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Domain regulation and mutational dysregulation of the 

histone demethylase KDM5C 

Fatima Seyma Ugur 

 

ABSTRACT 

The H3K4me3 chromatin modification, a hallmark of promoters of actively transcribed 

genes, is dynamically removed by the KDM5 family of histone demethylases. The KDM5 

demethylases have several accessory domains, two of which, ARID and PHD1, lie between the 

segments of the catalytic domain. KDM5C, which has a unique role in neural development, 

harbors a number of mutations adjacent to its accessory domains that cause X-linked 

intellectual disability (XLID). The roles of these accessory domains remain unknown, limiting an 

understanding of how XLID mutations affect KDM5C activity. Work in this thesis focuses on a 

mechanistic understanding of accessory domain functional roles within KDM5C and 

dysregulation by select XLID mutations. Through in vitro binding and kinetic studies using 

nucleosomes, we find that while the ARID domain is required for efficient nucleosome 

demethylation, the PHD1 domain alone has an inhibitory role in KDM5C catalysis. In addition, 

the unstructured linker region between the ARID and PHD1 domains is necessary for 

nucleosome binding. Our data suggests a model in which the PHD1 domain regulates DNA 

recognition by KDM5C based on available H3K4me3 substrate cues. Importantly, we find that 

XLID mutations adjacent to the ARID and PHD1 domains disrupt this regulation by enhancing 

DNA binding, resulting in the loss of specificity of substrate chromatin recognition and rendering 

demethylase activity sensitive to inhibition by linker DNA. Our findings suggest a unifying model 

by which XLID mutations could alter chromatin recognition and enable euchromatin-specific 

dysregulation of demethylation by KDM5C.  
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CHAPTER 1 

 

INTRODUCTION 

 

The eukaryotic genome is packaged in the cell nucleus as chromatin, the complex of 

DNA and histone proteins. The nucleosome is the fundamental unit of chromatin wherein 147 

bp of DNA is wrapped around an octamer of the histone proteins H2A, H2B, H3, and H4. The 

basic and unstructured histone tails protrude from the nucleosome core and are extensively 

post translationally modified1. These histone modifications are catalyzed, removed, and 

recognized by extensive chromatin modifying enzymes and binding proteins through diverse 

catalytic and reader domain families2. Regulation of chromatin binding proteins by various 

domains influences their chromatin recognition and enzymatic activities, often with involvement 

of multiple histone modifications and chromatin features3. This regulation enables the 

establishment and coordination of certain modifications together with a chromatin state at 

specific regions on the genome4,5. These modification distribution patterns often correlate with 

specific biological processes and outcomes, such as gene transcription and cellular identity1,4. 

The methylation of lysine 4 on histone H3 is a chromatin modification found on 

euchromatin, where H3K4 trimethylation (H3K4me3) is present at gene promoter regions 

associated with active transcription, and where H3K4 monomethylation (H3K4me1) is found at 

active enhancer regions5. While H3K4me1/2 is demethylated by the KDM1/LSD family, 

H3K4me1/2/3 is dynamically regulated by the KDM5/JARID1 subfamily of Jumonji histone 

demethylases6–11. This demethylase family harbors unique accessory domains in addition to its 

catalytic domain comprised of the JmjN and JmjC segments that form a composite active site 

for demethylation12,13. KDM5A (RBP2, JARID1A), KDM5B (PLU-1, JARID1B), KDM5C (SMCX, 

JARID1C), and KDM5D (SMCY, JARID1D) all contain an AT-rich interaction domain (ARID), 
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C5HC2 zinc finger domain (ZnF), and 2-3 plant homeodomains (PHD1-3) (Figure 1.1). Despite 

sharing similar domain architecture, these KDM5 demethylases have a variety of seemingly 

irredundant biological functions in cellular development and differentiation. 

 
 

 
 
Figure 1.1. The protein architecture of the human KDM5 demethylase family. 
The members of the KDM5 family of histone demethylases with indicated length and catalytic Jumonji (JmjN, JmjC), 
AT-rich interaction (ARID), plant homeodomain (PHD1-3), and zinc finger (Zf) domains. 
 
 

 

The insertion of the ARID and PHD1 domains between the JmjN and JmjC segments of 

the catalytic domain is unique to the KDM5 family, and ARID and PHD1 are required for 

demethylase activity in vivo8,14–17. ARID domains are DNA binding domains, and the ARID 

domains of KDM5A/B have been shown to bind to GC-rich DNA with differing sequence 

preferences17–19. PHD domains are H3K4 methylation reader domains with varying specificity 

towards unmethylated and methylated H3K4 states20–26. They typically recognize the N-terminal 

residues of the H3 tail with H3K4 methylation specificity established by residues found in the 

structurally conserved H3K4 binding pocket (Figure 1.2)2,26. PHD1 of KDM5A/B preferentially 

binds the unmethylated H3 tail, and this recognition of the demethylation product allosterically 

stimulates demethylase activity of KDM5A in vitro27–32. 
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Figure 1.2. H3 tail recognition by PHD domains with H3K4me specific binding pockets. 
Left: Structure of a representative PHD domain23 in complex with H3K4me3 peptide (orange) and zinc (dark gray). 
Right: Representative PHD H3K4 binding pockets for indicated ligands20,21,23. 
 

 

An understanding of ligand recognition by these domains and their roles in the context of 

the physiologically relevant substrate, the nucleosome, is very limited. While the regulatory 

functions of ligand recognition by the ARID and PHD1 accessory domains on chromatin is also 

not entirely clear, the shared protein domain architecture within the KDM5 family suggests that 

their functions may be conserved. The ARID and PHD1 domains have not been extensively 

studied in KDM5C, which possesses a unique function in neural development and has 

nonredundant demethylase activity6,33. 

 KDM5C is ubiquitously expressed but has highest expression levels in the brain34,35. This 

demethylase is important for neural development and dendrite morphogenesis, and KDM5C 

knockout mice have abnormal dendritic branching and display memory defects, impaired social 

behavior, and aggression6,33. KDM5C fine-tunes the expression of neurodevelopmental genes, 

as gene expression levels only change less than 2 fold upon knockout of KDM5C in mice33,36. 

KDM5C localizes to enhancers in addition to promoter regions and has been shown to also fine 

tune enhancer function by demethylating spurious H3K4me3 at enhancers during neuronal 

maturation33,36–38. In line with its neurodevelopmental function, several missense and nonsense 

PHD reader domains selectively 
recognize H3K4 methylation states 

Nature 2006, 442, 91. 
Nature 2007, 448, 718. 

Cell Rep. 2016, 17, 1158. 

H3K4 H3K4me1/2 H3K4me3
Aromatic 

cage
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mutations that cause X-linked intellectual disability (XLID) are found throughout KDM5C35,39–43 

(Figure 1.3). As KDM5C is located on the X-chromosome and the Y paralog KDM5D cannot 

compensate for its function, males with KDM5C XLID mutations are primarily affected with a 

range of mild to severe symptoms of limitations in cognition, memory, and adaptive 

behavior34,35,41,42,44. Some functionally characterized mutations have been shown to reduce 

demethylase activity despite not occurring in the catalytic domains, and a select few mutations 

have been found to not affect demethylase activity, disrupting nonenzymatic functions 

instead6,15,43,45,46. The consequences of these XLID mutations on KDM5C at its target regions 

within chromatin to affect gene expression during neural development is not fully understood. 

Interestingly, a number of XLID mutations are present throughout and in between the accessory 

domains of KDM5C, suggesting potential disruption of their regulatory functions. The impact of 

these mutations on demethylase regulation is hindered by the limited understanding of the 

accessory domain roles in KDM5C. 

 

 

 
 
 

Figure 1.3. X-linked intellectual disability mutations in KDM5C. 
Missense and nonsense (indicated in light gray) XLID mutations found in KDM5C. 
 
 

 

Here in this thesis, we sought to determine the functions of the ARID and PHD1 

accessory domains in KDM5C (Chapter 2) and evaluate whether these functions might be 

disrupted by XLID mutations (Chapter 3). We approached these questions by interrogating the 

recognition and demethylation of nucleosomes by KDM5C, as nucleosome substrates enable 

extended interactions by multiple domains of the demethylase. Our findings reveal that the 
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ARID and PHD1 domains, as well as the linker between them, regulate nucleosome 

demethylation and chromatin recognition by KDM5C. We find that DNA recognition by ARID 

contributes to nucleosome demethylation but not nucleosome binding, which is instead driven 

by the unstructured linker between ARID and PHD1. In contrast, we find that PHD1 inhibits 

demethylation. Furthermore, we find that XLID mutations near these regulatory domains alter 

the conformational state of KDM5C to disrupt interdomain interactions and enhance affinity 

towards nucleosomes, resulting in nonproductive chromatin recognition and inhibition of 

demethylation in the presence of linker DNA. Our findings define functional roles of the ARID 

and PHD1 domains in the regulation of KDM5C and provide rationale for disruption of this 

regulation by XLID mutations. We demonstrate a unique regulation of KDM5C activity that 

allows for plasticity of H3K4me3 demethylation which is hindered by mutations in X-linked 

intellectual disability. 
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CHAPTER 2 

 

Accessory domain regulation of chromatin  

sensing and demethylation by KDM5C 
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RESULTS 

 

ARID & PHD1 region contributes to productive nucleosome demethylation 

Previous work has demonstrated that KDM5C is capable of demethylating H3K4me3 

peptides and that the catalytic JmjN-JmjC domain and zinc finger domain are necessary for 

demethylase activity6,12,46. To evaluate the contributions of the ARID and PHD1 domains, we 

sought to interrogate the recognition and demethylation of nucleosomes, given the expected 

interactions of these domains with DNA and histone tails, respectively. We utilized an N-terminal 

fragment of KDM5C containing the residues 1 to 839 necessary to monitor demethylation in 

vitro (KDM5C1-839), as well as an analogous construct where the ARID and PHD1 region 

(residues 83 to 378) is replaced by a short linker (KDM5C1-839 ∆AP) (Figure 2.1A)12. We 

measured binding affinities of these constructs to both unmodified and substrate H3K4me3 core 

nucleosomes containing 147 bp DNA by electrophoretic mobility shift assay. KDM5C binds 

nucleosomes with weak affinity and with two-fold specificity towards substrate nucleosomes, 

with Kd
app of ~8 µM for the H3K4me3 nucleosome and ~15 µM for the unmodified nucleosome 

(Figure 2.1B). Surprisingly, the ARID and PHD1 domains have a modest contribution to 

nucleosome binding, as KDM5C1-839 ∆AP displays only a 2-2.5 fold reduction in nucleosome 

affinity and retains the two fold preference towards the substrate nucleosome (Figure 2.1B). 

Thus, nucleosome affinity appears to be largely driven by H3K4me3 recognition. The absence 

of a significant enhancement of nucleosome binding through an ARID and PHD1 domain 

mediated multivalent interaction suggests a more complex role of these domains rather than 

simply facilitating chromatin recruitment. 
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Figure 2.1. The ARID & PHD1 region of KDM5C contributes to efficient nucleosome demethylation and has a 
modest contribution to nucleosome binding. 
(A) Domain architecture of KDM5C and KDM5C constructs used in this study. (B) Unmodified and substrate 
nucleosome binding by KDM5C constructs with apparent dissociation constants (Kdapp) measured by EMSA (binding 
curves in Figure S2.1B). Due to unattainable saturation of binding, a lower limit for the dissociation constant is 
presented for the unmodified nucleosome. (C) Demethylation kinetics of the H3K4me3 substrate nucleosome by 
KDM5C constructs under single turnover conditions. Observed rates are fit to a cooperative kinetic model, with n 
denoting the Hill coefficient. Representative kinetic traces used to determine observed demethylation rates are in 
Figure S2.1C. All error bars represent SEM of at least two independent experiments (n!"!#$% 
 
 

 

We next interrogated the demethylase activity of KDM5C towards the H3K4me3 

substrate nucleosome in vitro by utilizing a TR-FRET based kinetic assay that detects formation 

of the H3K4me1/2 product nucleosome. In order to measure true catalytic rates (kmax), 

demethylation was performed under single turnover conditions with enzyme in excess47. We find 

that KDM5C1-839 demethylates the substrate nucleosome with an observed catalytic rate of 

~0.09 min-1 and KDM5C1-839 ∆AP with a 4-fold lower catalytic rate of ~0.02 min-1 (Figure 2.1C), 

indicating that the ARID and PHD1 region contributes to productive catalysis on the 
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nucleosome. The contribution of the ARID and PHD1 domain region towards efficient 

demethylation appears to be through interactions of these domains with the nucleosome, as the 

catalytic efficiency (kmax/Km
app) of KDM5C1-839 ∆AP relative to wild type is only 3-fold lower on the 

substrate H3K4me3 peptide, as opposed to the 9 fold reduction in catalytic efficiency on the 

substrate nucleosome (Figure S2.1A). As the ARID and PHD1 domains are poorly functionally 

characterized in KDM5C, we sought to next investigate the features of the nucleosome that they 

recognize. 

  

PHD1 domain inhibits KDM5C catalysis 

 The PHD1 domain of KDM5C has been previously shown to bind to H3K9me3 through 

peptide pull down6. To interrogate the histone binding and specificity of PHD1, we purified the 

PHD1 domain and quantified binding to histone peptides by nuclear magnetic resonance (NMR) 

spectroscopy and bio-layer interferometry. We observe near identical binding between the H3 

and H3K9me3 tail peptide, indicating no specific binding of PHD1 towards the H3K9me3 

modification (Figure S2.2A). Furthermore, we observe biphasic binding kinetics of PHD1 

binding the H3 tail peptide, indicative of a two-step binding mechanism (Figure S2.2B). Large 

chemical shift changes of a majority of assigned residues in PHD1 occur upon titration of the H3 

tail peptide in HSQC NMR spectra (Figure 2.2A, Figure S2.2C). The observed affinity of PHD1 

towards the H3 tail is surprisingly weak with a dissociation constant of 130 µM, about 100-fold 

weaker than the affinity of the homologous PHD1 of KDM5A towards the H3 tail (Figure 

2.2B)29,32. Despite this difference in affinity, PHD1 of KDM5C retains the same specificity 

towards the unmodified H3 tail over H3K4 methylated tail peptides as observed in the PHD1 

domains of KDM5A/B (Figure 2.2B). Interestingly, the induced changes in PHD1 upon H3 tail 

binding is linked to its methylation specificity, as chemical shifts in PHD1 decrease upon binding 

as the methylation state of H3K4 is increased (Figure 2.2B). This suggests a conformational 

coupling of the PHD1 domain with ligand recognition may be present. 
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Figure 2.2. The PHD1 domain of KDM5C preferentially binds the unmodified H3 tail and has an inhibitory role 
towards nucleosome demethylation. 
(A) 2D 1H-15N HSQC spectra of PHD1 titrated with increasing amounts of H3 (1-18) peptide with indicated molar 
ratios. Backbone assignments of residues in PHD1 are labeled. (B) 2D 1H-15N HSQC of I361 in PHD1 upon titration 
of H3K4me0/1/2/3 (1-18) peptides (left) with dissociation constants determined from the chemical shift change (Δδ) of 
I361 with standard error (right). Due to incomplete saturation of binding, a lower limit for the dissociation constant is 
presented for the H3K4me2/3 peptides. (C) Binding of the H3 (1-18) tail peptide by PHD1 and PHD1 D343A mutant 
measured by NMR titration HSQC experiments. The chemical shift change (Δδ) of I361 in PHD1 was fit to obtain 
dissociation constants with standard error. Due to incomplete saturation of binding by the D343A mutant, a lower limit 
for the dissociation constant is presented. (D) Demethylation kinetics of the H3K4me3 substrate nucleosome by wild 
type and PHD1 mutant KDM5C1-839 under single turnover conditions. Observed rates are fit to a cooperative kinetic 
model, with n denoting the Hill coefficient. Wild type kinetic curve replotted from Figure 2.1C for comparison. Error 
bars represent SEM of at least two independent experiments (n!"!#$% 
 
 

 

In order to investigate the function of PHD1 binding to the H3 tail in the context of the 

KDM5C enzyme, we sought to disrupt PHD1 binding through mutagenesis. One of the largest 

chemical shift perturbations that occurs in PHD1 upon H3 tail binding is at the D343 residue, a 

residue homologous to D312 in PHD1 of KDM5A where this residue is involved in H3R2 

recognition (Figure S2.2D)48. Similarly to PHD1 of KDM5A, we observe a dependence of 
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histone tail binding on recognition of the H3R2 residue by PHD1 of KDM5C (Figure S2.2E). 

Like the mutation of D312 in KDM5A, the D343A mutation decreases the affinity of KDM5C 

PHD1 to the H3 tail at least 10 fold (Figure 2.2C)29. When introduced into the KDM5C1-839 

enzyme, the D343A mutation does not affect the catalytic rate of H3K4me3 peptide 

demethylation (Figure S2.2F). Surprisingly, the D343A PHD1 mutant enzyme demethylates the 

H3K4me3 nucleosome more rapidly than wild type KDM5C1-839, with a ~4 fold increase of kmax 

(Figure 2.2D). No significant change in nucleosome binding due to the D343A mutation in 

KDM5C1-839 was observed (Figure S2.2G). This data supports an inhibitory role of the PHD1 

domain in nucleosome demethylation by KDM5C. This inhibitory role is in stark contrast to that 

observed for the PHD1 domain in KDM5A, where binding of the H3 tail to PHD1 is stimulatory 

towards in vitro demethylation, suggesting a unique regulation of KDM5C29. 

 

ARID domain contributes to nucleosome demethylation by KDM5C 

In contrast to the inhibition of KDM5C demethylation by the PHD1 domain alone, 

together the ARID and PHD1 domains provide catalytic enhancement on nucleosomes (Figure 

2.1C). We hypothesize that this effect may be due to the ability of the ARID domain to interact 

with DNA, similarly to the previously demonstrated DNA recognition by the ARID domains of 

KDM5A/B17–19. To test this hypothesis and to facilitate further DNA engagement, we interrogated 

binding of KDM5C1-839 towards nucleosomes containing 20 bp flanking DNA on both ends (187 

bp nucleosome). Strikingly, we observe at least a 3-fold gain in affinity towards the 187 bp 

nucleosome compared to the core 147 bp nucleosome (Figure 2.3A), demonstrating that 

KDM5C is capable of recognizing flanking DNA. KDM5C1-839 ∆AP has similar affinity towards 

both the flanking DNA-containing and core nucleosome (Figure 2.3B), indicating that the ARID 

and PHD1 region is responsible for the recognition of flanking DNA. 
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To test whether the recognition of flanking DNA is mediated by the ARID domain and to 

further analyze DNA recognition, we purified the KDM5C ARID domain and interrogated its 

ability to bind the flanking DNA present in the 187 bp nucleosome used in this study. We find 

that the ARID domain binds the 5’ flanking DNA fragment, with a dissociation constant of 10 µM 

(Figure S2.3A). Minimal binding was observed for the 3’ flanking DNA fragment (Figure 

S2.3A), suggesting that the ARID domain may possess sequence specificity in DNA binding. 

We utilized NMR spectroscopy to identify the residues of the ARID domain involved in DNA 

binding. Previously determined assignments for the ARID domain were reliably transferred to a 

majority of resonances observed in the 1H-15N HSQC of ARID, and modest chemical shift 

changes of select ARID residues were observed upon titration of the 5’ flanking DNA fragment 

(Figure S2.3B, Figure S2.3C)49. The perturbed residues localize to a surface on the structure of 

KDM5C ARID (Figure 2.3C), with the most notable chemical shift changes at the K101, V105, 

E106, R107, and N148 residues49. 

We interrogated the contributions of several identified residues, K101, R107, and N148, 

towards DNA binding through mutagenesis, where we tested binding to the 147 bp 601 core 

nucleosome positioning sequence (Figure 2.3D). We find the N148A mutation does not 

significantly affect DNA binding by ARID, while the K101A and R107A mutations reduce DNA 

binding by 4-5 fold (Figure 2.3D). A further 24-fold reduction in DNA binding was observed 

upon the K101A/R107A double mutation in ARID (Figure 2.3D), indicating that the K101 and 

R107 residues are significantly involved in DNA recognition. These residues parallel those 

identified in the ARID domains of KDM5A/B where the homologous residues, R112 of KDM5A 

and K119 & R125 of KDM5B, contribute to DNA binding, suggesting conservation of DNA 

binding residues in the KDM5 family17,19. 
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Figure 2.3. DNA recognition by the ARID domain is needed for nucleosome demethylation but not 
nucleosome binding by KDM5C. 
(A) Binding of KDM5C1-839 to unmodified nucleosomes with and without 20 bp flanking DNA. Representative gel shift 
of KDM5C binding to the 187 bp nucleosome (left). Nucleosome binding curves measured by EMSA fit to a 
cooperative binding model to determine apparent dissociation constants (Kdapp), with n denoting the Hill coefficient 
(right). Due to unattainable saturation of binding, a lower limit for the dissociation constant is presented for the 
unmodified core nucleosome. (B) Nucleosome binding curves of KDM5C1-839 ∆AP binding to unmodified 
nucleosomes with and without 20 bp flanking DNA. Due to unattainable saturation of binding, a lower limit for the 
dissociation constant is presented. (C) Chemical shift changes of ARID binding to 20 bp 5’ flanking DNA colored by 
the gradient and mapped to the KDM5C ARID structure (PDB: 2JRZ) of residues with backbone assignments in the 
1H-15N HSQC spectrum. Significantly perturbed residues are labeled. (D) DNA (147 bp 601 core nucleosome 
positioning sequence) binding by ARID and ARID mutants. Binding curves were measured by EMSA and fit to a 
cooperative binding model to determine apparent dissociation constants (Kdapp). (E) Nucleosome binding curves of 
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the ARID domain binding to unmodified nucleosomes with and without 20 bp flanking DNA. (F) Nucleosome binding 
curves of ARID mutant KDM5C1-839 K101A/R107A binding to unmodified nucleosomes with and without 20 bp 
flanking DNA. (G) Demethylation kinetics of the H3K4me3 core substrate nucleosome by wild type and ARID mutant 
KDM5C1-839 under single turnover conditions. Observed rates are fit to a cooperative kinetic model, with n denoting 
the Hill coefficient. Wild type kinetic curve replotted from Figure 2.1C for comparison. All error bars represent SEM of 
at least two independent experiments (n!"!#$% 
 
 

 

We next interrogated DNA binding by the ARID domain in the context of the 147 bp and 

187 bp nucleosome. We find the ARID domain does not display a strong binding preference for 

the flanking DNA-containing nucleosome and instead binds both nucleosomes with a similar 

weak affinity (Figure 2.3E). The observed nucleosome binding corresponds to a 3-4 fold 

reduction in affinity relative to the 147 bp non-nucleosomal DNA counterpart (Figure 2.3D, 

Figure 2.3E). 

We then investigated the function of ARID in the context of the KDM5C enzyme towards 

nucleosome binding and demethylation by introducing the K101A/R107A double mutation into 

KDM5C1-839. We find that ARID mutant KDM5C1-839 retains a similar binding affinity as wild type 

KDM5C1-839 towards both the flanking DNA-containing and core nucleosome (Figure 2.3F, 

Figure 2.3A). This indicates that the ARID domain does not contribute to nucleosome binding 

and to the recognition of flanking DNA by KDM5C, in contrast to our original hypothesis. 

However, ARID mutant KDM5C1-839 has a reduced ability to demethylate the H3K4me3 

nucleosome, with a 3-fold reduction in kmax relative to wild type KDM5C1-839 (Figure 2.3G). 

Reduced catalysis by the ARID mutant enzyme is only observed on the nucleosome, as the 

K101A/R107A double mutation does not reduce the catalytic rate of H3K4me3 peptide 

demethylation (Figure S2.3D). The similarity of catalytic rates of nucleosome demethylation 

between ARID mutant KDM5C1-839 and KDM5C1-839 ∆AP (0.029 min-1 and 0.022 min-1, 

respectively) implicates the ARID-DNA interaction as the significant contributor in the ARID and 

PHD1 region towards catalysis rather than nucleosome recognition (Figure 2.3G, Figure 2.1C). 
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PHD1 regulates recognition of flanking DNA on the nucleosome by KDM5C 

Unlike wild type (Figure 2.3A) and ARID mutant KDM5C (Figure 2.3F), KDM5C1-839 

∆AP has reduced nucleosome binding and a loss in the ability to discriminate between the 147 

bp and 187 bp nucleosome (Figure 2.3B). This indicates that the ARID domain is not the 

contributing element of the ARID and PHD1 domain region that is responsible for the 

recognition of flanking DNA. Thus, we rationalized that the linker region between ARID and 

PHD1 might contribute to this recognition. The ARID-PHD1 linker region of KDM5C is the 

longest among KDM5 family members and contains many basic residues (Figure S2.4). This 

linker region also has low conservation in the KDM5 family and is predicted to be disordered in 

KDM5C (Figure S2.4, Figure S2.5A). We generated a construct where the linker region 

(residues 176 to 317) is replaced by a short (GGS)5 linker sequence (KDM5C1-839 ∆linker) 

(Figure 2.4A). KDM5C1-839 ∆linker possesses similar catalytic efficiencies as wild type KDM5C1-

839 on both the H3K4me3 nucleosome and H3K4me3 substrate peptide (Figure S2.5B, Figure 

S2.5C), indicating that the enzyme without the ARID-PHD1 linker is functionally active. We then 

assessed binding of KDM5C1-839 ∆linker to the 147 bp and 187 bp nucleosome and surprisingly 

did not detect any nucleosome binding (Figure 2.4A). Deletion of the linker region also 

diminishes DNA binding by KDM5C1-839 to 147 bp non-nucleosomal DNA (Figure S2.5D). Thus, 

the ARID-PHD1 linker may drive nucleosome binding through DNA binding and appears to be 

the functional region that can affect flanking DNA recognition by KDM5C. These results indicate 

that, unlike the ARID domain, the ARID-PHD1 linker contributes to nucleosome binding but not 

demethylation. 
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Figure 2.4. KDM5C recognizes flanking DNA in the absence of H3K4me3 due to regulation by PHD1. 
(A) Binding of KDM5C1-839 ∆linker to unmodified nucleosomes with and without 20 bp flanking DNA. Nucleosome 
binding curves were measured by EMSA. (B) Nucleosome binding by KDM5C1-839 with apparent dissociation 
constants (Kdapp) measured by EMSA and fit to a cooperative binding model (substrate nucleosome binding curves in 
Figure S2.5E). Select dissociation constants replotted from Figure 2.1B and Figure 2.3A for comparison. (C) 
Nucleosome binding by PHD1 mutant KDM5C1-839 D343A with apparent dissociation constants (Kdapp) measured by 
EMSA (binding curves in Figure S2.5F). (D) Model for KDM5C inhibition, where PHD1 prevents flanking DNA 
recognition in the presence of H3K4me3, and its relief by the PHD1 mutation that disrupts the inhibition. All error bars 
represent SEM of at least two independent experiments (n!"!#$% 
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We next interrogated recognition of flanking DNA on the nucleosome in the presence of 

the H3K4me3 substrate, as recognition of both could facilitate recruitment of KDM5C to its 

target sites in euchromatin33. Intriguingly, KDM5C1-839 has similar binding affinity for both the 

core and flanking DNA-containing H3K4me3 nucleosome, with Kd
app of ~8 µM, indicating no 

engagement of flanking DNA in the presence of the H3K4me3 substrate (Figure 2.4B). This 

contrasts with unmodified nucleosome binding, where KDM5C has a clear preference for 

nucleosomes with flanking DNA (Figure 2.4B). 

Since KDM5C recognizes flanking DNA only in the context of the unmodified 

nucleosome, we considered the possibility that the ability to engage flanking DNA is coupled to 

binding of the H3 tail product to the PHD1 domain. To test this model, we interrogated the effect 

of the PHD1 D343A mutation, which abrogates H3 binding, on the recognition of flanking DNA 

by KDM5C. We find that PHD1 mutant KDM5C1-839 D343A still retains the 3-fold affinity gain 

towards the unmodified 187 bp nucleosome (Kd
app = 3.6 µM) compared to the unmodified core 

nucleosome (Kd
app = 9.2 µM) (Figure 2.4C). In addition, PHD1 mutant KDM5C displays a ~2 

fold affinity gain towards the 187 bp H3K4me3 nucleosome (Kd
app = 5.3 µM), relative to the 

H3K4me3 core nucleosome (Kd
app = 9.3 µM) (Figure 2.4C). Although modest, this improved 

binding demonstrates that, unlike wild type KDM5C, PHD1 mutant KDM5C can recognize 

flanking DNA in the presence of the H3K4me3 substrate. These findings suggest that flanking 

DNA recognition, likely mediated by the ARID-PHD1 linker region, is regulated by the PHD1 

domain. 

The observation that PHD1 mutant KDM5C can constantly recognize flanking DNA lead 

us to hypothesize that, beyond disruption of H3 tail binding, the D343A mutation may also 

disrupt intramolecular interactions within the demethylase which restrict the ability of the ARID-

PHD1 linker and ARID to interact with DNA (Figure 2.4D). This PHD1-imposed inhibition model 

is consistent with the strong catalytic enhancement observed with the PHD1 mutant 
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demethylase under single turnover conditions (Figure 2.2D), as the ARID-DNA interaction 

beneficial for catalysis could be enhanced due to enabled DNA interactions upon the PHD1 

mutation. This model implies that the PHD1 binding surface is involved in intramolecular 

interactions beyond the recognition of the H3 tail. Through further PHD1 binding experiments 

interrogating ligand recognition, the PHD1 domain displays an indifference for a free N-terminus 

on its H3 tail ligand (Figure S2.6A). In addition, PHD1 binds other basic histone tails with 

reduced affinity (Figure S2.6B). Nonetheless, an arginine residue (H3R2) is needed for H3 tail 

binding by PHD1 (Figure S2.2E), and the D343A PHD1 mutation is in the predicted H3R2 

binding pocket of PHD1. Our investigations into ligand recognition by PHD1 indicate that it is 

permissive for the recognition of an internal arginine residue within KDM5C. 
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DISCUSSION 

 

Different reader and regulatory domains within chromatin binding proteins and modifying 

enzymes influence their activity and substrate specificity by recognizing distinct chromatin states 

through distinguishing histone modifications, features on the nucleosome, and surrounding 

DNA. Emerging structural studies of chromatin modifying enzymes in complex with 

nucleosomes have highlighted these multivalent interactions, with increasing observations of 

interactions with DNA contributing to nucleosome engagement by histone modifying enzymes50–

62. Despite the unique insertion of the ARID and PHD1 reader domains in the composite 

catalytic domain, the function of accessory domains within the KDM5 demethylase family has 

not been explored on nucleosomes. Here, we describe a hierarchy of regulation by these 

domains by investigating nucleosome recognition and demethylation in KDM5C, a unique 

member of the KDM5 family involved in regulation of neuronal gene transcription. We find that 

there are opposing roles of the ARID and PHD1 domains, with DNA recognition by ARID 

providing a beneficial interaction for nucleosome demethylation and regulation by PHD1 

inhibiting nucleosome recognition and demethylation. We further demonstrate that DNA 

recognition is regulated by the PHD1 domain, allowing for sensing and specificity towards the 

H3K4me3 substrate. Our findings accentuate diverse regulatory mechanisms by accessory 

elements within KDM5C to control chromatin recognition and to modulate H3K4me3 

demethylation. 

Our findings of KDM5C nucleosome recognition and demethylation can be best 

explained by a regulatory model where PHD1 controls DNA recognition (Figure 2.5). Before 

catalysis, the H3K4me3 substrate is recognized and DNA binding is attenuated due to the 

restriction of the ARID-PHD1 linker by PHD1 (state I). Basal demethylation is achieved through 

transient interactions of ARID with nucleosomal DNA during catalysis (state II). Release of the 
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PHD1-imposed constraint on the ARID-PHD1 linker and ARID domain enables its improved 

interaction with DNA, leading to faster catalysis (state III). In our experiments, the D343A PHD1 

mutation was revealed to be a mechanistic probe to release the PHD1-imposed restriction on 

DNA binding. In the context of chromatin, this release of inhibition could be achieved through 

binding of the H3 tail to PHD1, allowing for the regulation of demethylation by the surrounding 

chromatin environment. Formation of the demethylated H3 product, and its binding to PHD1, 

further reinforces an interaction of KDM5C with chromatin by enabling linker DNA recognition, 

most likely through the ARID-PHD1 linker region (state IV). 

 

 

 
 

Figure 2.5. Model of KDM5C regulation by the ARID-linker-PHD1 region. 
KDM5C recognizes H3K4me3 and binds to substrate nucleosomes through the catalytic domain (pre-catalytic and 
inhibited ground state I). DNA binding in the presence of H3K4me3 is attenuated due to restriction of the ARID-PHD1 
linker by PHD1. During demethylation, ARID makes transient interactions with nucleosomal DNA to orient the 
catalytic domain towards the H3K4me3 tail for efficient demethylation (catalytically active state II). H3 tail binding to 
PHD1 releases the PHD1 interaction constraining the ARID-PHD1 linker and ARID domain, enabling ARID 
interactions with DNA to further enhance demethylation (catalytically active state III). After demethylation, binding of 
the product H3 tail to PHD1 enables linker DNA binding by the ARID-PHD1 linker region (post-catalytic and product 
bound state IV). 
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been observed in the unrelated H3K4me1/2 histone demethylases LSD1/KDM1A and 

LSD2/KDM1B58,63. This lower activity could reflect possible nonproductive binding modes of 

KDM5C on the nucleosome or, more likely, intrinsic inaccessibility of the H3K4me3 substrate tail 

on the nucleosome due to histone tail-DNA interactions64–66. Furthermore, the presence of 

substrate inhibition under multiple turnover conditions of excess substrate peptide (>50 µM) 

indicate that less productive states of KDM5C that are catalytically rate-limiting can form, and 

this appears to be driven by the ARID and PHD1 region (Figure S2.1A). Intriguingly, we 

observe cooperativity (Hill coefficients > 1) in nucleosome binding and demethylation (Figure 

2.1C, Figure S2.1B). In addition, cooperativity occurs in peptide demethylation by wild type 

KDM5C1-839 but not by KDM5C1-839 ∆AP or KDM5C1-839 ∆linker under single turnover conditions 

(Figure S2.1A, Figure S2.5C), suggesting that cooperativity might arise both from a multimeric 

state of KDM5C through its ARID-PHD1 linker region and from the nucleosome containing two 

H3 tails where binding and demethylation on one tail is promotive of the other tail. 

Our finding of the beneficial role of the ARID domain towards KDM5C catalysis on 

nucleosomes can be rationalized by favorable transient interactions of the ARID domain with 

nucleosomal DNA to better orient the catalytic domains for demethylation and could make the 

substrate H3K4me3 more accessible through disrupting histone tail-DNA interactions64–67. This 

is supported by the previous observation that the ARID domain of KDM5C is required for its 

demethylase activity in vivo but not for its chromatin association15. This role of the ARID domain 

in productive nucleosome demethylation may be conserved within the KDM5 family, as the 

ARID domain is also required for in vivo demethylation by KDM5A/B and the Drosophila KDM5 

homolog Lid8,14,16,17. However, the sequence specificities of DNA binding by ARID domains in 

the KDM5 family might differ, as the ARID domains of KDM5A/B bind GC-rich DNA with 

different sequence preferences and we observe that ARID of KDM5C might possess some 

sequence specificity (Figure S2.3A) which requires further characterization17–19. Regardless of 
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DNA sequence preference, the ARID domain may be required for nucleosome demethylation in 

order to displace the H3K4me3 tail from interacting with DNA, making it accessible for 

engagement by the catalytic domain. This histone tail displacement function has been proposed 

for DNA binding reader domain modules and for the LSD1/CoREST complex, where the SANT2 

domain interacts with nucleosomal DNA to displace the H3 tail for engagement by the LSD1 

active site58,67–69. 

In contrast to the beneficial role of the ARID domain, we observe an unexpected 

inhibitory role of PHD1 towards KDM5C demethylation on nucleosomes. This finding suggests 

differential regulation by PHD1 in the KDM5 family, as PHD1 binding has a stimulatory role 

towards in vitro demethylation in KDM5A/B and PHD1 is required for demethylase activity in 

vivo for KDM5B and Lid8,14,29,30,32. Our data suggests this inhibitory role is mediated by the ability 

of PHD1 to restrict the ARID-PHD1 linker and ARID domain from engaging DNA on the 

nucleosome (Figure 2.5). Alternatively, we also consider the possibility that the PHD1 domain 

could act directly on the catalytic domains to impair productive substrate nucleosome 

engagement. With weak affinity, indifference for a free N-terminus, non-specific histone tail 

binding, and a likely binding-induced conformational change, ligand recognition by PHD1 in 

KDM5C is strikingly different from that observed for the PHD1 domains in KDM5A and KDM5B. 

While further work is needed to identify how PHD1 inhibits DNA binding, we hypothesize that 

this could be achieved through an interaction between PHD1 and an arginine residue within the 

unstructured ARID-PHD1 linker region. This unique ARID-PHD1 linker (Figure S2.4) may 

contribute to distinct regulation by PHD1 in KDM5C. Although we are unable to directly test the 

effect of H3 tail binding to PHD1 on DNA recognition due to the low affinity regime, we 

hypothesize that the resulting binding releases inhibition, allowing for regulation of KDM5C 

activity by different chromatin environments. As a consequence, H3 tail binding by PHD1 might 
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be stimulatory towards demethylation, as observed upon PHD1 binding in KDM5A/B, through a 

mechanistically distinct relief of negative regulation in KDM5C. 

Unlike the ARID domain, whose DNA recognition is needed for nucleosome 

demethylation but not nucleosome binding, the ARID-PHD1 linker region drives nucleosome 

binding but does not appear to contribute to demethylation by KDM5C. Our data suggests 

nucleosome binding by the ARID-PHD1 linker is facilitated through DNA binding, where further 

investigation is needed to understand the basis and specificity of DNA recognition. Perplexingly, 

we observe diminished nucleosome binding upon deletion of the ARID-PHD1 linker as opposed 

to a 2-fold decrease in nucleosome binding upon deletion of the entire ARID and PHD1 region 

(Figure 2.4A, Figure 2.1B). Although the molecular basis for these effects requires further 

studies, this observed discrepancy could result from the ARID and PHD1 domains affecting 

nucleosome binding by the catalytic and zinc finger domains of KDM5C. While it remains 

unknown whether the linker region between ARID and PHD1 in other KDM5 members has a 

similar function or whether it is specific to KDM5C due to its different ARID-PHD1 linker, our 

findings add to the reports of intrinsically disordered regions as functional elements within 

chromatin binding proteins70–73. 

Unexpectedly, KDM5C recognizes flanking DNA around the nucleosome in the presence 

of the unmodified H3 tail but not in the presence of the H3K4me3 substrate. While the function 

of this linker DNA recognition is unclear, it may serve to retain KDM5C at its target promoter and 

enhancer sites within open chromatin after demethylation. It may also enable processive 

demethylation of adjacent nucleosomes in euchromatin by KDM5C. Interestingly, the 

recognition of linker DNA has been observed in the mechanistically unrelated H3K4me1/2 

histone demethylase LSD1/KDM1A, where demethylase activity is in contrast stimulated by 

linker DNA50,74. The H3K36me1/2 demethylase KDM2A is also capable of recognizing linker 

DNA, where it is specifically recruited to unmethylated CpG islands at gene promoters through 
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its ZF-CxxC domain75,76. These findings suggest that recognition of the chromatin state with 

accessible linker DNA may be utilized by histone modifying enzymes that function on 

euchromatin. While the sequence specificity of linker DNA recognition requires further 

investigation, it is evident that the sensing of the H3K4me3 substrate tail by KDM5C is preferred 

over recognition of linker DNA, a feature accessible in open chromatin. This observed hierarchy, 

coupled with KDM5C’s overall weak affinity towards nucleosomes and dampened demethylase 

activity due to regulation by PHD1, suggests tunable demethylation by KDM5C. Thus, this multi-

domain regulation might serve to establish H3K4me3 surveillance through KDM5C-catalyzed 

demethylation, which is well suited for the physiological role of this enzyme in fine tuning gene 

expression through H3K4me3 demethylation at enhancers and promoters of genes, as well as 

its role in genome surveillance by preventing activation of non-neuronal genes in adult 

neurons33,36. 
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Figure S2.1. Substrate demethylation and nucleosome binding by KDM5C constructs. 
(A) H3K4me3 substrate peptide demethylation by KDM5C constructs. Left: Demethylation kinetics of the H3K4me3 
(1-21) substrate peptide by KDM5C constructs under single turnover conditions measured by a TR-FRET based 
kinetic assay. Observed rates are fit to a cooperative kinetic model, with n denoting the Hill coefficient. 
Representative kinetic traces used to determine observed demethylation rates are in Figure S2.1D. Right: 
Demethylation kinetics of the H3K4me3 (1-21) substrate peptide by KDM5C constructs under multiple turnover 
conditions measured by a formaldehyde release based kinetic assay. Deletion of the ARID and PHD1 region results 
in higher demethylase activity on the substrate peptide under multiple turnover conditions due to loss of substrate 
inhibition caused by this region. (B) Unmodified and substrate core nucleosome binding by KDM5C1-839 and KDM5C1-

839 ∆AP. Nucleosome binding curves were measured by EMSA and fit to a cooperative binding model to determine 
apparent dissociation constants (Kdapp), with n denoting the Hill coefficient (top). Representative gel shifts of KDM5C 
binding to nucleosomes (bottom). Due to unattainable saturation of binding, a lower limit for the dissociation constant 
is presented for the unmodified nucleosome. (C) Representative demethylation kinetic traces of substrate 
nucleosome demethylation by KDM5C constructs (left: KDM5C1-839, right: KDM5C1-839 ∆AP) under single turnover 
conditions using TR-FRET based kinetic assay detecting formation of the H3K4me1/2 product nucleosome over time. 
Observed rates (kobs) are obtained by fitting kinetic traces to an exponential function. (D) Representative 
demethylation kinetic traces of substrate peptide demethylation by KDM5C constructs (left: KDM5C1-839, right: 
KDM5C1-839 ∆AP) under single turnover conditions using TR-FRET based kinetic assay detecting loss of the 
H3K4me3 substrate peptide over time. Observed rates (kobs) are obtained by fitting kinetic traces to an exponential 
function. All error bars represent SEM of at least two independent experiments (n!"!#$% 
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Figure 2. supplemental
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Figure S2.2. H3 ligand recognition by PHD1 and substrate demethylation and binding by PHD1 mutant 
KDM5C. 
(A) Binding kinetic trace of immobilized Avitag-PHD1 binding to H3 (1-18) and H3K9me3 (1-18) tail peptides 
measured by bio-layer interferometry (BLI). Observed rates (kobs) of association and dissociation are obtained by 
fitting kinetic traces to a two phase exponential function. (B) Binding kinetic trace of immobilized Avitag-PHD1 binding 
to H3K4me0/1/2/3 (1-18) tail peptides measured by bio-layer interferometry (BLI). Biphasic kinetic binding by PHD1 is 
modulated by the H3K4me state. (C) Chemical shift change of PHD1 residues upon binding of the H3 (1-18) tail 
peptide at 1:5 molar ratio (PHD:peptide) measured by NMR (top). The chemical shift change of G364 (* denoted by 
asterisk) could not be determined due to broadened chemical shift when bound. Dashed lines indicate 25th, 50th, and 
75th percentile rankings, and residues are colored by a gradient from unperturbed (yellow) to significantly perturbed 
(maroon). Chemical shift perturbations colored by the gradient mapped to homologous residues in KDM5D PHD1 
structure (PDB: 2E6R) (bottom). Significantly perturbed residues are labeled. (D) Binding kinetic trace of immobilized 
Avitag-PHD1 binding to H3 (1-18) and H3 mutant (1-18) tail peptides (H3R2A and H3K4A) measured by bio-layer 
interferometry (BLI). Recognition of the H3 tail by PHD1 depends on the R2 residue but not K4 residue in H3. (E) 
Sequence alignment of PHD1 domains in KDM5A-D. The H3R2 recognizing residues D312 and D315 of KDM5A are 
indicated in red, and the PHD1 mutation D343A from this study is denoted above KDM5C. Zinc coordinating residues 
are highlighted in gray. (F) H3K4me3 substrate peptide demethylation by PHD1 mutant KDM5C1-839 relative to wild 
type. Left: Demethylation kinetics of the H3K4me3 (1-21) substrate peptide under single turnover conditions 
measured by a TR-FRET based kinetic assay. Observed rates are fit to a cooperative kinetic model, with n denoting 
the Hill coefficient. Unlike on the substrate nucleosome, the D343A PHD1 mutation does not increase catalytic rate 
on the substrate peptide but does increase overall catalytic efficiency. Right: Demethylation kinetics of the H3K4me3 
(1-21) substrate peptide under multiple turnover conditions measured by a formaldehyde release based kinetic assay. 
The D343A PHD1 mutation does not affect catalysis on the substrate peptide under these conditions, nor does it 
significantly affect substrate inhibition. (G) Unmodified and substrate core nucleosome binding by PHD1 mutant 
KDM5C1-839 relative to wild type. Nucleosome binding curves were measured by EMSA and fit to a cooperative 
binding model to determine apparent dissociation constants (Kdapp), with n denoting the Hill coefficient. Due to 
unattainable saturation of binding, a lower limit for the dissociation constant is presented for wild type KDM5C binding 
the unmodified nucleosome. All error bars represent SEM of at least two independent experiments (n!"!#$%  
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Figure S2.3. DNA recognition by ARID and substrate demethylation by ARID mutant KDM5C. 
(A) 20 bp linker DNA fragment binding by the ARID domain. Fragments contain 5’ and 3’ flanking DNA sequences 
used in the 187 bp nucleosome. Binding curves were measured by EMSA and fit to a binding model to determine 
apparent dissociation constants (Kdapp) (left). Representative gel shifts of ARID binding to 20 bp flanking linker DNA 
fragments (right). (B) 2D 1H-15N HSQC spectra of ARID titrated with increasing amounts of the 5’ linker DNA 20 bp 
fragment with indicated molar ratios. Assignments of most perturbed residues in ARID are labeled. (C) Chemical shift 
change of ARID residue backbone assignments upon binding of the 5’ linker DNA 20 bp fragment at 1:1 molar ratio 
measured by NMR. ARID backbone assignments could not be reliably transferred to a subset of residues and thus 
chemical shifts could not be determined (indicated by no values). Dashed lines indicate 25th, 50th, and 75th 
percentile rankings, and residues are colored by a gradient from unperturbed (light blue) to significantly perturbed 
(navy). (D) Demethylation kinetics of the H3K4me3 (1-21) substrate peptide by wild type and ARID mutant KDM5C1-

839 under single turnover conditions. Observed rates are fit to a cooperative kinetic model, with n denoting the Hill 
coefficient. Unlike on the substrate nucleosome, the K101A/R107A ARID double mutation does not decrease catalytic 
rate on the substrate peptide but does increase overall catalytic efficiency. All error bars represent SEM of at least 
two independent experiments (n!"!#$% 
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Figure S2.4. KDM5 family sequence alignment. 
Sequence alignment of human KDM5A-D with annotated domains. KDM5C has a different and extended linker region 
between ARID and PHD1 (boxed in red).  
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Figure S2.5. Characterization of ARID-PHD1 linker region contribution to substrate demethylation and linker 
DNA recognition by KDM5C constructs. 
(A) IUPred profile77 of predicted disorder in KDM5C (top) and annotated domain architecture of KDM5C (bottom). The 
linker between ARID and PHD1 is predicted to be disordered. (B) Demethylation kinetics of the H3K4me3 substrate 
nucleosome by wild type and KDM5C1-839 ∆linker under single turnover conditions. Observed rates are fit to a 
cooperative kinetic model, with n denoting the Hill coefficient. Deletion of the ARID-PHD1 linker does not significantly 
affect the catalytic efficiency of substrate nucleosome demethylation. (C) Demethylation kinetics of the H3K4me3 (1-
21) substrate peptide by wild type and KDM5C1-839 ∆linker under single turnover conditions. Observed rates are fit to 
a cooperative kinetic model, with n denoting the Hill coefficient. Similarly to nucleosomes, deletion of the ARID-PHD1 
linker does not significantly affect the catalytic efficiency of substrate peptide demethylation. (D) DNA (147 bp 601 
core nucleosome positioning sequence) binding by KDM5C constructs. Binding curves were measured by EMSA and 
fit to a cooperative binding model to determine apparent dissociation constants (Kdapp). Deletion of the ARID-PHD1 
linker diminishes DNA binding by KDM5C. (E) Nucleosome binding curves of KDM5C1-839 binding to substrate 
nucleosomes with and without 20 bp flanking DNA. Nucleosome binding curves were measured by EMSA and fit to a 
cooperative binding model to determine apparent dissociation constants (Kdapp), with n denoting the Hill coefficient. 
(F) Binding curves of PHD1 mutant KDM5C1-839 binding to unmodified and substrate nucleosomes with and without 
20 bp flanking DNA. All error bars represent SEM of at least two independent experiments (n!"!#$% 
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Figure S2.6. Features of ligand recognition and histone tail binding by PHD1. 
(A) Binding kinetic trace of immobilized Avitag-PHD1 binding to H3 (1-18), N-terminally acetylated H3 (1-18), and H3 
(5-18) tail peptides measured by bio-layer interferometry (BLI). Observed rates (kobs) of association and dissociation 
are obtained by fitting kinetic traces to a two phase exponential function. Recognition of the H3 tail by PHD1 does not 
strongly depend on the H3 N-terminus but does depend on the first 4 residues of H3 (ARTK). (B) Top: 2D 1H-15N 
HSQC spectra of PHD1 bound to histone tail peptides with 1:5 molar ratio. Backbone assignments of perturbed 
residues in PHD1 are labeled. Bottom: Binding of histone tail peptides by PHD1 measured by NMR titration HSQC 
experiments. The chemical shift change (Δδ) of D347 in PHD1 was fit to obtain dissociation constants with standard 
error. Due to incomplete saturation of binding, a lower limit for dissociation constants is presented. Peptide 
sequences are H2A (1-20): SGRGKQGGKARAKAKTRSSR, H2B(11-30): KKGSKKAVTKAQKKDGKKRK, and H4 (1-
20): SGRGKGGKGLGKGGAKRHRK. PHD1 binds other histone tail peptides with a subset of H3 tail binding residues 
and with at least 3 to 6 fold lower affinity than H3 tail binding. 
 

  



 35 

 

 

 

 

 

 

 

CHAPTER 3 

 

Dysregulation of KDM5C by  

X-linked intellectual disability mutations 

 

  



 36 

RESULTS 

 

X-linked intellectual disability mutations enhance nucleosome recognition by KDM5C 

 Our proposed KDM5C regulatory model (Figure 2.5) provides a mechanistic framework 

for querying the effects of mutations in KDM5C that cause XLID (Figure 3.1A). Specifically, we 

sought to investigate the D87G and A388P mutations found at the beginning of ARID and 

immediately downstream of PHD1, respectively. The D87G mutation, associated with mild 

intellectual disability, has no effect on global H3K4me3 levels in vivo46. The A388P mutation, 

associated with moderate intellectual disability, also has no effect on global H3K4me3 levels in 

vivo but also reduces demethylase activity in vitro6,78. We initially interrogated nucleosome 

binding by KDM5C1-839 D87G and A388P. Strikingly, relative to wild type KDM5C1-839, we 

observe 4-9 fold enhanced binding of the XLID mutants to the unmodified core nucleosome 

(Figure 3.1B), suggesting that these mutations enable enhanced nucleosome engagement. The 

ARID and PHD1 region is required for this enhanced nucleosome binding, as there is no gain in 

nucleosome affinity due to the A388P mutation when the ARID and PHD1 region is removed 

(Figure S3.1A). Importantly, the gain in nucleosome affinity of the XLID mutants relative to wild 

type is more prominent on the unmodified core nucleosome than the substrate H3K4me3 core 

nucleosome, resulting in loss of binding specificity towards H3K4me3 by KDM5C due to the 

D87G and A388P mutations (Figure 3.1C). 
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Figure 3.1. X-linked intellectual disability mutations enhance nucleosome binding by KDM5C. 
(A) XLID mutations found in KDM5C (top) and the XLID mutations investigated in this study (bottom). (B) Unmodified 
core nucleosome binding by KDM5C1-839 wild type (WT), D87G, and A388P. Nucleosome binding was measured by 
EMSA and curves fit to a cooperative binding model to determine apparent dissociation constants (Kdapp), with n 
denoting the Hill coefficient. Wild type binding curve replotted from Figure 2.3A for comparison. Due to unattainable 
saturation of binding, a lower limit for the dissociation constant is presented for WT KDM5C binding the unmodified 
nucleosome. (C) Apparent dissociation constants (Kdapp) of binding by KDM5C1-839 WT, D87G, and A388P to 
unmodified and substrate core nucleosomes and resulting H3K4me3 fold binding specificity. Select dissociation 
constants are from Figure 2.1B and Figure 3.1B for comparison. (D) Binding curves of KDM5C1-839 WT, D87G, and 
A388P binding to the unmodified 187 bp nucleosome with 20 bp flanking DNA. Wild type binding curve replotted from 
Figure 2.3A for comparison. (E) Binding of KDM5C1-839 WT, D87G, and A388P to substrate nucleosomes with and 
without 20 bp flanking DNA with apparent dissociation constants (Kdapp) measured by EMSA (binding curves in 
Figure S3.1C). Select dissociation constants are replotted from Figure 2.4B and Figure 3.1C for comparison. All error 
bars represent SEM of at least two independent experiments (n!"!#$% 
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As the XLID mutations cause an overall affinity gain towards both unmodified and 

substrate nucleosomes, we reasoned that the recognition of the shared common epitope of 

DNA, rather than the H3 tail, is altered in the mutants. Indeed, relative to wild type KDM5C1-839, 

we observe a similar 4-5 fold gain in affinity by the XLID mutants towards the 187 bp unmodified 

nucleosome with flanking DNA, with both D87G and A388P mutants converging to a high 

nucleosome affinity of Kd
app ~1 µM (Figure 3.1D). As flanking DNA recognition by KDM5C 

appears to be regulated by PHD1, we further interrogated recognition of the 187 bp substrate 

nucleosome by the D87G and A388P mutants. Both KDM5C1-839 D87G and A388P are capable 

of recognizing flanking DNA in the presence of H3K4me3, with a ~2 fold gain in affinity towards 

the 187 bp H3K4me3 nucleosome over the H3K4me3 core nucleosome (Figure 3.1E). These 

findings suggest that, similarly to the D343A PHD1 mutation (Figure 2.4C), the XLID mutations 

may disrupt the PHD1-mediated inhibition of DNA recognition by KDM5C. Our findings are 

consistent with the model that these XLID mutations are altering the ARID and PHD1 region to 

relieve the inhibition of DNA binding, enabling unregulated binding on the nucleosome. 

 

X-linked intellectual disability mutations render KDM5C demethylation nonproductive in 

the presence of flanking DNA 

We next measured the demethylase activity of KDM5C1-839 D87G and A388P towards 

the H3K4me3 core nucleosome substrate. Despite these XLID mutants sharing similar 

enhanced nucleosome binding, their effects on nucleosome demethylation differ. The A388P 

mutation impairs KDM5C catalysis (kmax) by ~7 fold, while the D87G mutation increases catalytic 

efficiency (kmax/Km
app) ~3 fold through an enhanced Km

app, indicating both nonproductive and 

productive KDM5C states caused by these mutations (Figure 3.2A). The reduced demethylase 

activity caused by the A388P mutation is consistent with previous findings of reduced in vitro 

demethylation, with the 7-fold reduction on nucleosomes exceeding the previously reported 2-

fold reduction on substrate peptide6. The reduced demethylase activity due to the A388P 
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mutation might be caused by impairment of the composite catalytic domain, as we observe 

reduced demethylase activity in A388P mutant KDM5C1-839 ∆AP (Figure S3.1B). In contrast, the 

D87G mutation does not appear to affect the catalytic domain, and instead the improved 

catalytic efficiency reflects the enhancement in nucleosome binding. 

 

 
 

 
 
Figure 3.2. X-linked intellectual disability mutations reduce demethylase activity in the presence of flanking 
DNA. 
(A) Demethylation kinetics of the core substrate nucleosome by KDM5C1-839 wild type (WT), D87G, and A388P under 
single turnover conditions. Observed rates are fit to a cooperative kinetic model, with n denoting the Hill coefficient. 
Wild type kinetic curve replotted from Figure 2.1C for comparison. (B) Demethylation kinetics of the 187 bp substrate 
nucleosome by KDM5C1-839 WT, D87G, and A388P under single turnover conditions. All error bars represent SEM of 
at least two independent experiments (n!"!#$% 
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of flanking DNA to the substrate nucleosome results in strong inhibition of catalysis by KDM5C1-

839 A388P, with a 6-fold reduction in kmax relative to the core substrate nucleosome (Figure 

3.2B). Addition of flanking DNA also reduces catalysis by KDM5C1-839 D87G, although to a 

lesser degree of ~2-fold (Figure 3.2B). Despite maximal catalysis (kmax) by KDM5C1-839 D87G 

being lower than wild type in the presence of flanking DNA, the D87G mutant is still ~2 fold 

more efficient (kmax/Km
app) due to its enhanced nucleosome binding. Regardless, enhanced and 

unregulated linker DNA recognition caused by the XLID mutations results in a reduction in the 

catalytic rate of H3K4me3 nucleosome demethylation when flanking DNA is present. 

 

A388P XLID mutation alters the state of the linker C-terminal to PHD1 

 The proximity of the A388P XLID mutation to PHD1 instigates whether PHD1 and its 

binding is affected by this mutation. The A388P mutation has been reported to reduce PHD1 

binding to the H3K9me3 peptide by 2-fold through peptide pull down6. To examine the effect of 

the A388P mutation on PHD1, we utilized NMR spectroscopy using an extended construct of 

the PHD1 domain (PHD1ext) to include residues surrounding A388 in the linker region between 

the PHD1 and JmjC domain. In titration experiments with the H3 tail peptide, the A388P 

mutation does not significantly affect the affinity of PHD1ext towards the H3 tail (Figure 3.3A). In 

addition, the A388P mutation alters the 1H-15N HSQC chemical shifts corresponding to residues 

in the linker region C-terminal to PHD1, but does not significantly affect chemical shifts assigned 

to residues found within PHD1 (Figure 3.3B). These results suggest that the A388P mutation 

does not impair PHD1 nor its ligand binding, but rather alters the state of the linker between the 

PHD1 and JmjC domains. 
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Figure 3.3. The A388P XLID mutation does not reduce H3 tail binding by PHD1 but alters the state of the 
linker region C-terminal to PHD1. 
(A) Binding of the H3 (1-18) tail peptide by PHD1ext and PHD1ext A388P mutant measured by NMR titration HSQC 
experiments. The chemical shift change (Δδ) of I361 in PHD1 was fit to obtain dissociation constants with standard 
error. (B) 2D 1H-15N HSQC spectra of PHD1, PHD1ext, and PHD1ext A388P mutant of random coil region containing 
chemical shifts of residues in the linker extension C-terminal to PHD1. 
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DISCUSSION 

  

 The mechanisms underlying disruption by the numerous XLID mutations found in 

KDM5C have remained elusive. Our findings, in addition to previous findings, suggest multiple 

mechanisms of disruption beyond only reducing demethylase activity6,15,43,45,46. We previously 

described our KDM5C regulatory model, where DNA recognition is inhibited by the PHD1 

domain such that the ARID-PHD1 linker and ARID domain are restricted in the absence of 

PHD1’s H3 tail ligand. These regulatory interdomain interactions appear to be disrupted by the 

D87G and A388P XLID mutations adjacent to the ARID and PHD1 domains, resulting in 

enhanced nucleosome binding and loss of H3K4me3 specificity. As enhanced DNA recognition 

by XLID mutants is nonproductive with reduced demethylase activity in the presence of linker 

DNA, our findings suggest dysregulation of KDM5C demethylation at euchromatic loci, where 

this enzyme predominantly functions 33,36. 

Our findings strongly support that the regulation of DNA recognition by KDM5C is 

disrupted by the D87G and A388P XLID mutations adjacent to the ARID and PHD1 domains, 

such that nucleosomal and linker DNA is constantly recognized. It is consistent with the model 

that these distinct XLID mutations are altering the conformational state of the ARID and PHD1 

region, such that the inhibition on the DNA binding ARID domain and ARID-PHD1 linker is 

relieved through disrupted intramolecular interactions (Figure 3.4). The location of these 

mutations lend support to our model, where alterations in distal linker regions affect global 

conformations of functional elements within KDM5C such that ligand recognition is retained but 

the conformational coupling is broken. While it appears enigmatic what the effect of the D87G 

mutation is on intramolecular interactions or on the linking of the ARID domain, our findings 

suggest that the A388P mutation alters the PHD1-JmjC linker region to both disrupt the catalytic 

domain and promote relief of the PHD1-mediated inhibition of the ARID domain and ARID-
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PHD1 linker. Beyond disruption of histone demethylase activity, our findings suggest an 

additional mechanism of dysregulation of KDM5C in XLID, that of enhanced nonproductive 

chromatin engagement and differential dysregulation of demethylation at different loci 

depending on the accessibility of linker DNA (Figure 3.4). 

 

 
 

 
 
Figure 3.4. Model of H3K4me3 surveillance by KDM5C and dysregulation by XLID mutations on chromatin. 
Proposed function of H3K4me3 sensing and surveillance by KDM5C on its target chromatin regions at gene 
promoters and enhancers (top). Proposed altered conformational state of the ARID and PHD1 region in KDM5C due 
to XLID mutations in this region disrupting hypothesized intramolecular interactions, and predicted consequences on 
chromatin recognition and demethylation at KDM5C target sites (bottom). 
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regions affected by XLID mutations in human KDM5C79. Furthermore, we find that the 

demethylase activity of KDM5C D87G varies relative to wild type depending on the presence of 

linker DNA, which might account for the unaffected global H3K4me3 levels previously observed 

with this D87G mutation46. 

Interestingly, a gain of gene repressive function has been observed for the Y751C XLID 

mutation, where higher protein levels and lower H3K4me3 levels are found at the promoter of a 

down regulated gene unique to the Y751C mutant80. This further insinuates locus specific 

consequences and possible enhanced chromatin binding, despite the reported lower in vitro 

peptide demethylation and unaffected global H3K4me3 levels by this mutant6,80. Enhanced 

chromatin association has been recently reported as a mechanism of cancer mutations found in 

the acyl histone-binding YEATS reader domain of ENL, conferring a gain of function in 

recruitment towards active transcription81. Moreover, KDM5C occupies CpG island-containing 

promoters, and altered genomic DNA methylation patterns, with hypomethylated regions, have 

been reported due to KDM5C XLID mutations33,82–84. It is tempting to speculate whether linker 

DNA recognition by KDM5C may directly protect DNA from methylation and if enhanced and 

unregulated linker DNA recognition by XLID mutants could cause further reinforcement to give 

rise to hypomethylation. 

Our findings suggest that the chromatin environment, in particular the presence of 

accessible linker DNA, could govern altered demethylation and nonproductive chromatin 

recognition by KDM5C in XLID. Euchromatin-specific dysregulation of KDM5C demethylation 

might account for the hard-to-reconcile discrepancies between reported in vitro demethylase 

activities of KDM5C XLID mutants and their effect on global H3K4me3 levels. While additional 

XLID mutations elsewhere in KDM5C remain to be fully investigated, it is possible that these 

dispersed mutations share a common mechanism of disrupted conformational coupling between 

domains that regulate the sensing of chromatin and demethylation by KDM5C.  
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SUPPLEMENTAL FIGURES 
 

 
Figure S3.1. Effect of A388P mutation on the catalytic domains and nucleosome binding by XLID mutants. 
(A) Unmodified core nucleosome binding by KDM5C1-839 ∆AP wild type and A388P. Nucleosome binding curves were 
measured by EMSA and fit to a cooperative binding model to determine apparent dissociation constants (Kdapp), with 
n denoting the Hill coefficient. The A388P mutation does not enhance nucleosome binding in the absence of the 
ARID and PHD1 region, indicating this region in KDM5C is altered by the A388P mutation to enable enhanced 
binding. (B) Demethylation kinetics of the H3K4me3 (1-21) substrate peptide by KDM5C1-839 ∆AP wild type and 
A388P under multiple turnover conditions measured by a formaldehyde release based kinetic assay. The A388P 
mutation reduces demethylase activity of the catalytic domain alone, indicating distal structural disruption of the 
catalytic domain by this mutation. (C) Binding curves of KDM5C1-839 D87G and A388P binding to substrate 
nucleosomes with and without 20 bp flanking DNA. All error bars represent SEM of at least two independent 
experiments (n!≥!2).  
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CHAPTER 4 

 

Additional biochemical studies of KDM5C 
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Crosslinking studies of KDM5C and nucleosome bound KDM5C 

The cooperativity that we observe in KDM5C nucleosome binding and demethylation 

(Chapter 2), in addition to substrate peptide demethylation, under single turnover conditions with 

excess enzyme suggests KDM5C might form a multimeric species. To investigate this, we used 

glutaraldehyde cross-linking to analyze states of KDM5C1-839 and their molecular weights. Upon 

cross-linking of KDM5C1-839 alone at micromolar concentrations, protein bands corresponding to 

the monomeric species and a higher molecular weight species are present (Figure 4.1A). This 

higher molecular weight band might correspond to a cross-linked trimer of KDM5C1-839, in line 

with the observed Hill coefficients up to 2.8 (Figure S2.1, Figure 2.3). We then cross-linked 

KDM5C1-839 to the 187 bp unmodified nucleosome, to which it has relatively the highest affinity 

and binds cooperatively (Figure 2.3A). As a large proportion of the nucleosome bound KDM5C 

complex did not fully form under the concentration conditions used (Figure 4.1B), protein bands 

corresponding to the cross-linked complex and their corresponding molecular weights were not 

observed (Figure 4.1A). However, the higher molecular weight band of cross-linked KDM5C1-839 

still forms in the presence of the nucleosome (Figure 4.1A). In addition, there are multiple 

species of the KDM5C-nucleosome complex present upon cross-linking (Figure 4.1B), 

suggesting that various binding stoichiometries of the nucleosome to KDM5C might be present 

in nucleosome binding. The multimeric species of KDM5C and the state of KDM5C when bound 

to nucleosomes requires further quantitative investigation. 
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Figure 4.1. Glutaraldehyde cross-linking of KDM5C and nucleosome bound KDM5C. 
(A) SDS-PAGE gels of uncross-linked and cross-linked KDM5C1-839 (left) and KDM5C1-839 when bound to the 187 bp 
unmodified nucleosome (right). KDM5C1-839 was cross-linked at 7 µM alone using glutaraldehyde and KDM5C1-839 at 
10 µM with the 187 bp unmodified nucleosome at 3 µM. (B) Native PAGE gel of glutaraldehyde cross-linked KDM5C1-

839 (5 µM) to the 187 bp unmodified nucleosome (11 µM). 
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Ligand recognition by PHD1 

 During initial investigations of the PHD1 domain of KDM5C to identify its ligands, we first 

tested binding to all histone tails found on the nucleosome through bio-layer interferometry 

(BLI), using peptides spanning 20 residues of each accessible histone tail. PHD1 surprisingly 

binds several histone tail peptides, in addition to the expected binding to the H3 tail (Figure 

4.2A). These histone tail fragments bound by PHD1 were further investigated by NMR 

spectroscopy, where PHD1 binds non-H3 histone tail peptides with 3-6 fold reduced affinity and 

with fewer PHD1 residues relative to H3 tail binding (Figure S2.6B). This indicates that PHD1 is 

capable of less specific binding towards basic peptide ligands. However, the recognition of the 

H3 tail by PHD1 is specific, with recognition preferring the first 10 residues (Figure 4.2A) and 

dependent on the first 4 residues (Figure S2.6A). Despite these findings indicating that the first 

few H3 residues are recognized by PHD1, typical of most PHD domains, PHD1 prefers to bind 

longer peptide fragments of the H3 tail and shows little binding to the first 10 residues alone 

(Figure 4.2B). This might indicate that PHD1 has a secondary recognition site for other regions 

of the H3 tail beyond the immediate N-terminus. By NMR spectroscopy, PHD1 binding of the H3 

(1-10) peptide is about 4-5 fold lower in affinity when compared to H3 (1-18) peptide binding and 

involves the same set of residues involved in binding the longer H3 (1-18) peptide (Figure 

2.2A), obscuring the identification of residues involved in a secondary recognition site. 
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Figure 4.2. Binding kinetics of PHD1 domain and histone tail peptides. 
(A) Binding kinetic traces of immobilized Avitag-PHD1 binding to H3, H4, H2A, and H2B histone tail peptides 
measured by bio-layer interferometry (top). Structure of the nucleosome with labeled histone tails (PDB:1KX5) 
(bottom). (B) Binding kinetic trace of immobilized Avitag-PHD1 binding to H3 tail peptides of varying length measured 
by bio-layer interferometry. Observed rates (kobs) of association and dissociation are obtained by fitting kinetic traces 
to a two phase exponential function. 
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The biphasic binding kinetics observed in the binding of PHD1 to its ligands (Figure 

S2.2, Figure 4.2) is indicative of a two-step binding mechanism such as conformational 

selection or induced fit by the ligand. Several residues in PHD1 (D334, D337, L339, and H350) 

have broadened chemical shifts in the apo HSQC spectrum of PHD1 (Figure 2.2A, Figure 4.3). 

This may suggest that these PHD1 residues are dynamic and thus display exchange during the 

NMR timescale. Intriguingly, these residues localize near the predicted H3K4 binding pocket, 

and some are found within the PHD1 core, including the H350 residue which is a structurally 

conserved residue involved in zinc coordination by PHD domains (Figure 4.3). As the chemical 

shifts of these residues appear upon complete binding to the H3 tail, they may be stabilized in a 

certain conformation in the PHD1 bound state, which could either be selected for or induced by 

the H3 tail ligand. Dynamics within PHD1 could account for the low affinity of KDM5C PHD1 

towards the H3 tail, which is at least 100-fold lower than the affinity of the homologous KDM5A 

PHD1, perhaps due to a higher entropic cost of ligand binding. 

 

 
 

Figure 4.3. Dynamic residues in PHD1 with broadened chemical shifts in the apo PHD1 HSQC spectrum. 
KDM5C PHD1 residues (labeled, colored in cyan) with broadened chemical shifts in apo 2D 1H-15N HSQC spectra 
mapped to homologous residues in the structure of KDM5D PHD1 (PDB: 2E6R). 
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One of the largest chemical shift changes that occurs upon binding of the H3 tail to 

PHD1 is of E323 (Figure S2.2C). This residue and its position N-terminal to PHD1 is 

homologous to acidic residues that form interactions with H3K4 by PHD domains with 

preference for the unmodified H3 tail85. As E323 is predicted to contribute to the H3K4 binding 

pocket, we performed a closer analysis of chemical shift changes in PHD1 upon binding to H3 

tail peptides with different H3K4 methylation states. Almost all chemical changes that occur 

upon H3 binding in PHD1 are reduced and diminished upon binding of methylated H3K4 tail 

peptides (Figure 4.4A). These reductions in perturbations are particularly prominent at certain 

residues and regions within PHD1 (Figure 4.4B) and localize to a face of PHD1 (Figure 4.4C). 

Binding to the H3K4me1 tail peptide primarily reduces the overall chemical shift change at 

E323, D337, and L339, suggesting these residues might be involved in unmodified H3K4 

recognition and thus more drastically affected by the addition of monomethylation at H3K4 

(Figure 4.4C). PHD1 binding to the H3K4me2 and K4me3 tail peptides results in a more global 

reduction in overall chemical shift changes, but more significant reductions are present at E323, 

C342, D343, G344, and D347 (Figure 4.4B). As these residues are further away from the 

predicted H3K4 binding pocket and more localized around the H3R2 pocket (Figure 4.4C), 

these H3K4me2/3-specific differences most likely reflect reduced engagement of the N-terminal 

residues of H3 due to the presence of bulkier K4me2/3. It may also reflect an inability of the 

H3K4me2/3 tail peptides to induce an overall conformational change in PHD1 due to a lack in 

engagement of the H3K4 binding pocket. Interestingly to note, the methylated H3K4 tail 

peptides are largely unable to affect the chemical shifts of the dynamic residues found near the 

H3K4 binding pocket, whose bound chemical shifts are only present and induced upon 

unmodified H3 tail binding (Figure 4.5). This may reflect a conformational coupling mechanism 

to discriminate against H3K4 methylation, as well as less specific basic ligands, by PHD1 for 

propagation of H3 tail binding to the rest of KDM5C, perhaps through the N-terminal linker with 

E323 engagement.  
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Figure 4.4. Chemical shift changes of PHD1 binding to H3K4me0/1/2/3 tail peptides and perturbation 
differences due to H3K4 methylation states. 
(A) Chemical shift changes of PHD1 residues upon binding of H3K4me0/1/2/3 (1-18) tail peptides at 1:5 molar ratio 
(PHD:peptide) measured by HSQC NMR. The chemical shift changes of G344 and G364 (* denoted by asterisk) 
could not be determined due to broadened chemical shift when bound. (B) Difference in chemical shift changes of 
PHD1 residues upon binding to H3K4me1/2/3 (1-18) tail peptides relative to PHD1 binding to H3K4 (1-18) peptide at 
1:5 molar ratio. (C) Largest differences in PHD1 residues’ chemical shift changes upon binding to H3K4me1 and 
H3K4me2/3 tail peptides relative to binding the H3 tail peptide. Residues with K4me1 specific changes (dark blue) 
and K4me2/3 specific changes (teal) are colored and mapped to homologous residues in the KDM5D PHD1 structure 
(PDB: 2E6R). 
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Figure 4.5. HSQC spectra of PHD1 binding to H3K4me0/1/2/3 tail peptides. 
(A) 2D 1H-15N HSQC spectra of PHD1 titrated with increasing amounts of H3 (1-18) peptide with indicated molar 
ratios. Backbone assignments of residues in PHD1 are labeled. (B) 2D 1H-15N HSQC spectra of PHD1 titrated with 
the H3K4me1 (1-18) peptide with indicated molar ratios. Perturbed residues in PHD1 upon binding are labeled. (C) 
2D 1H-15N HSQC spectra of PHD1 titrated with the H3K4me2 (1-18) peptide with indicated molar ratios. Perturbed 
residues in PHD1 upon binding are labeled. (D) 2D 1H-15N HSQC spectra of PHD1 titrated with the H3K4me3 (1-18) 
peptide with indicated molar ratios. Perturbed residues in PHD1 upon binding are labeled. 
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Substrate preferences of KDM5C 

 H3K4me3 substrate peptide demethylation by KDM5C1-839 exhibits substrate inhibition 

under multiple turnover conditions (Figure S2.1A), which is abolished by the deletion of the 

ARID and PHD1 domain region and only minimally reduced by the D343A PHD1 mutation 

(Figure S2.2F). This might indicate that a secondary H3K4me3 tail recognition site exists within 

the ARID and PHD1 region that contributes to a less productive state of KDM5C that is 

catalytically rate-limiting but not inactive. To probe if there are determining factors of the 

substrate peptide that causes substrate inhibition, we tested the demethylation of H3K4me3 

substrate peptides of varying lengths by KDM5C1-839 under multiple turnover conditions. The 

kinetics parameters of H3K4me3 demethylation are largely unaffected by substrate peptide 

length, with only a 2-3 fold reduction in the Km upon shortening of the substrate peptide from 21 

down to 10 residues of H3 (Figure 4.6). However, substrate inhibition is not present in the 

demethylation of the shorter H3K4me3 (1-10) peptide (Figure 4.6). This indicates that the 

catalytic domain does not strongly depend on the recognition of residues beyond the N-terminal 

H3K4me3, but that the secondary recognition site that causes substrate inhibition does depend 

on the recognition of H3 residues 11-17. 

Perhaps this secondary recognition site is within PHD1 as PHD1 prefers to bind longer 

H3 tail peptides beyond the first 10 H3 residues (Figure 4.2B). The D343A PHD1 mutant 

KDM5C still displays substrate inhibition (Figure S2.2F), however, the D343 residue is only 

expected to be involved in H3R2 recognition and the D343A mutation may not affect the 

secondary H3 tail recognition site of PHD1. The D343A mutant PHD1 still retains chemical shift 

changes of several PHD1 residues upon H3 tail binding and has a similar binding affinity as 

PHD1 has towards the H3K4me3 tail peptide (Figure 2.2). This suggests that the D343A mutant 

may retain a low affinity recognition of H3 residues beyond the N-terminus and H3K4. A deeper 

investigation and mutational analysis of H3 recognition by PHD1 is needed to understand its 
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secondary H3 recognition site and to determine if it is responsible for substrate inhibition in 

KDM5C. Alternatively, non-specific binding of the H3K4me3 substrate tail by the ARID-PHD1 

linker region, which also contains acidic residues, may contribute to the basis of substrate 

inhibition. 

KDM5C1-839 catalysis is about 8-fold lower under multiple turnover conditions than 

maximal catalysis achieved under single turnover conditions (Figure S2.1A). Modulation of the 

intrinsic activity of KDM5C due to relative concentrations of the H3K4me3 substrate might be 

physiologically relevant and contribute to differential KDM5C activities at various genomic loci 

depending on local concentrations of both KDM5C and H3K4me3 on chromatin. 

 

 

 
 
Figure 4.6. H3K4me3 substrate peptide demethylation by KDM5C. 
Demethylation kinetics of different lengths of the H3K4me3 substrate peptide by KDM5C1-839 under multiple turnover 
conditions measured by a formaldehyde release based kinetic assay. Observed initial rates are fit to a tight-binding 
kinetic model to determine Michaelis-Menten kinetic parameters.  
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CHAPTER 5 

 

MATERIALS AND METHODS 

 

Generation of KDM5C constructs 

Human KDM5C gene was obtained from Harvard PlasmID (HsCD00337804) and Q175 was 

inserted to obtain the canonical isoform (NP_004178.2). KDM5C residues 1 to 839 were cloned 

into a pET28b His-Smt3 vector to produce 6xHis-SUMO-KDM5C and was mutated by site-

directed mutagenesis for point mutants. The KDM5C1-839 ∆AP construct was cloned by replacing 

residues 83-378 with a 4xGly linker. The KDM5C1-839 ∆linker construct was cloned by replacing 

residues 176-317 with a (GGS)5 linker. 

 

Purification of KDM5C constructs 

Recombinant His-tagged SUMO-KDM5C constructs were expressed in BL21(DE3) E. coli in LB 

media containing 50 µM ZnCl2 and 100 µM FeCl3 through induction at OD600 ~0.6 using 100 µM 

IPTG followed by expression at 18 ºC overnight. Collected cells were resuspended in 50 mM 

HEPES pH 8, 500 mM KCl, 1 mM BME, 5 mM imidazole, and 1 mM PMSF, supplemented with 

EDTA-free Pierce protease inhibitor tablets (Thermo Fisher Scientific) and benzonase, and 

lysed by microfluidizer. Lysate was clarified with ultracentrifugation and the recovered 

supernatant was then purified by TALON metal affinity resin (total contact time under 2 hrs) at 4 

ºC. The His-SUMO tag was then cleaved by SenP1 during overnight dialysis at 4 ºC in 50 mM 

HEPES pH 7.5, 150 mM KCl, and 5 mM BME. KDM5C constructs were then purified by anion 

exchange (MonoQ, GE Healthcare) and subsequent size exclusion (Superdex 200, GE 

Healthcare) chromatography in 50 mM HEPES pH 7.5 and 150 mM KCl. Fractions were 

concentrated and aliquots snap frozen in liquid nitrogen for storage at -80 ºC. 
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Nucleosomes and DNA 

Recombinant human 5’ biotinylated unmodified 147 bp mononucleosomes (16-0006), 

unmodified 187 bp mononucleosomes (16-2104), 5’ biotinylated H3K4me3 147 bp 

mononucleosomes (16-0316), and 5’ biotinylated H3K4me3 187 bp mononucleosomes (16-

2316) were purchased from Epicypher, Inc., in addition to biotinylated 147 bp 601 sequence 

DNA (18-005). 187 bp nucleosomes contain the 20 bp sequences 5’ 

GGACCCTATACGCGGCCGCC and GCCGGTCGCGAACAGCGACC 3’ flanking the core 601 

positioning sequence. 20 bp flanking DNA duplex fragments were synthesized by Integrated 

DNA Technologies, Inc. For use in binding and kinetic assays, stock nucleosomes were buffer 

exchanged into corresponding assay buffer using a Zeba micro spin desalting column (Thermo 

Scientific). 

 

Nucleosome and DNA binding assays 

Nucleosome and DNA binding was assessed by EMSA. 100 nM nucleosomes (0.5 pmol) and 

various concentrations of KDM5C were incubated in binding buffer (50 mM HEPES pH 7.5, 50 

mM KCl, 1mM BME, 0.01% Tween-20, 0.01% BSA, 5% sucrose) for 1 hr on ice prior to analysis 

by native 7.5% PAGE. For DNA binding, 100 nM 147 bp 601 sequence DNA or 500 nM 20 bp 

linker DNA fragments were incubated with various concentrations of ARID. Samples were 

separated using pre-run gels by electrophoresis in 1xTris-Glycine buffer at 100V for 2 hrs at 4 

ºC, stained using SYBR Gold for DNA visualization, and imaged using the ChemiDoc imaging 

system (Bio-Rad Laboratories). Bands were quantified using Bio-Rad Image Lab software to 

determine the fraction of unbound nucleosome to calculate apparent dissociation constants by 

fitting to the cooperative binding equation Y=(X^n)/(Kd^n + X^n), where X is the concentration of 

KDM5C, n is the Hill coefficient, and Kd is the concentration of KDM5C at which nucleosomes 

are half bound. 
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Single turnover nucleosome demethylation kinetics 

The demethylation of biotinylated H3K4me3 nucleosome was monitored under single turnover 

conditions (>10 fold excess of KDM5C over substrate) through the detection of H3K4me1/2 

product nucleosome formation over time by TR-FRET of an anti-H3K4me1/2 donor with an anti-

biotin acceptor reagent. Various concentrations of KDM5C were reacted with 25 nM 5’ 

biotinylated H3K4me3 nucleosome in 50 mM HEPES pH 7.5, 50 mM KCl, 0.01% Tween-20, 

0.01% BSA, 50 µM alpha-ketoglutarate, 50 µM ammonium iron(II) sulfate, and 500 µM ascorbic 

acid at room temperature. 5 µL time points were taken and quenched with 1.33 mM EDTA then 

brought to 20 µL final volume for detection using 1 nM LANCE Ultra Europium anti-H3K4me1/2 

antibody (TRF0402, PerkinElmer) and 50 nM LANCE Ultra Ulight-Streptavidin (TRF0102, 

PerkinElmer) in 0.5X LANCE detection buffer. Detection reagents were incubated with reaction 

time points for 2 hours at room temperature in 384 well white microplates (PerkinElmer 

OptiPlate-384) then TR-FRET emission at 665 nm and 615 nm by 320 nm excitation with 50 µs 

delay and 100 µs integration time was measured using a Molecular Devices SpectraMax M5e 

plate reader. TR-FRET was calculated as the 665/615 nm emission ratio and kinetic curves 

were fit to a  single exponential function to determine kobs of demethylation. kobs parameters 

were then plotted as a function of KDM5C concentration and fit to the sigmoidal kinetic equation 

Y=kmax*X^n/(Khalf^n + X^n) using GraphPad Prism to determine kmax and Km
app parameters of 

demethylation. 

 

Purification of PHD1 for NMR 

PHD1 (KDM5C residues 318-378) and PHD1ext (KDM5C residues 318-396) was cloned into a 

pET28b His-Smt3 vector to express recombinant 6xHis-SUMO-PHD1 in BL21(DE3) E. coli in 

metal supplemented M9 minimal medium containing 15NH4Cl (Cambridge Isotope Laboratories). 

13C-glucose (Cambridge Isotope Laboratories) was used in medium for expression of 15N, 13C-

labeled PHD1. Expression was induced at OD600 ~0.6 using 1 mM IPTG for expression at 18 ºC 
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overnight. Collected cells were resuspended in 50 mM HEPES pH 8, 500 mM KCl, 5 mM BME, 

10 mM imidazole, and 1 mM PMSF, supplemented with benzonase, and lysed by sonication. 

Lysate was clarified with ultracentrifugation and the recovered supernatant was then purified by 

Ni-NTA affinity resin. The His-SUMO tag was then cleaved by SenP1 during overnight dialysis 

at 4 ºC in 50 mM HEPES pH 7.5, 150 mM KCl, 50 µM ZnCl2 and 10 mM BME. Cleaved His-

SUMO tag and SenP1 was captured by passing through Ni-NTA affinity resin and flow-through 

was then purified by anion exchange (MonoQ) chromatography in starting buffer of 50 mM 

HEPES pH 7.5, 150 mM KCl, 50 µM ZnCl2 and 10 mM BME. Flow-through MonoQ fractions 

containing PHD1 were concentrated and aliquots snap frozen in liquid nitrogen for storage at -

80 ºC. 

 

PHD1 NMR and histone peptide NMR titrations 

For backbone assignment of KDM5C PHD1, 400 µM 15N, 13C-labeled PHD1 in 50 mM HEPES 

pH 7.5, 50 mM KCl, 5 mM BME, 50 µM ZnCl2, and 5% D2O was used to perform 3D triple-

resonance CBCA(CO)NH and CBCANH experiments at 298K using a 500 MHz Bruker 

spectrometer equipped with a cryoprobe. Triple-resonance experiments were also performed 

using 400 µM 15N, 13C-labeled PHD1 bound to 2 mM H3 (1-18) peptide (1:5 ratio) to assign 

broadened backbone residues in apo spectra. 3D spectra were processed using NMRPipe then 

analyzed and assigned using CcpNMR Analysis. Out of 56 assignable residues, 54 in apo 

PHD1 and 53 residues in H3 bound PHD1 were assigned. 

 

For 2D 1H-15N HSQC spectra of KDM5C PHD1, 200 µM 15N-labeled PHD1 in 50 mM HEPES pH 

7.5, 50 mM KCl, 5 mM BME, 50 µM ZnCl2, and 5% D2O was used to obtain 2D spectra at 298K 

using a 800 MHz Bruker spectrometer equipped with a cryoprobe. Chemical shift perturbation 

experiments were performed by obtaining HSQC spectra with increasing concentrations of 

histone tail peptides (GenScript) up to 1:5 molar ratio of PHD1:peptide. Data were processed 
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using Bruker TopSpin and analyzed using CcpNMR Analysis. Chemical shifts were scaled and 

calculated as Δδ = sqrt(((ΔδH)^2+(ΔδN/5)^2) / 2). Chemical shift values were then plotted as a 

function of histone peptide concentration and fit to the quadratic binding equation Y=((X+PT+Kd)-

sqrt((X+PT+Kd)^2-4*PT*X))*(Ymax-Ymin)/(2*PT), where X is the concentration of peptide and PT is 

the concentration of PHD1, using GraphPad Prism to determine Kd values. 

 

Purification of ARID for NMR 

ARID (KDM5C residues 73-188) was cloned into a pET28b His-Smt3 vector to express 

recombinant 6xHis-SUMO-ARID in BL21(DE3) E. coli in metal supplemented M9 minimal 

medium containing 15NH4Cl. Expression was induced at OD600 ~0.6 using 1 mM IPTG for 

expression at 18 ºC overnight. Collected cells were resuspended in 50 mM HEPES pH 8, 500 

mM KCl, 1 mM BME, 10 mM imidazole, and 1 mM PMSF, supplemented with EDTA-free Pierce 

protease inhibitor tablets and benzonase, and lysed by microfluidizer. Lysate was clarified with 

ultracentrifugation and the recovered supernatant was then purified by Ni-NTA affinity resin. The 

His-SUMO tag was then cleaved by SenP1 during overnight dialysis at 4 ºC in 50 mM HEPES 

pH 7.5, 500 mM KCl, and 5 mM BME. Cleaved His-SUMO tag and SenP1 was captured by 

passing through Ni-NTA affinity resin and flow-through was then purified by size exclusion 

(Superdex 75, GE Healthcare) chromatography in 50 mM HEPES pH 7, 150 mM KCl, and 5 mM 

BME. Fractions were buffer exchanged into 50 mM HEPES pH 7, 50 mM KCl, and 5 mM BME 

then concentrated and aliquots snap frozen in liquid nitrogen for storage at -80 ºC. 

 

ARID and DNA NMR titration 

For 2D 1H-15N HSQC spectra of KDM5C ARID, 100 µM 15N-labeled ARID in 50 mM HEPES pH 

7, 50 mM KCl, 5 mM BME, and 5% D2O was used to obtain 2D spectra at 298K using a 800 

MHz Bruker spectrometer equipped with a cryoprobe. Chemical-shift perturbation experiments 

were performed by obtaining HSQC spectra with increasing concentrations of the 5’ linker DNA 
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20 bp fragment up to 1:1 molar ratio of ARID:DNA. Data were processed using Bruker TopSpin 

and analyzed using CcpNMR Analysis. Chemical shifts were scaled and calculated as Δδ = 

sqrt(((ΔδH)^2+(ΔδN/5)^2) / 2). Previously determined assignments (BMRB: 15348) were 

transferred to a majority of resonances observed in the HSQC spectra of ARID49. 

 

Purification of ARID mutants 

Recombinant His-tagged SUMO-ARID mutants were expressed in BL21(DE3) E. coli in 2xTY 

media through induction at OD600 ~0.6 using 1 mM IPTG followed by expression at 18 ºC 

overnight. Collected cells were resuspended in 50 mM HEPES pH 8, 500 mM KCl, 1 mM BME, 

10 mM imidazole, and 1 mM PMSF, supplemented with benzonase, and lysed by sonication. 

Lysate was clarified with centrifugation and the recovered supernatant was then purified by Ni-

NTA affinity resin. The His-SUMO tag was then cleaved by SenP1 for 2 hours at 4 ºC in 50 mM 

HEPES pH 7, 500 mM KCl, and 5 mM BME. Cleaved His-SUMO tag and SenP1 was captured 

by passing through Ni-NTA affinity resin. The flow-through was buffer exchanged into 50 mM 

HEPES pH 7, 50 mM KCl, and 5 mM BME then concentrated and aliquots snap frozen in liquid 

nitrogen for storage at -80 ºC. 

 

Single turnover peptide demethylation kinetics  

The demethylation of biotinylated H3K4me3 peptide was monitored under single turnover 

conditions (>10 fold excess of KDM5C over substrate) through the detection of H3K4me3 

substrate loss over time by TR-FRET of an anti-rabbit IgG donor, recognizing an anti-H3K4me3 

rabbit antibody, with an anti-biotin acceptor reagent. Various concentrations of KDM5C were 

reacted with 25 nM H3K4me3 (1-21)-biotin peptide (AS-64357, AnaSpec) in 50 mM HEPES pH 

7.5, 50 mM KCl, 0.01% Tween-20, 0.01% BSA, 50 µM alpha-ketoglutarate, 50 µM ammonium 

iron(II) sulfate, and 500 µM ascorbic acid at room temperature. 2.5 µL time points were taken 

and quenched with 2 mM EDTA then brought to 20 µL final volume for detection using 1:500 
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dilution anti-H3K4me3 antibody (05-745R, EMD Millipore), 1 nM LANCE Ultra Europium anti-

rabbit IgG antibody (PerkinElmer AD0082), and 50 nM LANCE Ultra Ulight-Streptavidin 

(PerkinElmer TRF0102) in 0.5X LANCE detection buffer. Detection reagents were added 

stepwise with 30 min incubation of anti-H3K4me3 antibody and Ulight-Streptavidin with reaction 

time points followed by 1 hr incubation with Europium anti-rabbit antibody in 384 well white 

microplates (PerkinElmer OptiPlate-384). TR-FRET emission at 665 nm and at 615 nm by 320 

nm excitation with 50 µs delay and 100 µs integration time was measured using a Molecular 

Devices SpectraMax M5e plate reader. TR-FRET was calculated as the 665/615 nm emission 

ratio then subject to normalization to H3K4me3 substrate signal before demethylation. Kinetic 

curves were fit to a single exponential function, with the plateau set to nonspecific background 

of H3K4me2 product detection, to determine kobs of the H3K4me3 demethylation step. kobs 

parameters were then plotted as a function of KDM5C concentration and fit to the sigmoidal 

kinetic equation Y=kmax*X^n/(Khalf^n + X^n) using GraphPad Prism to determine kmax and Km’ 

parameters of demethylation. 

 

Multiple turnover peptide demethylation kinetics 

A fluorescence-based enzyme coupled assay was used to detect the formaldehyde product of 

demethylation of H3K4me3 peptide under multiple turnover conditions (excess of substrate 

peptide over KDM5C). Various concentrations of H3K4me3 (1-21) substrate peptide (GenScript) 

were added with 1mM alpha-ketoglutarate to initiate demethylation by ~1 µM KDM5C in 50 mM 

HEPES pH 7.5, 50 mM KCl, 50 µM ammonium iron(II) sulfate, 2 mM ascorbic acid, 2 mM 

NAD+, and 0.05 U formaldehyde dehydrogenase (Sigma-Aldrich) at room temperature. Upon 

initiation, fluorescence (350 nm excitation, 460 nm emission) was measured in 20 sec intervals 

over 30 min using a Molecular Devices SpectraMax M5e plate reader. NADH standards were 

used to convert fluorescence to the rate of product concentration formed. Initial rates of the first 

3 min of demethylation were plotted as a function of substrate concentration and fit to the tight-
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binding quadratic velocity equation Y=Vmax*((X+ET+Km)-sqrt((X+ET+Km)^2-4*ET*X))/(2*ET) using 

GraphPad Prism to determine Michaelis-Menten kinetic parameters of demethylation. 

 

Histone peptide binding kinetics 

Bio-layer interferometry was used to measure binding kinetics of histone peptides to biotinylated 

Avitag-PHD1. Avitag followed by a linker was inserted into pET28b His-Smt3-PHD1318-378 to 

generate recombinant endogenously biotinylated 6xHis-SUMO-Avitag-(GS)2-PHD1 through 

coexpression with BirA in BL21(DE3) E. coli in 2xTY media containing 50 µM ZnCl2 and 50 µM 

biotin. Expression was induced at OD600 ~0.7 using 0.4 mM IPTG for expression at 18 ºC 

overnight. Collected cells were resuspended in 50 mM HEPES pH 8, 500 mM KCl, 5 mM BME, 

10 mM imidazole, 50 µM biotin, and 1 mM PMSF, supplemented with benzonase, and lysed by 

sonication. Lysate was clarified with ultracentrifugation and the recovered supernatant was then 

purified by Ni-NTA affinity resin. The His-SUMO tag was then cleaved by SenP1 during 

overnight dialysis at 4 ºC in 50 mM HEPES pH 8, 150 mM KCl, 50 µM ZnCl2 and 10 mM BME. 

Cleaved His-SUMO tag and SenP1 was captured by passing through Ni-NTA affinity resin and 

flow-through was then purified by anion exchange (MonoQ) chromatography in starting buffer of 

50 mM HEPES pH 8, 150 mM KCl, 50 µM ZnCl2 and 10 mM BME. Flow-through MonoQ 

fractions containing Avitag-PHD1 were analyzed by western blotting to identify biotinylated 

fractions, which were then concentrated and aliquots snap frozen in liquid nitrogen for storage at 

-80 ºC. Using the Octet Red384 system (ForteBio) at 1000 rpm and 25 ºC, 100 nM Avitag-PHD1 

was loaded onto streptavidin biosensors (ForteBio) for 10 min in assay buffer (50 mM HEPES 

pH 8, 50 mM KCl, 50 µM ZnCl2, 5 mM BME, and 0.05% Tween-20) followed by 120 sec 

baseline then association and dissociation of 100 µM peptide (GenScript) in assay buffer. Data 

were processed by subtracting a single reference experiment of loaded Avitag-PHD1 without 

peptide. A two phase exponential function was used to fit the biphasic kinetic data using Origin 

software. 
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Glutaraldehyde crosslinking 

KDM5C and nucleosome-bound KDM5C were cross-linked using 0.05% glutaraldehyde on ice 

for 30-60 min. KDM5C was incubated with the 187 bp nucleosome on ice for 1 hr in 50 mM 

HEPES pH 7.5, 50 mM KCl, 1mM BME prior to cross-linking at 2-3 mg/mL. KDM5C alone was 

cross-linked at 1 mg/mL in 50 mM HEPES pH 7.5, 50 mM KCl. Cross-linking was quenched 

using 100 mM Tris pH 7.5 followed by 4-20% SDS-PAGE analysis. Cross-linked nucleosome-

bound KDM5C was further analyzed by native 7.5% PAGE, separated using pre-run gels by 

electrophoresis in 1xTris-Glycine buffer at 100V for 2 hrs at 4 ºC, stained using SYBR Gold for 

DNA visualization, and imaged using the ChemiDoc imaging system. 
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