question. The system will automatically label this
interaction as ”incorrect”, although no attempt was made.
As we do not want the model to learn incorrect information
from this data and reach an artificially high score, these in-
teractions are removed from the data.

Additionally, we also remove the variables that could lead
to our model learning about an individual’s student history.
This includes the user ID, the total count of attempts by
a user, the exact timestamp of interactions as well as ad-
ditional information contained in ASSISTChall, such as a
student’s career path, final test score or emotional state.

3.2.2 Standardisation of Continuous Data
All the continuous variables are normalised before being fed
to the model.

3.2.3 Handling Missing Continuous Value

In some cases, all continuous variables are not available in a
given snapshot. In order to account for this factor, we cre-
ate a categorical variable corresponding to each continuous
variable. This variable represents whether the information
is present in the current snapshot or not. This allows the
model to potentially capture the meaning of the absence of
a given observation in a snapshot.

3.2.4 Pre-encoding of Categorical Data
Prior to being passed as input to the model, all categorical
variables are ordinally encoded. This means that each pos-
sible value is replaced by an integer representing it. This
step is crucial in ensuring the model can learn a dense rep-
resentation of each possible value during training.

3.3 Model
Predicting the performance of a student based on a stu-
dent’s previous answers on questions meant to evaluate de-
fined skills has been widely explored in work on Knowledge
Tracing. Our aim is to build a model learning good rep-
resentations of data without individual students’ histories
to predict whether or not a student will answer a question
correctly.

Our model is a variant of the model presented in [6] with
several modifications. The overall architecture can be de-
scribed as follows.

3.3.1 Architecture
Structure
Embeddings: We create an embedding layer for each of
the categorical variables we are processing. This embedding
process uses a function ei, which maps each possible cate-
gorical input xi to a corresponding dense vector Xi:

ei : xi 7→ Xi (1)

This means that each of the categorical variables C will be
mapped to a vector space. Each embedding is learned during
the model training, and our aim is for the model to learn a
representation of the categorical variables describing a given
snapshot.
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This step is the key step of our network, as the embeddings
are trained alongside the full network during model train-
ing. With the task of predicting student correctness as its
final objective, the model will use these embeddings layer to
learn a representation for each of the variables it is given as
an input.
Finally, the embedded representation of all the categori-
cal variables are concatenated together into a single vector.
This vector is then passed to a single feedforward layer, as
defined below.

Bilinear Layer: The authors of [6] concatenated the nor-
malised continuous inputs with the previously generated con-
catenation of the categorical variables. This approach re-
sulted in unstable training and overfitting on ASSIST09.
To alleviate this and allow our model to better weigh both
types of features, we introduce a Bilinear layer.
The Bilinear layer takes two vectors as input, x and y, and
turns them into a single output vector by multiplicating
them with a learned weight w and adding a learned bias b.
The activation function and batch normalisation functions
are both applied to this and every subsequent layers:

BatchNorm(Mish(x ∗ w ∗ y + b)) (2)

FeedForward layers: The inputs are then passed through
a classical feedforward architecture made up of linear layers
which multiply the single input vector x by a learned weight
w and add a learned bias b:

BatchNorm(Mish(x ∗ w + b)) (3)

Output layer: Our output layer is a normal feedforward
layer with two output nodes, representing the prediction
made by the model (correct or incorrect).

For the experiments exploiting both interaction and meta-
data, we use the full version of our model as presented in Fig-
ure 1. When using only the meta-data, which is expressed
through categorical variables exclusively, we do not need the
weighing introduced by the Bilinear layer to allow the model
to converge. As a result, in this situation, we use a simplified
architecture presented in Figure 2.

Information
Activation: Our model uses the Mish activation function,
which has been shown to consistently outperform common
activation functions such as ReLU [14].
Batch Normalisation: It has previously been demonstrated
that batch normalisation helps in both stabilising and speed-
ing up the training of neural networks [9]. As such, we apply
batch normalisation to our continuous input and to the out-
put of every other layer.
Dropout: To prevent overfitting, which happens when the
model learns too much about the training data and fails
to generalise, dropout [24] is applied after every layer. We
applied a dropout value of 0.4 during our experiments.

4. EXPERIMENTAL SETTING
We separate our experimentation into two parts. Firstly, we
will use both of the data types we defined earlier, meta-
data and instance specific data. This experiment will
serve as a first indicator of our model’s ability to extract

information from the data and build efficient representation.
We will then perform feature importance analysis on the
models’ predictions to understand what variables have the
strongest impact on its predictions.

Following this, we will attempt to predict question-correctness
using exclusively meta-data. The aim of this experiment
is to highlight how much the model can learn while using
no information about the current assessment session or the
learner’s history. We will then study the model to under-
stand what representation of the data it has learned and
how it impacts its performance.

We evaluate our model by performing 5-fold cross-validation
and training the model for 100 epochs on each of the steps,
saving and reporting the result obtained for the best epoch.
For both datasets, we use the LAMB optimiser [29], which is
better suited to large-batches training than other optimisers.
In order to minimise training time, batch size is set to 24
000 and a maximum learning rate of 10−1 is used. In both
models, we set the hidden dimensions of all layers to 100.
These hyperparameters were obtained by a search using the
first fold of the cross-validation set.

Due to the imbalanced distribution of our data, we report
prediction results using the Area Under the receiver-operator
Curve (AUC) metric, widely used in the literature for sim-
ilar tasks [19, 3, 28].
For reference purposes, we have included results from the
two most widespread implementations of Knowledge Trac-
ing, BKT and DKT (here, DKT+ [28], a slight refinement of
standard DKT) as well as from the current state-of-the-art,
SAKT [16] in the comparison tables. For BKT, we use the
best results reported in the paper introducing DKT [19].
Although the original data used by DPE and KT models is
the same, we use different information found in the datasets.
KT models use individual students’ interaction histories in
order to predict performance and discard the rest of the
information. On the other hand, DPE focuses on the con-
textual data and explicitly avoids the use of any student
history data. As such, the scores are given in order to com-
pare their results when focusing exclusively on the task of
predicting question-correctness, but are not directly compa-
rable as KT models leverage this task as a way to model
student behaviour whereas our aim is to evaluate the im-
portance of other, individual-unrelated features.

4.1 Using Instance Specific and Meta-Data
We first attempt to build a performance predictor using the
two types of data we defined earlier, contextual meta-
data and instance specific data. This model is likely to
perform well, as it has access to a vast array of information
about the current question as well as instance information
such as the amount and type of help requested, the time
before an action is taken as well as the total time spent on
the current question.

4.2 Using Meta-Data
Our second experiment focuses on using exclusively the data
we defined earlier as meta-data. This means that we re-
move interaction data from the input data.
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Table 1: Results
All-data Meta-data

Model ASSIST2009 AUC ASSISTChall AUC ASSIST2009 AUC ASSISTChall AUC
DPE (Ours) 0.87 0.76 0.75 0.63

BKT (reference) 0.69 N/A 0.69 N/A
DKT+ (reference) 0.82 0.73 0.82 0.73
SAKT (reference) 0.84 0.73 0.84 0.73

Figure 3: SHAP Values for ASSIST09 (all data) Figure 4: SHAP Values for ASSISTChall (all data)

We do so in order to force the classifier to learn strong rep-
resentations of contextual meta-data about the student and
the question themselves. Reaching a good level of perfor-
mance using such limited data would suggest that these
representations could be exploited to discover new insights
about assessment and be combined with traditional knowl-
edge tracing techniques to develop better assignments.

4.3 Interpreting Results And Feature Impor-
tances

Following the evaluation of the classifiers, we will attempt
to extract information about the factors that strongly influ-
ence our model.
We will interpret the model’s predictions using Deep Shap-
ley Additive Explanations (DeepSHAP) [13]. By randomly
replacing the values of subsets of the input features by unin-
formative values, DeepSHAP measures the influence of each
input feature on different parts of a deep neural network and
produces SHAP values for each prediction examples. SHAP
values are an estimation of the importance of the feature in
the prediction of each label made by the model.
We run DeepSHAP on randomly selected representative ex-
amples from the validation set and report the mean SHAP
values of the features over all the examples, providing a visu-
alisation of the features used by the model in its prediction.
In all figures, class 0, the negative class, refers to a student
answering a question incorrectly while class 1 refers to them
having successfully answered the question. Although deep
learning models remain black boxes and such interpretation
techniques are vulnerable to adversarial examples, they pro-
vide a solid base towards making sense of model predictions.

5. RESULTS AND DISCUSSION
The results for this experiment are presented in Table 1, with
BKT, DKT+ and SAKT results also presented for reference
purposes.

When using all the available data, our approach performs ex-
tremely well in predicting question-correctness on ASSIST2009,
reaching an AUC of 0.87 on ASSIST2009 and 0.76 on AS-
SISTChall, slightly outperforming state-of-the-art KT ap-

proaches for this task.
Our approach also reaches relatively high AUCs scores of
0.75 and 0.63 on ASSIST09 and ASSISTChall, respectively,
when removing the instance-specific interaction data and
using meta-data exclusively. This suggests that the mod-
els, while not outperforming student history-based meth-
ods, are able to extract enough information from contextual
meta-data to reach a good level of performance, even out-
performing the reported BKT results for ASSIST2009.
In order to better understand what factors drive the models’
performance, we will compute the SHAP value correspond-
ing to an estimate of the importance of each feature.

The SHAP values for the models exploiting the full data are
presented in Figure 3 and 4. In ASSIST09, the temporal
features, detailing how long the student has been interact-
ing with the current question and how long until they first
interact with the question, are of high importance.
More notably, on both datasets, the features that appear to
be the most influential focus measuring the amount of help
a student has needed to answer the current question. Fea-
tures related to hints, such as the amount of hints requested
for the current question (hint count and hint total), have a
very strong influence on predictions. As hints are automat-
ically given in case of failure, the hint-related features also
capture information about the number of attempts made on
the current question during the current question.
In ASSISTChall,features related to scaffolding, another
form of assistance the student can receive, also have strong
influence on the prediction, further supporting the impor-
tance of assistment factors.
The figure also shows that the other variables which we de-
scribed as meta-data, such as the problem ID, do play a
role predicting question-correctness, with a stronger impact
on the likelihood of a question being answered incorrectly
than correctly. We explore the influence of these factors fur-
ther in Figure 5 and 6, showing SHAP values for the models
which only use contextual meta-data.

In the case of ASSISTment, we notice that problems with
the ability to end in auto-scaffolding are a strong predictor
on whether or not a student will correctly answer a question.
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Figure 5: SHAP values for ASSIST09 (meta-data) Figure 6: SHAP values for ASSISTChall (meta-data)

This is on par with our previous results, having shown the
importance of assistance in predicting correctness. A pos-
sible explanation to this high impact on prediction is that
questions with built-in scaffolding are likely to be of a higher
difficulty level, leading the instructor to include scaffolding
questions. Likewise, original, indicating a question isn’t part
of a scaffolding, has a moderately strong impact.
Besides scaffolding, both models rely on contextual informa-
tion about the questions, such as the ID of the problem set
or the ID of the problem itself. In ASSIST09, the additional
information about the students’ background, represented by
their class and teacher IDs, is shown to be important to the
predictive ability of the model.

The strong results achieved by these models, with very little
information about the user’s studies and history of previ-
ous answers, highlight the value of the representations the
model learned. Without relying on user-success history, this
contextual meta-data only model is able to reach a high
AUC score, even outperforming the classical BKT approach
on ASSIST09. This further reinforces the potential of inte-
grating novel techniques to leverage contextual information
when evaluating student mastery rather than relying solely
on students’ answers history.

6. CONCLUSION AND FUTURE WORK
In this paper, we introduced a novel deep learning model
able to efficiently learn deep representations of contextual
assessment information.
We showed that the proposed model reaches a very high level
of performance when using both meta and instance-specific
data on predicting whether a student will correctly answer
a question or not.
We further showed that we can reach a relatively high level
of performance on the same task while using exclusively con-
textual meta-data and very limited student-related informa-
tion.
Additionally, our analysis of the information learned by the
model shows that there is valuable insight to be extracted
from analysing its predictions.
This work highlights the potential of learning from contex-
tual data on top of user-history data and could be extended
in several ways.
Future work should focus on integrating such learned repre-
sentations within traditional knowledge tracing systems and
learning schedulers and comparing their predictions to those
of DPE. Contextual information is complementary to the in-
formation these systems exploit and could lead to improve-
ments in the learning process. We also intend to investigate
how the results we have obtained could be used to enrich

theory-grounded models such as DeepIRT [27].
Furthermore, such an approach opens the way to extending
current systems with additional external information, such
as information about a user’s interaction with course mate-
rials surrounding the knowledge evaluated.
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