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High dimensional expanders (HDX) are a nascent generalization of expander graphs

(sparse yet robustly connected networks that play a core role in the theory of computation)

to high dimensional domains. Despite recent breakthrough use in sampling [239, 25] and

local testability [315, 117], relatively little is known about HDX, their properties, and their

broader position in theoretical computer science. In this dissertation, we develop the role

of high dimensional expanders in computation through the interplay of Boolean analysis,

concentration of measure, approximation algorithms, and hardness of approximation.

In the first half of this dissertation, we develop a robust theory of Fourier and

xix



probabilistic analysis on HDX. This includes generalizations of standard tools of theoretical

computer science such as the Fourier decomposition, hypercontractivity, and Chernoff

bounds, as well as more application-focused techniques such as symmetrization, reverse

hypercontractivity, and concentration of high degree functions. In many cases, our results

give the first sparse domains satisfying such notions, a critical consideration in application

where density or ‘degree’ controls the cost associated with their use.

In the second half of this dissertation, we give applications of these ideas to

algorithms, complexity, and mathematics. Algorithmically, we show the local structure

of high dimensional expanders can be exploited to build fast approximation algorithms

for unique games, and explore implications of fast approximate sampling algorithms on

HDX to massive multiplayer matrix games. In mathematics, we show high dimensional

expanders have optimal geometric overlap, extend a variant of the Frankl–Rödl theorem

to HDX, and prove new degree lower bounds for certain HDX. Finally in complexity we

leverage new topological HDX to construct optimally hard explicit constraint satisfaction

problems for Sum-of-Squares (a powerful optimization paradigm), and prove spectral

HDX satisfy an optimal (local) agreement testing theorem and an optimal global tester

under stronger ℓ∞-type assumptions, a stepping stone towards improved low-soundness

probabilistically checkable proofs and hardness of approximation.
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Introduction

Expander graphs are an immensely useful tool in the theory of computation.

Introduced in the 60s [51, 320], these sparse but robustly connected graphs remain a

highly active area in mathematics and computer science, with decades of breakthrough

applications across network design [51], error correction [345], de-randomization [329],

approximation algorithms [228], hardness of approximation [116], and much more (see

e.g. [198] and citations therein). Today, it’s no exaggeration to say it’s difficult to find a

sub-field of theoretical computer science that hasn’t been strongly impacted by expanders.

Still, expander graphs are not one-size-fits-all. The issue, frequently, is that

many core problems in computer science are high dimensional (say k-CSPs, learning

and data analysis, distribution sampling, error correction...). Expanders, in contrast, are

1-dimensional objects; they may give partial insights to these problems, but typically fail

to capture the full picture.

Our running example of such behavior (and key motivation in this dissertation) is

the PCP Theorem [31, 30], a breakthrough result in complexity theory showing many basic

NP-hard problems like 3-SAT are hard to approximate.1 Famously, the PCP Theorem

can be proved using expanders [116], but the latter’s low-dimensionality is also a known

barrier to proving optimal in-approximability this way [69, 110]. Instead, modern PCPs

overcome this barrier by composing expander-based constructions with high dimensional

domains like the hypercube [192], complete hypergraph [327, 128], polynomials [300], or
1In other words, not only is it NP-hard to tell whether a 3-SAT instance is satisfiable, we cannot

even distinguish between fully satisfiable instances and instances in which every potential solution fails a
constant fraction of the constraints!

1



the Grassmann (subspaces) [129, 126, 255, 297].

Unfortunately, in many key settings, this approach is too costly: because of their

high density (size), their use massively blows up the size of the problem at hand, ruining

any chance at NP-reduction. Perhaps the most natural example is the parallel repetition

theorem [327], which ‘amplifies’ a PCP by repeating it many times in parallel. If we start

with a problem of size n and repeat d times, we end up with a problem of size nd — too

large to use in NP-reductions when d ≥ ωn(1). This raises a natural question, if density

is truly the problem, could we replace these high dimensional domains with sparsified

variants just as expanders replace the complete graph?

This brings us to the theory of high dimensional expanders (HDX). Developed

jointly within topology [163, 283, 182], algebra [290], and computer science [141, 234,

124, 309], HDX are a family of generalizations of expanders to high dimensional domains

like hypergraphs, posets, and chain complexes with great initial success capturing high

dimensional problems in approximate sampling [239, 25, 24] and error correction [117, 315].

Nevertheless, compared to the well-developed field of graph expansion, little is known about

HDX and their position in computation, especially with respect hardness of approximation

where current progress, while exciting, is still fairly preliminary [124, 119, 40, 113].

In this dissertation, we develop a series of powerful analytic and probabilistic tools

on HDX that form the core behind the classical theory of hardness of approximation

and PCPs, including hypercontractivity and strong concentration of measure. We then

give several applications of this machinery to the theory of computation and study of

HDX themselves, including (among others) new hardness of approximation results within

the Sum-of-Squares hierarchy, new optimal agreement tests (a core component of PCPs),

efficient algorithms for unique games and high dimensional online learning problems, a

proof that HDX are optimal geometric expanders, and new degree lower bounds for HDX.
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Chapter 0: High Dimensional Expanders (A Probabilistic View).

What is a high dimensional expander? At the moment, there are two main variants

of HDX: spectral and topological. We will eventually discuss both definitions in depth, but

for the sake of this overview focus on the simplest setting: spectral expansion of partite

hypergraphs. We emphasize this section does not aim to provide a holistic view of HDX.

Rather, we give a simplified introduction focusing on one useful interpretation of spectral

HDX as probabilistic objects that plays an important role in what’s to come.

Recall a bi-partite graph G = (L,R,E) consists of two sets of vertices L and R,

and a set of edges (pairs) E ⊂ L×R passing between them. For simplicity, let’s assume

L = R = [n]. Then the graph G, defined by its edges, is really just a subset G ⊂ [n]2.

Assuming for simplicity G is also d-regular, the normalized adjacency matrix is given by

AG(u, v) :=


1
d

(u, v) ∈ E

0 otherwise.

It is easy to check that A has a spectral decomposition and its eigenvalues satisfy

1 = λ1 ≥ . . . ≥ λn = −1.

G is said to be a λ-spectral expander if λ2 ≤ λ.

We can also view bi-partite graphs as two dimensional distributions. In other words,

picking a random edge from G generates a random variable (X1, X2) supported on [n]2.

By the variational characterization, an equivalent way to formulate spectral expansion is

to say G is a spectral expander if the variables (X1, X2) are approximately independent.

In other words, if for any f : L→ R and g : R→ R, the expectation of the product fg is
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close to the product of their expectations:

E[fg] ∈ E[f ]E[g]± λ
√

Var(f)Var(g). (1)

Keeping this view in mind, a d-partite hypergraph is a subset X ⊂ [n]d. Similarly, X can

be viewed as a d-dimensional distribution (X1, . . . , Xd). Informally, we’ll call X a spectral

HDX if all d variables act ‘approximately independent’. In other words, if X acts like a

product space.

Formally, there are several reasonable generalizations of Equation (1) we could

consider in this sense. Perhaps the first that comes to mind is simply to require a

d-dimensional variant, e.g. something of the form ∀{fi : [n]→ R}i∈[d]:

E

[
d∏

i=1

fi(xi)

]
≈

d∏
i=1

E[fi]. (2)

Or, one could instead require that every pair of variables satisfies Equation (1), a type of

approximate pairwise independence. Both of these are useful notions, but miss a critical

piece of the picture: the closure of products under restriction.

Consider a true product X = [n]k. If we fix the value of X1 (the first coordinate), it

has no effect on the remaining values (X2, . . . , Xk). Namely, the corresponding marginal,

even conditioned on X1, is still a product. Once we move to sparse subsets of [n]k, it is of

course no longer true that X1 has no effect on (X2, . . . , Xk), but we might hope that the

resulting marginal is still ‘product-like’. Combining this with our prior intuition leads to

the following natural definition of a spectral HDX:

Definition 0.0.1 (Spectral High Dimensional Expanders). A d-partite hypergraph X is

called a λ-HDX if for all i, j ∈ [d]:

1. (Xi, Xj) is a λ-spectral expander
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2. This remains true under all (valid) conditionings2 XS = yS for i, j ̸∈ S.

Equivalently, one could require a variant of Equation (2) for all conditioned marginals.3

Incredibly, bounded degree constructions of high dimensional expanders exist for

any λ > 0 [290, 238, 108], meaning every vertex sits in only Od,λ(1) hyperedges, rather

than nd−1 hyperedges as in X = [n]d. We refer the reader to [190] for an exposition on one

such construction. In this dissertation, we focus instead on properties and applications of

objects satisfying Definition 0.0.1 without worrying too deeply about their construction.

Before moving on, we remark that Definition 0.0.1 is not quite the standard

notion of a spectral HDX, called local-spectral expanders [124, 309], which are instead

typically defined by viewing X as a simplicial complex and analyzing the spectrum of local

components called links.4 Definition 0.0.1 and the viewpoint of HDX as approximately

independent variables was introduced independently by Gur, Lifshitz, and Liu [187] in

the partite case as the notion of a ‘λ-product’, and concurrently by Bafna, Hopkins,

Kaufman, and Lovett [39] in the non-partite case as the notion of ‘average independence’

(see Chapter 1). The definition is known to be equivalent to the standard notion up to

small changes in parameters [309, 109, 12].

Chapters 1-4: Boolean Function Analysis.

Having introduced our initial view of spectral HDX as sparsifying high dimensional

domains like products, we arrive at a natural follow-up question: do HDX actually satisfy

the core properties of these domains used in application? It seems reasonable a spectral

sparsification would maintain spectral properties, what about techniques beyond spectral

methods? In the context of hardness of approximation, there is a clear place to start:

boolean function analysis, the core of all modern PCPs.
2In other words, yS should actually appear in the support of XS .
3It is not immediately obvious these are equivalent (up to slight changes in parameters). It follows from

Oppenheim’s Trickling-Down Theorem [309] and the high dimensioinal expander-mixing lemma [109, 114].
4In our probabilistic notation, a link simply corresponds to a conditioned marginal, e.g. (XS |XS̄ = xS̄).

Local-spectral expansion requires the graph underlying all such marginals to be an expander.
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But first, let’s take a step back. The story of modern boolean function analysis

starts in 1988 in the seminal work of Kahn, Kalai, and Linial (KKL) [226]. KKL, based

on earlier work in social choice [59], were interested in understanding the structure of

(balanced) boolean functions f : Fd
2 → F2 with low total influence, a measure of the

sensitivity of f to flipping individual coordinates:

I[f ] =
d∑

i=1

Ii[f ], Ii[f ] = P
x
[f(x) ̸= f(x+ ei)].

What sort of functions have low influence? The most obvious example of a balanced

function with low total influence is a dictator function 1i(x) := xi. This has total influence

1, all of which is concentrated on the ith coordinate. KKL showed a type of converse to this

fact: any low influence function must have some coordinate with much higher influence

than the average. Friedgut [157] extended this result to a beautiful characterization

showing any low influence function must essentially be a junta, a generalization of dictators

that allows the function to depend on a constant number of coordiantes:

Theorem 0.0.2 (Friedgut’s Theorem). If I(f) ≤ K, then f is ε-close to a 2O(K/ε)-junta.

Perhaps even more important than the statements of KKL and Friedgut’s theorem

is how they were proved: Fourier analysis. Recall on the hypercube that any function

f : Fd
2 → R can be expressed uniquely as the sum of monomials (the ‘Fourier basis’):

f =
∑
S⊆[d]

f̂(S)χS, f≤i =
∑
|S|≤i

f̂(S)χS

where χS(x) = (−1)
∑
i∈S

xi

are the characters of Fd
2. Coarsely, the Fourier decomposition

divides f into components by degree (f≤i above is the degree at most i part of f). KKL

proved their result by considering the structure of low degree functions, in particular, via

a powerful tool called hypercontractivity. The most basic form of hypercontractivity, the
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Bonami lemma [71], states low degree functions are smooth, i.e. for any f : Fd
2 → R

∥f≤i∥4 ≤ 2O(i)∥f≤i∥2,

This simple statement and its implications (the KKL Theorem [226], Junta theorem [157],

Majority is stablest [302]...) are by now some of the most broadly used tools in analysis

and hardness of approximation, not to mention a number of other areas such as analysis

of Markov chains [107], learning [264], and algorithms [37].

The hypercube, of course, is not always the right tool for the job, and many modern

problems in analysis and hardness of approximation require analogs of Bonami beyond

the cube (see e.g. [158, 46, 227, 126, 255, 245, 280, 248, 297] among others). Here the

story takes a turn: even simple extended domains such as the p-biased cube5 actually fail

standard hypercontractivity. Consider again the dictator function 1i. On the p-biased

cube, we have

E[1i(x)
4] = p≫ E[1i(x)

2]2 = p2.

Since 1i is a degree-1 function, the Bonami lemma cannot hold for small p. The issue

is that the dictator 1i is local—while its overall density is p, upon restricting to the ith

coordinate it becomes the all 1’s function. Building on a long line of work studying

hypercontractivity in extended domains [78, 349, 160, 157, 252], O’Donnell and Zhao [364]

and Keevash, Lifhistz, Long, and Minzer [245, 248] proved this type of local function is in

fact the only barrier to the Bonami lemma on products. Namely for any f : [n]d → R,

they show

∥f≤i∥44 ≤ 2O(i)∥f≤i∥22 max
|S|≤i,xS

{∥f |xS
∥22}. (3)

where ∥f |xS
∥22 = Ey[f

2(y) | yS = xS] and f≤i now corresponds to the low degree Efron-Stein

5The p-biased cube is the distribution over Fd
2 in which each bit is 1 independently with probability p.
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components, a generalization of classical Fourier analysis to products:

f≤i =
∑
|S|≤i

f=S, f=S(y) =
∑
T⊆S

(−1)|S\T |Ex[f(x) | xS = yS].

Equation (3) is often called global hypercontractivity, since it implies any ‘global’

function f such that ∥f |xS
∥22 ≤ 2O(i)∥f∥22 satisfies the standard Bonami lemma. On

the cube, one can check all functions are global, so global hypercontractivity is a true

generalization of the standard notion. A simple corollary of Equation (3) is a spiritual

variant of the KKL or junta theorem, any function f : [n]d → F2 with total influence

I[f ] ≤ K is local in that it must have a restriction with constant density:

∃|S| ≤ O(K), xS : E[f |xS
] ≥ 2−O(K).

Global hypercontractivity on extended domains has become an incredibly powerful

tool (leading for instance to the proof of the 2-to-2 Games Conjecture [124, 47, 255]), but

prior to this point, all known examples were for dense settings (e.g. the slice [252], symmetric

group [147], or Grassmann [255]). In Chapter 1, we prove the first hypercontractive

inequality for sparse domains. In particular, building on an initial spectral theory in

[111, 239, 38], we introduce a new Fourier decomposition for two-sided local-spectral

HDX based on Efron-Stein, and prove it satisfies global hypercontractivity. We prove a

corresponding characterization of (sparse) low influence functions generalizing the product

case, and show our bound is tight. A critical component of our proof is (an un-ordered

variant of) the new viewpoint of spectral HDX as ‘approximately independent random

variables’ introduced in the prior section, called ‘average independence’ in Chapter 1.

The bounds we prove in Chapter 1 are not without room for improvement. First,

they only hold under the strict notion of two-sided local-spectral expansion. Gur, Lifshitz,

and Liu [187] independently proved a similar hypercontractive inequality for one-sided
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partite HDX (in some sense a more general case), but paid for this generality in sub-optimal

dependence on degree, a critical parameter in application. Second, both the results of

Chapter 1 and [187] are only meaningful for certain regimes of functions, partially due to

the notion of global hypercontractivity itself (which in some sense requires sparsity of f to

be meaningful), and partly due to costly error terms stemming from sub-optimal handling

of high norms.

In Chapter 2, we resolve these problems by extending a powerful analytic technique

called symmetrization to HDX. One natural approach to studying functions on products

is to try to reduce their analysis to the cube. Bourgain [77] realized this could be done by

‘symmetrizing’ a function f : [n]d → R by essentially convolving it with a random boolean

string. Define the symmetrization of f as f̃(r, x) : Fd
2 × [n]d → R such that

f̃(r, x) =
∑
S⊆[d]

rSf
=S(x),

where rS = (−1)
∑

i∈S ri . Bourgain proved that up to the application of a little noise

(applied through the standard noise operator Tρ, discussed further in the next chapter), f

and f̃ have essentially the same behavior under high norms:

∥T 1
2
f(x)∥q ≤ ∥f̃(r, x)∥q ≤ ∥Tcqf(x)∥q.

We extend Bourgain’s theorem to partite high dimensional expanders. Adapting

methods of O’Donnell and Zhao [364], this gives an elementary proof of optimal global

hypercontractivity for partite HDX. Adapting work of Bourgain [158], we also give a ‘booster

theorem’ for HDX, stating any balanced low influence function must have a restriction on

which it deviates substantially from the mean, better capturing the structural properties

of highly balanced functions with low influence.

Our proof of the symmetrization theorem is based on two elementary new ideas in
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the theory of high dimensional expansion of independent interest. First, we introduce the

notion of ‘q-norm HDX’, which bound the distance of marginals (Xi, Xj) from independent

in q rather than spectral norm. We observe every strong enough spectral HDX is a q-norm

HDX, allowing us avoid high norm error terms lost in Chapter 1. Second, we introduce a

simple method of coordinate-wise analysis on HDX which breaks high dimensional operators

into coordinate-wise components and analyzes them as 1-dimensional operator on the

marginals of X. This allows for application of standard tricks such as the replacement

method, greatly simplifying prior analysis.

Finally, in Chapters 3 and 4, we study the structure of low influence functions

on more general families of high dimensional expanders. In the former, we study what

can be said under substantially weaker spectral assumptions on X, where no Fourier

decompositions are known. Building on tools of Gotlib and Kaufman [176], we prove upper

and lower bounds on the locality of low influence functions that scale with the underlying

spectral expansion of X. Our results give the first structure theorems for combinatorial

HDX such as (dense) clique complexes and product-complexes [170].

In the latter, we move away from hypergraphs and study Fourier analysis on more

general ranked posets like the Grassmann. Here we give a tight spectral theory and

focus on how the regularity structure of the underlying poset affects the resulting object’s

eigenvalues, explaining for instance why the Johnson graphs have linear eigenvalue decay,

while the Grassmann has exponential decay, a critical parameter in application [126].6

Unfortunately, we note in both cases the characterizations we give are likely too weak to

be used in the context of hardness of approximation.

Chapter 5(a): Concentration of Measure.

Another powerful (and arguably far more ubiquitous) property of product spaces is

their concentration of measure [75]. Somewhat counter-intuitively, here it will actually be
6We note these results were obtained independently in an updated version of [111].
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simpler to look at the non-partite setting where X ⊂
(
[n]
d

)
rather than [n]d.

Given a d-uniform hypergraph X, what does it mean for X to satisfy a concentration

bound? Perhaps the simplest interpretation is to look at how well X samples a subset

A ⊂ [n] of its vertices. In other words, over worst-case choice of A, what is the probability

that the density of A inside a random hyperedge is off by more than ε from the mean?

P
(x1,...,xd)∈X

[∣∣∣∣∣1d
d∑

i=1

1A(xi)− µA

∣∣∣∣∣ ≥ ε

]
?

≤ β(ε, d).

When X =
(
[n]
k

)
, the reader might recognize this as the classical Chernoff-Hoeffding

bound,7 easily the most widely-used tail bound in theoretical computer science:

P
(x1,...,xd)∈([n]

d )

[∣∣∣∣∣1d
d∑

i=1

1A(xi)− µA

∣∣∣∣∣ ≥ ε

]
≲ e−ε2d.

Thus, if HDX truly ‘model’ the complete hypergraph, a reasonable first goal would be to

show they satisfy a Chernoff bound.

In fact, the question of what hypergraph families (or in light of our view of

hypergraphs as distributions, what families of d-dimensional distributions) satisfy Chernoff

is extremely well studied [337, 338, 339, 133, 313, 318, 75, 76, 214, 317, 273, 232, 22], and

while almost all general conditions (e.g. those based on entropy or ℓ∞-behavior) require X

to be dense, sparse constructions called sampler graphs or seeded extractors have actually

been known since the 90s,8 and are a core tool in pseudorandomness, derandomization, and

cryptography [167]. This raises a natural question: if we already know optimal sampler

graphs, why use HDX?

The reason is that modern applications in complexity tend to require concentration

against broader classes of functions. Above, we restricted our attention to sampling

functions sitting on the vertices of X. In some sense, these correspond to degree-1 or linear
7Formally, without replacement.
8In fact, they can even be constructed via expander graphs [165]!
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functions. Applications in pseudorandomness and PCPs often require strong concentration

bounds against degree-i functions. In our setting, this corresponds to looking at functions

that sit on ‘i-sets’ of X.9 In particular, given a bounded function f : X(i)→ [0, 1],10 we’d

like to bound the probability the conditional density of f in a hyperedge is far from its

expectation:

P
s∈([n]

d )

[∣∣∣ E
t⊂s

[f(t)]− E[f ]
∣∣∣ ≥ ε

] ?

≤ β(ε, i, d).

Concentration for degree-i functions was first considered explicitly by Impagliazzo, Ka-

banets, and Wigderson (IKW) [215] for the complete complex X =
(
[n]
d

)
as a core

component in the construction of low soundness PCPs. For n sufficiently large, they

proved the following generalization of Chernoff-Hoeffding to this setting

P
s∈([n]

d )

[∣∣∣ E
t⊂s

[f(t)]− E[f ]
∣∣∣ ≥ ε

]
≲ e−ε2 d

i . (4)

Roughly speaking, the dependence d
i

corresponds to viewing a d-set in X as d
i

independent

i-sets, and applying Chernoff to this system. In Section 5.11, we show (under weak

assumptions) that this bound is indeed tight.

In fact, driven by the same desire to sparsify the complete complex for better

hardness amplification, IKW actually also proved a variant of this bound for the Grassmann

(the complex of subspaces). The details are too involved for this overview, but it suffices to

say the resulting complex is polynomial size (independent of dimension), rather than size(
n
d

)
, but comes with the catch that the associated tail bound is only inverse polynomial:

P
W∈Gr

[∣∣∣∣ E
V⊂W

[f(V )]− E[f ]
∣∣∣∣ ≥ ε

]
≲ Oi

(
1√
εd

)
.

9Note our choice of the word ‘degree’ is not just a moral connection; there is a literal sense in which
these functions correspond to (bounded) degree-i terms in the Fourier decomposition of the complete
complex and strong enough HDX.

10Formally X(i) ⊂
(
[n]
i

)
is the downward closure of X, the family of all i-sets that live in some original

hyperedge.

12



As a result, while it is possible to perform hardness amplification [215, 129] via either of

these bounds, the former exponentially blows up the size of the instance (as in parallel

repetition), while the latter maintains polynomial size but exponentially blows up the

alphabet due to its poor tail. Are there hypergraphs that achieve the best of both worlds?

This brings us back to the study of (non-partite) high dimensional expanders, which

as sparse models of
(
[n]
d

)
, are a natural candidate for this problem. In fact, concentration

of degree i functions was in some sense the main motivation behind Dinur and Kaufman’s

[124] original formalization of local-spectral expanders (though they called the property

double sampling). Using spectral techniques, Dinur and Kaufman proved the following

‘Chebyshev-type’ tail bound for sampling degree-i functions on HDX:

P
s∈X

[∣∣∣ E
t⊂s

[f(t)]− E[f ]
∣∣∣ ≥ ε

]
≲

i

ε2d
.

Their result, while hugely impactful, left open whether a stronger Chernoff-type bound

could hold for HDX (or indeed for any sparse system at all).

In Chapter 5, we resolve this problem: HDX indeed satisfy optimal concentration

of measure for degree-i functions. Namely for any f : X(i)→ R:

P
s∈X

[∣∣∣ E
t⊂s

[f(t)]− E[f ]
∣∣∣ ≥ ε

]
≲ e−ε2 d

i . (5)

Combined with standard bounded degree constructions of high dimensional expanders

[290, 238], this gives the first sparse hypergraph families with strong concentration for

degree-i functions. Indeed to the best of our knowledge, no such objects asymptotically

better than the complete complex itself were known prior to this bound.11

Equation (5) is powerful for smaller i, but our corresponding lower bounds show
11Note degree-i concentration, while a core component in PCPs, does not alone imply improved hardness

amplification. This requires two other components: an agreement test, and a PCP embedding. We will
discuss agreement testing in the next section overview. PCP embedding, that is ‘embedding’ an initial
hard problem (base PCP) into the skeleton of an HDX to amplify, remains a major open problem.

13



one cannot hope for strong concentration in the regime where i = Θ(d). Unfortunately,

the latter is actually a critical regime in application. Indeed IKW’s PCPs based on

Equation (4) suffered sub-optimal soundness due to exactly this issue: by setting i =
√
d,

they could only amplify hardness to 1 vs. exp(−
√
d), quasipolynomially far from the

optimal bound 1 vs. exp(−d). This issue was subsequently fixed by Dinur and Livni-Navon

[128], who observed that concentration in this regime can be replaced with a powerful

analytic inequality from boolean function analysis called reverse hypercontractivity.

Reverse hypercontractivity is a property of the noise operator Tρ, a classic smoothing

operation in boolean analysis which given a hyperedge s ∈ X, samples a new correlated

hyperedge s′ by re-sampling each vertex in s with probability 1− ρ. A ‘ρ-correlated pair ’

(s, s′) ∼ Tρ is generated by drawing s ∈ X uniformly at random, then drawing s′ via the

noise operator applied to s. Reverse hypercontractivity bounds the probability that a

ρ-correlated pair passes between any two sets of hyperedges A ⊂ X and B ⊂ X by (a

polynomial of) the product of their measure:

P
s,s′∼Tρ

[s ∈ A, s′ ∈ B] ≥ P[A]O(1) P[B]O(1). (6)

Note that if s and s′ were totally independent, the above would of course be exactly

P[A]P[B]. Thus reverse hypercontractivity also promises some sort of weak ‘independence’

type property, albeit of a different sort than discussed in the prior sections.

The reader may now reasonably wonder two things: why is this called reverse

hypercontractivity, and what does this have anything to do with sampling? For the first,

we refer the reader to the treatment in [308], and just note that the above can be re-phrased

as a typical ‘two-function hypercontractive form’ as

⟨1A, Tρ1B⟩ ≥ P[A]O(1) P[B]O(1).
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While it is not immediately clear from our treatment of the Bonami Lemma above, standard

hypercontractivity can actually be rephrased as a matching upper bound

⟨1A, Tρ1B⟩ ≤ P[A]O(1) P[B]O(1),

so Equation (6) indeed ‘reverses’ the standard hypercontractive inequality.

With regards to the second question, the key is to view our ρ-correlated pair (s, s′)

as generated through a slightly different random process. Let j ∼ Bin(ρ, d) denote the

number of vertices fixed by the noise operator. Instead of drawing s uniformly, removing

each vertex with probability 1− ρ to reach the ‘fixed set’ t ⊂ s, then re-sampling s′ ⊃ t,

we can instead samples (s, s′) by first drawing t uniformly from X(j), then independently

s, s′ ⊃ t. The probability that s ∈ A and s′ ∈ B, given t, is exactly the product of A and

B’s conditional measure within t, so

P
(t,s,s′)

[s ∈ A, s′ ∈ B] = E
t∼X(j)

[P[A|t]P[B|t]] .

In other words, reverse hypercontractivity holds exactly when a ‘typical’ j-set t for

j ≈ (1− ρ)d ‘sees’ a good proportion of the sets A and B.

Prior to this work, reverse hypercontractivity was only known for hypergraphs

satisfying a ‘modified log sobolev inequality’ [304], an entropy-based inequality that

inherently relies on density of X. By instead leveraging the above viewpoint of reverse

hypercontractivity as a form of sampling, we prove any hypergraph X with optimal

concentration for degree-i functions in all links12 is reverse hypercontractive.13 Since we

already proved above spectral HDX satisfy this condition, we get the first sparse families
12Formally we never defined this in the non-partite case. The link of an i-set s can either be viewed

directly as the hypergraph Xs{t ∈ X(d−i) : s∪t ∈ X}, or probabilistically by conditioning on (X1, . . . , Xd)
containing s, then marginalizing to the remaining unset variables.

13Note we cannot just directly apply concentration of X, since the bound for d vs. (1− ρ)d is essentially
trivial. Instead one draws the subset t in small parts t = t1 ∪ . . . ∪ tm, and applies concentration of tj at
each step conditional on the prior ti.
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of reverse hypercontractive hypergraphs.

Finally, before we move on to applications of concentration, it is worth discussing

what ‘strong enough’ high dimensional expansion really means in the above context. HDX

are known to go through a phase transition at a certain expansion parameter we call the

‘Trickling-Down (TD)-Threshold ’, in particular when the (worst-case conditioning of) the

marginals (Xi, Xj) has expansion 1
d
. Any complex X beating this bound immediately

exhibits ‘local-to-global’ structure—in other words it is possible to infer global properties

such as expansion of the skeleton of X [309] and fast-mixing of certain random walks

[234, 239, 11] just from spectral behavior of the marginals. On the other hand, at the

TD-threshold, no such structure can be inferred.14

With this in mind, for λ ∈ [0, 1] we call a hypergraph X ‘λ-TD’ if all such marginals

have expansion λ
d

(or better). We prove that any λ-TD complex satisfies concentration

P
s∈X

[∣∣∣ E
t⊂s

[f(t)]− E[f ]
∣∣∣ ≥ ε

]
≲ e−(1−λ)

√
d
i

for degree-i functions. As λ→ 1, (the TD-Threshold), this bound becomes trivial. This is

necessary: there exist hypergraphs at the threshold with arbitrarily poor concentration.

More generally, by directly bounding the moment generating function as a function

of X’s underlying expansion, we give an argument that interpolates between the above

regime, called sub-exponential concentration, and full Chernoff (sub-gaussian concentration)

when λ ≈ 2−d. In any regime, it is possible to recover optimal concentration by taking an

appropriate ‘skeleton’ of X. E.g. in the weakest case, considering the family of k-sets of X

for k ≤
√
d will recover optimal (sub-gaussian) concentration at that level.

It is a critical open question whether λ-TD complexes (or some variant thereof)

satisfy sub-gaussian concentration at their top level. This would have implications, for
14To our knowledge this statement does not appear explicitly in the literature, but it is fairly easy to

infer from [170] and could reasonably be considered ‘folklore’.
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instance, for lower bounding the best degree of an HDX as we discuss below, and we expect

may eventually be important in the construction of improved low soundness PCPs.

Chapters 5(b): Applications I (Agreement Tests).

Much of the motivation in studying global and reverse hypercontractivity comes

from the study of agreement testing. Agreement tests are a core component of PCPs

generalizing standard property tests like the line vs. plane test. For the sake of this

overview, we consider a somewhat simplified setup. Given a hypergraph X ⊂
(
[n]
d

)
, imagine

we are given a family of ‘local’ assignments for each hyperedge mapping its vertices to F2:

F := {fs : s→ F2}s∈X .

We’d like to test whether these local assignments are actually an encoding of a global

assignment g : [n]→ F2 on the vertices. In other words, is it the case that for most s ∈ X:

fs
?
≈ g|s.

For context, this type of scenario arises naturally in hardness amplification. Think of the

assignment to g as a solution to the original problem we’d like to amplify, and F is a

solution to the (possibly derandomized) ‘repeated’ problem. In order to show the lifted

problem is hard, we need to argue that a good solution F actually corresponds to an

honest solution to the original problem. In other words, in the PCP context, we want

to make sure the provers can’t ‘cheat’ by correlating their answers across the hyperedge

rather than ‘independently’ solving the problem d times.

Roughly speaking, an agreement test is any procedure which queries O(1) local

functions in F and outputs ‘pass’ or ‘fail’ constraint to the following guarantees:

1. Completeness: Any true global F passes with probability 1
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2. Soundness: If F passes with good probability, F should be ‘approximately’ global

Formally, there are two main regimes of soundness in which agreement tests are

studied: the 99% (or ‘high acceptance’ regime), where we assume the test passes with high

probability, and the challenging 1% regime in which global structure should be inferred

even when the test passes with only non-trivial probability:

P[Test Passes] ≥ δ =⇒ ∃g,P[fs ≈ g|s] ≥ poly(δ).

Both regimes have been studied extensively in the literature (see e.g. [31, 168, 130, 116,

120, 212, 115, 299, 124, 109, 236, 41, 40, 110, 113, 114] among others). For now, we focus

on the 1%-regime where such tests for the complete hypergraph and Grassmann lead to

low-soundness PCPs [215, 129, 128, 299, 297] and the 2-to-2 Games Conjecture [126, 255].

For what values of δ can we hope to prove soundness of X? To see this, it is

easiest to first consider what a typical agreement test actually looks like. Recall our goal

is to check whether the local assignments {fs} come from the same global function. The

only real strategy to do this is to randomly query a few hyperedges, and check whether

they agree on their intersection. For instance, the simplest such test is just to draw two

hyperedges intersecting in half their vertices. This is called the V-Test :

1. Randomly pick s, s′ ∈ X such that |s ∩ s′| = d/2

2. Accept if fs|(s ∩ s′) = fs′(s ∩ s′)

One might reasonably come up with more involved ways to draw s and s′ (or draw more

than 2), but all agreement tests boil down to this type of check.

Let’s now consider the probability a random function passes this test. No matter how

we draw the queried hyperedges {si}, they are going to intersect on at most O(d) vertices.

A random assignment (which has essentially no correlation with any global function), will

pass any such test with probability about exp(−O(d)), since every individual intersection
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has a 1/2 probability of passing. This tells us the best we can possible hope for is to

prove soundness in the regime where δ ≫ exp(−O(d)). In other words, if we pass with

probability better than random, we’d like to infer global structure.

As a brief aside, we note the particular dependence exp(−O(d)) is also critical from

the standpoint of PCPs. This is because our alphabet is boolean functions over d-sets,

and is therefore of size 2d. Achieving inverse exponential soundness ensures the alphabet

and soundness remain polynomially related. This is a necessary component, for instance,

in the famous sliding scale conjecture [57], which asks for PCPs with inverse polynomial

soundness and polynomial alphabet.

Let’s now consider the basic setting X =
(
[n]
d

)
. While the 2-query ‘V-test’ discussed

above hits a known barrier at 1
k
-soundness [120], IKW [215] realized this could be cir-

cumvented using the Z-test, a procedure which draws a third query s′′ intersecting with

s′, and tests agreement on both pairs (s, s′) and (s′, s′′). As discussed in the previous

section, IKW’s analysis of the Z-test relied on Equation (4) and therefore only achieved

exp(−
√
d) soundness, but this was improved to the optimal exp(−O(d)) bound by Dinur

and Livni-Navon [128] using reverse hypercontractivity.

While these tests can be used to construct matching low-soundness PCPs, they

cannot achieve sub-constant soundness due to the size |X| = nd (again, setting d ≥ ω(1)

results in superpolynomial size). This motivates the study of derandomized testers. Can

we construct polynomial or even linear size hypergraphs X satisfying optimal soundness?

Currently, the best known derandomized test is IKW’s Z-test for the Grassmann (subspace

complex). As discussed in the previous section, it has inverse polynomial instead of inverse

exponential soundness due to its poor concentration of measure.

High dimensional expanders are of course a natural candidate for such a test (indeed

a 1% test for HDX was conjectured in Dinur and Kaufman’s original work showing an HDX

tester for the 99%-regime [124]). In Section 5.8, we make progress on this question on two

fronts. First, we prove an optimal local soundness theorem for the V-test on any spectral
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HDX. Roughly speaking, the statement says that if the V-test passes with probability

δ ≫ exp(−O(d)), then the family F is global on many of X’s d
2
-links. This is the typical

core lemma used to prove exponential soundness of the Z-test [212, 128] — the third query

is used to patch together these local solutions.

Unfortunately, there are known obstructions to this patching step on sparse com-

plexes, and it is not in general possible on all spectral HDX [110, 41]. To circumvent this

issue, we introduce a stronger assumption we call ‘globalness’. In particular, we require

that for most pairs (t, t′) of d/2-sets in X, their union t ∪ t′ is a d-set (full hyperedge) in

the original hypergraph. Under this assumption, we complete the ‘patching’ argument

and show the Z-test has inverse exponential soundness. We give many examples of such

complexes beyond
(
[n]
d

)
, such as the full linear matroid and skeletons of many spin-systems

studied in approximate sampling (see e.g. [232]). Unfortunately, we are not aware of any

global complexes that are polynomial size. It is possible such objects exist, but they would

have to look quite different from current HDX constructions.

Finally, we remark that quite recently, leveraging several of the concentration tools

developed in Chapter 5, Dikstein, Dinur, and Lubotkzy [110, 113] constructed the first

bounded-degree testers in the 1% regime, with soundness 1
log(d)

(similar results were given

independently by Bafna, Lifshitz, and Minzer [41, 40] using different tools). It remains an

open problem whether the tools they develop can be combined with our methods above to

give sparse (or even bounded degree) testers with inverse exponential soundness.

Chapter 6: Applications II (Sum-of-Squares).

Even if we could prove an agreement test with optimal soundness, it would only

lead to new PCPs if we could also ‘embed’ a base hard problem into the HDX to amplify.

While it is a major open problem to give such an embedding, interestingly there do exist

examples of ‘hard problems’ derived from the structure of HDX, just not in a traditional

NP-sense. In 2020, Dinur, Filmus, Harsha, and Tulsiani (DFHT) [119] gave an explicit
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construction of a hard family of 3-XOR instances sitting on the triangles of the infamous

Ramanunan complexes [290], Lubotzky, Samuels, and Vishne’s seminal construction of

high dimensional expanders. However, instead of working in the classical NP-setting,

DFHT showed a lower bound for these instances against a popular optimization framework

known as the Sum-of-Squares Semi-definite Programming Hierarchy (SoS).

The SoS hierarchy is the most powerful known algorithmic framework for solving

constraint satisfaction problems (indeed, famously, it is optimal for CSPs under the unique

games conjecture [323]). Roughly speaking, for an n-variable CSP, the SoS hierarchy is

broken into levels t ∈ [n], each of which is an SDP relaxation of the original problem that

‘sees’ t variables at once and correspondingly runs in time nO(t). A family of CSPs {Φn} is

‘hard’ for SoS at the t-th level if there exists a constant α ∈ (0, 1) such that the SDP Value

of the t-th relaxation of every instance is 1, but the true value (the maximum number of

satisfiable constraints) is at most α. Such a bound, called an ‘integrality gap’, witnesses

the fact that the SoS relaxation is not a 1
α
-approximation algorithm for the problem.

In fact, constructing explicit examples of CSPs with a constant integrality gap for

Sum-of-Squares was a relatively long-standing open problem in the area. Due to its power

as an algorithmic paradigm, and the fact that we may prove unconditional lower bounds

in the framework without relying on P vs. NP, there is a substantial amount of interest in

understanding what types of problems are hard for SoS. The classical answer, dating back

to Grigoriev [179] in the late 90s, is that random CSPs are hard for Sum-of-Squares, even

fooling Ω(n)-levels of the paradigm (this is asymptotically optimal, since n levels solves

any CSP). While there has been a great deal of progress on the topic since Grigoriev’s

result (see e.g. [340, 354, 45, 90, 269] and citations therein), randomness has always played

a key role. Constructing an explicit instance has typically been seen as a challenging task

since it requires giving a short proof of unsatisfiability not captured by the powerful SoS

proof system—no candidates were even known for such a task before DFHT [119].

Unfortunately, DFHT’s instances, while explicit, actually don’t solve this problem:
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the issue is that while the instances are hard, they only fool
√
log(n) levels of SoS. While

certainly still interesting, from an SoS viewpoint this was somewhat disappointing since

it is easy to construct hard explicit instances against Ω̃(log(n)) levels simply by brute

forcing over log(n) size instances [322, 355]. In Chapter 6, we resolve this issue by adapting

DFHT’s argument to a new form of non-simplicial high dimensional expanders we call

‘small-set’ HDX. Leveraging the breakthrough construction of quantum LDPC codes of

[314, 277], we show explicit constructions of small-set HDX exist, therefore giving the first

explicit XOR instances hard for Ω(n)-levels of SoS, essentially matching the hardness of

random instances.

We will not go into exact details about small-set high dimensional expansion here,

but since we won’t otherwise cover toplogical expansion in this overview we briefly discuss

the idea and where it fits into the picture of SoS lower bounds. In fact, it has been known

since Grigoriev’s works [178, 179] that SoS bounds are closely related to graph expansion.

Recall a XOR instance consists of n variables {xi} and m clauses {Cj} of the form

Cj := {xi + xj + xk = βj}

for βj ∈ F2. We can view Φ as a pair of a bi-partite constraint graph (whose left-hand

vertices are the variables, and right-hand side are the clauses connected in the obvious

way) and a target function β on the clauses giving the literals. Grigoriev, and later

independently Schoenebeck [340], proved that any instance Φ whose constraint graph is

an expander in the sense that every (not too large) righthand neighborhood has many left

neighbors (mod 2) is complete against Ω(n)-levels of SoS. That is, regardless of target, the

SDP Value of such an instance will be 1.

Since we have explicit constructions of such expanders [17], the difficulty in giving

an explicit bound actually lies in finding an unsatisfiable target function. To do this, DFHT

force the constraint graph to sit on a high dimensional complex, adding a corresponding
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3rd layer that gives a series of parity checks between the constraints, allowing them to

find an unsatisfiable target explicitly via linear algebra. This approach, however, presents

a problem: by enforcing high dimensional structure, it turns out the original constraint

graph can no longer be a small-set expander! In particular, high dimensionality introduces

canonical families of non-expanding sets called ‘boundaries’ and ‘co-boundaries’ on the

middle layer (these are basically the neighborhoods of vertices on the 1st and 3rd layer).

The key, similar in some sense to global hypercontractivity from Chapters 1-4, is to show

these local functions are the only obstruction to expansion.15 We call complexes satisfying

such a property small-set HDX.

Finally, we briefly mention some prior and subsequent work to the above. The

discussed notion of expansion is a variant of (co)-boundary expansion, a classical notion

of topological HDX introduced by Linial and Meshulam [283], and Gromov [182]. Unlike

the standard version, it is critical in our context that we only require the notion for small

sets,16 and that we have expansion in both directions. A similar notion to the former

(expansion for small sets) was also considered in the co-boundary direction for simplicial

complexes in [230, 141, 237]. Since the publication of our work, small-set HDX have played

a key role in building efficiently decodable quantum codes [123, 278, 279], and in the

resolution of the NLTS conjecture [27]. Recently, Golowich and Kaufman [173] gave a

variant of our construction which is strongly explicit, meaning the constraints and target

function can be locally computed in polylogarithmic time.

Chapter 5(c): Applications III (Geometry and Combinatorics).

Moving away from hardness of approximation, in Chapter 5 we also give a number

of further applications of our probabilistic machinery in analysis, geometry, combinatorics,
15In an SoS sense, this works because we carefully choose the target function to avoid any contradiction

over these local boundaries. Interestingly, a random target in this case would actually be easily refuted by
SoS, since the local sets would give SoS a short witness of unsatisfiability.

16For reasons we have not explained here, we need our complex to have non-trivial co-homology. True
co-boundary expansion implies the vanishing of cohomology, so we cannot use complexes satisfying this
notion.
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and coding theory. Here we overview two of these applications of particular interest to

the study of HDX, geometric overlap and degree lower bounds. We refer the reader to

Section 5.2.6 for an overview of the remaining applications.

The Geometric overlap property, due to Gromov [182], is one of the earliest notions

of high dimensional expansion. The idea is based on the following famous theorem of Boros

and Füredi [74] and Bárány [50]. Pick any n points in Rd+1 and draw every d-simplex

between them. There must exist a point q ∈ Rd+1 covered by a constant fraction of

the simplices (here the constant depends on d, but not n). Instead of viewing this as a

geometric property of Rd+1, Gromov viewed the result as a property of the hypergraph(
[n]
d+1

)
. In particular, any affine embedding of

(
[n]
d+1

)
into Rd must have a point covered by

a constant fraction c of its vertices. Hypergraphs satisfying this notion are now called

‘c-geometric expanders’ [288], or are said to have ‘c-geometric overlap’ [153].

Gromov [182] asked whether there exist bounded degree geometric expanders of

every dimension. Before answering, it’s worth discussing what this problem actually has

to do with ‘expanders’ as we’ve defined them in the first place. In 1-dimension, it is fairly

clear Gromov’s problem (indeed even the stricter version called topological overlap17) is

solved by any bounded degree family of expanders. If we embed an expander G = (V,E)

into the real line, we can simply take the median vertex as our point. Since roughly half the

points of the graph are on each side, edge expansion18 promises that a constant fraction of

edges must go between the two sides (and therefore contain the median point as desired).

Given the above, it is reasonable to conjecture Gromov’s problem should be resolved

by some variant of high dimensional expander. Indeed, this was shown not long after

by Fox, Gromov, Lafforgue, Naor, and Pach [153] who gave both optimal randomized

geometric expanders, and an explicit family with constant (but sub-optimal) overlap
17Topological overlap relaxes the embedding to be continuous. It is a much more challenging notion,

and is known only for a few bounded degree complexes [141, 240].
18A graph is an edge expander if every cut has proportionally many edges passing between it. By

Cheeger’s inequality [20], spectral and edge expansion are equivalent up to polynomial factors.
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based on the Ramanujan complexes. In the following years, the connections between

geometric overlap and high dimensional expanders were further developed in [316, 140, 309],

eventually resulting in a proof that all sufficiently strong spectral HDX have constant

geometric overlap. Nevertheless, the question of whether such constructions (or indeed

any explicit construction) could achieve optimal overlap remained.

Leveraging a variant of high dimensional expander mixing (closely related to the

Chernoff bounds discussed in the prior section), we resolve this problem, proving that

every sufficiently strong spectral HDX has near-optimal geometric overlap. The idea is

via a reduction to the complete complex, using tools in [153] to partition the vertices of

X into parts that optimally cover some point q ‘pretending’ X were complete. Mixing

then implies the fraction of simplices between parts in X approaches that of the complete

complex, giving the desired covering of q.

We now turn our attention to the second topic: what is the optimal degree of a high

dimensional expander? As we’ve discussed in the previous sections, degree, i.e. the number

of hyperedges touching each vertex, is a critical parameter in application, controlling the

blow-up incurred using the hypergraph as a gadget. On expander graphs, degree is a

classical and well understood question. The Alon-Boppana theorem [307], which roughly

states any family of λ-expanders have degree at least 2
λ2 , is a foundational result of the

field; graphs meeting this bound are called Ramanujan, the gold standard of expander

constructions. Despite its central role, our understanding of degree in high dimensions is

extremely poor. The best known constructions of λ-TD complexes have degree λΘ(d2). Is

this optimal? Could λo(d2) be achieved?

We take the first step toward answering this question. We prove that any sufficiently

regular complex X which satisfies a Chernoff bound in all links must have degree 2Ω(d2).

Unfortunately, this does not resolve the above question, since as discussed in the prior

section we can only prove sub-exponential concentration for λ-TD complexes, which instead

implies a lower bound of 2Ω(d). However, we do get strong lower bounds for skeletons

25



of such objects. This is in contrast to product-based constructions of HDX [170] at the

TD-Threshold which have degree 2O(k) at every level k ≤ d. Our bound implies the

k-skeleton of any λ-TD complex must be at least 2Ω(k2) when k is sufficiently smaller than

d, exhibiting another strong phrase transition at the TD-Threshold.

Chapters 7-8: Applications IV (Algorithms).

Most of this dissertation focuses on developing tools and proving results related

to understanding the limitations of computation. However, hardness and algorithms are

two sides of the same coin, and it is frequently the case that objects used or developed

for one turn out to be useful for the other. In this section, we overview two algorithmic

results based on high dimensional expanders: an approximation algorithm for unique

games defined on HDX, and efficient no-regret learning strategies for matrix games.

Unique games are a simple class of 2-CSPs that play a central role in hardness of

approximation [250]. The past twenty years has seen a great deal of work both towards

attempted proofs of NP-hardness of unique games (the so-called unique games conjecture)

[126, 256, 252, 47, 255], and towards ruling out candidate hard instances or NP-hardness

altogether by constructing algorithms for the problem [29, 293, 28, 48, 2, 37, 42]. One

of the most classical and widely used results in the algorithmic side of unique games is

that they are easy on expander graphs [29, 293]. In Chapter 7, building on work of Bafna,

Barak, Kothari, Schramm, and Steurer [37], we extend this result HDX.

At outset, it is not really clear exactly what this means. High dimensional expanders

are d-uniform hypergraphs; how does one define a 2-CSP on such an object? The answer

is a subject we have touched on a few times in this overview, but never discussed explicitly,

high order random walks [234]. Just as graphs are closely intertwined with the random walk

along their edges, high dimensional expanders are closely tied to a series of correponding

high order random walks on their hyperedges. One example of such a walk is the noise

operator discussed in the prior sections. This generates a graph whose vertices are the
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hyperedges of X, and whose edges are given by ρ-correlated pairs. Another example of a

high order random walk is the ‘down-up’ walk, first studied on HDX by Kaufman and

Mass [234], which moves between two hyperedges by removing a single random vertex, and

re-sampling to reach a new hyperedge. Similarly, one could consider the ‘up-down’ walk

on the (d− 1)st level of X that first adds a vertex to reach a d-hyperedge, then removes

one uniformly (note this indeed generalizes the lazy random walk on a graph).

We give an algorithm for approximating affine unique games on a variety of high

order walks on HDX, including all of the given examples above. The run-time of our

algorithm depends on the spectral behavior of the underlying random walk. We show that

on a strong enough HDX, the spectrum of any high order walk is highly concentrated inside

k + 1 strips, each corresponding to a ‘level’ of the complex. Our guarantees then scale

with the ‘strip’ threshold rank, the number of strips with large eigenvalues, generalizing

in some sense prior algorithms for unique games based on standard threshold rank (the

total number of large eigenvalues) [48]. Note that this is k + 1 in the worst case (whereas

the standard threshold rank would be poly(n)), so for constant dimensional HDX our

algorithms run in polynomial time and give a constant approximation factor. Recently,

Bafna and Minzer [42] removed the dimension dependence for some special cases such as

the noise operator using our hypercontractive inequality from Chapter 1.

Moving away from the setting of CSPs, in Chapter 8 we study how the structure

of high dimensional expansion can allow for efficient algorithms over exponential size

structured online learning problems. In particular, we study a few classical problems in

the setting of matrix games. A matrix game is a standard object in game theory and

economics where 2 (or more) players P1 and P2 have access to a set of actions A1 and

A2 and a reward matrix over A1 × A2. In each round of the game, the players choose an

action based only on prior rounds’ information and receive the corresponding reward. The

goal is to build efficient algorithms that minimize the player’s regret, the difference from

your actual reward to the reward of the best (single) possible action.
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In many settings of interest, the action spaces Ai are really exponential in the

problem parameters. A simple example of this is a security game. Player 1, the defender,

has n servers/checkpoints/etc they need to defend, but can only pick d servers to defend

at once. Player 2, the attacker, can pick any server to attack, and wins if Player 1 failed

to defend this server (the servers may have different rewards or costs to attack). Strategies

for this game are actually implemented in practice, e.g. at airports, to decide where to

send security agents [350].

In the described game, it is clear that Player 1’s action space is exactly the complete

hypergraph
(
[n]
d

)
, and of size nd. Is it possible nevertheless for the player to find a no-regret

strategy in poly(n, d), or even poly(d, log(n)) time? There are a couple classic ‘no-regret’

strategies Player 1 could try to employ. Perhaps the most popular is the ‘multiplicative

weights update’ (MWU) algorithm [285] and its variants. The idea of multiplicative weights

is to play a randomized strategy weighted by the prior cost of each action. In particular,

we build a distribution over actions by exponentially weighting them by their loss in the

previous rounds. In the security game, the loss for a hyperedge is a weighted sum over its

vertices, so the resulting distribution is of the form

P[(v1, . . . , vd)] ∝
d∏

i=1

e−Li

where Li is the historic loss of vertex vi. Of course, this distribution is still over an

exponential size space; how can Player 1 play from this strategy efficiently?

The trick is to realize that while Player 1 may not be able to exactly sample from

this distribution, they can do so approximately while still maintaining low regret. In

particular, Player 1 can approximately sample from the MWU distribution by using the

high order ‘down-up’ walk described above. Starting at an arbitrary hyperedge, they

repeatedly apply the process of removing a random vertex, and re-sampling a new server

conditioning on the above probabilities, which can be done in linear time (or even in
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polylog(n) time in special cases). It is known that the down-up walk on the complete

hypergraph mixes in poly(d, log(n)) steps given a distribution weighted in the above sense

(as a product across its vertices, sometimes called a ‘tilt’ or ‘external field’).

In fact, this is actually possible for a broader family of hypergraphs, under a strong

notion of high dimensional expansion called spectral independence under external fields

[13, 22]. Thus any matrix game over such a space whose rewards have a linear structure

as above has an efficient no-regret algorithm. This includes, for instance, matroid bases

and classic games in the literature such as matroid congestion. Moreover, since no-regret

algorithms are actually known to converge to approximate equilibria of the underlying

game, one can use these algorithms to study the Nash (or Coarse Correlated Equilibria in

the many player setting) of such games. In many settings, our HDX-based method results

in the best known strategies for both no-regret learning and equilibrium computation for

these classical problems.
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Chapter 1

Hypercontractivity on HDX

1.1 Introduction

Introduced over 50 years ago today, hypercontractivity remains one of the most

powerful tools in the analysis of boolean functions. Originally used to prove numerous

landmark results on the discrete hypercube such as the KKL Theorem [226] and Majority

is Stablest [302], the study of hypercontractivity has since seen a resurgence on extended

domains such as the p-biased cube [245], slice [252], and Grassmannian [255]. Fascinatingly,

these regimes all share a common thread: while hypercontractivity doesn’t hold in general,

it is satisfied for certain classes of pseudorandom functions. This recently discovered

phenomenon has led to a slew of breakthroughs, most famously including the resolution

of Khot’s 2-2 Games Conjecture [255]. Unfortunately, the scope of these results is

currently restricted, as all known proof techniques rely on product structure or other

strong symmetries, and no unifying theory is known to exist.

In this work we take the first substantive step towards solving this issue with the

introduction of a new theory of hypercontractivity for the general class of high dimensional

expanders (HDX). HDX are a family of expanding complexes that have seen an explosion

of work in recent years, leading to major breakthroughs across a number of areas including

(among others) the recent construction of c3-LTCs and qLDPC codes [117, 315], and

efficient approximate sampling for many important systems (e.g. for matroid bases
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[25], independent sets [24], Ising models [22], and more). Our results lead to a new

understanding of the structure of boolean functions on HDX, including a tight analog of

the KKL Theorem, and a characterization of non-expanding sets similar to that used in

the proof of 2-2 Games [255]. Proving such results previously seemed out of reach since

HDX are very far from products, asymmetric, and can be quite sparse. To handle these

challenges, we introduce a new set of tools including a new explicit Fourier decomposition

and a local-to-global method for analyzing higher order moments. Interestingly, unlike

previous ℓ2-based techniques which apply equally across all types of expanding complexes,

our methods rely crucially on the underlying HDX structure being simplicial. This suggests

a new stratification of spectral HDX based upon their behavior beyond the second moment.

1.1.1 Contributions

Before jumping into a more detailed breakdown of our results, we start by giving

an informal overview of our main contributions within the broader context of classical

Fourier analysis and the theory of high dimensional expanders.

Classical Fourier Analysis:.

Classical Fourier Analysis on the discrete hypercube focuses on analyzing functions

f : {0, 1}n → R through their Fourier Expansion, a decomposition that breaks f into

a series of orthogonal “level functions,” each corresponding to the projection of f onto

a certain eigenspace of the (noisy) hypercube graph.1 At a basic level, a function’s

Fourier decomposition gives a nice method for understanding its second moment, since

orthogonality allows one to move between this and the standard basis freely (a result usually

known as Parseval’s Theorem). On the other hand, in computer science, we are usually

interested in analyzing the special class of boolean functions f : {0, 1}n → {0, 1}. These

functions exhibit rich structure that Parseval’s Theorem isn’t equipped to capture—to

understand them, we usually need to look beyond the second moment.
1More generally, these are the eigenspaces of the Hamming scheme.
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Hypercontractivity, introduced in 1970 by Bonami [71] (and later independently

by Beckner [54] and Gross [183]), is exactly the tool for the job. In its simplest form,

hypercontractivity boils down to the statement that the fourth moment of low levels of

the Fourier decomposition should behave nicely. Namely that the ith level of a boolean

function f , denoted fi, should satisfy:

∥fi∥4 ≤ 2O(i)∥fi∥2. (1.1)

This deceptively simple observation, known in the above form as “Bonami’s Lemma” [71],

led to many landmark results including the KKL Theorem [226], noise-sensitivity of sparse

functions [226], Friedgut’s Junta Theorem [157], and Majority is Stablest [302]. What’s

more, hypercontractivity (and its resulting applications) actually extend beyond the

hypercube. After KKL’s seminal work, many authors studied extensions and applications

of hypercontractivity [78, 349, 160, 157], but it wasn’t until recently that tight analogues

of Equation (1.1) were developed for general product spaces [245] (generalizing work of

Bourgain [158] and Hatami [194]) as well as for other structured domains such as the

symmetric group [147] and Grassmannian [255]. These extended domains differ from the

hypercube in that they are only hypercontractive for special classes of pseudorandom

functions, but are nevertheless responsible for an impressive set of applications including

analogues of classical results, a variety of sharp threshold theorems [158, 245, 280, 247], and

perhaps most famously the proof of the 2-2 Games Conjecture [253, 126, 125, 47, 252, 255].

Unfortunately, despite the stark similarities between these settings, no unified theory

explaining the phenomenon exists. Further, all known techniques rely heavily on product

structure or other strong forms of symmetry, which makes it difficult to approach the

problem in more general settings.
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Fourier Analysis on HDX:.

High dimensional expanders (HDX) are a class of robustly connected complexes

that have seen an incredible amount of development and application throughout theoretical

computer science in the past few years, most famously in coding theory [117, 315, 142, 221,

241, 244, 112, 220, 121] and approximate sampling [25, 11, 24, 95, 96, 94, 146, 218, 286, 66],

but also in agreement testing [124, 109, 236], CSP-approximation [9, 38], and (implicitly)

hardness of approximation [252, 255]. In this work, we study a central notion of high

dimensional expansion called two-sided local-spectral expansion, originally developed by

Dinur and Kaufman [124] to build sparse agreement testers. For simplicity, we’ll often

refer to these objects just as local-spectral expanders, but the reader should be aware we

always refer to the two-sided variant, not the weaker one-sided variant commonly used in

approximate sampling.

Interestingly, local-spectral expanders are actually known to admit a (nascent)

theory of Fourier analysis [111, 239]. Initial works in this area have focused on the

development and application of Fourier Decompositions and Parseval’s Theorem, and while

the existing theory does have a few interesting applications (e.g. an FKN theorem for

HDX [161, 111], efficient CSP-approximation [9, 38]), it is subject to the same limitations

as original second moment methods on the hypercube: they simply don’t capture the

richer structure of boolean functions. Let’s consider a concrete and important example:

the expansion of pseudorandom sets (an analog of “sparse functions are noise-sensitive” on

the hypercube).2 Traditionally proved via hypercontractivity, a variant of this result on

the Grassmannian recently led to the resolution of the 2-2 Games Conjecture [255]. On

the other hand, Bafna, Hopkins, Kaufman, and Lovett [38] showed that second moment

methods cannot recover such a result. While they are able to recover some sort of

characterization with these techniques, it necessarily decays as the dimension grows to
2The connection lies in the fact that the noise-sensitivity result can equivalently be phrased as saying

that small sets on the noisy hypercube are expanding.
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infinity, becoming trivial in the regime useful for hardness of approximation—if we want

to do better, it appears we need a theory of hypercontractivity.

This is easier said than done: local-spectral expanders look nothing like any object

previously known to satisfy hypercontractivity. They can be sparse, asymmetric, and very

far from products. Moreover, there are no known techniques for analyzing local-spectral

expanders beyond the second moment.3 Even DDFH and KO’s Fourier decompositions

are intrinsically tied to second moment methods, since they are defined by linear algebraic

manipulation of the standard inner product. Surprisingly, it turns out that these barriers

are not inherent, and can be removed with the introduction of just two new tools: a

combinatorial Fourier decomposition for HDX, and a new local-to-global method to replace

reliance on product structure in the analysis of higher moments.

Our new decomposition is the natural analog of the standard Fourier decomposition

on product spaces (often called the “orthogonal” or “Efron-Stein” decomposition). It is

equivalent to old decompositions in an ℓ2-sense (and therefore shares all relevant ℓ2-based

properties), but comes with a number of additional benefits: it has simple explicit and

recursive forms, and it behaves nicely under restriction. This allows us to bring to bear

much of the power of more traditional Fourier-analytic machinery, which often relies on

these same properties. Historically, however, applying this machinery in a useful fashion

has also required the underlying object to be a product, or to satisfy some other strong

symmetry. Our second key observation is that while individual variables in a local-spectral

expander may be highly correlated, they look independent on average. More concretely,

this means that in the analysis of expectations (such as a higher moment), we are free to

treat the underlying variables as independent even if they actually exhibit a very high

level of correlation.
3We note that recent works in the sampling literature have considered entropic notions of high

dimensional expansion, but the underlying assumptions are much stronger than local-spectral expansion.
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Hypercontractivity on HDX:.

Leveraging these tools, we build a theory of hypercontractivity on HDX. Concretely,

we prove that Equation (1.1) holds on local-spectral expanders for an appropriate notion

of pseudorandom functions—ones that are not concentrated in any local restrictions on

the complex.4 Combined with BHKL’s recent spectral analysis of higher order random

walks (which, for the moment, we’ll think of as analogues of the noisy hypercube graphs or

Hamming scheme), this leads to the resolution of a number of open questions in boolean

function analysis. To start, we provide a tight characterization of (edge) expansion on

higher order random walks, which, unlike previous methods [38], does not decay with

dimension. This matches the version of the result on the Grassmannian which led to the

resolution of the 2-2 Games Conjecture [255], and opens yet another avenue towards the

use of HDX in hardness of approximation. We also introduce natural analogues5 of two

classic Fourier-analytic notions: influence and the noise operator. Combining these with

the above recovers tight variants of both the KKL Theorem and noise-sensitivity of sparse

(or in this case pseudorandom) functions.

Beyond these concrete applications, hypercontractivity on HDX also has interesting

implications in the broader context of discrete Fourier analysis and high dimensional

expansion. For the former, our result gives the first general class of hypercontractive

objects beyond products, and combined with bounded degree constructions [290, 238], the

first example of hypercontractivity over any sparse object at all.6 For the latter, our result

suggests a new stratification among notions of local-spectral expansion. This requires some

additional explanation. While local-spectral expanders were originally introduced only
4In the high dimensional expansion literature, these restrictions are known as links.
5When applied to the embedding of the hypercube into a simplicial complex, these definitions return

the standard notions.
6Formally, it is more accurate to say ‘locally sparse’ or ‘bounded degree’ here. While previous settings

such as highly imbalanced products may be sparse in the sense that most of their weight is concentrated
on relatively few faces, they are not sparse in the much stronger sense of a bounded-degree HDX. The
former, for instance, will always have some very dense restrictions, whereas every vertex in the latter sees
only a tiny fraction of the full complex.
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over simplicial complexes, they were quickly extended to more general settings such as the

Grassmannian, or even to general ranked posets [111]. While these classes of local-spectral

expanders are essentially equivalent in an ℓ2 sense [111, 38, 243], our analysis of the fourth

moment crucially relies on simplicial structure. We conjecture that this is an inherent

rather than technical barrier: only special classes of underlying objects (e.g. Grassmannian,

simplicial complexes) satisfy hypercontractivity, and thereby lead to the strongest known

form of spectral high dimensional expanders.

1.2 Background

Before stating our results more formally, we give a quick overview of the theory of

local-spectral expanders and higher order random walks. Local-spectral expansion is a

robust notion of connectivity on weighted hypergraphs introduced by Dinur and Kaufman

[124] in the context of agreement testing. As is standard in the area, we will view d-uniform

hypergraphs H ⊆
(
[n]
d

)
as (pure) simplicial complexes:

XH = X(0) ∪ . . . ∪X(d),

where X(d) = H, X(i) ⊆
(
[n]
i

)
is given by downward closure, and X(0) = ∅. We note that

this notation is off by one from much of the HDX literature which considers X(i) ⊆
(
[n]
i+1

)
.

This notation is standard in the topological literature (where an i-simplex indeed as i+ 1

points), but is less natural for our purely combinatorial work.

Most work on high dimensional expansion is based on the local-to-global paradigm,

in which local properties of a complex are lifted to a desired global property (e.g. mixing

or agreement testing). The main local structure of interest are called links. For every

“i-face” τ ∈ X(i), the link of τ is the subcomplex obtained by restriction to faces including

τ :

Xτ = {σ : σ ∩ τ = ∅, σ ∪ τ ∈ X}.
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A simplicial complex is said to be a γ-local-spectral expander if (the graph underlying)

every link is a γ-spectral expander.7

Higher order random walks are an analog of the standard walk on expander

graphs that moves between two vertices via an edge. Kaufman and Mass [234] observed

that this process can be applied at any level of a simplicial complex: one could move

between edges via a triangle, or triangles via a pyramid. Formally, these walks are defined

as a composition of averaging operators, objects that have become ubiquitous tools in

the study of high dimensional expanders. Denote the space of functions {f : X(k)→ R}

as Ck. For a function f ∈ Ck, the (level k) Up and Down operators lift and lower f to

level k + 1 and k − 1 respectively by averaging:

Ukf(τ) = E
σ⊂τ

[f(σ)],

Dkf(τ) = E
σ⊃τ

[f(σ)].

It will often be useful to compose the down or up operators multiple times to move between

levels k and i, we denote this by Dk
i = Di ◦ . . . ◦Dk and Uk

i = Uk ◦ . . . ◦ Ui. Informally,

HD-walks are simply affine combinations of composed averaging operators. For instance,

the basic composition N i
k = Uk+i

k Dk+i
k , called a canonical walk, is the random process

which moves between two k-faces via a shared (k + i)-face.

1.3 Results

We now move to an informal description of our results. We view our work as having

three main contributions. First, we introduce and develop a new theory of Fourier analysis

on high dimensional expanders. This includes a new explicit Fourier decomposition, as

well as a number of natural generalizations of Fourier-analytic ideas such as influence
7A graph is a γ-spectral expander if the second largest eigenvalue of its weighted adjacency matrix

(also called the random walk matrix) is at most γ in absolute value.
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and the noise operator to simplicial complexes. Second, we prove that our Fourier-

analytic decomposition satisfies a hypercontractive inequality for the special subclass

of pseudorandom functions, and use this fact to characterize the small set expansion

of HD-walks and give a version of Bourgain’s Theorem (an analog of KKL on product

spaces) on HDX. Finally, en route to our hypercontractivity theorem, we introduce a new

method of localization on high dimensional expanders of independent interest that enables

local-to-global analysis of higher order moments.

1.3.1 The Bottom-Up Decomposition

We start with a discussion of our new explicit Fourier-analytic decomposition. All

previously known Fourier bases on local-spectral expanders [239, 111] are linear algebraic

in nature, and have no known closed form. While these decompositions certainly have their

place and are sufficient for a number of interesting applications [111, 9, 38], they often fall

short when finer-grained calculation is required. To alleviate this issue, we introduce a

new combinatorial decomposition on simplicial complexes that is an analog of the classic

orthogonal (sometimes called Efron-Stein) decomposition on product spaces.

Definition 1.3.1 (Bottom-Up Decomposition). Let X be a d-dimensional pure simplicial

complex and f ∈ Ck any function. For all 0 ≤ i ≤ k and τ ∈ X(i), define the ith level

function(s) to be:

g↑i(τ) =
∑
σ⊆τ

(−1)|τ\σ| E
Xσ

[f ], f↑i =

(
k

i

)
Uk
i g↑i.

One can check that f =
k∑

i=0

f↑i (see Theorem 1.7.2).

Here, g↑i(τ) should be thought of as the contribution to f coming from τ (where

contributions from σ ⊊ τ have been removed by inclusion/exclusion). The Fourier level

f↑i is then defined by summing over these contributions. It is worth noting that the
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Bottom-Up Decomposition also has a simple recursive form (see Theorem 1.7.2):

g↑i = Dk
i f −

i−1∑
j=0

(
i

j

)
U i
jg↑j.

In fact, it should be noted that while the consideration of this basis is new over general

simplicial complexes, the above recursive form was first studied for the special case of

the complete complex by [252]. There, the authors took advantage of the complex’s

near-product structure to show that the decomposition gives an (approximate) Fourier

basis close to the eigendecomposition of f with respect to the well-studied Johnson graphs.

We prove that the assumption of near-product structure is actually unnecessarily strong—it

is enough for the underlying complex to be sufficiently expanding.

Theorem 1.3.2 (Bottom-Up Properties (Informal Lemma 1.7.6+Theorem 1.7.8)). Let X

be a two-sided γ-local-spectral expander, and M an HD-walk. Then for any f ∈ Ck, and

0 ≤ i < j ≤ k:

1. ⟨f↑i, f↑j⟩ ≈ 0

2. ∥f∥22 ≈
k∑

i=0

∥f↑i∥22

3. ∃λi s.t. Mf↑i ≈ λif↑i

Theorem 1.3.2 is similar to an analogous result for the HD-Level-Set Decomposition

in [111, Theorem 1.3]. We will cover their definition in greater detail in Section 1.7. For the

moment, it suffices to note that their decomposition also breaks f into k+1 Fourier levels,

which we similarly denote by f =
k∑

i=0

f↓i. It turns out that the similarities between the

HD-Level-Set and Bottom-Up Decompositions are no accident—the two decompositions

are actually close in ℓ2-norm.

Theorem 1.3.3 (Bottom-Up Approximates HD-Level-Set (Theorem 1.7.8)). Let X be a

two-sided γ-local-spectral expander and f ∈ Ck. Then the Bottom-Up and HD-Level-Set

39



Decomposition are close in ℓ2-norm:

∥f↑i − f↓i∥22 ≤ 2O(k)γ∥f∥22.

Similarly,

|⟨f↑i, f↑i⟩ − ⟨f↓i, f↓i⟩| ≤ 2O(k)γ∥f∥22.

The main advantage of the Bottom-Up Decomposition then lies in its simple

explicit and recursive forms. In Section 1.7, we will see how these properties are useful

for analyzing finer-grained structure like restriction that are often key to classical Fourier-

analytic arguments. It is unknown how to analyze such properties for prior linear algebraic

decompositions, and determining whether the latter share similar structure at this level

remains an interesting open problem.

1.3.2 Hypercontractivity

Now that we have introduced our relevant Fourier-analytic decomposition, we turn

our attention to the study of hypercontractivity. Hypercontractivity is one of the most

powerful tools in boolean function analysis and is crucial to proving many of area’s key

results (e.g. KKL [226], FKN [161], Majority is Stablest [302], sharp threshold theorems

[158], etc.). Informally, hypercontractivity can be thought of as a niceness condition on

“low-degree” functions. We’ll start by considering a simple variant often called the Bonami

or Bonami-Beckner lemma, [71] which states that a “degree-i” function p should satisfy:

∥p∥4 ≤ 2O(i)∥p∥2.

Classically, we might think of p as being a degree-i polynomial, corresponding to the

ith Fourier level of a boolean function. The corresponding statement in our context is

therefore that the ith level of the Bottom-Up Decomposition should satisfy an analogous
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inequality:

∥f↑i∥4 ≤ 2O(i)∥f↑i∥2. (1.2)

Unfortunately, it is well known that Equation (1.2) cannot hold in our setting, even over

the complete complex. However, it is possible that the inequality could hold for natural

subclasses of functions. Indeed, such a phenomenon is known to occur on general product

distributions [245], where pseudorandom functions satisfy a form of Equation (1.2).

Definition 1.3.4 (Pseudorandomness). Let X be a simplicial complex and f ∈ Ck. We

say f is (ε, i)-pseudorandom if it is sparse in every i-link in the following two senses:

1. For all τ ∈ X(i): ∣∣∣∣EXτ

[f ]

∣∣∣∣ ≤ ε∥f∥∞

2. For all τ ∈ X(i):

⟨f |τ , f |τ ⟩ ≤ ε∥f∥2∞

While the use of ∥f∥∞ here may initially seem unnatural, it is in fact the appro-

priate scaling factor on a bounded-degree complex (at least up to constants). Namely

since restrictions are of constant size, doubling the largest value in f leads to a (1 + δ)

multiplicative increase in density on links including that face for some constant δ > 0.

In applications, we will often only care about non-negative functions, in which case

the second condition can be removed completely (as it is implied by the first). We note

that functions satisfying Definition 1.3.4 are also sometimes called global since they are

not concentrated in any local structure [245, 280]. We call them pseudorandom in keeping

with prior literature on the Johnson and Grassmann graphs [252, 255], and because they

cannot be distinguished from an (ε-sparse) random function by examining density inside

links. Finally, note that Definition 1.3.4 requires f to be sparse. We conjecture that our

results should hold in the dense regime as well, and discuss this further in Section 1.4.
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Hypercontractivity for restricted subclasses is still a very powerful tool. Keevash,

Lifshitz, Long, and Minzer’s result [245], for instance, led to the resolution of Majority is

Stablest in the p-biased setting [280], and the resolution of several conjectures in extremal

combinatorics as well [247]. While previous results to this effect were restricted by their

reliance on product structure or strong symmetry, we show such assumptions are not

necessary and prove an analogous form of hypercontractivity for HDX.

Theorem 1.3.5 (Hypercontractivity on HDX (Informal Theorem 1.8.1)). Let X be a

sufficiently strong two-sided γ-local-spectral expander and f ∈ Ck an (ϵ, i)-pseudorandom

function. Then the following hypercontractive inequality holds:

E[f 4
↑i] ≤ 2O(i)ϵE[f 2

↑i]∥f∥2∞ + ckγ
1/2ε∥f∥22∥f∥2∞,

where ck ≤ min{2O(k), kO(i)}.

Crucially Theorem 1.3.5 is independent of k for small enough γ. This means our

bounds remain meaningful even when k grows large (roughly speaking, one should think

of the bound as being non-trivial in the regime where k ≪ log(|X(1)|)).8 This was a

crucial property in the analogous result on the Grassmann in the proof of the 2-2 Games

Conjecture [255].

Our overall framework for proving Theorem 1.3.5 roughly follows Khot, Minzer,

Moshkovitz, and Safra’s [252] strategy for the complete complex. However, even with

analogous results for the Bottom-Up Decomposition in hand, most of their techniques fail

in our setting due to local-spectral expanders’ distinct lack of product structure. In fact,

Theorem 1.3.5 gives the first general class of hypercontractive objects beyond product

spaces, and combined with known bounded degree constructions of local-spectral expanders

[290, 238], the first example over any sparse domain at all. In Section 1.3.4, we’ll discuss
8In reality, there is a more subtle trade-off here between the expansion parameters, degree, and

dimension of the complex. The stated relation is for the complete complex where one optimizes expansion
at the cost of degree.
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how we tackle these traditionally hard-to-handle structures with the introduction of a new

notion of average-case independence that relates closely to local-spectral expansion. Our

method actually allows for analysis well beyond the 4th moment, and can also be used to

extend Theorem 1.3.5 to 2-to-2q hypercontractivity (where the 4-norm is replaced by a

higher 2q-norm). We focus on the 2-to-4 case in this work for simplicity.

Before moving on to applications of Theorem 1.3.5, it is worth discussing another

typical form of hypercontractivity and how it translates to the setting of simplicial

complexes. Hypercontractivity is frequently expressed in terms of an object called the

noise operator. On the hypercube, the noise operator Tρ acts as an averaging process on

boolean strings which replaces each coordinate with a random bit with probability 1− ρ.

In this context, hypercontractivity states that Tρ should act as a smoothing operator in

the following sense:

∥Tρf∥4 ≤ ∥f∥2 (1.3)

for some constant ρ. Despite the fact that coordinates do not exist on a simplicial complex,

there is still a natural analog of Tρ where each vertex in a k-face is removed with probability

1 − ρ, and is then re-randomized over relevant k-faces. We formalize this procedure in

terms of the averaging operators.

Definition 1.3.6 (Noise Operator). Let X be a d-dimensional pure simplicial complex.

The noise operator T k
ρ (X) : Ck → Ck at level k ≤ d of the complex is:

T k
ρ (X) =

k∑
i=0

(
k

i

)
(1− ρ)iρk−iUk

k−iD
k
k−i.

We write just Tρ when clear from context.

When applied to the hypercube complex,9 this natural analog returns exactly the

standard boolean noise operator Tρ. Combining standard arguments with the spectral
9The hypercube complex has vertex set [n]× {0, 1}, where the first entry stands for a coordinate and

the second entry a value. The top level X(n) consists of all binary strings and is exactly the hypercube.
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properties of the Bottom-Up Decomposition, we can also prove a variant of Equation (1.3)

for pseudorandom functions on HDX. To state this result, it will be useful to have a notion

of degree: as on the hypercube, we say the degree of a function f is the largest i such that

f↑i is non-zero.

Corollary 1.3.7 (Informal Proposition 1.10.15). Let X be a sufficiently strong two-

sided γ-local-spectral expander and f ∈ Ck a degree i, (δ, i)-pseudorandom function for

δ ≤ ε∥f∥22/∥f∥2∞. Then for some constant ρ = Θ(1):

∥Tρf∥4 ≤ ϵ1/4∥f∥2.

1.3.3 Applications

A classical application of hypercontractivity is to give what is known as a “level-i

inequality” that bounds low-level weight of a boolean function. We can use Theorem 1.3.5

to give an analog on HDX for pseudorandom functions.

Theorem 1.3.8 (Level-i inequality (Informal Theorem 1.9.4)). Let X be a two-sided

γ-local-spectral expander with γ sufficiently small and f ∈ Ck an (ϵ, i)-pseudorandom

boolean function of density α. Then the weight on f↑i is bounded by:

⟨f↑i, f↑i⟩ ≤ 2O(i)ϵ1/3α.

Level-i inequalities have a plethora of applications in boolean Fourier analysis.

We’ll look at the analog of two classical applications: one to small-set expansion, and the

other to the structure of functions with low influence. Starting with the former, let’s recall

the basic definition of edge-expansion.

Definition 1.3.9. Let M be a walk on the kth level of a simplicial complex X. The (edge)

expansion of a subset S ⊆ X(k) is the average probability of leaving S in a single step of
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the walk:

Φ(S) = E
v∼S

[M(v,X(k) \ S)],

where M(v,X(k) \ S) is the probability the walk leaves S starting from v.

Informally, a walk is called a small-set expander if all small subsets expand. Tradi-

tionally, the level-i inequality on the discrete hypercube is used to show that the noisy

hypercube graph is a small-set expander. The analogous result on simplicial complexes,

however, isn’t true: HD-walks (which generalize graphs like the noisy hypercube) have

well-known examples of small non-expanding sets: links [252, 38]. Using Theorem 1.3.8,

we can prove a converse to this result: any non-expanding set must be concentrated in a

link.

Theorem 1.3.10 (Characterizing non-expansion on HD-walks (Informal Theorem 1.9.3)).

For every 0 < δ < 1, there exists some ε > 0 and r ∈ N such that for all large enough k

the following holds. For any HD-walk10 on a sufficiently strong two-sided local-spectral

expander X and any subset S ⊆ X(k), if S has expansion at most Φ(S) ≤ δ, then S is

concentrated in a low-level link:

∃i ≤ r, s ∈ X(i) :
|Xs ∩ S|
|Xs|

≥ ε

Expansion is also closely related to a well-studied Fourier-analytic quantity called

total influence. On the boolean hypercube, the total influence of a function measures its

total variability across each coordinate:

I[f ] =
n∑

i=1

P
x∼{0,1}n

[f(x) = f(x⊕ ei)]

10Formally, this statement only holds for HD-walks such as N
Θ(k)
k which exhibit sufficiently fast

eigenvalue decay. We give a more general formulation in the main body that holds for all HD-walks (see
Theorem 1.9.3).
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where ei is the ith standard basis vector. One of the most celebrated results in the analysis

of boolean functions is the KKL Theorem [226], which states that any function with low

total influence must have an influential coordinate. In domains beyond the hypercube

(such as product spaces), total influence is usually instead written equivalently as:

I[f ] = ⟨f, Lf⟩

where L is the (un-normalized) Laplacian operator (see Section 1.10 for more details).

While the KKL Theorem does not hold over arbitrary product spaces,11 a useful analog

known as “Bourgain’s Sharp Threshold Theorem” [158, Appendix] does. Bourgain’s

Theorem states that if a boolean function has small total influence, there must exist a link

(on the hypercube a subcube) in which the function is much denser than expected.

We prove an analogous result for HDX. The Laplacian formulation of total influence

has a natural generalization on simplicial complexes:

IX [f ] = ⟨f, k(I − Uk−1Dk)f⟩

that returns the standard definition over the hypercube complex (see Section 1.10). Using

Theorem 1.3.8, we prove that any function with low total influence must be concentrated

in a link.

Theorem 1.3.11 (Bourgain’s Theorem for HDX (Informal Theorem 1.10.5)). Let X be

a sufficiently strong two-sided γ-local-spectral expander, and f ∈ Ck a boolean function.

Then for any 0 ≤ K ≤ k, if I[f ] ≤ KVar(f), there exists i ≤ K and an i-face τ such that

the link of τ is dense:

E
Xτ

[f ] ≥ 2−O(K).

11More accurately, it does hold but decays with the minimum probability of any marginal, becoming
trivial e.g. for the p-biased cube for small enough p.
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Note that Theorem 1.3.11 is actually a bit weaker than Bourgain’s Theorem in the

sense that it only promises a link that is much denser than average when the function

f is sparse. We conjecture that this result should hold in the dense regime as well (see

Section 1.4 for details). On the other hand, unlike Bourgain’s Theorem (which has a

density increase of 2−O(K2) rather than 2−O(K) for general functions), our result is tight.12

Proposition 1.3.12 (Bourgain’s Theorem Lower Bound (Informal Proposition 1.10.6)).

Let c ≥ 1 be any constant and K > 1 an integer. For all K ≪ k ≪ n, there exists a

Boolean function f ∈ Ck on the k-dimensional complete complex on n vertices satisfying:

1. The influence of f is small:

I[f ] ≤ KVar(f).

2. For every i ≤ cK, all i-links are sparse:

∀i ≤ cK, τ ∈ X(i) : E
Xτ

[f ] ≤ 2−Ω(K).

1.3.4 Localization (Average Independence)

Our hypercontractive inequality is derived from a new method of localization on

high dimensional expanders of independent interest. Localization itself is of course not

new—indeed such techniques have recently become synonymous with HDX. However,

most prior work in the literature focuses on the localization of second moments, whereas

hypercontractivity requires the analysis of higher moments. Traditionally, analysis beyond

the second moment is difficult on HDX due to an inherent lack of product structure. We

show that this can often be circumvented by a new method of decorrelating variables.

Theorem 1.3.13. Let X be a d-dimensional two-sided γ-local-spectral expander and

f ∈ Ck. Then for any j ≤ d− k and τ ∈ X(j), the global and localized expectation of f
12A similar tight version of Bourgain’s Theorem for sparse functions on the p-biased cube was proved

by [245].
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over Xτ differ by an operator with small spectral norm:

E
Xτ (k)

[f ]− E
X(k)

[f ] = Γf(τ)

where Γ : Ck → Cj satisfies ||Γ|| ≤ Ok,j(γ).

We emphasize that the first expectation in this definition is given by localizing

rather than restricting f . In other words we are averaging over k-faces in the link Xτ

(which are (k + j)-faces in the original complex) rather than over k-faces in the original

complex X that contain τ . Similar localization strategies to the above were also considered

in the context of topological expansion by Kaufman and Mass [237].

Theorem 1.3.13 should really be thought of as saying that, on average, f can be

decorrelated from “irrelevant” j-faces that don’t appear in the input. This is particularly

useful when analyzing objects like HDX with high correlation. To understand the technique

a bit more concretely, let’s look at a basic example application.

Let X be a γ-local-spectral expander. We will often be interested in analyzing

certain expected products on X. For instructive purposes, let’s take a look at an example

of such a product with just two instances of some g ∈ C2:

E
a∼X(1)

E
b∼Xa(1)

E
c∼Xab(1)

[
g(a, b)g(a, c)

]
= E

a∼X(1)
E

b∼Xa(1)

[
g(a, b) E

c∼Xab(1)
[g(a, c)]

]
. (1.4)

Notice that if we were working over a product space, the distribution of c ∼ Xab(1) would

be the same as the distribution of c ∼ Xa(1). This allows us to significantly simplify the

above:

E
a∼X(1)

E
b∼Xa(1)

[
g(a, b) E

c∼Xab(1)
[g(a, c)]

]
= E

a∼X(1)

[
E

b∼Xa(1)
[g(a, b)] E

c∼Xa(1)
[g(a, c)]

]
= E

a∼X(1)

[
E

b∼Xa(1)
[g(a, b)]2

]
.
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On the other hand in an HDX (especially one of bounded degree), this could be far from

true since b and c can be highly correlated. Theorem 1.3.13 provides a simple technique

for circumventing this issue. Let g|a be the restriction of g to a, that is g|a(b) = g(a, b).

Theorem 1.3.13 promises that

E
c∼Xab(1)

[g(a, c)] = E
c∼Xa(1)

[g(a, c)] + Γg|a(b),

where ∥Γ∥ ≤ O(γ). This allows us to recover the same form as above up to O(γ) error:

E
a∼X(1)

[
E

b∼Xa(1)
[g(a, b)] E

c∼Xab(1)
[g(a, c)]

]
= E

a∼X(1)

[
E

b∼Xa(1)
[g(a, b)]2

]
+ E

a∼X(1)

[
E

b∼Xa(1)
[g(a, b) · Γg(b)]

]
≤ E

a∼X(1)

[
E

b∼Xa(1)
[g(a, b)]2

]
+Og(γ),

where we have ignored some terms in g for simplicity and the last step follows from an

application of Cauchy-Schwarz and the spectral norm (see Section 1.8 for details).

We emphasize that while Equation (1.4) in particular could also have been analyzed

through a more direct application of the swap walk, such techniques fail when additional

copies of g are added. Since there are j copies of g in analysis of the jth moment, this

means the traditional HDX tool kit cannot go beyond the second moment. On the other

hand, our technique is applied individually to each copy of g, so it is essentially irrelevant

how many times it appears in the product.

1.4 Discussion

Before getting into the details and formalization of the above, we take a moment

to give a more careful treatment of some interesting open problems and related work.
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1.4.1 Open Problems

Hypercontractivity, both on the cube and on extended domains, has led to an

astounding number of applications since its introduction some 50 years ago. We recover

just a small sample of these classical applications in our work, and believe the theory

will give rise to further results in the analysis of boolean functions. However, rather

than surveying a list of classical results one might wish to extend (we refer the reader to

O’Donnell’s book [308] for this), we’ll instead focus on three open problems we feel are

most directly raised by our work.

Perhaps the most obvious direction left open is to extend hypercontractivity to the

dense regime. While our definition of pseudorandomness implicitly assumes the underlying

function is sparse, we conjecture that all of our results should hold under a weaker notion

of pseudorandomness that drops this assumption.

Definition 1.4.1 (Pseudorandomness (Dense Regime)). Let X be a simplicial complex

and f ∈ Ck a boolean function. We say f is (ε, i)-pseudorandom if its local and global

average are close on every i-link:

∀τ ∈ X(i) :
∣∣E
Xτ

[f ]− E[f ]
∣∣ ≤ ε.

While the stronger notion we use in this work is certainly sufficient for some

applications (e.g. characterizing expansion, noise-sensitivity) and is line with previous work

[252, 255, 245], it does seem to fall short in other areas. A good example of this is our variant

of Bourgain’s Theorem. While our version only promises the existence of a dense link, the

original result on product spaces actually promises a link with higher than average density

(albeit by a factor of 2−O(K2) instead of 2−O(K)), which could be recovered by proving

hypercontractivity for the above definition. More generally, proving hypercontractivity for

this dense variant opens the door to a broader spectrum of applications than the sparse
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regime alone can handle.

The second problem we’d like to discuss is more focused on the theory of high

dimensional expanders itself. As mentioned in the introduction, local-spectral expansion can

be extended well beyond simplicial complexes to many natural poset structures including

the Grassmann poset [111, 243], where hypercontractivity was crucial to resolving the 2-2

Games Conjecture [255]. The spectral and ℓ2-structure of these expanding posets (eposets)

is well understood [111, 9, 38], and essentially has no dependence on the underlying poset

structure.13 In stark contrast, our results break down over general eposets at several key

points. In fact, it seems likely that the Bottom-Up Decomposition is not even a Fourier

basis (fails to satisfy Theorem 1.3.2) over general eposets, since the proof relies heavily on

simplicial structure (see Lemma 1.7.5). On the other hand, variants of hypercontractivity

are known for some special eposets such as the Grassmann poset. The key difference in these

cases is that the definition of pseudorandomness necessarily changes. This raises a natural

question: do all eposets satisfy hypercontractivity for some notion of pseudorandomness, or

are structures like the Grassman poset and simplicial complexes “special”? We conjecture

that the latter is the case, and that these objects represent a new, stronger class of spectral

high dimensional expanders.

Our third proposed problem is not raised quite as directly by this work, but

is hard to ignore in light of recent breakthroughs in approximate sampling via HDX

[25, 11, 24, 95, 96, 94, 146, 218, 286, 66]. Hypercontractivity is classically connected to the

Log-Sobolev inequality, which gives strong control over the mixing time of its associated

random walk. Applied to the hypercube, for instance, this connection improves the standard

spectral mixing bound from O(n2) to the optimal Θ(n log(n)) [107]. Recent analysis of

entropic notions of high dimensional expansion and a modified Log-Sobolev inequality have

led to a slew of analogous improvements on important sampling problems [96, 66, 22].

These results, however, usually only apply to dense objects and need stronger assumptions.
13Different poset parameters result in different eigenvalues, but the structure is otherwise the same.
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Given these connections, it is natural to ask whether our theory of hypercontractivity can

improve mixing times for general local-spectral expanders in some analogous fashion.

1.4.2 Related Work

Hypercontractivity on Extended Domains:.

Nearly 20 years after its introduction, Kahn, Kalai, and Linial [226] revolutionized

the study of boolean functions with hypercontractivity. Not long after, a significant interest

grew in the development and application of hypercontractivity beyond the hypercube,

with a particular focus on product distributions and especially the p-biased hypercube

[78, 349, 160, 157]. These works offered a general theory of hypercontractivity for such

domains, but their strength depended on the underlying distributions in the product

space. This issue was addressed to an extent in work of Friedgut and Bourgain [158],

and later Hatami [194], who showed analogues to the KKL theorem in product spaces

for certain pseudorandom functions, but it was not until the recent work of Keevash,

Lifshitz, Long, and Minzer [245] (and independently O’Donnell and Zhao [364]) that a true

hypercontractive inequality was developed in this setting. This offered the missing piece

for a number of classical applications including a tight variant of the KKL Theorem (for

monotone functions) [245], Majority is Stablest [280], as well as a number of interesting

applications to extremal combinatorics [247].

Another line of work has examined hypercontractivity on what are often called

“exotic” domains: specific objects beyond products such as the slice [252], multislice

[148, 335], Grassmannian [255] (or similarly the degree-two short code [47]), and symmetric

group [147]. Like KLLM’s improved result for product distributions, in unbalanced

settings these examples are only hypercontractive for pseudorandom functions.14 The

main application of this line of work has been to agreement testing and hardness of

approximation. In particular, hypercontractivity for the Grassmannian was used to prove
14We note that higher degrees of the short code are also hypercontractive, but only on low Fourier levels

for general functions [46].
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the soundness of an agreement tester in the “1% regime” needed for the proof of the 2-2

Games Conjecture [253, 126, 125, 47, 252, 255]. It is worth noting that agreement testing

theorems are also known for local-spectral expanders [124, 109, 236] (indeed the objects

were originally introduced in this context). These results, however, lie in the “99% regime,”

so it is interesting to ask whether our theory of hypercontractivity can be used to build a

bounded degree agreement tester in the more difficult 1% regime.

Finally, we should note that our overarching proof structure for hypercontractivity

builds on KMMS’ work on the slice (i.e. the complete complex). Their techniques, however,

rely heavily on the fact that the slice is close in ℓ1-distance to a product. This is far from

true on local-spectral expanders, especially those of bounded degree which may essentially

be as far as possible from products. As previously discussed, this lack of structure is a

challenging barrier broken for the first time in this work (and independently in [187]).

Fourier Analysis on HDX:.

Fourier analysis on HDX was originally studied by Diksein, Dinur, Filmus, and

Harsha [111], who introduced the HD-Level-Set Decomposition, analyzed its spectral

properties, and used it to prove an FKN Theorem for HDX. A similar decomposition was

also proposed around the same time by Kaufman and Oppenheim [239], though their work

was more focused on understanding the spectral structure of higher order random walks

than on developing a theory of Fourier analysis. In the years since, the HD-Level-Set

Decomposition has seen some further development [9, 242, 38], and the nascent theory

has helped build efficient approximation algorithms for certain k-CSPs [9] and unique

games [38], but the restriction to second moment methods seems to have limited its

use otherwise. Towards breaking this same barrier, Gur, Lifshitz, and Liu [187] have

also (independently) developed a similar theory of hypercontractivity on local-spectral

expanders. While their work certainly shares some connections to ours, its main proof

techniques differ substantially and we believe the two works are of independent interest.
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1.4.3 Roadmap

Having concluded introductory discussion of our work, we lay out a brief roadmap for

the rest of the paper. In Section 1.5 we give preliminaries and formally define local-spectral

expansion and higher order random walks. In Section 1.6 we discuss our new local-to-global

method for higher moments that allows us to move beyond product distributions. In

Section 1.7 we discuss our new explicit Fourier Decomposition, its basic properties, and

behavior under restriction. In Section 1.8 we prove hypercontractivity for pseudorandom

functions (Theorem 1.3.5). In Section 1.9 we apply this result to characterize edge

expansion in HD-walks (Theorem 1.3.10). Finally in Section 1.10 we introduce analogues

of classic Fourier analytic notions such as influence and the noise operator and use them

to prove both a KKL Theorem (Theorem 1.3.11) and noise-sensitivity of pseudorandom

functions.

1.5 Preliminaries

Before moving into proofs and further discussion of our main results, we take a

moment to cover the theory of local-spectral expanders and higher order random walks in

more detail.

1.5.1 Simplicial Complexes

Our main objects of interest in this work are a family of expanding hypergraphs

known as local-spectral expanders. In this context, it will be useful to think of d-uniform

hypergraphs as objects called pure simplicial complexes.

Definition 1.5.1 (Weighted, Pure Simplicial Complex). A d-dimensional, pure simplicial

complex X = X(0) ∪ . . . ∪X(d) on n vertices is the downward closure of a hypergraph

X(d) =
(
[n]
d

)
where

X(i) =

{
s ∈

(
[n]

i

) ∣∣∣∣ ∃t ∈ X(d), s ⊆ t

}
.
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We call the elements of X(i) i-faces. A weighted pure simplicial complex (X,Π) is a

simplicial complex X endowed with a distribution Π over X(d). This induces a distribution

over each X(i) by downward closure:

πi(x) =
1

i+ 1

∑
y∈X(i+1):y⊃x

πi+1(y), (1.5)

where πd = Π.

Weighted pure simplicial complexes are equivalent to weighted hypergraphs, and

we will adopt the former viewpoint throughout the rest of this work. We note that our

definition of dimension is off by one from some of the literature which adopts the convention

that an i-face has i + 1 vertices. While this is natural from a topological viewpoint, it

makes less sense in our combinatorial context.

Weighted simplicial complexes also come equipped with a natural set of inner

products. Recall that Ci = Ci(X) denotes the space of functions f : X(i) → R. The

distribution Π = (πd, . . . , π0) induces a natural inner product on each level:

∀f, g ∈ Ci : ⟨f, g⟩X(i) = E
τ∼πi

[f(τ)g(τ)].

When clear from context, we drop X(i) from the notation. Just like on the hypercube,

these associated products are a core component of function analysis and the development

of Fourier analysis on HDX.

1.5.2 Local Spectral Expansion

In this work we focus on a recent spectral notion of high dimensional expansion

called two-sided local-spectral expansion introduced by Dinur and Kaufman [124]. The

definition hinges crucially on a form of local structure in simplicial complexes called links.
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Definition 1.5.2 (Link). Let (X,Π) be a d-dimensional weighted, pure simplicial complex.

The link of an i-face s ∈ X(i) is a (d− i)-dimensional pure simplicial complex given by

the restriction of X to faces containing s, that is:

Xs = {t \ s ∈ X | t ⊇ s}.

We call Xs an i-link. Throughout the rest of the paper, Xs will always refer to its weighted

version (Xs,Πs) where Πs is induced by the original distribution Π by normalizing over

top level faces of Xs.

When analyzing a particular level k of the complex, we will often abuse notation

and write Xs to mean the set of k-faces in X which contain s when clear from context.

Much of the high dimensional expansion literature centers around what is called

the local-to-global paradigm, where properties on links are lifted to global properties

on a complex. Local-spectral expansion can be seen as a definitional formalization of this

notion: a complex is said to be expanding if all its local parts are expanding.

Definition 1.5.3 (Local-spectral expansion [124]). A weighted, pure simplicial complex

(X,Π) is a two-sided γ-local-spectral expander if for every i ≤ d−2 and every face s ∈ X(i),

the underlying graph15 of Xs is a two-sided γ-spectral expander.16

1.5.3 Higher Order Random Walks

Just like expander graphs are inextricably tied to their underlying random walks,

local-spectral expanders are similarly connected to an analogous set of random processes

known as higher order random walks (HD-walks). In Section 1.2, we discussed one example

of these objects called the canonical walks that move between k-faces via a shared (k + i)-

face, and saw that these could be defined by the averaging operators. We’ll now extend
15The underlying graph of a complex X is G = (V = X(1), E = X(2)).
16A weighted graph is a two-sided γ-spectral expander if max{|λ2|, |λn|} ≤ γ.
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these definitions to the more general setting of weighted simplicial complexes and, as well

as define HD-walks in full generality. We’ll start with the weighted averaging operators.

Definition 1.5.4 (Averaging Operators). Let (X,Π) be a d-dimensional weighted, pure

simplicial complex. For every 0 ≤ k < d, the Up Operator Uk lifts functions from Ck to

Ck+1 by averaging:

∀τ ∈ X(k + 1) : Ukf(τ) =
1

k + 1

∑
σ∈X(k):σ⊂τ

f(σ).

Similarly, the Down Operator lowers functions from Ck+1 to Ck by averaging:

∀τ ∈ X(k) : Dk+1f(τ) =
1

πk+1(Xτ )

∑
σ∈Xτ

πk+1(σ)f(σ),

where πk+1(Xτ ) =
∑

σ∈Xτ

πk+1(σ), and the sum is over k + 1 faces of X containing τ .

It is worth noting that the averaging operators are adjoint with respect to the

associated inner products mentioned in the previous section, that is for any f ∈ X(i) and

g ∈ X(i− 1):

⟨f, Uig⟩X(i) = ⟨Dif, g⟩X(i−1) = E
(σ,τ)∼(πi,πi−1)

[f(σ)g(τ)].

This means that basic combinations of the operators such as the canonical walks discussed

in Section 1.2 are self-adjoint and therefore have a spectral decomposition.

Let’s now formalize the notion of higher order random walks. We’ll start with a

basic version called pure walks that are simply a composition of the averaging operators.

Definition 1.5.5 (Pure Walk [9]). Given a weighted, pure simplicial complex (X,Π), a

k-dimensional pure walk Y : Ck → Ck on (X,Π) of height h(Y ) is a composition:

Y = Z2h(Y ) ◦ · · · ◦ Z1,
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where each Zi is a copy of D or U .

For the moment we won’t force these walks to be self adjoint, but as we noted basic

examples such as N i
k = Dk+i

k Uk+i
k do satisfy this constraint.

We define general higher order random walks to be any linear combinations of pure

walks which is stochastic and self-adjoint.

Definition 1.5.6 (HD-walk [9]). Let (X,Π) be a pure, weighted simplicial complex, and

Y a family of pure walks Y : Ck → Ck on (X,Π). We call a linear combination

M =
∑
Y ∈Y

αY Y

a k-dimensional HD-walk on (X,Π) as long as it is stochastic and self-adjoint. We call

w(M) :=
∑
|αY | the weight of M , and h(M) = max{h(Y )} its height.

1.5.4 Rectangular Swap Walks

Definition 1.5.6 only captures walks which stay on some fixed level of the complex.

While these are certainly our main object of study, it turns out that in analysis it is often

useful to consider rectangular walks which move between levels of the complex. We will be

particularly interested in a rectangular walk introduced independently by Alev, Jeronimo,

and Tusiani [9], and Dikstein and Dinur [109] called the swap walk. Informally, the swap

walk from X(i) to X(j) moves from an i-face τ to a j-face σ through a shared (i+ j)-face,

but swaps out all original elements in τ . In other words, the intersection between τ and σ

must be empty, and the shared (i+ j)-face is exactly τ ∪ σ. To formalize this, it is useful

to first introduce the more basic rectangular walk moving between X(i) and X(j) with no

such restrictions.

Definition 1.5.7 (Rectangular Canonical Walks). Let (X,Π) be a d-dimensional, pure,

weighted simplicial complex. For any i+ j ≤ d, the rectangular canonical walk Ni,j is the
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natural operator moving between X(i) and X(j) through X(i+ j):

Ni,j = Di+j
i U i+j

j .

Swap walks are then defined by forcing the down steps in a canonical walk to

remove only vertices in the initial face.

Definition 1.5.8 (Rectangular Swap Walks). Let (X,Π) be a d-dimensional, pure,

weighted simplicial complex. For any i + j ≤ d, the rectangular swap walk Si,j is

the (normalized) restriction of Ni,j to pairs (τ, σ) ∈ X(i)×X(j) such that |τ ∩ σ| = 0.

Swap walks appear naturally in a number of areas, including agreement testing [109],

coding theory [221], and approximation algorithms [9, 38] and were well studied even before

their formal introduction on HDX. On the complete complex, for instance, rectangular

swap walks are exactly the bipartite Kneser graphs. Swap walks are particularly useful

in these contexts because unlike their canonical counterpart canonical walks, they are

actually great expanders.

Theorem 1.5.9 (Theorem 7.1 [109]). Let (X,Π) be a d-dimensional two-sided γ-local-

spectral expander. Then for any i+ j ≤ d, the spectral expansion of Si,j is at most:

λ(Si,j) ≤ ijγ,

where λ(Si,j) is the second largest singular value of Si,j.

We note that this result was concurrently proved by AJT [9], albeit with a quanti-

tatively worse bound.

59



1.6 Localization Beyond the Second Moment

Localization is one of the (if not the) most important technique in the analysis

of high dimensional expanders. Classic results, often grouped together under the name

Garland’s method, show how global functions on simplicial complexes can be broken down

into an average over local parts. There are two forms of Garland’s method that will be

relevant to our work. The first handles restrictions of a function f in Ck to any τ ∈ X(i),

s.t. f |τ ∈ Ck−i(Xτ ) satisfies:

∀σ ∈ Xτ (k − i) : f |τ (σ) = f(τ ∪ σ).

Lemma 1.6.1 (Garland’s method (restrictions) [239]). Let (X,Π) be a weighted, pure

simplicial complex, and f ∈ Ck. Then for any i ≤ k, ∥f∥2 is equal to its average second

moment restricted to i-links:

⟨f, f⟩ = E
τ∈X(i)

[⟨f |τ , f |τ ⟩].

The second form of interest handles localizations of f to τ ∈ X(i), where fτ ∈

Ck(Xτ ) lifts f from X(k) to Xτ (k):

∀σ ∈ Xτ (k) : fτ (σ) = f(σ).

Lemma 1.6.2 (Garland’s method (localizations) [309]). Let (X,Π) be a d-dimensional,

weighted, pure simplicial complex, and f ∈ Ck. Then for any k + i ≤ d, ∥f∥22 is equal to
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its average second moment localized to i-links:

⟨f, f⟩ = E
τ∈X(i)

[⟨fτ , fτ ⟩].

Garland’s method will play an important role in the analysis of Theorem 1.3.5,

but the results are generally only useful once a problem has been reduced to analyzing

second moments. Since we are mainly interested in hypercontractivity and analyzing

higher moments, Garland’s method alone won’t be sufficient.

To this end, we introduce a new technique for analyzing higher moments on two-

sided local-spectral expanders. At its core, the strategy relies on a deceptively simple

observation: the difference between the global expectation of f and its localized expectation

over links is exactly given by an application of the swap walk minus its stationary operator.

We note that a related application of the swap walk was recently implemented in the work

on group independent cosystolic expansion by [237].

Lemma 1.6.3. Let (X,Π) be a d-dimensional pure, weighted simplicial complex and

f ∈ Ci. Then for any v ∈ X(j) such that i+ j ≤ d, we have:

E
Xv

[fv]− E[f ] = (Sj,i − U j
0D

i
0)f(v).

Proof. This is essentially immediate from expanding the left-hand side. We have:

E
Xv

[fv]− E[f ] =
∑

w∈X(i)

πv,i(w)f(w)−
∑

w∈X(i)

πi(w)f(w)

=
∑

w∈X(i)

(πv,i(w)− πi(w)) f(w)

= (Sj,i − U j
0D

i
0)f(v),

where πv,i(w) = 0 for any w /∈ Xv(i).
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We typically refer to moving from E
Xv

[fv] to E[f ] in this manner as de-correlating.

Lemma 1.6.3 is particularly powerful on two-sided local-spectral expanders, since the

spectral norm of ||Sj,i − U j
0D

i
0|| is small on every link by Theorem 1.5.9.

Corollary 1.6.4. Let (X,Π) be a d-dimensional two-sided γ-local-spectral expander, f ∈ Ci,

and τ ∈ X(ℓ) for any ℓ < i. Then for any v ∈ Xτ (j) such that i+ j − ℓ ≤ d, the global

and localized expectations of f differ by:

E
Xτ∪v

[f |τ ]− E
Xτ

[f |τ ] = Γf |τ (v)

where Γ : Ci−ℓ(Xτ )→ Cj(Xτ ) is an operator with spectral norm at most ||Γ|| ≤ (i− ℓ)jγ.

Proof. Applying Lemma 1.6.3 to the restricted function f |τ on Xτ (which is also a two-

sided γ-local-spectral expander), we have that the left-hand side is exactly given by

(Sj,i−ℓ − U j
0D

i−ℓ
0 )τf |τ (v). Since U j

0D
i−ℓ
0 is the stationary operator of Sj,i−ℓ, the spectral

norm

∥Sj,i−ℓ − U j
0D

i−ℓ
0 ∥

is exactly the second largest singular value of Sj,i−ℓ. As discussed in Theorem 1.5.9,

Dikstein and Dinur [109, Theorem 7.1] proved that this quantity is at most (i− ℓ)jγ on

any two-sided γ-local-spectral expander.

1.7 The Bottom-Up Decomposition

In this section, we introduce the Bottom-Up Decomposition, an explicit combinato-

rial decomposition on simplicial complexes which approximates Dikstein, Dinur, Filmus,

and Harsha’s HD-Level-Set Decomposition [111]. This is particularly useful since the latter

decomposition essentially corresponds to the eigenspaces of HD-walks [111, 9, 38]. It will

be convenient to first introduce an equivalent recursive form.
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Definition 1.7.1 (Level Functions (Recursive Form)). Let (X,Π) be a d-dimensional pure

simplicial complex and f ∈ Ck any function. The ith level function of the Bottom-Up

Decomposition is given by

g↑i = Dk
i f −

i−1∑
j=0

(
i

j

)
U i
jg↑j

The Bottom-Up Decomposition is given by lifting the level functions via the up

operator.

Theorem 1.7.2 (Bottom-Up Decomposition (Explicit Form)). Let (X,Π) be a d dimen-

sional pure simplicial complex and f ∈ Ck any function. Let f↑i =
(
k
i

)
Uk
i g↑i be the lift of

the ith level function to Ck. Then the following statements hold:

1. The lifted level functions give a decomposition of f :

f =
k∑

i=0

f↑i

2. The lifted level functions have the following explicit form:

f↑i =

(
k

i

) i∑
j=0

(−1)i−j

(
i

j

)
U i
kD

k
j f,

or equivalently for all τ ∈ X(i) and T ∈ X(k):

g↑i(τ) =
∑
σ⊆τ

(−1)|τ\σ| E
Xσ

[f ], f↑i(T ) =
∑

σ∈X(i):σ⊂T

g↑i(σ)

Proof. (1) can be proved directly by the explicit form given in (2):

k∑
i=0

f↑i =
k∑

i=0

(
k

i

)
Uk
i

i∑
j=0

(−1)i−j

(
i

j

)
U i
jD

k
j f

=
k∑

j=0

(
k∑

i=j

(−1)i−j

(
k

i

)(
i

j

))
Uk
j D

k
j f
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= Uk
kD

k
kf

= f.

where we’ve used the fact that:

k∑
i=j

(−1)i−j

(
k

i

)(
i

j

)
= δjk.

It is left to prove (2). We proceed by induction. Note that the equality clearly holds for

i = 0, where both sides are simply the global expectation E[f ]. Now assume by induction

that the equivalence holds up to i− 1. We then have:

g↑i = Dk
i f −

i−1∑
j=0

(
i

j

)
U i
jg↑j

= Dk
i f −

i−1∑
j=0

(
i

j

)
U i
j

j∑
ℓ=0

(−1)j−ℓ

(
j

ℓ

)
U j
ℓD

k
ℓ f

= Dk
i f −

i−1∑
ℓ=0

(
i−1∑
j=ℓ

(−1)j−ℓ

(
i

j

)(
j

ℓ

))
U i
ℓD

k
ℓ f

= Dk
i f −

i−1∑
ℓ=0

(−1)i−1−ℓ

(
i

ℓ

)
U i
ℓD

k
ℓ f

=
i∑

ℓ=0

(−1)i−ℓ

(
i

ℓ

)
U i
ℓD

k
ℓ f.

The explicit form of f↑i then follows simply by applying
(
k
i

)
Uk
i to g↑i, and the equivalent

form is immediate from the definition of the down and up operators.

1.7.1 Bottom-Up vs. HD-Level-Set

Dikstein, Dinur, Filmus, and Harsha’s HD-Level-Set Decomposition [111] is an

elegant linear-algebraic decomposition for functions on local-spectral expanders. Like the

Bottom-Up Decomposition, it breaks f ∈ Ck down into k + 1 Fourier levels, but differs in
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that it does so in a top-down fashion.

Theorem 1.7.3 (HD-Level-Set Decomposition, Theorem 8.2 [111]). Let (X,Π) be a d

dimensional two-sided γ-local-spectral expander, γ < 1
d
, 0 ≤ k ≤ d, and let:

H0 = C0, H
i = Ker(Di), V

i
k = Uk

i H
i.

Then:

Ck = V 0
k ⊕ . . .⊕ V k

k .

In other words, every f ∈ Ck has a unique decomposition f =
∑

f↓i such that f↓i = Uk
i g↓i

for g↓i ∈ Ker(Di).

While the HD-Level-Set Decomposition is certainly useful in its own right, it

has no known explicit form. This can make the analysis of standard Fourier-analytic

techniques like restriction difficult, and hampers the analysis of higher moments. We

will show that the Bottom-Up Decomposition provides an explicit approximation of the

HD-Level-Set Decomposition that circumvents these issues while maintaining the latter’s

useful properties.

Before jumping into the details, however, it is worth reviewing an elegant technical

tool of [111] that will be crucial for our analysis. They prove that local-spectral expansion

is equivalent to a global notion of spectral expansion on complexes that relates the upper

and lower walks.

Theorem 1.7.4 (DDFH Claim 8.8). Let (X,Π) be a d-dimensional two-sided γ-local-

spectral expander. Then for any 1 ≤ i ≤ j ≤ d:

DiU
i
j =

j

i
U i−1
j−1Dj +

i− j

i
U i−1
j + Ei,j, (1.6)

where ∥Ei,j∥ ≤ (i− j)γ.
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It is worth noting that this result (and the HD-Level-Set Decomposition) hold more

generally for any “expanding poset”—the difference lies in the exact coefficients in the

above relation.

The crucial observation for proving that the Bottom-Up Decomposition is a Fourier

basis (that explicitly approximates the HD-Level-Set Decomposition) is that while g↑i may

not lie directly in Ker(Di) like g↓i, it is fairly close to doing so. Proving this actually relies

crucially on the exact coefficients in Equation (1.6) which correspond to working over a

simplicial complex. As a result, it is not clear the Bottom-Up Decomposition is a Fourier

basis at all for general expanding posets.

Lemma 1.7.5. Let (X,Π) be a two-sided γ-local-spectral expander, f ∈ Ck, and g↑i be

given as in the Bottom-Up Decomposition. Then:

∥Dig↑i∥2 ≤ 2O(i)γ∥Dk
i f∥2.

Proof. The result follows from directly expanding Dig↑i:

Dig↑i =
i∑

j=0

(−1)i−j

(
i

j

)
DiU

i
jD

k
j f

=
i∑

j=0

(−1)i−j

(
i

j

)(
j

i
U i−1
j−1Dj +

i− j

i
U i−1
j + Ei,j

)
Dk

j f.

The key is then to notice that the main terms cancel. That is, setting ci,j = (−1)i−j
(
i
j

)
we

have:

i∑
j=0

ci,j

(
j

i
U i−1
j−1Dj +

i− j

i
U i−1
j

)
Dk

j f =
i−1∑
j=0

(
j + 1

i
ci,j+1 +

i− j

i
ci,j

)
U i−1
j Dk

j f = 0.
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Finally by the triangle inequality we have:

∥Dig↑i∥2 ≤
i∑

j=0

(
i

j

)
∥Ei,jD

k
j f∥2 ≤

i∑
j=0

(
i

j

)
(i− j)γ∥Dk

j f∥2

≤ O(i2iγ)∥Dk
i f∥2

where we have used the fact that D contracts ℓ2-norm in the final step.

We will also need approximate orthogonality of both decompositions.

Lemma 1.7.6. Let (X,Π) be a two-sided γ-local-spectral expander. Then the following

three approximate orthogonality relations hold for all i ̸= j:

|⟨f↓i, f↓j⟩| ≤ 2O(k)γ∥f∥22 (1.7)

|⟨f↓i, f↑j⟩| ≤ 2O(k)γ∥f∥22 (1.8)

|⟨f↑i, f↑j⟩| ≤ min{kO(i+j), 2O(k)}γ∥f∥22 (1.9)

Proof. All relations follow from Equation (1.6) and Lemma 1.7.5. The first relation is

proved in [111]. The latter relations follow similarly, but we give the third for completeness.

In particular, assuming i > j we have:

|⟨f↑i, f↑j⟩| =
∣∣∣∣(ki

)(
k

j

)
⟨Uk

i g↑i, U
k
j g↑j⟩

∣∣∣∣
=

(
k

i

)(
k

j

) ∣∣⟨Dk
i−1U

k
i g↑i, U

i−1
j g↑j⟩

∣∣
≤
(
k

i

)(
k

j

)
∥Dk

i−1U
k
i g↑i∥2∥U i−1

j g↑j∥2

≤
(
k

i

)(
k

j

)
∥Dk

i−1U
k
i g↑i∥2∥g↑j∥2

where we have applied Cauchy-Schwarz and used the fact that averaging operators contract

ℓ2-norm. We now separately bound both norms. The second is the simpler of the two,
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and we claim it is at most 2O(i)∥f∥. In fact a more general claim holds.

Claim 1.7.7. For any ℓp-norm, we have:

∥g↑i∥p ≤ 2i∥Dk
i f∥p

Proof. This follows from direct expansion of the ℓp-norm:

∥g↑i∥p ≤
i∑

j=0

(
i

j

)
∥U i

jD
k
j f∥p

≤
i∑

j=0

(
i

j

)
∥Dk

i f∥p

= 2i∥Dk
i f∥p

where we have applied the triangle inequality and the fact that U and D contract p-

norms.

Plugging this back into the above, we have:

⟨f↑i, f↑j⟩ ≤ 2i
(
k

i

)(
k

j

)
∥f∥2∥Dk

i−1U
k
i g↑i∥2.

To complete the proof, it is therefore enough to argue that ∥Dk
i−1U

k
i g↑i∥2 is at most ckγ∥f∥

for some small enough ck. This follows from k − i repeated applications of Equation (1.6)

(one for each instance of the up operator). Informally, each application of Equation (1.6)

incurs two error terms, one stemming from the matrix Ei,j, and the other from j
i
U i−1
j−1Di

applied to g↑i, which we know is small by Lemma 1.7.5. The final remaining term is then

proportional to the original term, but with one DU pair removed. For instance, for the

first application we have:

∥Dk
i−1U

k
i g↑i∥ = ∥Dk−1

i−1 (DkU
k
i )g↑i, U

i−1
j g↑j∥
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= ∥Dk−1
i−1

(
i

k
Uk−1
i−1 Di +

k − i

k
Uk−1
i + Ek,i

)
g↑i∥

=
k − i

k
∥Dk−1

i−1 U
k−1
i g↑i∥+

i

k
∥Dk−1

i−1 U
k−1
i−1 Dig↑i∥+ ∥Dk−1

i−1 Ek,ig↑i∥

≤ k − i

k
∥Dk−1

i−1 U
k−1
i g↑i∥+ 2O(i)γ∥f∥+ kγ∥g↑i∥

≤ k − i

k
∥Dk−1

i−1 U
k−1
i g↑i∥+ k2O(i)γ∥f∥

where we have used the facts that by Equation (1.6) and Lemma 1.7.5, ∥Ek,i∥ ≤ kγ,

and ∥Dig↑i∥ ≤ 2O(i)γ∥f∥. A basic inductive argument then implies that ∥Dk
i−1U

k
i g↑i∥ ≤

2O(i)k2γ∥f∥, which completes the proof. For a more formal induction following exactly

the same strategy, see [111, 38].

With these lemmas in hand, proving that the Bottom-Up Decomposition ℓ2-

approximates the HD-Level-Set Decomposition is elementary.

Theorem 1.7.8. Let (X,Π) be a two-sided γ-local-spectral expander and f ∈ Ck. Then

the Bottom-Up and HD-Level-Set Decomposition are close in ℓ2-norm:

∥f↑i − f↓i∥22 ≤ 2O(k)γ∥f∥22.

Similarly: ∣∣∥f↑i∥2 − ∥f↓i∥2∣∣ ≤ 2O(k)γ∥f∥22

Proof. By Lemma 1.7.6, we have:

⟨f↓i − f↑i, f↓i⟩ = ⟨f − f↑i, f↓i⟩ ± 2O(k)γ∥f∥22

= ±2O(k)γ∥f∥22
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Similarly:

⟨f↓i − f↑i, f↑i⟩ = ±2O(k)γ∥f∥22

Therefore:

⟨f↓i − f↑i, f↓i − f↑i⟩ ≤ 2O(k)γ∥f∥22

as desired. To prove the second inequality, note that:

|⟨f↑i, f↑i⟩ − ⟨f↓i, f↓i⟩| = |⟨f↑i − f↓i, f↑i − f↓i⟩+ 2⟨f↓i, f↑i − f↓i⟩|

≤ 2O(k)γ∥f∥2

by our previous observations.

Note that since the HD-Level-Set Decomposition satisfies the Fourier-anatlyic

properties in Theorem 1.3.2 [111, 9, 38], Theorem 1.7.8 implies that the Bottom-Up

Decomposition does as well.

1.7.2 Properties of the Bottom-Up Decomposition

Our proof of hypercontractivity (Theorem 1.3.5) relies on a number of important

structural properties of and relations between gi and fi. The first (and most basic) of these

is the analog of a classic result for the HD-Level-Set Decomposition relating to ℓ2-norms

of gi and fi.

Lemma 1.7.9. Let (X,Π) be a two-sided γ-local-spectral expander and f ∈ Ck. Then:

⟨g↑i, g↑i⟩ =
1(
k
i

)⟨f↑i, f↑i⟩ ± ck,iγ∥Dk
i f∥22

where ck,i ≤ kO(i).
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Proof. The proof is essentially the same as for the HD-Level-Set Decomposition and as

our analysis above, though we repeat the idea for completeness. The key is again to apply

Equation (1.6). In particular, recall that:

⟨f↑i, f↑i⟩ =
(
k

i

)2

⟨Uk
i g↑i, U

k
i g↑i⟩

=

(
k

i

)2

⟨g↑i, Dk
i U

k
i g↑i⟩

by adjointness of D and U [111]. The proof is then essentially the same as Lemma 1.7.6.

Repeated application of Equation (1.6) gives an error term of O(k2)γ∥Dk
i f∥2. The only

difference is that the main term no longer has an extra occurrence of D at the end. Thus

instead of becoming another error term, the main term becomes:

(
k

i

)2
(

k−i−1∏
j=0

k − j − i

k − j

)
⟨g↑i, g↑i⟩ =

(
k

i

)
⟨g↑i, g↑i⟩

which gives the result.

We now cover a few important bounds on gi for pseudorandom functions.

Definition 1.7.10 (Pseudorandom). Let (X,Π) be a simplicial complex. We say that

f ∈ Ck is (ϵ, i)-pseudorandom if it is sparse across all i-links in two senses:

1. For all τ ∈ X(i): ∣∣∣∣EXτ

[f ]

∣∣∣∣ ≤ ε∥f∥∞

2. For all τ ∈ X(i):

⟨f |τ , f |τ ⟩ ≤ ε∥f∥2∞

We note that if f is non-negative, the former condition implies the latter:

⟨f |τ , f |τ ⟩ ≤ ∥f |τ∥1∥f∥∞

71



= E[f |τ ]∥f∥∞

≤ ε∥f∥2∞.

It is also worth noting that any (ϵ, i)-pseudorandom function is automatically (ϵ, j) pseu-

dorandom for j ≤ i.

We now cover the first property of the Bottom-Up Decomposition that does

not follow from standard HDX analysis, the behavior of level functions under restriction.

Analysis of restrictions is a classic Fourier analytic tool, and the fact that our decomposition

behaves nicely under restriction is a major advantage over previous decompositions which

have no clear local structure in this sense. For this particular work, we’ll mostly be

interested in the following bound on the ℓ2-norm of restrictions.

Proposition 1.7.11. Let (X,Π) be a two-sided γ-local-spectral expander and f ∈ Ck an

(ϵ, i)-pseudorandom function. Then for any j ≤ i ≤ k and τ ∈ X(j):

⟨g↑i|τ , g↑i|τ ⟩ ≤

(
ϵ(

k−j
i−j

) + ck,iγ

)
∥f∥2∞,

where ck,i ≤ kO(i).

Proving this, however, requires a more general understanding of the Bottom-Up

Decomposition under restriction. They key observation is that the restriction of our level

functions is closely related to the level functions of the restriction. More formally, for any

τ ∈ X(j) let g
(τ)
↑ℓ denote the Bottom-Up Decomposition of f |τ . Then following relation

between gi|τ and the g
(τ)
↑ℓ holds.

Lemma 1.7.12. Let (X,Π) be a pure, weighted simplicial complex, and f ∈ Ck. Then for

any j ≤ i ≤ k and τ ∈ X(j):

g↑i|τ =
∑
σ⊆τ

(−1)|σ|g(τ\σ)↑i−j .
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Proof. This follows almost immediately from directly expanding the definition of g↑i|τ . In

particular, recall that for all I ∈ X(i− j), we have by Theorem 1.7.2:

g↑i|τ (I) =
∑

T⊆I∪τ

(−1)|(τ∪I)\T | E
XT

[f ].

The trick is to notice that we can divide up this sum over T ⊆ I ∪ τ by T ’s intersection

with τ . It will be convenient to phrase this in the following way. Let T denote the set

of all sub-faces T ⊆ I ∪ τ , and for each σ ⊂ τ , let Tσ be the set of sub-faces T ⊂ I ∪ τ

such that T ∩ τ = τ \ σ. Notice that for any σ ̸= σ′, Tσ and Tσ′ are disjoint, and that

the union of these families is exactly T . Together, this means that we can break up the

above sum by first summing over σ, and then every T ∈ Tσ:

g↑i|τ (I) =
∑
σ⊆τ

(∑
T∈Tσ

(−1)|(I∪τ)\T | E
XT

[f ]

)

By definition, every T ∈ Tσ can be written as T ′ ∪ (τ \ σ). Plugging this into the above

gives the result:

∑
σ⊆τ

(∑
T∈Tσ

(−1)|(I∪τ)\T | E
XT

[f ]

)
=
∑
σ⊆τ

 ∑
T ′∪(τ\σ)∈Tσ

(−1)|(I∪τ)\(T ′∪(τ\σ))| E
XT ′∪(τ\σ)

[f ]


=
∑
σ⊆τ

(−1)|σ|
 ∑

T ′∪(τ\σ)∈Tσ

(−1)|I\T ′| E
XT ′∪(τ\σ)

[f ]


=
∑
σ⊆τ

(−1)|σ|g(τ\σ)↑i−j (I),

where the final step comes from the fact that the inner summation over Tσ is equivalent

to summing over all T ′ in the link of τ \ σ.

We note that the same result was known to hold for the Bottom-Up Decomposition

over the complete complex [252], who proved the result by induction using the recursive
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form of the decomposition. The same strategy will work for general simplicial complexes,

but we find using the explicit form as above to be a bit simpler.

With this in hand, proving Proposition 1.7.11 is fairly elementary and follows

similarly to its analogous statement for the complete complex (see [252, Corollary 3.4]).

Proof of Proposition 1.7.11. An application of Lemma 1.7.12 and Cauchy-Schwarz implies

that:

g↑i|τ (T )2 =

(∑
σ⊆τ

(−1)|σ|g(τ\σ)↑i−j (T )

)2

≤ 2O(i)
∑
σ⊆τ

g
(τ\σ)
↑i−j (T )

2

Then applying Lemma 1.7.9 gives:

⟨g↑i|τ , g↑i|τ ⟩ ≤ 2O(i)
∑
σ⊆τ

⟨g(τ\σ)↑i−j , g
(τ\σ)
↑i−j ⟩

≤ 2O(i)
∑
σ⊆τ

⟨f |(τ\σ), f |(τ\σ)⟩(
k−j+|σ|

i−j

) + c1γ∥f∥2∞

≤ 2O(i)
∑
σ⊆τ

ε∥f∥2∞(
k−j+|σ|

i−j

) + c1γ∥f∥2∞

≤ 2O(i) ε∥f∥2∞(
k−j
i−j

) + c2γ∥f∥2∞

where c1, c2 ≤ kO(i).

Finally, it will also be useful to bound the infinity norm of g↑i as well. Our final

property shows that ∥g↑i∥∞ is particularly small when f is pseudorandom.

Lemma 1.7.13. Let (X,Π) be a two-sided γ-local-spectral expander and f ∈ Ck be any

(ϵ, i)-pseudorandom function satisfying E[f ] ≤ ϵ∥f∥∞. Then the infinity norm of g↑i is

small:

∥g↑i∥∞ ≤ 2iϵ∥f∥∞
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Proof. This is immediate from combining the explicit form of g↑i with (ϵ, i) pseudoran-

domness.

|g↑i(w)| =

∣∣∣∣∣
i∑

j=0

(−1)i−j

(
i

j

)
U i
jD

k
j f(w)

∣∣∣∣∣
≤

i∑
j=0

(
i

j

)
ϵ∥f∥∞

= 2iϵ∥f∥∞

where we have used the observation that since f is (ϵ, i)-pseudorandom, for all w ∈ X(i):

|U i
jD

k
j f(w)| ≤ ϵ∥f∥∞

1.8 Hypercontractivity on HDX

In this section, we prove a hypercontractivity theorem for the Bottom-Up Decompo-

sition on two-sided local-spectral expanders. Since we will work only with the Bottom-Up

Decomposition in this section, we drop the ↑ for simplicity and simply write f =
∑

fi for

fi =
(
k
i

)
Uk
i gi and gi = g↑i as defined in the Bottom-Up Decomposition.

Theorem 1.8.1. Let (X,Π) be a two-sided γ-local-spectral expander with γ ≤ k−Ω(i),

and f ∈ Ck an (ϵ, i)-pseudorandom function. If f = f0 + . . . + fk is the Bottom-Up

Decomposition of f , then:

E[f 4
i ] ≤ 2O(i)ϵE[f 2

i ]∥f∥2∞ + ck,iεγ
1/2∥Dk

i f∥22∥f∥2∞

where ck,i ≤ kO(i).17

17Note that this can be improved to ck,i ≤ max
{
2O(i),

(
k
i

)O(1)
}
, but since we generally consider the
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For simplicity of notation, we note it is sufficient to prove the result assuming

∥f∥∞ = 1. Given a general function f , applying this to f
∥f∥∞ gives the general form

in Theorem 1.8.1. Keeping this in mind, we’ll start by laying out our general strategy

for analyzing the fourth moment. Let [τ ]i = {a ⊆ τ : a ∈ X(i)}, and note that

fi(τ) =
∑

a∈[τ ]i gi(a). Using this notation, we can expand out the 4th moment of fi:

E[f 4
i ] = E

τ∈X(k)

∑
a,b,c,d∈[τ ]i

gi(a)gi(b)gi(c)gi(d) =
∑

a,b,c,d∈X(i)

πk(Xa∪b∪c∪d)gi(a)gi(b)gi(c)gi(d),

where the indices a, b, c, d are ordered. We can further simplify this by grouping the terms

by size of a ∪ b ∪ c ∪ d:

E[f 4
i ] =

4i∑
ℓ=i

(
k

ℓ

) ∑
e∈X(ℓ)

πℓ(e)
∑

a,b,c,d∈X(i):a∪b∪c∪d=e

gi(a)gi(b)gi(c)gi(d).

Analyzing the RHS directly is difficult, so taking after [252], we will partition the term even

further by summing over fixed intersection patterns of a, b, c, and d (an intersection

pattern fixes the intersection size of every subset of {a, b, c, d}). Denote the set of such

patterns where |a∪ b∪ c∪ d| = ℓ by Σℓ, and for any e ∈ X(ℓ), and σ ∈ Σℓ, let σ(e) denote

all tuples (a, b, c, d) such that a ∪ b ∪ c ∪ d = e, (a, b, c, d) ∈ σ. We may now write:

E[f 4
i ] =

4i∑
ℓ=i

(
k

ℓ

)∑
σ∈Σℓ

∑
e∈X(ℓ)

πℓ(e)
∑

a,b,c,d∈σ(e)

gi(a)gi(b)gi(c)gi(d).

We make one final simplification of the above before moving to analysis. Let x1, . . . , xℓ be

random variables which take on vertex values in the complex. For each intersection pattern

σ ∈ Σℓ, let Iσ1 , . . . , I
σ
4 be size-i subsets of {x1, . . . , xℓ} whose union is {x1, . . . , xℓ} and

which satisfy the intersection pattern σ. Then we can simplify the above as the following

regime of i≪ k we use kO(i) throughout for simplicity.
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expectation over the xi, that is E[f 4
i ] is exactly

4i∑
ℓ=i

(
k

ℓ

)∑
σ∈Σℓ

β(σ) E
x1∈X(1)

[
E

x2∈Xx1 (1)
. . .

[
E

xℓ∈Xx1,...,xℓ−1
(1)

[gi(I
σ
1 )gi(I

σ
2 )gi(I

σ
3 )gi(I

σ
4 )]

]]
.

where β(σ) ≤ 2O(i) is a parameter dependent on the intersection pattern that accounts for

the new normalization of terms in the nested expectation. For simplicity of notation, we

will instead write the right-hand side as:

E[f 4
i ] =

4i∑
ℓ=i

(
k

ℓ

)∑
σ∈Σℓ

β(σ) E
x1,...,xℓ

[gi(I
σ
1 )gi(I

σ
2 )gi(I

σ
3 )gi(I

σ
4 )]

where it is understood that E
x1,...,xℓ

is a shorthand for the nested expectation

E
x1∈X(1)

E
x2∈Xx1 (1)

. . . E
xℓ∈Xx1,...,xℓ−1

(1)
.

We will use this convention throughout the rest of the proof, as the nested notation is

cumbersome to write otherwise.

Our goal is now to upper bound this sum to get a hypercontractive inequality. We

do this by bounding each sign pattern independently.

Claim 1.8.2. For every sign pattern σ, the corresponding expectation is bounded by:

E
x1,...,xℓ

[gi(I
σ
1 )gi(I

σ
2 )gi(I

σ
3 )gi(I

σ
4 )] ≤

(
i

k

)ℓ

2O(i)ϵE[f 2
i ] + ck,iεγ

1/2∥Dk
i f∥22

where ck,i ≤ kO(i).

Before jumping into the proof of Claim 1.8.2, let’s show how it can be used to prove

Theorem 1.8.1.

Proof of Theorem 1.8.1. Recall it is sufficient to prove the result assuming ∥f∥∞ = 1. As
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discussed earlier in the section, expanding the 4th moment gives the following relation:

E[f 4
i ] =

4i∑
ℓ=i

(
k

ℓ

)∑
σ

β(σ) E
x1,...,xℓ

[gi(I
σ
1 )gi(I

σ
2 )gi(I

σ
3 )gi(I

σ
4 )] .

Applying Claim 1.8.2 to the righthand side gives:

E[f 4
i ] ≤

4i∑
ℓ=i

(
k

ℓ

)∑
σ∈Σℓ

β(σ)

((
i

k

)ℓ

2O(i)ϵE[f 2
i ] + ck,iεγ

1/2∥Dk
i f∥22

)

≤
4i∑
ℓ=i

(
ek

ℓ

)ℓ(
i

k

)ℓ
(∑

σ∈Σℓ

β(σ)

)(
2O(i)ϵE[f 2

i ] + c1εγ
1/2∥Dk

i f∥22
)

≤ 2O(i)ϵE[f 2
i ] + c2εγ

1/2∥Dk
i f∥22

where c1, c2 ≤ kO(i) and the last step follows from noting that there are at most poly(i)

intersection patterns.

1.8.1 Proving Claim 1.8.2

The main technical work comes in proving Claim 1.8.2, which relies heavily on

Garland’s method and our new localization strategy for decorrelating variables (Corol-

lary 1.6.4).

We split the proof into two parts. First, we will show that any pattern which

has a unique element (i.e. some xi which appears only in one of the four sets) may be

disregarded.

Proposition 1.8.3. If σ is a pattern in which any variable is unique (appears in only one

Ij), then:

E
x1,...,xℓ

[gi(I
σ
1 )gi(I

σ
2 )gi(I

σ
3 )gi(I

σ
4 )] ≤ 2O(i)γϵ2∥Dk

i f∥22.

Proof. To simplify notations in the proof, let I = {x1, . . . , xℓ} and Ij = Iσj . Assume

without loss of generality that I4 has a unique variable xℓ, and set J = I \ {xℓ} and
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J4 = I4 \ {xℓ}. We can re-write our expectation as:

(∗) = E
J

[
gi(I1)gi(I2)gi(I3) E

xℓ∈XJ (1)
[gi|J4(xℓ)]

]
.

By Corollary 1.6.4, the inner expectation can be replaced with Digi(J4) up to γ error in

the following sense. Consider any fixing of the variables J (namely, fixing x1, . . . , xℓ−1),

we have:

E
xℓ∈XJ (1)

[gi|J4(xℓ)] = E
xℓ∈XJ4

(1)
[gi|J4(xℓ)] + Γgi|J4(J \ J4)

= Digi(J4) + Γgi|J4(I \ I4)

where ∥Γ∥ ≤ O(iγ) by Corollary 1.6.4. Plugging this back into our original expectation

gives:

(∗) = E
J
[gi(I1)gi(I2)gi(I3)Digi(J4)] + E

J
[gi(I1)gi(I2)gi(I3)Γgi|J4(I \ I4)]

The idea is now to split each term into two parts: the first three terms gi(I1)gi(I2)gi(I3)

and the last term. Let’s first split these portions by Cauchy-Schwarz to get:

(∗) ≤ E
J

[
gi(I1)

2gi(I2)
2gi(I3)

2
]1/2

·

(
E
J

[
Digi(J4)

2
]1/2

+ E
J4

[
E

I\I4∈XJ4

[
Γgi|J4(I \ I4)2

]]1/2)

where we have re-arranged variable for convenience in the last term. We now bound each

term separately.

The first term can be bounded by the observation that ∥gi∥∞ ≤ 2O(i)ϵ∥f∥∞, and

hence:

E
J

[
gi(I1)

2gi(I2)
2gi(I3)

2
]1/2 ≤ 2O(i)ϵ2∥gi∥2
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where we simply bounded two of the three g2i terms by their infinity norm and applied

Garland’s lemma for localizations (Lemma 1.6.2) to remove the extra variables.

We next analyze the second term. The first summand is exactly ∥Digi∥, which

by Lemma 1.7.5 is at most O(γ∥Dk
i f∥). The second summand is more involved, but can

be analyzed through a combination of standard spectral bounds and Garland’s lemma

for restrictions (Lemma 1.6.1). In particular, re-writing the inner expectation as an

inner-product we get:

E
J4

[
E

I\I4∈XJ4

[
Γgi|J4(I \ I4)2

]]1/2
= E

J4
[⟨Γgi|J4 ,Γgi|J4⟩]

1/2

≤ cγE
J4
[⟨gi|J4 , gi|J4⟩]

1/2

= cγ∥gi∥2,

where c ≤ O(i) and we have applied the fact that ∥Γ∥ ≤ O(iγ) and Garland’s lemma for

restrictions (Lemma 1.6.1). Recalling from Claim 1.7.7 that ∥gi∥2 ≤ 2i∥Dk
i f∥2 completes

the result.

We may now restrict our analysis to patterns in which every variable appears at

least twice. Note that this implies ℓ ≤ 2i, which is important because we expect our

expectation to scale at best with k−2i, so any terms with ℓ > 2i would cause difficulty. As

in [252], we break this analysis into two steps. Let I1, . . . , I4 satisfy intersection pattern σ

as above (we drop the σ superscript for convenience), and let Hi for i ∈ {2, 3, 4} denote

the set of variables that appear i times.

We’ll start by handling H2 through a combination of Cauchy-Schwarz, Garland’s

method, and our localization technique for higher moments. Unlike the case of the complete

complex studied in [252], these latter components are necessary due to the fact that local-

spectral expanders are generally far from product spaces (a crucial property of the complete

complex exploited in [252]). The proof is fairly technical, so we’ll start by laying out
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some convenient notation. For any 0 ≤ m ≤ ℓ, let Tm = {x1, . . . , xm}. Let j = |H3 ∪H4|

where 0 ≤ j ≤ ℓ. Noting that re-ordering the variables x1, . . . , xℓ has no effect on the

distribution, we may assume without loss of generality that H3∪H4 = {x1, . . . , xj} (where

if j = 0 then H3 ∪H4 is empty). Finally, we introduce two useful notations: for m ≤ ℓ let

Imr = Ir ∩ {x1, . . . , xm} and smr = i− |Imr |.

Proposition 1.8.4.

E
x1,...,xℓ

[gi(I1)gi(I2)gi(I3)gi(I4)] ≤ E
x1,...,xj


√√√√ 4∏

r=1

E
τr∼X

Tj (s
j
r)
[g2i |Ijr (τr)]

+ 2O(i)γ1/2ϵ2∥gi∥22

Proof. The proof follows from an inductive argument where we pull one variable in x ∈ H2

inside the sum in each step by de-correlating the two copies of gi which do not take x as

an input, and then applying Cauchy-Schwarz. In particular, we will show by induction

that for all ℓ ≥ m ≥ j:

E
x1,...,xℓ

[gi(I1)gi(I2)gi(I3)gi(I4)] ≤ E
x1,...,xm


√√√√ 4∏

r=1

E
τr∼XTm (smr )

[g2i |Imr (τr)]

+ 2O(i)γ1/2ϵ2∥gi∥22

The base case (m = ℓ) is trivial (as Imr then contains all relevant variables and the inner

expectations are trivial). Since we also done if m = j, we may assume that xm ∈ H2 and

therefore lies in exactly two of I1, I2, I3, I4 by definition. Assume without loss of generality

that xm ∈ I3, I4. We’d like to pull xm inside the expectation. The issue is that despite

the fact that xm does not participate in I1 or I2, these terms actually depend on xm

regardless since τ1 and τ2 are drawn from a link that includes xm. To fix this, we can use

Corollary 1.6.4 to de-correlate these terms from xm:

√√√√ 2∏
r=1

E
τr∼XTm (smr )

[g2i |Imr (τr)] =

√√√√ 2∏
r=1

(
E

τr∼XTm−1 (s
m−1
r )

[
g2i |Im−1

r
(τr)
]
+ Γg2i |Im−1

r
(xm)

)
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≤
√

E
τ1∼XTm−1 (s

m−1
1 )

[
g2i |Im−1

1
(τ1)

]√
E

τ2∼XTm−1 (s
m−1
2 )

[
g2i |Im−1

2
(τ1)

]
+
√
Γg2i |Im−1

2
(xm)

√
E

τ1∼XTm−1 (s
m−1
1 )

[
g2i |Im−1

1
(τ1)

]
+
√
Γg2i |Im−1

1
(xm)

√
E

τ2∼XTm−1 (s
m−1
2 )

[
g2i |Im−1

2
(τ2)

]
+
√
Γg2i |Im−1

1
(xm)

√
Γg2i |Im−1

2
(xm)

where ∥Γ∥ ≤ O(iγ) and we have used the fact that by assumption Imr = Im−1
r for r = 1, 2.

For the moment, denote the last 3 terms by err(g). Then by the inductive hypothesis we

have:

E
x1,...,xℓ

[gi(I1)gi(I2)gi(I3)gi(I4)]

≤ E
x1,...,xm


√√√√ 4∏

r=1

E
τr∼XTm (sr)

[g2i |Imr (τr)]

+ 2O(i)γ1/2ϵ2∥gi∥22

≤ E
x1,...,xm−1

[√√√√ 2∏
r=1

E
τr∼XTm−1 (sr)

[g2i |Im−1
r

(τr)]

· E
xm

[√
E

τ3∼XTm (s3)
[g2i |Im3 (τ3)]

√
E

τ4∼XTm (s4)
[g2i |Im4 (τ4)]

]]

+ E
x1,...,xm

[
err(g)

√
E

τ3∼XTm (sm3 )
[g2i |Im3 (τ3)]

√
E

τ4∼XTm (sm4 )
[g2i |Im4 (τ4)]

]
+ 2O(i)γ1/2ϵ2∥gi∥22

By Cauchy-Schwarz, the first term can be bounded by:

E
x1,...,xm−1


√√√√ 4∏

r=1

E
τr∼XTm−1 (s

m−1
r )

[g2i |Im−1
r

(τr)]

 ,

so it is enough to show that the latter error term is small. We’ll analyze each term in
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err(g) independently using Cauchy-Schwarz, Garland’s method, and our bound on ∥g∥∞.

Starting with the first term, an application of Cauchy-Schwarz gives:

E
x1,...,xm

[√
Γg2i |Im−1

2
(xm)

√
E

τ1∼XTm−1 (s
m−1
1 )

[
g2i |Im−1

1
(τ1)

]
·
√

E
τ3∼XTm (sm3 )

[g2i |Im3 (τ3)]
√

E
τ4∼XTm (sm4 )

[g2i |Im4 (τ4)]

]

≤ E
x1,...,xm

[
Γg2i |Im−1

2
(xm) E

τ1∼XTm−1 (s
m−1
1 )

[
g2i |Im−1

1
(τ1)

]]1/2

· E
x1,...,xm

[
E

τ3∼XTm (sm3 )
[g2i |Im3 (τ3)] E

τ4∼XTm (sm4 )
[g2i |Im4 (τ4)]

]1/2
.

The righthand expectation is easy to analyze using the fact that ∥gi∥∞ ≤ 2O(i)ϵ:

E
x1,...,xm

[
E

τ3∼XTm (sm3 )
[g2i |Im3 (τ3)] E

τ4∼XTm (sm4 )
[g2i |Im4 (τ4)]

]1/2
≤2O(i)ϵ E

x1,...,xm

[
E

τ4∼XTm (sm4 )
[g2i |Im4 (τ4)]

]1/2
=2O(i)ϵ E

τ∼X(|Im4 |)
[⟨gi|τ , gi|τ ⟩]1/2

=2O(i)ϵ∥gi∥2

where the last two equalities follow from Garland’s method. Turning our attention to the

lefthand expectation, we can apply Cauchy-Schwarz to get:

E
x1,...,xm

[
Γg2i |Im−1

2
(xm) E

τ1∼XTm−1 (s
m−1
1 )

[
g2i |Im−1

1
(τ1)

]]1/2

≤ E
x1,...,xm−1

[
⟨Γg2i |Im−1

2
,Γg2i |Im−1

2
⟩
]1/4

E
x1,...,xm−1

[
E

τ1∼XTm−1 (s
m−1
1 )

[
g2i |Im−1

1
(τ1)

]2]1/4
≤ 2O(i)γ1/2 E

x1,...,xm−1

[
⟨g2i |Im−1

2
, g2i |Im−1

2
⟩
]1/4

E
x1,...,xm−1

[
⟨g2i |Im−1

1
, g2i |Im−1

1
⟩
]1/4

where in the last step we have applied the fact that ∥Γ∥ ≤ O(iγ). Analysis of the remaining

83



expectations follows exactly as before. In particular, re-arranging variables by symmetry

and applying Garland’s method, we can continue the above inequality as follows:

= γ1/22O(i) E
τ∼X(|Im−1

2 |)

[
⟨g2i |τ , g2i |τ ⟩

]1/4 E
τ∼X(|Im−1

1 |)

[
⟨g2i |τ , g2i |τ ⟩

]1/4
= γ1/22O(i)⟨g2i , g2i ⟩1/2

≤ γ1/22O(i)ϵ∥gi∥2

where in the final step we have again applied our bound on ∥gi∥∞. Putting the analysis of

these two terms together, we get the desired bound on the first summand of err(g):

E
x1,...,xm

[√
Γg2i |Im−1

2
(xm)

√
E

τ1∼XTm−1 (s
m−1
1 )

[
g2i |Im−1

1
(τ1)

]
·
√

E
τ3∼XTm (sm3 )

[g2i |Im3 (τ3)]
√

E
τ4∼XTm (sm4 )

[g2i |Im4 (τ4)]

]

≤γ1/22O(i)ϵ2∥gi∥22.

The analysis of second summand in err(g) is exactly the same, and the third term differs

only in that the lefthand expectation in the previous analysis becomes:

E
x1,...,xm

[
Γg2i |Im−1

1
(xm)Γg

2
i |Im−1

2
(xm)

]1/2
≤ γ2O(i)ϵ∥gi∥2

by the same arguments. Combining these together, we get that our error term is bounded

by γ1/22O(i)ϵ2∥gi∥22, which completes the proof.

It is left to analyze H3 and H4. Recalling that we’ve assumed {x1, . . . , xj} = H3∪H4,

Proposition 1.8.4 can be restated as:

E
x1,...,xℓ

[gi(I1)gi(I2)gi(I3)gi(I4)] ≤ E
H3∪H4


√√√√ 4∏

r=1

E
τr∼XH3∪H4

(sjr)
[g2i |Ijr (τr)]

+ 2O(i)γ1/2ϵ2∥gi∥22.
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The key is now to apply Proposition 1.7.11, which says that the maximum of the inner

restricted expectations are small, where the factor is better the fewer variables we restrict.

In order to minimize the number of restrictions, we use Cauchy-Schwarz to separate out I1

and I2 from I3 and I4:

E
H3∪H4


√√√√ 4∏

r=1

E
τr∼XH3∪H4

(sjr)
[g2i |Ijr (τr)]

 ≤ E
H3∪H4

[
2∏

r=1

E
τr∼XH3∪H4

(sjr)
[g2i |Ijr (τr)]

]1/2

· E
H3∪H4

[
4∏

r=3

E
τr∼XH3∪H4

(sjr)
[g2i |Ijr (τr)]

]1/2
.

Analysis of these two terms is the same, so we focus on the former. The idea is to

bound one of the two inner expectations (say I1) by its maximum, and note that the

other term then simply returns ∥gi∥. Unfortunately, there is a slight issue with this

strategy naively: H3 may contain variables that are not in I1, so we cannot directly apply

Proposition 1.7.11. We can fix this by de-correlating I1 from the extraneous variables in

H3 using Corollary 1.6.4 (similar to our strategy in Proposition 1.8.4). More formally,

let B12 = (H3 ∩ I1 ∩ I2) ∪H4 for simplicity of notation. By exactly the same inductive

argument used in Proposition 1.8.4 we have:

E
H3∪H4

[
2∏

r=1

E
τr∼XH3∪H4

(sjr)
[g2i |Ijr (τr)]

]1/2
≤ E

B12∼X

[
E

τ1∼XB12

[g2i |IB12
1

(τ1)] E
τ2∼XB12

[g2i |IB12
2

(τ2)]

]1/2
+ 2O(i)ε2γ1/2∥gi∥2

where for the moment we have omitted the sizes of B12, τ1, and τ2 for simplicity (these

will be computed soon). Pulling out the maximal I1 term and applying Proposition 1.7.11
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with j = |B12|, we then get:

E
H3∪H4

[
2∏

r=1

E
τr∼XH3∪H4

(sjr)
[g2i |Ijr (τr)]

]1/2
≤ max

B12

(
E

τ1∼XB12

[g2i |IB12
1

(τ1)]

)1/2

∥gi∥2

+ 2O(i)ε2γ1/2∥gi∥2

≤ 2O(i)ϵ1/2(
k−|B12|
i−|B12|

)1/2∥gi∥2 + 2O(i)ε2γ1/2∥gi∥2

The same argument holds for the latter product over I3 and I4. Letting B12 = (H3 ∩ I3 ∩

I4) ∪H4, and putting everything together, we finally get the bound:

E
x1,...,xℓ

[gi(I1)gi(I2)gi(I3)gi(I4)] ≤
2O(i)ϵ(

k−|B12|
i−|B12|

)1/2(k−|B34|
i−|B34|

)1/2∥gi∥22 + 2O(i)ε2γ1/2∥gi∥22

≤ 2O(i)ϵ(
k−|B12|
i−|B12|

)1/2(k−|B34|
i−|B34|

)1/2 1(
k
i

)∥fi∥22 + 2O(i)ε2γ1/2∥Dk
i f∥22

≤ 2O(i)ϵ

(
k

i

) |B12|+|B34|
2

−2i

∥fi∥22 + 2O(i)ε2γ1/2∥Dk
i f∥22

where we have applied the basic binomial bound
(
n
p

)
≥
(

n
p

)p
. To complete the result, it

suffices show that |B12|+|B34|
2

= 2i− ℓ. This follows similarly to the analogous argument

in [252], but we’ll give a simplification of their proof for completeness. Recall that B12

consists of variables in H3 and H4 that appear in both I1 and I2, and B34 similarly consists

of variables in H3 and H4 that appear in both I3 and I4. Since every variable in H3 occurs

in exactly one of (I1 ∩ I2) and (I3 ∩ I4) by definition, we get that

|B12|+ |B34|
2

= |H4|+
|H3|
2

.

To compute the righthand side, note that by definition we have the following two relations:
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1. Since each term has 4i total variables (with repetition):

4|H4|+ 3|H3|+ 2|H2| = 4i

2. Since there are ℓ unique variables:

|H4|+ |H3|+ |H2| = ℓ

Combining these equations gives the desired equality:

|H4|+
|H3|
2

=
(4|H4|+ 3|H3|+ 2|H2|)− 2(|H4|+ |H3|+ |H2|)

2
= 2i− ℓ.

Putting everything together, we finally get

E
x1,...,xℓ

[gi(I1)gi(I2)gi(I3)gi(I4)] ≤ 2O(i)ϵ

(
i

k

)ℓ

∥fi∥2 + ck,iεγ
1/2∥Dk

i f∥2,

as desired.

1.9 Characterizing Expansion in HD-walks

One traditional application of hypercontractivity on the discrete hypercube lies in

showing that the noisy hypercube graph (given by randomizing each bit of a binary string

x with some probability 1− ρ) is a small-set expander. This result is also often thought of

as stating “sparse functions on the hypercube are noise-sensitive,” an interpretation we’ll

discuss in the next section. Unlike the noisy hypercube, it is well known that HD-walks

are far from being small set expanders [38]. Before we quantify this further, let’s recall

the definition of (edge) expansion in the general weighted setting.

Definition 1.9.1 (Weighted Edge Expansion). Let (X,Π) be a weighted simplicial complex,
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M a k-dimensional HD-Walk over (X,Π), and S ⊂ X(k) a subset. The weighted edge

expansion of S is the average probability of leaving S after one step of M :

Φ(S) = E
v∼πk|S

[M(v,X(k) \ S)] ,

where πk|S is the (normalized) restriction of πk to S,

M(v,X(k) \ S) =
∑

y∈X(k)\S

M(v, y),

and M(v, y) is the transition probability from v to y.

A small-set expander is simply a graph where all small sets expand. To understand

why HD-walks fail this condition, let’s consider the Johnson graph. The Johnson graph

J(n, k, ℓ) is the graph on
(
[n]
k

)
whose edges are given by sets with intersection size ℓ.

Well-studied object in their own right, the Johnson graphs are a fundamental example

higher order random walks on the complete complex [9]. In our context, we usually think

of n as being much larger than k, and ℓ as being (at least) ck for some constant 0 < c < 1.

In this case, one can show by direct computation that the expansion of any i-link Xτ is

bounded away from 1:

Φ(Xτ ) ≈ 1− c−i,

despite the fact that its density is vanishingly small: E[1Xτ ] ≈ (k/n)i.

Recently, BHKL proved a general variant of this result for all HD-walks (see [38,

Theorem 9.2]). They show that spectrum of any k-dimensional walk M on a sufficiently

strong local-spectral expander is divided up into k + 1 strips of width Ok,M(γ)18 centered

around some set of approximate eigenvalues {λi(M)}ki=0, and that the expansion of any

link at level i is almost exactly 1 − λi(M). They also prove a weak converse to this
18BHKL actually only prove the width is Ok,M (

√
γ), the improvement to Ok,M (γ) was given soon after

by Zhang [363].
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result: any non-expanding set must be concentrated in a link. It is convenient to state

the contrapositive. For any δ > 0, let Rδ(M) = r denote the number of approximate

eigenvalues of M that are greater than δ (a quantity BHKL call the ST-Rank of M).

BHKL [38, Theorem 9.5] prove that the expansion of any set S ⊂ X(k) is at least:

Φ(S) ≳ 1− δ − c1

(
k

r

)
ε− c2γ (1.10)

where S is (ε, r)-pseudorandom.19 This is great when ε≪
(
k
r

)
, but for many applications

of interest (e.g. in hardness of approximation), we think of ε as fixed and of k as going

to infinity. In this regime, the above characterization is useless, as the bound reduces to

the trivial fact Φ(S) ≥ 0. Using hypercontractivity, we can completely resolve this issue

by offering a variant of Equation (1.10) with no dependence on k. Before we give the

statement, however, we note that both BHKL and our result require the approximate

eigenvalues of the HD-walk {λi(M)}ki=0 to decrease monotonically. BHKL proved that

this property holds for a broad class of walks they call complete walks, which includes

all HD-walks of interest studied in the literature.

Definition 1.9.2 (Complete HD-Walk ([38] Definition 7.10)). Let (X,Π) be a weighted,

pure simplicial complex and M =
∑
Y ∈Y

αY Y an HD-walk on (X,Π). M is called complete if

for all n ∈ N there exist n0 > n and d such that
∑
Y ∈Y

αY Y is also an HD-walk when taken

to be over the d-dimensional complete complex on n0 vertices.

All walks we have seen so far (canonical walks, swap walks, pure walks, affine

combinations thereof, etc.) are complete, so restricting to this class does not lose much

generality. With this in mind, we can finally state our dimension independent bound on

the expansion of pseudorandom sets.

19Note that we have simplified BHKL’s result here somewhat for simplicity of presentation, but it is an
accurate representation of their result in most cases of interest.
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Theorem 1.9.3 (Pseudorandom Sets Expand). Let (X,Π) be a two-sided γ-local-spectral

expander, M a complete k-dimensional HD-walk, and S ⊆ X(k) of density α. Then for

any δ > 0 and r = Rδ(M)− 1, the expansion of S is at least:

Φ(S) ≥ 1− δ − (1− δ)2O(r)ϵ1/3 − cγ

where c ≤ 2O(k)w(M)h(M)2 and S is (ε, r)-pseudorandom.

The proof of Theorem 1.9.3 goes through a level-i inequality for pseudorandom

functions of independent interest.

Theorem 1.9.4 (Level-i Inequality). Let (X,Π) be a γ-local-spectral expander with γ <

2−Ω(k) and f ∈ Ck a boolean, (ϵ, i)-pseudorandom function. Then:

⟨f, f↑i⟩ ≤ 2O(i)ϵ1/3E[f ].

Let’s first prove Theorem 1.9.3 given Theorem 1.9.4.

Proof of Theorem 1.9.3. The argument is standard and follows from the identity Φ(S) =

1− 1
α
⟨f,Mf⟩ (where α = E[f ]), and expanding f =

k∑
i=0

f↓i (the HD-Level-Set Decomposi-

tion). Namely, since f↓i is an approximate eigenvector, we can write:

Φ(S) = 1− 1

α

k∑
i=0

⟨f,Mf↓i⟩

≥ 1− 1

α

k∑
i=0

λi(M)⟨f, f↓i⟩ − c1γ

where c1 ≤ w(M)h(M)22O(k). We can now apply Theorem 1.7.8 to switch between
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decompositions to get:

Φ(S) ≥ 1− 1

α

k∑
i=0

λi(M)⟨f, f↑i⟩ − c2γ

where c2 = c1 + 2O(k). Since M is a complete walk, its eigenvalues decay monotonically

[38], we can therefore simplify the above to:

Φ(S) ≥ 1− 1

α

r∑
i=0

λi(M)⟨f, f↑i⟩ −
λr+1(M)

α

k∑
i=r+1

⟨f, f↑i⟩ − c2γ

= 1− 1

α

r∑
i=0

λi(M)⟨f, f↑i⟩ −
λr+1(M)

α

(
α−

r∑
i=0

⟨f, f↑i⟩

)
− c2γ.

Recall that by definition λr+1(M) ≤ δ, and hence

Φ(S) ≥ 1− δ − 1− δ

α

r∑
i=0

⟨f, f↑i⟩ − c2γ

≥ 1− δ − (1− δ)2O(r)ε1/3 − c2γ

where in the last step we have applied Theorem 1.9.4.

It is left to prove Theorem 1.9.4, which also follows from fairly standard arguments

given Theorem 1.8.1.

Proof of Theorem 1.9.4. To simplify notations, we write fi instead of f↑i. Notice that by

Hölder’s inequality for p = 4/3, q = 4 we have:

⟨f, fi⟩ ≤ ∥f∥4/3∥fi∥4 = α3/4 E[f 4
i ]

1/4

Combining this with Theorem 1.8.1 gives the following relation:

⟨f, fi⟩4

α3
≤ E[f 4

i ] ≤ 2O(i)ϵE[f 2
i ] + c1γ

1/2α ≤ 2O(i)ϵ⟨f, fi⟩+ c2γ
1/2α (1.11)
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where c1, c2 ≤ 2O(k) by approximate orthogonality (Lemma 1.7.6). We can simplify the

above via two observations. First, note that we can assume without loss of generality that

γ1/4 ≤ c−1
1 ϵ. This follows from observing that:

⟨f, fi⟩ =
(
k

i

) i∑
j=0

(−1)i−j

(
i

j

)
⟨Dk

j f,D
k
j f⟩.

Appealing to arguments from [38, Lemma 8.8], we have that ⟨Dk
j f,D

k
j f⟩ ≤ εα, which

gives the naive bound:

⟨f, fi⟩ ≤
(
k

i

)
2O(i)εα.

If ε ≤
(
k
i

)−3/2
then

(
k
i

)
ϵ ≤ ϵ1/3 and our desired bound follows. Otherwise, we may assume

from now on that ε ≥
(
k
i

)−3/2 ≥ 2−(3/2)k. Since γ ≤ 2−Ω(k), we are therefore free to assume

γ1/4 ≤ c−1
1 ϵ as well. Second, we can also assume ⟨f, fi⟩ ≥ γ1/4α, since otherwise we are

done by our previous assumptions on γ and ε. Combining these with Equation (1.11) then

gives:

⟨f, fi⟩4

α3
≤ 2O(i)ϵ⟨f, fi⟩+ c1γ

1/2α

≤ 2O(i)ϵ⟨f, fi⟩+ εγ1/4α

≤ 2O(i)ε⟨f, fi⟩

as desired.

1.10 Fourier Analysis on HDX

In this section we further develop the theory of Fourier analysis on simplicial

complexes, and show how hypercontractivity for pseudorandom functions (Theorem 1.8.1)

recovers tight analogues of the KKL Theorem and noise-sensitivity of sparse functions.

This requires introducing a number of new analog definitions of classic Fourier analytic
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quantities on simplicial complexes. To get an idea for what these should look like, it will be

useful to start by considering a natural embedding of the hypercube itself into a simplicial

complex.

Definition 1.10.1 (Hypercube Complex). The hypercube complex X = X{0,1}n is the

complete n-partite complex on X(1) = [n]× {0, 1}, where the first coordinate denotes the

color of the vertex. That is, the top level faces are X(n) = {{(1, x1), . . . , (n, xn)} : x ∈

{0, 1}n}.

We make a few notes on this definition. First, it is clear from definition that X(n)

can equivalently be thought of as the hypercube {0, 1}n, where each color in [n] corresponds

to a coordinate in {0, 1}n. Further, classic graphs on {0, 1}n such as the hypercube or noisy

hypercube can be expressed as simple higher order random walks. The hypercube graph,

for instance, is simply the non-lazy lower walk UD+ = 2Un−1Dn − I. This embedding

will serve as our guiding principle for developing analog Fourier-analytic definitions on

simplicial complexes—whenever possible, our definitions will reduce to the standard notion

when applied to the hypercube complex. We note that the same embedding can be used

for any product distribution and all of our definitions will generalize appropriately. We

focus on the simple case of the hypercube for ease of exposition.

1.10.1 Total Influence and the KKL Theorem

We’ll start with a fundamental concept in classical Fourier analysis, influence. Let’s

first recall the definition of (total) influence on the discrete hypercube. Influence can be

formalized in a number of equivalent ways. It is often thought of, for instance, as a measure

of average sensitivity. In our context, it will be most convenient to view influence as a

statement about the expansion of a function with respect to the hypercube graph. More

formally, let Qn denote the normalized adjacency matrix of the hypercube graph, and

Qlazy
n = I+Qn

2
its lazy variant. We will write total influence in terms of the (un-normalized)
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Laplacian operator L = n(I −Qlazy
n ).

Definition 1.10.2 (Total Influence (hypercube)). Let f : {0, 1}n → {0, 1} be a Boolean

function. The total influence of f , denoted I[f ], is:

I[f ] = ⟨f, Lf⟩.

Expressed in this sense, there is a natural generalization to simplicial complexes. It

is not hard to see that on the hypercube complex, Qlazy
n is exactly the lower walk UD. As

a result, we’ll define influence using the Laplacian of the lower walk.

Definition 1.10.3 (Total Influence). Let (X,Π) be a pure, weighed simplicial complex

and f ∈ Ck. The influence of f , denoted I[f ] is:

I(X,Π)[f ] = ⟨f, LUDf⟩

where LUD = k(I − Uk−1Dk). When clear from context, we will simply write I[f ].

When (X,Π) is sufficiently expanding, Definition 1.10.3 acts much like standard

influence on the cube. For instance, recalling standard bounds on the spectral expansion

of LUD [239], it is not hard to see the total influence of any function on a γ-local-spectral

expander lies between (1+Ok(γ))Var(f) ≤ I(X,Π)[f ] ≤ kVar(f), which returns the standard

bounds as γ goes to 0. Similarly, it is obvious that the total influence of any function on

the hypercube complex is equivalent to its total influence on the hypercube, as the lower

walk Un−1Dn is exactly Qlazy
n .

Observation 1.10.4. Let f : {0, 1}n → R be any function and fX : X{0,1}n(n) → R its

equivalent on the hypercube complex, that is:

f(x1, . . . , xn) = fX((1, x1), . . . , (n, xn))
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Then:

IX{0,1}n [f ] = I[f ].

One of the most well-studied problems in the analysis of boolean functions is

understanding the structure of functions with low influence. The seminal result in this

area is called the “KKL Theorem” [226]. Informally, the KKL Theorem states that if a

function has low total influence, there must exist an influential coordinate (in the sense

that on average over {0, 1}n, the coordinate has a large affect on the value of f). Morally,

this can also be thought of as strong notion of the following statement: “functions with

low influence are not pseudorandom.” While the KKL Theorem itself does not extend

beyond the hypercube (at least in unbalanced settings), this latter interpretation does. In

particular, Bourgain [158] proved a similar statement over any product space: functions

with low influence must have some influential set of coordinates, and are therefore not

pseudorandom. We prove a variant of Bourgain’s result for local-spectral expanders.

Theorem 1.10.5 (Bourgain’s Theorem for HDX). Let (X,Π) be a two-sided γ-local-

spectral expander with γ ≤ 2−Ω(k) and f ∈ Ck a boolean function. Then for any 0 ≤ K ≤ k,

if I[f ] ≤ KVar(f), there exists an (i ≤ K)-link τ with large density:

E
Xτ

[f ] ≥ 2−O(K).

Proof. This follows without too much difficulty from the expansion of pseudorandom sets

(Theorem 1.9.3). In particular, notice that our assumption on the influence implies the

following bound on the expansion of f with respect to the lower walk Uk−1Dk:

Φ(f) =
⟨f, LUDf⟩
k E[f ]

=
I[f ](1− E[f ])

kVar(f)
≤ K

k
.

Recall that Theorem 1.9.3 states that for any δ > 0 and r = Rδ(UD)− 1, the expansion
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of an (ε, r)-pseudorandom boolean function g with respect to the lower walk is at least:

Φ(g) ≥ 1− δ − (1− δ)2O(r)ε1/3 − cγ.

Using this fact, we’ll show that f cannot be (ε,K)-pseudorandom for ε ≤ 2−Ω(K), which

gives the result.

To this end, assume f is (ε,K)-pseudorandom for some ε = 2−Ω(K) to be determined

soon (else we are done), and let δ be 1 − K(1+ϵ1/6)
k

such that 1 − δ < (K + 1)/k. Since

the eigenvalues of UD are concentrated around 1, 1− 1/k, 1− 2/k, · · · , 1−K/k for small

enough γ [38], the ST-Rank Rδ(UD) = K + 1, and r = K. Theorem 1.9.3 then implies:

Φ(f) ≥ K

k
· (1 + ϵ1/6)(1− 2O(r)ϵ1/3),

where we have again used our assumption on the size of γ. Re-arranging the above using

the upper bound on expansion then gives a lower bound on ε of:

ϵ1/3 ≥ ϵ1/6

1 + ϵ1/6
· 1

2O(r)
≥ 1

2O(r)
,

which implies the result.

Before moving on, we’ll prove that this result is tight.

Proposition 1.10.6. Let c ≥ 1 be any constant. Then for all integers K, k > 1 satisfying

k ≥ Ωc(K) and any n sufficiently larger than k, there exists a Boolean function f ∈ Ck on

the k-dimensional complete complex on n vertices satisfying:

1. The influence of f is small:

I[f ] ≤ KVar(f)
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2. For every i ≤ cK, all i-links are sparse:

∀i ≤ cK, τ ∈ X(i) : E
Xτ

[f ] ≤ 2−Ω(K).

Proof. Our construction is based on a careful analysis of the anti-tribes function (a.k.a

the AND of ORs function) similar to [245, Example 5.8]. Concretely, let T1, . . . Tm (called

“tribes”) be m = 2cK disjoint sets of c1 nk vertices for some c1 ≥ log(Ω(c)). We define our

candidate function f ∈ Ck to be 1 on a k-face S exactly when S contains some vertex

from each Ti:

f(S) =


1 if ∀1 ≤ i ≤ m: |S ∩ Ti| > 0

0 else.

For simplicity, it will actually be more convenient to analyze f as a function over [n]k

rather than X(k) =
(
n
[k]

)
. Since the probability of repeated vertices in the former is on,k(1),

this has no effect on our final result when n is sufficiently larger than k.

Let’s start by proving the density of every cK-link is at most 2−Ω(k).20 Note that

this implies the same for every i-link for i ≤ cK. It is not hard to see that the largest

density link comes from fixing an element in each of cK tribes. For simplicity, fix such a

cK-link T with a vertex in each Ti for cK + 1 ≤ i ≤ m (all such links are symmetric, so it

suffices to analyze this case). For a uniformly drawn element S ∈ [n]k, let Ei denote the

event that S contains a vertex in Ti. We’d like to bound:

E
XT

[f ] = P
S∼[n]k

[
cK⋂
i=1

Ei

∣∣∣∣∣ S ⊃ T

]
= P

S∼[n]k−cK

[
cK⋂
i=1

Ei

]
,

where we have used the fact that S \ T is independent of T since we are working over [n]k.
20Formally we note this should really be shown for ⌊cK⌋-links, but this makes no significant difference

in the analysis so we ignore it for simplicity.
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Since the Ei are negatively correlated, we can bound this probability by:

P
S∼[n]k−cK

[
cK⋂
i=1

Ei

]
≤

cK∏
i=1

P
S∼[n]k−cK

[Ei]

≤ (1− (1− c1/k)
k)cK

≤
(
1− 1

O(c)

)cK

≤ 2−Ω(K)

where we’ve used the fact that e−x ≥ 1− x ≥ e−x/(1−x) for x < 1 and our assumptions on

the size of k.

We now move on to analyzing the influence of f , which will follow from similar

computations. To start, notice that it is instead sufficient to bound the expansion of f

with respect to the lower walk by:

Φ(f) ≤ K

k

Var(f)
E[f ]

=
K(1− E[f ])

k
,

as then:

I[f ] = ⟨f, LUDf⟩ = kΦ(f)E[f ] ≤ KVar(f),

where we recall LUD is the un-normalized Laplacian of UD.

To this end, recall that the expansion of f can also be defined as the average

probability of leaving supp(f) after applying the walk, that is:

Φ(f) = E
S∼supp(f)

[ϕ(S)],

where ϕ(S) denotes the probability of leaving S in a single step of the lower walk. To

compute this value, recall that in the down step of the walk, a uniformly random vertex is
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removed from S. In order to leave the support of f in the up step, the removed element

must have been selected from a tribe Ti such that |S ∩ Ti| = 1. The idea is then to show

that for most samples, only a small fraction of tribes have exactly one element. With this

in mind, let Bi be the event |S ∩Ti| = 1 over the randomness of S ∼ supp(f). Formalizing

the above argument, we can bound ϕ(S) by the sum over Bi:

ϕ(S) ≤
m∑
i=1

Bi(S)

k
,

and therefore the expansion Φ(f) by:

Φ(f) ≤ 1

k
E

S∼supp(f)
[Bi(S)].

By a similar argument to our density calculations, the probability that any fixed

tribe Ti has exactly one element from S ∼ supp(f) is at most:

E[Bi] =
(
1− c1

k

)k−m

≤ e−c1
k−m

k

≤ 1

Ω(c)

since we have by assumption that k is much larger than m. Plugging this into our

expression for expansion then gives:

Φ(f) ≤ m

k
· 1

Ω(c)
≤ c2

K

k

for some c2 < 1. Noting that E[f ] = 2−Ω(K) then implies the result for the appropriate

setting of constants.
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1.10.2 Stability and the Noise Operator

Another fundamental notion in boolean Fourier analysis is the noise operator Tρ.

It is convenient to express the definition in terms of the following process on an element

x ∈ {0, 1}n:

1. Remove each bit with probability 1− ρ.

2. Replace each removed bit uniformly21 at random.

We write the distribution over y given by this process as Nρ(x). The noise operator Tρ is

simply the averaging operator over ρ-correlated strings.

Definition 1.10.7 (Noise Operator (Hypercube)). Let f : {0, 1} → R be any function.

The noise operator Tρ averages f over Nρ:

Tρf(x) = E
y∼Nρ(x)

[f(y)].

To extend the noise operator to simplicial complexes, consider the following refor-

mulation of the distribution Nρ(x): instead of removing each coordinate independently

with probability 1− ρ, we remove a uniformly random set of i coordinates with probability(
n
i

)
ρn−i(1 − ρ)i, and replace them uniformly at random. This equivalent process does

have a natural analog on simplicial complexes: simply replace “uniformly random set of i

coordinates” with “uniformly random i-face.” We can formalize this through the averaging

operators.

Definition 1.10.8 (Noise Operator (Simplicial Complex)). Let (X,Π) be a pure, weighted

simplicial complex. The noise operator T k
ρ (X,Π) at level k of the complex is:

T k
ρ (X,Π) =

k∑
i=0

(
k

i

)
(1− ρ)iρk−iUk

k−iD
k
k−i.

21In more general settings like the p-biased cube, this is replaced with respect to the underlying
distribution.
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We write Tρ when the level and complex are clear from context.

Let’s take a moment to check that, as with influence, when applied to the hypercube

complex this definition recovers Tρ.

Observation 1.10.9. Let f : {0, 1}n → R be any function and fX : X{0,1}n(n) → R its

equivalent on the hypercube complex, then:

T n
ρ (X{0,1}n)fX = Tρf.

Proof. T n
ρ (X{0,1}n) is also an averaging operator, so it is enough to confirm it averages over

the ρ-noisy distribution Nρ. We claim this is clear from definition. In particular, notice

that Un
n−iD

n
n−i on X{0,1}n is exactly the process of removing i-coordinates uniformly at

random, and replacing them with uniformly random bits. As we mentioned above, this is

an equivalent way to define Nρ(x), is applying this process with probability
(
n
i

)
(1−ρ)iρn−i,

which exactly matches the definition of Tρ(X{0,1}n).

The noise operator has a wide variety of applications across boolean Fourier analysis.

One classical application is to analyze the noise-sensitivity of a boolean function, that

is the likelihood that the function flips on a noisy input. It is convenient to define the

opposite concept first, stability.

Definition 1.10.10 (Stability (Hypercube)). Let f : {0, 1} → R be any function. The

stability of f with respect to ρ, denoted Stabρ(f), is:

Stabρ(f) = ⟨f, Tρf⟩.

Since we already defined Tρ on simplicial complexes, stability has an obvious analog.
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Definition 1.10.11 (Stability (Simplicial Complex)). Let (X,Π) be a weighted, pure

simplicial complex and f ∈ Ck. The noise stability of f with respect to ρ, denoted Stabρ(f),

is:

Stab(X,Π)
ρ (f) = ⟨f, T k

ρ (X,Π)f⟩.

We drop (X,Π) from the notation when clear from context.

Similarly, it is clear that our definition of stability for complexes returns the original

definition when applied to the hypercube complex.

Observation 1.10.12. Let f : {0, 1}n → R be any function and fX : X{0,1}n(n) → R its

equivalent on the hypercube complex, then:

Stabρ(f) = StabX{0,1}n
ρ (fX)

A function is called noise-sensitive if is has poor stability. One classical result in

boolean Fourier analysis is that sparse functions on the hypercube are noise-sensitive,

which is equivalent to saying that the noisy hypercube graph is a small-set expander.

Since the noise operator is just a specific instance of a (complete) higher order random

walk, Theorem 1.9.3 implies an analogous statement for functions on HDX: pseudorandom

functions are noise-sensitive.

Corollary 1.10.13 (Pseudorandom functions are noise sensitive). Let (X,Π) be a two-sided

γ-local-spectral expander, f ∈ Ck an (r, δ)-pseudorandom boolean function for δ ≤ 2−Ω(r)ϵ3

and r = log(2/ϵ)/ log(1/ρ) + 2. Then f is noise sensitive:

Stabρ(f) ≤ (ϵ+ cγ)E[f ]

for c ≤ 2O(k).

Proof. One can directly compute from [38, Corollary 7.6] that the approximate eigenvalues
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of Tρ are exactly λi = ρi. As a result, for small enough γ, the (ε/2)-ST-Rank of Tρ is at

most:

Rε/2(Tρ) ≤ log(ε/2)/ log(1/ρ) + 2.

Since Tρ is a higher order random walk, Theorem 1.9.3 states that the non-expansion of

any (δ, r)-pseudorandom function f of density α is at most:

1

α
⟨f, Tρf⟩ ≤ α + (1− α)ε/2 + 2O(r)δ + cγ

≤ α + (1− α)ε/2 + ε/4 + cγ

≤ ε+ cγ,

where we’ve used the fact that α ≤ δ ≤ ε/4.

The noise operator is actually also commonly used to define hypercontractivity. In

this form, the standard hypercontractive inequality generally states:

∥Tρf∥4 ≤ ∥f∥2

for some ρ = Θ(1). It is well known that on the hypercube this statement is in fact

equivalent to Bonami’s lemma. We can show a similar equivalence between our variant of

Bonami’s lemma (Theorem 1.8.1) and a noise operator based form of hypercontractivity

for pseudorandom functions. To state the strongest form of the result, it will be useful to

extend the classic notion of degree to simplicial complexes.

Definition 1.10.14 (Function Degree). Let (X,Π) be a pure, weighted simplicial complex,

and f ∈ Ck any function. The degree of f , denoted deg(f), is the largest i such that f↑i is

non-zero.

We now show how to translate Theorem 1.8.1 into noise operator form for degree i,

(ε, i)-pseudorandom functions.
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Proposition 1.10.15. Let (X,Π) be a two-sided γ-local-spectral expander satisfying

γ ≤ 2−Ω(k) and f ∈ Ck a degree i,22 (ε, i)-pseudorandom function. Then for some constant

ρ = Θ(1), we have:

∥Tρf∥44 ≤ ϵ∥f∥22∥f∥2∞.

Proof. The overall proof follows a fairly standard reduction from hypercontractivity to

Bonami’s lemma (see e.g. [308, Exercise 9.6]), but requires some extra work due to the

fact that the Bottom-Up decomposition is only approximately an eigenbasis for Tρ (in an

ℓ2-sense). Namely, by [38, Proposition 7.5] and Lemma 1.7.5, we can write:

Tρf↑j = ρkf↑j + errj

where ∥errj∥2 ≤ kO(j)γ∥f∥2, and ∥errj∥∞ ≤ kO(j)ε∥f∥∞. The last of these facts is slightly

less standard, and follows from noting that errj is really a linear combination of at most kO(j)

averaging operators applied to gj (see [38, Proposition 7.5]), and that ∥gj∥∞ ≤ 2O(j)ε∥f∥∞.

With this in mind, we can expand out ∥Tρf∥ by the Bottom-Up Decomposition and apply

Theorem 1.8.1 to get:

∥Tρf∥4 ≤
i∑

j=0

∥Tρf↑j∥4

≤
i∑

j=0

ρi∥f↑j∥4 + ∥errj∥4

≤ 1

2
ε1/4∥f∥1/22 ∥f∥1/2∞ +

i∑
j=0

∥errj∥4

≤ 1

2
ε1/4∥f∥1/22 ∥f∥1/2∞ +

i∑
j=0

∥errj∥1/22 ∥errj∥1/2∞

≤ ε1/4∥f∥1/22 ∥f∥1/2∞

22When i≪ k, we can replace the condition on γ with γ ≤ k−Ω(i)
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where we have assumed that ρ is a sufficiently small constant. Taking the fourth power of

both sides completes the proof.

This chapter, in full, is based on the material as it appears in Symposium on

Theory of Computing 2022. Bafna, Mitali; Hopkins, Max; Kaufman, Tali; Lovett, Shachar.

“Hypercontractivity on High Dimensional Expanders". The dissertation author was a

primary investigator and author of this material.
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Chapter 2

Hypercontractivity on HDX II: Sym-
metrization and q-Norms

2.1 Introduction

Recent years have seen the development of a powerful theory of boolean function

analysis beyond the cube, with breakthrough applications in extremal and probabilistic

combinatorics [158, 139], quantum communication [33], approximate sampling [24, 96, 22],

and hardness of approximation [128, 126, 255, 297]. Among the most powerful tools in

boolean analysis, and the core of all above applications, is the theory of hypercontractivity

[71], an analytic inequality bounding the high norm behavior of low degree functions on the

cube. Popularized in the 80s by Kahn, Kalai, and Linial [226], variants of hypercontractivity

have since been established for many objects, including products [78, 349, 160, 158], the

slice [252], the shortcode [46], the Grassmann [255, 138], and various groups [147, 139].

Many potential applications of hypercontractivity (e.g. to low-soundness PCPs

[128], sparsest cut [227], the unique games conjecture [47]) are still hindered by the fact

that most known hypercontractive inequalities only hold for dense domains. Motivated

in this context, Gur, Lifshitz, and Liu [187] and Bafna, Hopkins, Kaufman, and Lovett

[39] recently proved the first hypercontractive inequalities for sparse systems, in particular

for the class of hypergraphs known as high dimensional expanders (HDX), an extension

of expander graphs to high dimensions that have garnered significant interest in boolean
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analysis and hardness of approximation [124, 111, 38, 119, 162, 208, 40, 113]. Their

works gave the first example of hypercontractivity for sparse domains, but fell short of

known inequalities on products: suffering from sub-optimal dependence on degree (a

critical parameter in application),1 and requiring restrictive assumptions on the function

in question.

In this work, inspired by O’Donnell and Zhao’s [364] proof of hypercontractivity

for products, we take a new approach for high dimensional expanders that completely

avoids these issues: symmetrization. Symmetrization is a classical technique of Kahane

[225] and Bourgain [77] which analyzes high moment behavior of functions on product

spaces f : Ω⊗d
i → R by convolving them with a random boolean string r ∈ {±1}d. Up to

the application of a small amount of noise, Bourgain proved that the resulting function

f̃ : {±1}d × Ω⊗n
i → R has the same behavior of f , allowing one to analyze f̃ instead

using standard analysis on its boolean component. We prove Bourgain’s theorem holds for

sufficiently strong high dimensional expanders up to a (1± o(1)) factor. As applications,

we prove an optimal hypercontractive inequality for high dimensional expanders, and a

booster theorem for general low influence functions generalizing Bourgain’s classical result

on products [158]. This resolves two of the main open questions of [187, 39]

Our proof of the symmetrization theorem is based on two new ideas in the theory of

high dimensional expansion. First, we introduce the notion of q-norm HDX, which bounds

the local divergence of a hypergraph from a product space in q-norm, and show any strong

enough spectral HDX is a q-norm HDX. This allows us to manipulate higher norms directly,

avoiding expensive error terms appearing in [39, 187]. Second, we introduce a basic variant

of coordinate-wise analysis for the noise operator Tr on q-norm HDX, showing it can be

approximately broken into coordinate-wise components T i
ri

that correctly localize to the

standard 1-dimensional operators Tri when restricted to the ith coordinate. This allows
1Technically [39] do achieve the correct dependence, but only for the much stricter class of two-sided

HDX.
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for the replacement method as used in Bourgain’s original proof of the symmetrization

theorem, greatly simplifying prior analysis.

2.1.1 Background

High Dimensional Expanders:.

We study (weighted) partite hypergraphs X ⊂ [n]d, which we view as d-dimensional

distributions X = (X1, . . . , Xd). X is called a γ-product2 if for every i ̸= j

1. The bipartite graph corresponding to the marginal (Xi, Xj) is a γ-spectral expander

2. This holds even conditioning on any (feasible) values of XS for any i, j ̸∈ S ⊆ [d].

We write the space of functions on X as Cd := {f : X → R}. The weights of X,

denoted Π(x), induce a natural expectation operator and Lp-space over Cd defined by

E[f ] =
∑
x∈X

Π(x)f(x) and ∥f∥p = E[|f |p]1/p. Given a linear operator T : Cd → Cd, we

define its p-norm in the standard way as maxf∈Cd

∥Tf∥p
∥f∥p .

Noise Operator and Total Influence:.

The noise operator Tρ : Cd → Cd is a classical smoothing procedure in boolean

analysis which given a string (x1, . . . , xd) ∈ X, averages over y generated by re-sampling

each coordinate with probability 1 − ρ. The total influence of a {±1}-valued function

f ∈ Cd measures its average sensitivity to re-sampling an individual coordinate

I[f ] = 2
d∑

i=1

Ex[P[f(x) ̸= f(x(i))]],

where x(i) is generated by re-sampling the ith coordinate of x.
2γ-products, introduced formally in [187], are essentially equivalent to the standard notion of spectral

HDX [109].
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Fourier Analysis, Symmetrization, and the Generalized Noise Operator:.

The classical theory of Fourier analysis on products is given by the Efron-Stein

Decomposition, whose components {f=S}S⊆[d] are given by

f=S(y) =
∑
T⊆S

(−1)|S\T |E[f(x) | xT = yT ]

It is easy to check that f =
∑

S⊆[d]

f=S. We write f≤i =
∑
|S|≤i

f=S as the degree-i component

of f . On product spaces, {f=S} is an orthogonal eigenbasis for Tρ:

Tρf =
∑
S⊆[d]

ρ|S|f=S

This leads to a standard generalization of the noise operator to vectors r ∈ Rd

Trf :=
∑
S⊆[d]

rSf
=S,

where rS =
∏
i∈S

ri. Finally, the symmetrization of f , denoted f̃ : {±1}d ×X → R is the

function

f̃(r, x) = Trf(x) =
∑
S⊆[d]

rSf
=S(x).

Note f̃ is the unique function whose X-restrictions f̃ |x(r) = f̃(x, r) have Fourier coefficients

f=S(x).

2.1.2 Results

Our main contribution is the following extension of Bourgain’s symmetrization

theorem to HDX:

Theorem 2.1.1 (The Symmetrization Theorem (Informal Corollary 2.5.2)). Let q > 1
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and X be a d-partite γ-product satisfying γ ≤ 2−Ωq(d). Then for any f : X → R

(1− oγ(1))∥T̃cqf∥q ≤ ∥f∥q ≤ (1 + oγ(1))∥T̃2f∥q

The symmetrization theorem is a powerful tool for extending classical structure

theorems on the cube to product spaces. In this work, we focus mainly on its application

to the hypercontractive inequalities. On the boolean cube, the simplest form of hypercon-

tractivity (called the Bonami Lemma [71]) states that the degree-i part of any function

f : {0, 1}d → R is ‘smooth’ in the sense that

∥f≤i∥4 ≤ 2O(i)∥f≤i∥2.

This simple statement has far reaching consequences in analysis and theoretical computer

science, including the famous KKL Theorem [226] and its many applications.

Unfortunately, the Bonami lemma is false on unbalanced product spaces. The

obvious counter-examples are dictators, or more generally ‘local’ functions that are dense

in some restriction. Consider, for instance, the ith dictator on the p-biased cube. While 1i

is a degree-1 function, it is easy to compute:

E[14
i ] = p≫ E[12

i ]
2 = p2.

Global hypercontractivity aims to show that these local functions are the only counter-

examples. In other words, as long as f isn’t too dense in any restriction, the Bonami

lemma should still hold. Variants of such a bound have been known since the 90s [158],

but a tight bound was only shown recently by O’Donnell and Zhao [364] and Keevash,

Lifshitz, Long, and Minzer [248]. Using symmetrization, we prove strong enough partite

high dimensional expanders enjoy essentially the same bound.
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Theorem 2.1.2 (Global Hypercontractivity on HDX (Bonami Form, Informal Theo-

rem 2.6.1)). Let X be a d-partite γ-product satisfying γ ≤ 2−Ω(d). Then for any f : X → R

and i ≤ d:

∥f≤i∥44 ≤ 2O(i)∥f∥22 max
|S|≤i,xS

{∥f |xS
∥22}

In other words, so long as f is not dense upon restricting the values of any i

coordinates, i.e. ∥f |xS
∥22 ≤ 2O(i)∥f∥22, we recover the standard Bonami lemma. Note that

on a balanced product space such as the cube, such a bound indeed holds generically for

all functions.3 Theorem 2.1.2 improves on the best known bounds for γ-products [187]

which scale with iO(i) and have an additional error term scaling with γ∥f∥∞, limiting their

regime of application. We discuss further in Section 2.1.4.

As hinted above, the 2O(i) dependence in Theorem 2.1.2 is tight. We emphasize

this dependence is often critical in application because it matches the eigenvalues of the

noise operator, allowing one to transfer to a variant of the classical operator-form of

hypercontractivity.

Corollary 2.1.3 (Global Hypercontractivity (Operator Form, Informal Corollary 2.6.2)).

Let X be a d-partite γ-product satisfying γ ≤ 2−Ω(d). There exists a constant ρ ∈ (0, 1)

such that for any mean-0 function f : X → R and i ≤ d

∥Tρf
≤i∥44 ≤ ∥f∥22 max

|S|≤i,xS

{∥f |xS
∥22}

Combined with the Fourier analytic machinery of [187], these results immediately

give a tight characterization of low influence functions on partite HDX.

Corollary 2.1.4 (Low Influence Functions are Local (Informal Corollary 2.6.3)). Let X

be a d-partite γ-product and f : X → F2 a constant variance function satisfying I[f ] ≤ K,
3In fact even on unbalanced products the same argument recovers so-called ‘generalized hypercontrac-

tivity’, which scales with the worst marginal probability of the product, see [308].
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then ∃S ⊂ [d] with |S| ≤ O(K) and xS ∈ X[S] such that

E[f |xS
] ≥ 2−O(K)

Corollary 2.1.4 is only meaningful when f is sparse (namely E[f ] ≤ 2−Ω(K)),

otherwise it is trivially the case there exist dense restrictions. One of the main open

questions raised in [39] was whether an analogous result could be proved for any density

function. The classical such result on product spaces is Bourgain’s booster theorem,

which states that any low influence function has many restrictions on which it deviates

substantially from its expectation. We extend this result to HDX.

Theorem 2.1.5 (A Booster Theorem for HDX (Informal Theorem 2.7.1)). Let X be a

d-partite γ-product with γ ≤ 2−Ω(d), and f : X → {±1} a constant variance function

satisfying I[f ] ≤ K. Then

P
x∼X

[
∃T ⊂ [d] : |T | ≤ O(K), |E[f |xT

]− E[f ]| > 2−O(K2)
]
≥ 2−O(K2)

Classically, Bourgain’s booster theorem lead to the famous theory of sharp thresholds

for graph properties [158]. It is an interesting open problem whether Theorem 2.1.2 or

Theorem 2.1.5 could be used in this context.

2.1.3 Technical Overview

Our proof of the symmetrization theorem relies on two elementary new tools in

the theory of high dimensional expansion. We first introduce our notion of ‘q-norm HDX’

which bounds the local divergence of X from a product in q-norm. Second, we introduce

our coordinate-wise treatment of the noise operator, and sketch how the technique is used

to prove the symmetrization theorem. Finally, we sketch how symmetrization is used to

prove optimal global hypercontractivity, combining the elegant argument of O’Donnell
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and Zhao [364] for products with distinct elements of [187]’s method and [39]’s proof of

hypercontractivity for two-sided HDX. We omit any technical overview of the booster

theorem which follows from applying similar tricks to Bourgain’s original proof for product

spaces.

(q, γ)-Products:.

A core problem identified in [187] is that standard high dimensional expanders and γ-

products only bound the spectral behavior of the complex, which a priori seems insufficient

to control higher norm behavior. [187] handle this issue in part by losing factors in

infinity norm, e.g. by relating q and 2 norms via the elementary bound ∥f∥qq ≤ ∥f∥22∥f∥q−2
∞ .

Unfortunately, this method leads to an error term which dominates the main expression

for strongly global f , and is insufficient for our purposes.

We handle this and analogous issues by introducing q-norm HDX. Given a partite

complex X, let Ai,j denote the (normalized) bi-partite adjacency matrix of (Xi, Xj), and

Πi,j be Ai,j’s stationary operator.4

Definition 2.1.6 ((q, γ)-Products). A d-partite complex X is a (q, γ)-product if for every

distinct i, j ∈ [d]:

1. The marginal (Xi, Xj) is ‘q-norm-expander’

∥Ai,j − Πi,j∥q ≤ γ

2. This holds under all feasible conditionings XS = zS.

Note that setting q = 2 exactly recovers the notion of a γ-product. While q-norms

beyond the spectral setting are typically much harder to analyze, an elementary application

of Riesz-Thorin interpolation actually implies any sufficiently strong γ-product is also a

(q, γq)-product.
4In this case, this is simply the matrix where every row is the marginal distribution over Xi. In the

feasible conditioning, this is replaced with the conditioned marginal over Xi (similarly for Ai,j).
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Lemma 2.1.7 (Informal Lemma 2.3.4). Any γ-product is a (q, γq)-product for γq ≤

γ2/q21−2/q.

This simple observation allows us to handle q-norms directly, avoiding dependence

on ∥f∥∞.

Coordinate-Wise Analysis on HDX:.

The second critical tool in our analysis is a simplified method of coordinate-wise

analysis on HDX, inspired by Bourgain’s proof of the symmetrization theorem. We focus

in particular on the noise operator, though the same method can be applied to other

random walks on HDX.5

On a product space, the noise operator Tρ can naturally be expressed as the product

of coordinate-wise operators T i
ρ. When ρ ∈ [0, 1], this simply corresponds to re-sampling

the ith coordinate with probability 1− ρ, and keep all other coordinates fixed. For general

r ∈ Rd, the corresponding coordinate noise operator is often defined as

T i
ri
f :=

∑
S∋i

rif
=S +

∑
S ̸∋i

f=S.

Unfortunately, while this generalization makes manipulation of coordinate-wise noise opera-

tors simpler, it does not interact well with γ-products where the Efron-Stein decomposition

is not closed (i.e. the Efron-Stein decomposition of f=S itself is not exactly f=S). Instead,

it turns out when dealing with general partite complexes, one should instead extend Tr by

generalizing its form in terms of the projection operators

ESf(y) = Ex[f(x) | xS = yS],

which re-sample all coordinates outside of S. The extended noise operator may then be
5Indeed ‘coordinate-wise’ or ‘tensorization’ methods have appeared in the sampling literature analyzing

entropic inequalities for the so-called down-up walk on related objects, though not in the sense we consider.
See Section 2.1.4 for further discussion.
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defined as a ‘binomial’ combination of projection operators:

Tr =
∑
S⊆[d]

rS
∏
i/∈S

(1− ri)ES,

where rS =
∏
i∈S

ri. The coordinate-wise noise operators are then naturally defined as

T i
ri
:= riI + (1− ri)E[d]\i. On a product space, it is easy to check that for either definition

Tr = T 1
r1
. . . T d

rd
. Our first key lemma shows this continues to hold approximately on

(q, γ)-products.

Lemma 2.1.8 (Decorrelation (Informal Lemma 2.4.2)). Let X be a d-partite (q, γ)-product

and r ∈ Rd. Then

∥Trf − T 1
r1
. . . T d

rd
f∥q ≤ Oγ(∥f∥q)

Note this holds for any ordering of T i
ri
, and does not strongly rely on which definition

we take. The core reason to use the operator-extension is that this is the notion which

localizes correctly to the marginals of X.

Lemma 2.1.9 (Localization (Informal Lemma 2.4.3)). Let X be a d-partite complex, and

r ∈ Rd. Then for any S ⊆ [d]:

T i
rf(x) = Trif |x−i

(xi),

where f |x−i
: X[i]→ R is the localization of f to the marginal X[d]\{i} defined by f |x−i

(xi) =

f(x).6

Decorrelation and localization allows us to reduce analysis of the ‘high dimensional’

quantity Tρf(x) to the 1-dimensional quantities T i
ρf |x−i

(xi). One can then apply standard

1-dimensional inequalities, and ‘lift’ the result back to the original complex X by reversing

the lemmas. This is a powerful (and very standard) trick on the hypercube and product
6Formally, this function lives on the link of x−i, see Section 2.2.1.
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spaces in boolean analysis—many classical results are proved via this type of reduction

to the 1-D case (often properties proved this way, like hypercontractivity, are said to

‘tensorize’).

The Symmetrization Theorem:.

We now sketch the proof of the symmetrization theorem based on these three

components: a (standard) 1-D version of the inequality, decorrelation into coordinate-wise

operators, and localizing to the 1-D case. We will show only the upper bound; the lower

bound follows via similar reasoning. The proof very closely follows the original proof of

symmetrization (as presented in [308]).

Slightly re-phrasing the theorem statement, our goal is to show

∥T 1
2
f∥q ≤ (1 + oγ(1))∥Trf∥q.

By Lemma 2.1.8, we can break these terms into their coordinate-wise components and

instead argue

∥T 1
1
2
. . . T d

1
2
f∥q ≤ (1 + oγ(1))∥T 1

r1
. . . T d

rd
f∥q

Written in this form, there is really only one natural strategy: the replacement method. In

particular, we’ll argue that each of the coordinate-wise operators T i
1/2 can be sequentially

replaced by T i
ri
, incurring only O(γ)∥f∥q error in each step. Toward this end, define the

‘partially symmetrized’ operator

T (j) := T 1
r1
, . . . T j

rj
T j+1

1
2

. . . T d
1
2
.

Since T (0) = T 1
1/2 . . . T

d
1/2 ≈ Tρ, and T (d) = T r

r1
. . . T d

rd
≈ Tr by telsecoping it is enough to

show for all j

∥T (j)f∥q ≤ (1 + oγ(1))∥T (j+1)f∥q

116



Un-wrapping the lefthand side, by Lemma 2.1.8 we can permute the order of the Tj’s

to move the (j + 1)st operator to the front, and localize to the (j + 1)st coordinate via

Lemma 2.1.9

∥T (j)f∥q = ∥T 1
r1
, . . . T j

rj
T j+1

1
2

. . . T d
1
2
f∥q

≈ ∥T j+1
1
2

(T 1
r1
, . . . T j

rj
T j+2

1
2

. . . T d
1
2
f)∥q

= ∥∥T 1
2
(T 1

r1
, . . . T j

rj
T j+2

1
2

. . . T d
1
2
f)|x−j

∥q,xj
∥q,x−j

The inner norm is now over a 1-dimensional domain, so we can apply the standard 1-D

symmetrization theorem to replace T1/2g with Trj+1
g, then ‘un’-localize and ‘un’-permute

by the reverse directions of Lemma 2.1.9 and Lemma 2.1.8:

∥∥T 1
2
(T 1

r1
, . . . T j

rj
T j+2

1
2

. . . T d
1
2
f)|x−j

∥q,xj
∥q,x−j

≤∥∥Trj+1
(T 1

r1
, . . . T j

rj
T j+2

1
2

. . . T d
1
2
f)|x−j

∥q,xj
∥q,x−j

=∥T j+1
rj+1

T 1
r1
, . . . T j

rj
T j+2

1
2

. . . T d
1
2
∥q

≈∥T 1
r1
, . . . T j

rj+1
T j+2

1
2

. . . T d
1
2
∥q

=∥T (j+1)f∥q,

as desired.

Global Hypercontractivity:.

Our proof of global hypercontractivity combines the elegant product proof of

O’Donnell and Zhao [308] with q-norm variants of techniques from both [187]’s bound on

γ-products and [39]’s proof for the two-sided case. On the analytical side, the key fact is

that the Efron-Stein decomposition is an approximate eigenbasis of the noise operator on

(q, γ)-products in the following sense.
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Lemma 2.1.10 (Approximate Eigenbasis). Let X be a (4, γ)-product. For any f and

r ∈ Rd

∥Trf
=S − rSf

=S∥4 ≤ Od,r(γ)∥f∥4.

In fact, this is not quite strong enough for our result, as Theorem 2.1.2 requires

avoiding any error term scaling in ∥f∥4. We handle this by instead proving a finer-grained

bound for global functions:

∥Trf
=S − rSf

=S∥4 ≤ Od,r(γ)∥f∥1/22 max
T⊆S,xT

{∥f |xT
∥1/22 }.

With this in mind, the core idea of O’Donnell and Zhao is simply to bound the

4-norm by symmetrizing, then applying standard hypercontractivity. In particular by

Theorem 2.1.1 and Lemma 2.1.10:

∥f≤i∥44 ≲ ∥TrT2f
≤i∥44 (Symmetrization)

≲ ∥

∑
|S|≤i

rS2
|S|f=S

∥44 (4-Approximate Eigenbasis)

= Ex

Er

∑
|S|≤i

rS2
|S|f=S(x)

4 .

Notice that the inner expectation, now over the boolean hypercube, is a degree-i function

with Fourier coefficients 2|S|f=S(x). Thus we may apply the standard Bonami Lemma and

Parseval’s Theorem to move from the 4-norm to the 2-norm:

≤ 2O(i)Ex

Er

∑
|S|≤i

rSf
=S(x)

22
 (Bonami Lemma)

= Ex

∑
|S|≤i

f=S(x)2

∑
|T |≤i

f=T (x)2

 . (Parseval)
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Notice that if the two inner terms were independent, we’d be done, as each term individually

is roughly the 2-norm ∥f≤i∥22 by Parseval. Unfortunately the terms are correlated by

shared variables within x. To handle this, [308] re-index by pulling out the shared variables

as the intersections I = S ∩ T :

Ex

∑
|S|≤i

f=S(x)2

∑
|T |≤i

f=T (x)2

 ≤∑
I≤i

Ex

[∑
S⊃I

f=S(x)2
∑

T :T∩S=I

f=T (x)2

]
. (2.1)

Since f=S depends only on xS, and f=T depends only on xT . On a product space, we can

then factor out these variables and bound the above by

∑
I≤i

ExI

[(∑
S⊃I

ExS\I [f
=S(xS)

2]

)(∑
T⊃I

ExT\I [f
=T (xT )

2]

)]

One then factors out the righthand term by its maximum, which can be bounded by

2O(i) max|T |≤i,xT
∥f |xT

∥22, and observes that the remaining term is at most 2O(i)∥f≤i∥22,

completing the proof.

Unfortunately, on a γ-product, the variables xS\I and xT\I are not independent, so

this strategy fails naively. To break their correlation, we’ll use a now standard tool in the

HDX literature called the swap walks :

AS,Tf(y) = E[f(xS) | xT = yT ],

which correspond to the (normalized) bipartite adacency matrix of (XS, XT ). It is by now

a widely used fact that the swap walks on HDX expand (see e.g. [109, 9, 187, 12, 114]).

Formally, expanding out Equation (2.1) one encounters many terms of the form

E
xS\I

[
f=S(xS)

2 E
xT\I∼XxS

[
f=T (xT )

2
]]

Similar to the strategy of [39] in the two-sided case, the trick is to observe that we can
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re-write the inner expectation as an application of the swap-walk, and de-correlate the

terms using spectral expansion:

E
xS\I

[
f=S(xS)

2 E
xT\I∼XxS

[
f=T (xT )

2
]]

=
〈
(f=S|xI

)2, AxI

T\I,S\I(f
=T |xI

)2
〉

≲ E
xS\I∼XxI

[(f=S|xI
)2] E

xT\I∼XxI

[(f=T |xI
)2].

A careful analysis of the error terms reveals the resulting approximate inequality holds up

to error

γ∥f∥22max|S|≤i,xS
{∥f |xS

∥22}. This is dominated by the main term, so we may proceed as

in the product case to complete the proof.

2.1.4 Related Work

Boolean Analysis Beyond the Cube:.

Our work fits into a long line of boolean analysis (and in particular hypercontractive

inequalities) beyond the cube (see e.g. [78, 349, 160, 157, 194, 252, 255, 111, 147, 187, 39,

139] among many others). Our results are most closely related to the line of work on product

spaces and high dimensional expanders [245, 364, 39, 187]. In particular, we rely heavily

on generalizing ideas of Gur, Lifshitz, and Liu [187], who introduced the approximate

Efron-Stein Decomposition for γ-products, and proved a similar hypercontractive inequality

roughly of the form

∥f≤i∥44 ≤ iO(i)∥f∥22 max
|S|≤i,xS

{∥f |xS
∥22}+ 2O(d)γ∥f∥22∥f∥2∞ (2.2)

As discussed in the previous section, Equation (2.2) is restrictive in two senses. First, due to

the ∥f∥∞ scaling in the error term, the bound is only meaningful when max|S|≤i,xS
{∥f |xS

∥22}

is at least 2O(d)γ∥f∥2∞. This means that on any fixed complex, the bound is not meaningful

for all ranges of global functions (in particular the error term dominates for strongly global
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functions). By leveraging connections with (4, γ)-products, Theorem 2.1.2 removes this

limitation completely.

Second, and perhaps more importantly, the leading iO(i)-dependence in Equa-

tion (2.2) does not scale appropriately with the eigenvalues of corresponding noise opera-

tors. This scaling is often critical in application, where the dependence must cancel the

corresponding eigenvalues of relevant operators. Similar improvements for the Grassmann

and Bilinear Scheme [138, 143], for instance, recently led to breakthrough progress of PCP

theory [297].

On two-sided local-spectral expanders, Bafna, Hopkins, Kaufman, and Lovett [39]

prove a version of Equation (2.2) with the correct 2O(i) scaling on the main term, but

similarly suffering from dependence in ∥f∥∞ in the error term. Because two-sided HDX

can be embed into a partite one-sided HDX with a corresponding Fourier decomposition,

our result also improves the state of the art for the two-sided case.

Finally, it is worth highlighting that due to its use of symmetrization (and more

generally the methods of [308]), the proof of Theorem 2.1.2 is substantially simpler than

prior proofs of hypercontractivity for HDX [187, 39]. The proof of hypercontractivity on

other extended spaces such as the Grassmann [255, 138, 143] or Lie groups [139], despite

recent simplifications to the former, still remains prohibitively complicated to extend to

related objects such as higher rank tensors. Our result is the first to extend the simple

symmetrization technique beyond products—could such a method also simplify and extend

modern ‘group-based’ hypercontractive inequalities?

Coordinate-Wise Analysis on (near)-Product Spaces:.

Coordinate-wise methods are among the most classical techniques for proving high

dimensional analytic inequalities (see [308]). Some of these techniques, such as tensorization

of variance and entropy, have already found great success in the study of approximate

products and high dimensional expanders. This was first made explicit by Chen, Liu, and
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Vigoda [94], though similar ideas were explored earlier by Kaufman and Mass [236]. Chen

and Eldan [93] observed that many methods in the approximate sampling literature, such

as spectral and entropic independence (variants of high dimensional expansion), can also

be viewed from the of standpoint coordinate-wise localization schemes.

These works differ from our method in two main facets. First, all coordinate-wise

methods in the literature beyond the study of variance strongly relied on density of the

underlying complex. Indeed many of these works (see e.g. [96, 217] among others) actually

prove full hypercontractive inequalities, which cannot hold in the sparse setting. Second,

unlike tensorization methods, we localize more explicitly at the level of the operator,

splitting Tρ itself into coordinate operators still acting over the full space X, localizing

the operators one-by-one. A similar approach was recently taken in concurrent and

independent work7 of Alev and Parzanchevski [12], who consider coordinate-wise variants

of the down-up walk.

2.2 Preliminaries

2.2.1 Simplicial Complexes

A pure simplicial complex is a collection of disjoint sets

X = X(0) ∪ . . . ∪X(d)

where X(d) ⊆
(
[n]
d

)
is an arbitrary d-uniform hypergraph and X(i) ⊆

(
[n]
i

)
is given by

downward closure, that is the family of i-sets that sit inside any element of X(d). A

weighted simplicial complex is a pure simplicial complex equipped with a measure Πd over

X(d). This induces a natural measure Πi over X(i) given by drawing a d-set s, then an

i-set t ⊂ s uniformly at random. For simplicity, we will typically drop the weight function
7An informal version of this work more contemporaneous with Alev and Parzanchevski can be found in

[199].
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from notation and simply write X to mean a pure weighted simplicial complex.

We denote the space of functions over i-faces of X as Ci := {f : X(i)→ R}. The

measures Πi induce a natural inner product over this space defined by

⟨f, g⟩ = E
t∼Πi

[f(t)g(t)]

We will usually just write t ∼ X(i), where it is understood that Πi is the underlying

distribution.

Links:.

It will frequently be useful to look at the local structure of a given simplicial

complex X. Given a face t ∈ X, the link of t is the simplicial complex

Xt := {s : t ∪ s ∈ X}

whose underlying distribution Πt is the natural induced weight function generated by

sampling s′ ∈ X(d) conditioned on s′ containing t, that is Πt(s) = Ps′∼Πd
[s′ = s∪ t | t ⊂ s′].

Equivalently, one may think of the link Xt as being the distribution over X conditioned

on t appearing in the face, marginalized to the remaining variables.

Partite Complexes:.

A simplicial complex X is called partite if it is possible to partition its vertices

X(0) = Ω1 ∪ . . . ∪ Ωd such that every face s ∈ X(d) has exactly one vertex from each

component. We can always think of a partite simplicial complex as a (possibly very

sparse) distribution over
d⊗

i=1

Ωi. With this in mind, we will typically denote elements in

X(d) =
d⊗

i=1

Ωi as d-dimensional tuples x = (x1, . . . , xd). This allows us to align with more

typical notation in the analysis literature over product spaces.

It will frequently be useful to work on the projection of X(d) to a certain subset of
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colors (coordinates). In particular, given S ⊂ [d], a face xS ∈ X[S] is simply generated by

drawing x ∈ X(d) and projecting onto the S-coordinates of x.

2.2.2 High Order Random Walks

Hypergraphs come equipped with a sequence of natural random walks generalizing

the standard random walk on graphs. In the context of high dimensional expanders, such

walks were first studied by Kaufman and Mass [234], and have since become an integral

part of almost all work on high dimensional expanders.

In this work, we focus mostly on partite complexes. In this setting, there is a

natural family of generalizations of the bi-partite graph operator. Given subsets S, T ⊂ [d],

the random walk operator AS,T maps functions on X[S] to functions on X[T ] by averaging.

In particular, given a function f : X[S]→ R define

AS,Tf(yT ) = E[f(xS) | xT = yT ].

Equivalently, this is the expected value of f when sampled from the link of yT . Note that

in the graph case, this is simply the underlying random walk on a bi-partite graph. We

write ΠS,T to denote the stationary distribution of the operator AS,T . Note this is simply

the distribution given by drawing x ∈ X(d) and projecting onto S.

We will frequently make use of the special case where S = [d], which averages

f outside the specified coordinate subset T . In particular, given a subset T ⊂ [d] and

function f : X(k)→ R, we define

ETf(yT ) := A[d],Tf(yT ) = E[f(x) | xT = yT ].

Similarly, ETf(yT ) is simply expectation of f over the link of yT .
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The Noise Operator:.

The noise operator is one of the best studied random walks in the analysis of

boolean functions. The standard operator is typically defined via the following probabilistic

interpretation describing its transition matrix as a Markov chain: given a face x ∈ X(d), fix

each coordinate in x with probability ρ, and re-sample all remaining coordinates. Formally,

we can write the noise operator as a convex combination of the {ES}S⊆[d] operators defined

above.

Definition 2.2.1 (Noise Operator). Let X be a d-partite complex, f ∈ Cd, and ρ ∈ [0, 1].

The noise operator Tρ acts on f by re-randomizing over each coordinate with probability

1− ρ:

Tρf =
∑
S⊂[d]

ρ|S|(1− ρ)d−|S|ESf

Finally, we note that when working on a link Xτ , we will write any corresponding

walk operator as M τ to denote the specification to the link. E.g. Aτ
i,j is the bipartite

graph between color i and color j within the link of τ , and Πτ
i,j to denote its stationary

distribution.

Total Influence:.

Total influence is a critical notion in boolean analysis measuring the total ‘sensitivity’

of a function to flipping individual coordinates. On product spaces, total influence is most

naturally defined via the Laplacian operators

Li = I − A[d]\{i}.

The total influence of a function f ∈ Cd is

I[f ] =
∑
i∈[d]

⟨f, Lif⟩
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When f is boolean, it is easy to check that the inner product ⟨f, Lif⟩ is proportional to

the expected probability over x that re-sampling ith coordinate flips the value of f . The

study of the structure of low influence functions is core to boolean analysis, and a major

motivation behind this work.

2.2.3 High Dimensional Expanders and γ-Products

We focus in this work on an elegant reformulation of spectral high dimensional

expansion of Dikstein and Dinur [109], and Gur, Lifshitz, and Liu [187] called a γ-product,

which promises every bi-partite operator Ai,j (in X and its links) is expanding.

Definition 2.2.2 (γ-Products). A d-partite complex X is called a γ-product if for every

link Xτ of co-dimension at least 2 and colors i, j /∈ τ , the spectral norm of the walk Aτ
ij

satisfies:

λ2(A
τ
ij) ≤ γ.

A similar notion was considered in the non-partite case by Bafna, Hopkins, Kaufman,

and Lovett [39]. γ-products are closely related to the more standard notion of local-spectral

expansion of Dinur and Kaufman [124] and Oppenheim [309].

Definition 2.2.3 (Local-Spectral Expander). A weighted complex X is a (one-sided)

γ-local-spectral expander if the graph underlying every non-trivial link is a (one-sided)

γ-spectral expander.

Dikstein and Dinur [109] prove that any γ-one-sided partite local-spectral expander

is an Od(γ)-product. On the other hand, seminal work of Oppenheim [309] implies any

γ-product is roughly an O(γ)-one-sided local-spectral expander for small enough γ (see

[12] for a more detailed conversion between the two).

Gur, Lifshitz, and Liu [187] also observe that any two-sided local-spectral expander

can be embedded into a partite complex as a γ-product. This is done by embedding of a

d-dimensional complex X into X(1)d by adding every permutation of each top level face.
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Observation 2.2.4. If X is a d-dimensional two-sided γ-local-spectral expander, then the

partite complex8

Xd := {π(x) : π ∈ Sd, x ∈ X(d)}

with distribution

µd(x) = Πd(x)/d!

is a γ-product.

Proof. It is enough to observe that the color walk Aij is exactly the non-lazy upper walk

on the graph underlying the original complex X.

As a result, most results proved for γ-products carry over to two-sided local-

spectral expanders. In fact, it turns out the approximate Fourier decomposition proposed

by [39], when passed through the above embedding, exactly corresponds to the Efron-Stein

components. As a result, all Fourier analytic results on γ-products indeed transfer to

two-sided HDX as well.

2.3 Fourier Analysis on (q, γ)-Products

In this section, we introduce a natural generalization of local-spectral expanders to

higher moments we call (q, γ)-Products, and extend the useful Fourier analytic machinery

of [187, 39] to this setting.

Definition 2.3.1 ((q, γ)-Products). For any q ∈ (1,∞], γ > 0, and d ∈ N, a d-partite

complex X is a (q, γ)-Product if for every link Xτ of co-dimension at least 2 and every

i ̸= j

∥Aτ
i,j − Πτ

i,j∥q ≤ γ.

For a set Q ⊂ (1,∞], we say X is a (Q, γ)-product if it is a q-gamma product for all q ∈ Q.
8Technically, one should first fix an ordering on X(1) for this to be well-defined, though the resulting

complex is independent of choice of ordering.
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Since ∥Aτ
i,j − Πi,j∥2 is exactly the second largest eigenvalue of Aτ

i,j, setting p = 2

recovers the notion of a γ-product. One can define the notion of (q, γ)-HDX on non-partite

complexes analogously.

Definition 2.3.2 ((q, γ)-HDX). A simplicial complex X is a (q, γ)-HDX if every link Xτ

of co-dimension at least 2 satisfies:

∥Aτ − Πτ
1∥q ≤ γ

Similarly, setting q = 2 recovers the notion of a two-sided γ-local-spectral expander.

It is easy to see that embedding a (q, γ)-HDX into a partite complex by including every

ordering of the faces results in a (q, γ)-product by the same argument as above. All results

we cover in the partite case therefore translate to the former, and we focus only on the

partite case in what follows.

To relate (q, γ)-products to standard HDX, we will rely on the following special

case of the classical Riesz-Thorin Interpolation theorem

Theorem 2.3.3 (Riesz-Thorin Interpolation [330, 353]). Let X be a d-partite complex and

T : Cd → Cd a linear operator. For any 0 < p0 < p1 ≤ ∞, θ ∈ (0, 1), and 1
pθ

= 1−θ
p0

+ θ
p1

∥T∥pθ ≤ ∥T∥1−θ
p0
∥T∥θp1 .

Because the infinity norm of the operators A − Π is universally bounded, Theo-

rem 2.3.3 implies any γ-product is a (q, γq)-product for γq an appropriate function of γ

and q:

Lemma 2.3.4. For any q > 1 and γ > 0, any γ-product is a (q, γq)-product for

γq =


γ2/q21−2/q q ≥ 2

γ
2(q−1)

q 21−
2(q−1)

q 1 < q < 2
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Proof. It is enough to prove the q ≥ 2 case. In particular, since the adjoint of Ai,j is Aj,i,

the 1 < q < 2 case follows from Hölder duality. Namely the fact that for any operator M :

∥M∥q = ∥M∗∥q′

where q′ = q
q−1

is q’s Hölder conjugate. Assuming now that q ≥ 2, for all Aτ
i,j we have:

∥Aτ
i,j − Πτ

i,j∥2 ≤ γ and ∥Aτ
i,j − Πτ

i,j∥∞ ≤ 2,

where the former is from definition and the latter is due to stochasticity of Aτ
i,j and Πτ

i,j.

Riesz-Thorin Interpolation then gives

∥Aτ
i,j − Πτ∥q ≤ ∥Aτ

i,j − Πτ∥2/q2 ∥Aτ
i,j − Πτ∥1−2/q

∞ ≤ γ2/q21−2/q

as desired.

Lemma 2.3.4 allows us to easily control the higher norm behavior of classical

constructions of high dimensional expanders such as the Ramanujan complexes [290] and

coset complexes [238] over sufficiently large fields.

2.3.1 q-Norm Expansion of Swap Walks

A critical property of classical high dimensional expanders, and the core of [187]’s

Fourier analysis on HDX, is that the operators AS,T are strongly expanding when S∩T = ∅

(these specific operators are often called the ‘swap-walks’) [9, 109, 187, 12]. Prior arguments

for expansion of the swap walks take specific advantage of being in the spectral (q = 2)

setting. We give an elementary argument showing swap walks expand in q-norm on

(q, γ)-products.
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Lemma 2.3.5. Let X be a (q, γ)-product and q′ = q
q−1

. For all coordinate subsets S∩T = ∅:

∥AS,T − ΠS,T∥q ≤ |S||T |γ and ∥AS,T − ΠS,T∥q′ ≤ |S||T |γ

Proof. We induct on |S| + |T |. For the base case |S| = |T | = 1, observe we have

∥AS,T −ΠS,T∥q ≤ γ by definition. To bound the q′-norm, recall Hölder duality promises

that for any operator M

∥M∥q = ∥M∗∥q′ ,

where M∗ is the adjoint. Thus we also have

∥AS,T − ΠS,T∥q′ = ∥AT,S − ΠT,S∥q ≤ γ

as desired. Note by the same argument, this also holds within every link of X.

Assume now by induction that, for some fixed |S| + |T | > 2, all S ′, T ′ such that

|S ′|+ |T ′| < |S|+ |T | and τ ∈ X satisfy

∥Aτ
S′,T ′ − Πτ

S′,T ′∥q ≤ |S ′||T ′|λ.

We first argue we may assume without loss of generality that |T | > 1. This is again by

Hölder duality since when |S| > |T |, we have

∥AS,T − ΠS,T∥q = ∥AT,S − ΠT,S∥q′ ≤ γ.

Thus we are done if we show the result for all q ∈ [1,∞] and |T | ≥ |S| (in particular when

|T | > 1).

Assume without loss of generality that 1 ∈ T . Fix any f : X[S] → R. As is

typically the case, the idea is to sample t ∈ X[T ] by first sampling t′ ∈ X[T \ {1}], then
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v ∈ Xt[1]:

∥AS,Tf − ΠS,Tf∥q =

∣∣∣∣∣
∣∣∣∣∣∥(AS,Tf)|t′ − (ΠS,Tf)|t′∥q,v∈Xt[1]

∣∣∣∣∣
∣∣∣∣∣
q,t′∈X[T\{1}]

where for any g : X[T ] → R, g|t′(v) = g(t ∪ v) denotes the localization of g to the link

of t′. The trick is now to observe that as a function of Xt′ [1], AS,Tf |t′ is exactly At′
S,1f

t′ ,

where f t′ : Xt′ [S]→ R is the restriction f s(τ) = f(τ). Then by adding and subtracting

the corresponding local stationary operator:

∥SS,Tf − ΠS,Tf∥q =

∣∣∣∣∣
∣∣∣∣∣∥At′

S,1f
t′ − Πt′

S,1f
t′ +Πt′

S,1f
t′ − (ΠS,Tf)|t′∥q,v∈Xt′ (1)

∣∣∣∣∣
∣∣∣∣∣
q,t′∈X[T\{1}]

≤

∣∣∣∣∣
∣∣∣∣∣∥At′

S,1f
t′ − Πt′

S,1f
t′∥q,v∈Xt′ [1]

∣∣∣∣∣
∣∣∣∣∣
q,s∈X[T\{1}]

+

∣∣∣∣∣
∣∣∣∣∣∥Πt′

S,1f
t′ − (ΠS,Tf)|t′∥q,v∈Xt′ [1]

∣∣∣∣∣
∣∣∣∣∣
q,t′∈X[T\{1}]

by the triangle inequality. The first term is now bounded by the inductive hypothesis

applied in the link of t′:

∣∣∣∣∣
∣∣∣∣∣∥At′

S,1f
t′ − Πt′

S,1f
t′∥q,v∈Xt′ [1]

∣∣∣∣∣
∣∣∣∣∣
q,t′∈X[T\{1}]

≤ iγ

∣∣∣∣∣
∣∣∣∣∣∥f t′∥q,Xt′ [S]

∣∣∣∣∣
∣∣∣∣∣
q,t′∈X[T\{1}]

= E
t′∈X[T\1]

[
E

s∼Xt′ [S]
[|f(s)|q]

]1/q
= |S|γ∥f∥q

where in the final step we have used the fact that drawing t′ ∈ X[T \ 1], then s from Xt′ [S]

is equidistributed with simply drawing s ∈ X[S] directly.

Toward the second term, observe that, as a function of t′:

Πt′

S,1f
t′(v) = AS,T ′f(t′) and (ΠS,Tf)|t′(v) = ΠS,T ′f(t′)
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so we finally have

∣∣∣∣∣
∣∣∣∣∣∥Πt′

S,1f
t′ − (ΠS,Tf)|t′∥q,v∈Xt′ [1]

∣∣∣∣∣
∣∣∣∣∣
q,t′∈X[T ′\{1}])

= ∥Si−1,jf − Πi−1,jf∥q,t′∈X[T\{1}]

≤ (|T | − 1)|S|γ∥f∥q

by the inductive hypothesis. Altogether this gives

∥SS,Tf − ΠS,Tf∥q ≤ γ|S|+ γ(|T | − 1)|S| = |S||T |γ

as desired.

2.3.2 The Efron-Stein Decomposition

Most of our analysis of (q, γ)-products is based on the Efron-Stein decomposition,

introduced in the context of HDX independently in [187] (for γ-products) and [39] (for

two-sided HDX).

Definition 2.3.6 (Efron-Stein Decomposition). Let X be a d-partite complex, 0 ≤ k ≤ d,

and f ∈ Ck. The Efron-Stein Decomposition of f is given by the collection of functions

{f=S}S⊆[d] where:

f=S :=
∑
T⊂S

(−1)|S\T |ETf

We write f≤i =
∑
|S|≤i

f=S to denote the degree at most i components of f , and f=i degree

exactly i.

Note that f=S is only a function of the S-projection of x. With this in mind, we

sometimes write f=S(xS) instead of f=S(x).

In the remainder of the section, we argue that essentially any useful property of

the Efron-Stein decomposition continues to hold approximately on (q, γ)-products. We
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start with the core result of [187], who show the Efron-Stein decomposition on γ-products

is an approximate Fourier basis.

Theorem 2.3.7 ([187]). Let X be a d-partite γ-product and f : X → R. The Efron-Stein

Decomposition satisfies the following properties:

1. Decomposition: f =
∑

S⊂[d]

f=S

2. Approximate Orthogonality: ⟨f=S, f=T ⟩ ≤ 2O(|S|+|T |)γ∥f∥22

3. Approximate Parseval:

∣∣∣∣∣⟨f≤i, f≤i⟩ −
∑
|S|≤i

⟨f=S, f=S⟩

∣∣∣∣∣ ≤ 2O(d)γ∥f∥22

We will require variants of a few other standard properties of Efron-Stein extended

to high norms. First, we observe the q-norm of f=S is not much larger than the q-norm of

f itself.

Lemma 2.3.8. Let X be a d-partite complex. Then for any f ∈ Cd, S ⊆ [d], and q ≥ 1

∥f=S∥q ≤ 2|S|∥f∥q

When q = 4, we can further bound

∥f=S∥4 ≤ ∥f∥1/22 max
T⊆S,xT

{
∥f |xT

∥1/22

}

Proof. ET is an averaging operator and therefore contracts q-norms. As such we have:

∥f=S∥q = ∥
∑
T⊂S

(−1)|S|−|T |ETf∥q

≤ 2|S|∥f∥q
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by the triangle inequality. For q = 4, we can instead bound

∥
∑
T⊂S

(−1)|S|−|T |ETf∥q = E

(∑
T⊂S

(−1)|S|−|T |ETf

)4
1/4

≤ 2O(|S|)E

(∑
T⊂S

(−1)|S|−|T |(ETf)
2

)2
1/4

≤ 2O(|S|) max
T⊆S,xT

{
(ETf)

2
}
E

[∑
T⊂S

(−1)|S|−|T |(ETf)
1/2

]1/4
≤ 2O(|S|) max

T⊆S,xT

{
∥f |xT

∥1/22

}
∥f∥1/22

where we’ve used the fact that E[f |x′
T
]2 ≤ ∥f |xT ′∥22 and ET contracts all p-norms by

Jensen’s inequality.

Second, we will crucially rely on the fact that ETf
=S is small so long as T does

not contain S.

Lemma 2.3.9. Let X be a d-partite (q, γ)-product and f ∈ Cd. Then for any T, S ⊂ [d]

such that T ̸⊃ S:

∥ETf
=S∥q ≤ |T |2O(|S|)γ∥f∥q

For q = 4, we can further bound

∥ETf
=S∥q ≤ |T |2O(|S|)γ∥f∥1/22 max

T ′⊆S,xT ′

{
∥f |x′

T
∥1/22

}

Proof. The proof is similar to the q = 2 case given in [187], but with somewhat more care

required for the latter bound. The key is to prove the following claim

Claim 2.3.10. For any f : X(d)→ R and q ≥ 2:

∥ETET ′ − ET∩T ′f∥q ≤ γ|T ||T ′|min

{
∥f∥q, ∥f∥1−2/q

q−2 max
T ′′⊂T

{
∥f |x′′

T
∥2/q2

}}
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Proof. It is enough to consider the setting where T ∩ T ′ = ∅. In particular, assume both

results hold in this case and let I = T ∩ T ′. We localize within I and apply the claim:

∥ETET ′f − ET∩T ′f∥

=∥∥(ExI

T\IE
xI

T ′\I − ExI

∅ )f |xI
∥q,xĪ
∥xI

≤γ|T ||T ′|∥min

{
∥f |xI

∥q,xĪ
, ∥f |xI

∥1−2/q
q−2 max

T ′′⊂T ′\I

{
∥f |xT ′′∪I

∥2/q2

}}
∥q,xI

=γ|T ||T ′|min

{
∥f∥q, ∥f∥1−2/q

q−2 max
T ′′⊂T

{
∥f |x′′

T
∥2/q2

}}
.

We therefore turn our attention to the case T ∩ T ′ = ∅ and show

∥(ETET ′ − E∅)f∥q ≤ |T ||T ′|γmin

{
∥f∥q, ∥f∥1−2/q

q−2 max
T ′′⊂T

{
∥f |x′′

T
∥2/q2

}}
.

We appeal to the argument of [187], who observe that one may write ETET ′ = AT ′,TET ′

and E[ET ′f ] = E∅[f ], so

∥ETET ′f − E∅f∥q = ∥(ET ′,T − ΠT ′,T )ET ′f ]∥q

≤ |T ′||T |γ∥ET ′f∥q

Since averaging contracts q-norms by Jensen’s inequality, this is at most |T ′||T |γ∥ET ′f∥q.

Alternatively, similar to the prior lemma we can pull out a factor of the restricted 2-norm

before contracting

∥ET ′f∥q = Ex

[
E

y
T̄ ′∼xT ′

[f |xT ′ ]
q

]1/q
≤ max

xT ′

{
E[f |xT ′ ]

2/q
2

}
Ex[Ey

T̄ ′∼xT ′
[f |xT ′ ]

q−2]1/q

≤ max
xT ′

{
∥f |xT ′∥

2/q
2

}
∥f∥1−2/q

q−2
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since E[f |x′
T
]2 ≤ ∥f |xT ′∥22 and ET ′ contracts all p-norms by Jensen’s inequality.

The result now follows simply by expanding f=S:

∥ETf
=S∥q = ∥ET

∑
T ′⊂S

(−1)|S|−|T ′|ET ′f∥q

= ∥
∑
T ′⊂S

(−1)|S|−|T ′|ETET ′f∥q

= ∥
∑
T ′⊂S

(−1)|S|−|T ′|ET∩T ′f +
∑
T ′⊂S

(−1)|S|−|T ′|(ETET ′ − ET∩T ′)f∥q

≤ 2O(|S|)∥(ETET ′ − ET∩T ′)f∥q

≤ 2O(|S|)|T |γmin

{
∥f∥q, ∥f∥1−2/q

q−2 max
T ′⊂S

{
∥f |x′

T
∥2/q2

}}

where we have used the standard fact that
∑

T ′⊂S

(−1)|S|−|T ′|ET∩T ′ is identically zero when

T ̸⊃ S.

A critical property of the standard Efron-Stein decomposition on product spaces is

that it is an eigenbasis for standard random walks such as the noise operator. Using the

above lemma, it is elementary to show this extends approximately to (q, γ)-products.

Lemma 2.3.11. Let X be a d-partite (q, γ)-product and M =
∑

T⊂[d]

αTET for some αT ∈ R.

Then for f ∈ Cd and S ⊂ [d]:

∥Mf=S − λSf
=S∥q ≤ ∥α∥12O(d)γ∥f∥q

where λS =
∑
T⊇S

αT . For q = 4 we further have

∥Mf=S − λSf
=S∥q ≤ ∥α∥12O(d)γ∥f∥1/22 max

T⊆S,xT

{
∥f |xT

∥1/22

}
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Proof. expanding Mf=S we have

Mf=S =
∑
T⊂[d]

αTETf
=S

=
∑
T⊇S

αTf
=S +

∑
T ̸⊇S

αTETf
=S

where the second equality holds since f=S deqends only on coordinates in S, and ET fixes

such coordinates when T ⊇ S. Applying Lemma 2.3.9 and the triangle inequality then

comqletes the proof, as the remaining terms are all small in q-norm.

A similar application also shows that the Efron-Stein basis is ‘approximately closed’.

Lemma 2.3.12. Let X be a d-partite (q, γ)-product. Then for any f ∈ Cd and T, S ⊆ [d]

– For S ̸= T :

∥(f=S)=T∥q ≤ 2O(d)γ∥f∥q

– For S = T :

∥(f=S)=S − f=S∥q ≤ 2O(d)γ∥f∥q

When q = 4, we may replace ∥f∥q by ∥f∥1/22 maxT⊆S,xT

{
∥f |xT

∥1/22

}
.

Proof. Using the definition of Efron-Stein, we have

(f=S)=T =
∑
T ′⊆T

(−1)T\T ′
ET ′f=S

If S ̸= T , then T ′ ̸⊃ S for every term in the sum, and we are done by the triangle

inequality and Lemma 2.3.9. If S = T , the only ‘surviving’ term is ESf
=S = f=S, and we

are similarly done.
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Finally, we will also need the following behavior of the Efron-Stein decomposition

under restriction.

Lemma 2.3.13. Let X be a d-partite complex and f ∈ Cd. Let I, B ⊂ [d] be any two

disjoint sets. Then

f=I∪B(yI , xB, z) =
∑
J⊂I

(−1)|I|−|J |(f |yJ )=B(xB, z).

Proof. This is a standard fact on product spaces (see, e.g., [364]). We give a proof that

generalizes to any partite complex. Expanding the righthand side:

∑
J⊂I

(−1)|I|−|J |(f |=B
yJ

)(xB, z) =
∑
J⊂I

(−1)|I|−|J |
∑
A⊂B

(−1)|B|−|A|EyJ
A f |yJ (xB, z)

=
∑
J⊂I

(−1)|I|−|J |
∑
A⊂B

(−1)|B|−|A| E
z′∼XyJ∪xA

[f(yJ , xA, z
′)]

=
∑
J⊂I

(−1)|I|−|J |
∑
A⊂B

(−1)|B|−|A|EJ∪Af(yI , xB, z)

=
∑

T⊂I∪B

(−1)|I∪B|−|T |ETf(yI , xB, z)

= f=I∪B(yI , xB, z)

as desired.

2.3.3 Efron-Stein, Total Influence, and the Noise Operator

While the individual Efron-Stein components are only approximate eigenvectors, it

turns out the full decomposition behaves exactly as in the product case with respect to

the standard operators [187]. We will make use this fact for the generalized noise operator

that both allows varying parameters by coordinate, and may take ‘noise’ values outside of

[0, 1]. This no longer has a natural interpretation as a noisy random walk, but remains

very useful in application.
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Definition 2.3.14 (Vector-Valued Noise Operator). Let X be a d-partite complex, f ∈ Cd,

and r ∈ Rd. The noise operator Tr is defined as:

Trf =
∑
S⊂[d]

∏
i∈S

ri
∏
i/∈S

(1− ri)ESf

The following claim is reasonably standard, but we include it for completeness.

Claim 2.3.15. Let X be a d-partite complex, f ∈ Cd, and r ∈ Rn. Then

Trf =
∑
S⊂[d]

rSf
=S,

where rS =
∏
i∈S

ri

Proof. By inclusion-exclusion, we have

ESf =
∑
T⊆S

f=T .

With this in hand, expanding Trf we have:

Trf =
∑
S⊂[d]

∏
i∈S

ri
∏
i/∈S

(1− ri)ESf

=
∑
S⊂[d]

∏
i∈S

ri
∏
i/∈S

(1− ri)
∑
T⊆S

f=T

=
∑
T⊂[d]

f=T

(∑
S⊃T

∏
i∈S

ri
∏
i/∈S

(1− ri)

)
(Re-indexing)

=
∑
T⊂[d]

rTf
=T

∑
S⊃T

∏
i∈S\T

ri
∏
i/∈S

(1− ri)


=
∑
T⊂[d]

rTf
=T
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where in the final step we have observed that

∑
S⊃T

∏
i∈S\T

ri
∏
i/∈S

(1− ri) =
∏

i∈[d]\T

(1− ri + ri) = 1.

One can also view this as an equivalent method of defining the operator Tr. We

will move freely between these two equivalent notions in what follows. We can similarly

express the Laplacians in terms of Efron-Stein. The proofs are standard (see e.g. [187,

Lemma 6.2]) and similar to the above so we omit them.

Lemma 2.3.16. Let X be a d-partite complex and f ∈ Cd. Then:

1. Lif =
∑
S∋i

f=S

2.
∑
i∈[d]

Lif =
∑

S⊆[d]

|S|f=S

This implies the following useful relation between total influence and the Efron-Stein

decomposition.

Corollary 2.3.17. Let X be a d-partite complex and f ∈ Cd. Then

I[f ] =
d∑

i=0

i⟨f, f=i⟩

2.4 Coordinate-Wise Analysis on HDX

The cornerstone of our analysis is a new, but completely elementary method of

coordinate-wise analysis on high dimensional expanders inspired by the proof of Bourgain’s

symmetrization theorem. We break the argument into two main parts, a de-correlation

step where we break the noise operator into coordinate-wise components, and a localization

step where we show the coordinate-wise noise operators may be viewed as the standard
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noise operator on the projection/localization to the relevant coordinates. We will see in

the next section that these lemmas facilitate classic analytic tools such as the replacement

method.

We first define a coordinate-wise version of the noise operator that operates only

over a specific subset.

Definition 2.4.1 (Coordinate-Wise Noise Operator). Let X be a d-partite complex,

S ⊆ [d], and r ∈ RS. The coordinate-wise noise operator T S
r acts on f by:

T S
r f :=

∑
T⊆S

rS\T
∏
i∈T

(1− ri)E[d]\Tf

Note that we have inverted the sum in the sense that index T corresponds to E[d]\T .

When r ∈ [0, 1]d, the above should still be thought of as re-sampling each coordinate

within S with probability 1− ri.

Our first key lemma shows that Tr can be approximately decomposed into its

constituent coordinate operators (under any ordering) up to some error in q-norm. For

simplicity of notation, given a permutation π ∈ Sd and vector r ∈ Rd we write

T π
r := T

π(1)
rπ(1)

. . . T π(d)
rπ(d)

.

Lemma 2.4.2 (Decorrelation). Let X be a d-partite (q, γ)-product, r ∈ Rd, and π ∈ Sd

any permutation, then:

∥Trf − T π
r f∥q ≤ cd,rγ∥f∥q

where cd,r = d3
∑
S

∣∣∣∣rS ∏
i/∈S

(1− ri)

∣∣∣∣
Proof. The proof is essentially an immediate application of Claim 2.3.10. Assume π = I

without loss of generality (the analysis is invariant under ordering). Expanding out the
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coordinate-wise product we have

T 1
r1
. . . T d

rd
=
∏
i∈[d]

(riI + (1− ri)E[d]\i)

=
∑
S

(
rS
∏
i/∈S

(1− ri)

)∏
i/∈S

E[d]\i

It is therefore enough to bound the q-norm

∥ES −
∏
i/∈S

E[d]\i∥q ≤ d3γ.

This follows from iterated application of Claim 2.3.10. More formally, assume without loss

of generality that S = {1, . . . , j}. Then we can write the following telescopic sum:

ES −
∏
i/∈S

E[d]\i =

d−j∑
ℓ=1

((
d−ℓ∏

i=j+1

E[d]\i

)
E[d−ℓ] −

(
d−ℓ+1∏
i=j+1

E[d]\i

)
E[d−ℓ+1]

)

=

d−j∑
ℓ=1

((
d−ℓ∏

i=j+1

E[d]\i

)
E[d−ℓ] −

(
d−ℓ∏

i=j+1

E[d]\i

)
E[d]\{d−ℓ+1}E[d−ℓ+1]

)

=

d−j∑
ℓ=1

(
d−ℓ∏

i=j+1

E[d]\i

)(
E[d−ℓ] − E[d]\{d−ℓ+1}E[d−ℓ+1]

)
By Claim 2.3.10 and the triangle inequality, we finally have:

∥ES −
∏
i/∈S

E[d]\i∥q ≤
d−j∑
ℓ=1

∥

(
d−ℓ∏

i=j+1

E[d]\i

)(
E[d−ℓ] − E[d]\{d−ℓ+1}E[d−ℓ+1]

)
∥q

≤
d−j∑
ℓ=1

∥E[d−ℓ] − E[d]\{d−ℓ+1}E[d−ℓ+1]∥q

≤ d3γ

where we have additionally taken advantage of the fact that averaging operators contract

q-norm.

142



The second critical lemma is the ‘localization’ process, where we argue that the

decomposed operators can equivalently be viewed as local noise operators on the links of

the complex.

Lemma 2.4.3 (Localization). Let X be a d-partite simplicial complex, and r ∈ Rd. Then

for any S ⊆ [d]:

T S
r f(x) = T xS̄

r f |xS̄
(xS)

Proof. The proof is essentially immediate from the fact that the partite averaging operators

‘respect’ restriction, namely for any T ⊆ S we have by definition:

E[d]\Tf(x) = E
xS̄

S\Tf |xS̄
(xS).

Then expanding out T S
r f gives:

T S
r f(x) =

∑
T⊆S

rT\S
∏
i∈T

(1− ri)E[d]\Tf(x)

=
∑
T⊆S

rT\S
∏
i∈T

(1− ri)E
xS̄

S\Tf |xS̄
(xS)

= T xS̄
r f |xS̄

(xS)

as desired.

2.5 The Symmetrization Theorem

We now turn our attention to our core technical result, Bourgain’s symmetrization

theorem for HDX.

Theorem 2.5.1 (Symmetrization on HDX). Let q > 1 and X be a d-partite (q, γ)-product

for γ ≤ 2−Ω(d). Then for any f ∈ Cd:

(1− 2O(d)γ)∥T̃cqf∥q ≤ ∥f∥q ≤ (1 + 2O(d)γ)∥T̃2f∥q
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for some constant 0 ≤ cq ≤ 1 dependent only on q.

Combined with Lemma 2.3.4, we immediately get symmetrization for standard

γ-products and HDX.

Corollary 2.5.2. Let q ≥ 1 and X be a γ-product with γ ≤ 2−Ω(max{q,q′}d). For any

f ∈ Cd:

(
1− 2O(d)γ

2
max{q,q′}

)
∥T̃cqf∥q ≤ ∥f∥q ≤

(
1 + 2O(d)γ

2
max{q,q′}

)
∥T̃2f∥q

for q′ the Hölder conjugate of q. For q ∈ {4, 4/3}, one may take cq = 2/5.

The proof closely follows the ideas of Bourgain, as presented by O’Donnell [308].

Based on the machinery developed in the previous section, the idea is to decompose Tρ into

coordinate-wise operators and handle each coordinate as a single-variate problem, replacing

each copy of T i
ρ with T i

r for r ∈ {−1, 1}. To this end, we first need the single-variate

symmetrization theorem.

Lemma 2.5.3 (Symmetrization for random variables (10.14,10.15 in [308])). Let X be a

0-mean, real-valued random variable satisfying ∥X∥q ≤ ∞. Then for any a ∈ R, we have:

∥a+ 1

2
X∥q ≤ ∥a+ rX∥q

where r ∼ {−1, 1} is a uniformly distributed random bit.

With this in hand, we can prove a single-coordinate variant of the result by

restricting our function to the relevant variable and applying the above.

Lemma 2.5.4. Let X be a d-partite complex and f ∈ Cd. For any i ∈ [d]:

∥T i
1/2f∥q ≤ ∥T i

rf∥q
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where r ∼ {−1, 1} is a uniformly distributed random bit.

Proof.

∥T i
1/2f∥q = ∥∥T

x−i

1/2 f |x−i
∥q,xi
∥q,x−i

(Lemma 2.4.3)

= ∥∥
(
f |x−i

){∅}
+

1

2

(
f |x−i

)={i}∥q,xi,r∥q,x−i

≤ ∥∥
(
f |x−i

){∅}
+ r

(
f |x−i

)={i}∥q,xi,r∥q,x−i
(Lemma 2.5.3)

= ∥∥Trf |x−i
∥q,xi
∥q,x−i,r

= ∥T i
rf∥q (Lemma 2.4.3)

We are now ready to prove the upper bound of Theorem 2.5.1 via the replacement

method.

Proof of Theorem 2.5.1 (Upper Bound). We first argue it is sufficient to show

∥T1/2f∥q ≤ ∥Trf∥q + 2O(d)γ∥f∥q (2.3)

In particular, for any arbitrary function g let f = T2g. Then applying the above and

Claim 2.3.15 we have

∥g∥q ≤ ∥TrT2g∥q + 2O(d)γ∥T2g∥q

≤ ∥TrT2g∥q + 2O(d)γ∥
∑
S⊆[d]

2|S|g=S∥q

≤ ∥TrT2g∥q + 2O(d)γ∥g∥q (Lemma 2.3.8)

Re-arranging and using the fact that 1
1−2O(d)γ

≤ 1 + 2O(d)γ for small enough γ gives the

desired bound.
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We prove Equation (2.3) by the replacement method. In particular, we first start

with de-correlating the noise operator into its coordinate-wise components by Lemma 2.4.2:

1. ∥T1/2f − T 1
1/2 . . . T

d
1/2f∥q ≤ 2O(d)γ∥f∥q.

2. ∥Trf − T 1
r1
. . . T d

rd
f∥q ≤ 2O(d)γ∥f∥q.

Thus it is sufficient to prove

∥T 1
1/2 . . . T

d
1/2f∥q ≤ ∥T 1

r1
. . . T d

rd
f∥q + 2O(d)γ∥f∥q.

We now iterate through coordinates one by one replacing T1/2 with Tri . Toward this end,

define Tj to be the partially replaced operator at step j:

Tj := T 1
r1
. . . T j

rj
T j+1
1/2 . . . T d

1/2.

We’ll prove for all j ∈ {0, . . . , d}:

∥Tjf∥q ≤ ∥Tj+1f∥q + 2O(d)γ∥f∥q. (2.4)

Then we clearly have

∥T 1
1/2 . . . T

d
1/2f∥q = ∥T0f∥q

≤ ∥Tdf∥q + 2O(d)γ∥f∥q

= ∥T 1
r1
. . . T d

rd
f∥q + 2O(d)γ∥f∥q

as desired.

It remains to prove Equation (2.4), which now follows exactly as in the standard

proof up to the accumulation of error. In particular, we may simply permute the (j + 1)st

operator to the front using Lemma 2.4.2, apply our single-coordinate symmetrization theo-
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rem to the remaining function, and permute back. Formally, observe that by Lemma 2.4.2

any two orderings π and σ and r ∈ [−1, 1]d satisfy:

∥T π
r f − T σ

r f∥q = ∥(T π
r f − Trf) + (Trf − T σ

r f)∥q ≤ 2O(d)γ∥f∥q (2.5)

by the triangle inequality. Thus we can write:

∥Tjf∥ = ∥T 1
r1
. . . T j

rj
T j+1
1/2 . . . T d

1/2f∥q

≤ ∥T j+1
1/2 (T

1
r1
. . . T j

rj
T j+2
1/2 . . . T d

1/2f)∥q + 2O(d)γ∥f∥q (Equation (2.5))

≤ ∥T j+1
rj+1

(T 1
r1
. . . T j

rj
T j+2
1/2 . . . T d

1/2f)∥q + 2O(d)γ∥f∥q (Lemma 2.5.4)

≤ ∥(T 1
r1
. . . T j+1

rj+1
T j+2
1/2 . . . T d

1/2f)∥q + 2O(d)γ∥f∥q (Equation (2.5))

= ∥Tj+1f∥q + 2O(d)γ∥f∥q,

completing the proof.

The proof of the lower bound is very similar. We start again with a closely related

single-variate lemma.

Lemma 2.5.5 ([308, Lemma 10.43]). For any q ≥ 2, there is an absolute constant

cq ∈ (0, 1) such that for any mean-0, real-valued random variable X satisfying ∥X∥q ≤ ∞

and a ∈ R:

∥a− cqX∥q ≤ ∥a+X∥q.

For q ∈ {4, 4/3}, we may take cq = 2/5.

We can now prove the lower bound in Theorem 2.5.1 by similar arguments to the

above.
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Proof of Theorem 2.5.1 (Lower Bound). Similar to the upper bound, it suffices to show

∥T 1
r1cq

. . . T d
rdcq

f∥q ≤ ∥f∥q + 2O(d)γ∥f∥q.

Observe that we may re-write the lefthand side of the above inequality by breaking the

norm into its boolean and product components:

∥T 1
r1cq

. . . T d
rdcq

f∥q = ∥∥T 1
r1cq

. . . T d
rdcq

f∥q,X∥q,r

It is therefore sufficient to prove that the operators T i
ricq

contract the inner q-norm for

fixed ri ∈ {±1}. Since 0 ≤ cq ≤ 1, T i
cq is an averaging operator and contracts q-norms by

Jensen’s inequality. Thus it is enough to show that for any g with finite q-norm:

∥T i
−cqg∥q ≤ ∥g∥q

By our localization lemma, Lemma 2.4.3, it is therefore sufficient to show the ‘single-variate’

version of this contraction for T−cq on any co-dimension 1 link, as then:

∥T i
−cqg∥q = ∥∥T

x−i

−cq g|x−i∥q,xi
∥q,x−i

≤ ∥∥g|x−i∥q,xi
∥q,x−i

≤ ∥g∥q.

Since T
x−i

−cq is self-adjoint, it is also enough to prove the inequality just for q ≥ 2 case by

Hölder conjugation (c.f. Lemma 2.3.5). We can now appeal to Lemma 2.5.5. In particular

for any single variate function h

∥T−cqh∥q = ∥h=∅ − cqh
=1∥q

≤ ∥h=∅ + h=1∥ (Lemma 2.5.5)

= ∥h∥q
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since h=1 is mean-0 and bounded. This holds in particular on the co-dim 1 links of X,

completing the proof.

2.6 Optimal Global Hypercontractivity

We now give our first application of the symmetrization theorem, a simple proof of

global hypercontractivity on HDX with (asymptotically) optimal parameters. We follow

the high level strategy of [364], adapting the argument where necessary due to lack of

independence.

Theorem 2.6.1 (Hypercontractivity on γ-products). Let X be a d-partite ({2, 4}, γ)-

product with γ ≤ 2−Ω(d). For any i ≤ d and (ε, i)-global function f ∈ Cd:

∥f≤i∥44 ≤ 2O(i)∥f≤i∥22 max
|S|≤i,xS

{∥f |xS
∥22}+ 2O(d)γ∥f∥22 max

|S|≤i,xS

{∥f |xS
∥22}.

Note that this is a finer-grained result than claimed in Theorem 2.1.2, which follows

from Lemma 2.3.4 and by replacing ∥f≤i∥22 with (1 + 2O(d)γ)∥f∥22 (the error term is then

everywhere dominated by the main term for γ sufficiently small).

Before proving the result, we give the two mentioned corollaries regarding the

operator-form and implications for low-influence functions.

Corollary 2.6.2. Let X be a d-partite γ-product satisfying γ ≤ 2−Ω(d) and 0 ≤ i ≤ d.

There exists a constant ρ ∈ (0, 1) such that for any mean-0 function f : X(d) → R and

i ≤ d

∥Tρf
≤i∥44 ≤ ∥f∥22 max

|S|≤i,xS

{∥f |xS
∥22}.

Proof. By Lemma 2.3.11 and repeated application of Cauchy-Schwarz, we have

∥Tρf∥44
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≤8∥
∑
S≤i

ρif=S∥44 + 2O(d)γ∥f∥22 max
|S|≤i,xS

{∥f |xS
∥22}

≤8
∑
j≤i

(8ρ)j∥f=j∥44 + 2O(d)γ∥f∥22 max
|S|≤i,xS

{∥f |xS
∥22}

≤
∑
j≤i

2O(j)(8ρ)j∥f=j∥22 max
|S|≤j,xS

{∥f |xS
∥22}+ 2O(d)γ∥f∥22 max

|S|≤i,xS

{∥f |xS
∥22} (Theorem 2.6.1)

≤1

2
max

|S|≤i,xS

{∥f |xS
∥22}
∑
j≤i

∥f=j∥22 + 2O(d)γ∥f∥22 max
|S|≤i,xS

{∥f |xS
∥22}

≤ max
|S|≤i,xS

{∥f |xS
∥22}∥f∥22 (Theorem 2.3.7)

for small enough γ, as desired. Note we have repeatedly used the fact that f=∅ = E[f ]1 =

0.

Corollary 2.6.3. Let X be a d-partite γ-product and f : X → F2 any function with

influence I[f ] ≤ KVar(f). There exists S ⊂ [d] with |S| ≤ O(K) and xS ∈ X[S] such that

E[f |xS
] ≥ 2−O(K).

Proof. The proof follows from a standard ‘level-i inequality’ implied by global hypercon-

tractivity. Namely for any boolean function f , we claim the degree at most i Fourier mass

is bounded by

⟨f, f≤i⟩ ≤ 2O(i)E[f ] max
|S|≤i,xS

{E[f |xS
]1/4}

This follows from a basic application of Hölder’s inequality:

⟨f, f≤i⟩ ≤ ∥f∥4/3∥f≤i∥4 (Hölder)

≤ 2O(i)∥f∥4/3∥f∥1/22 max
|S|≤i,xS

{∥f |xS
∥1/22 } (Theorem 2.6.1)

= 2O(i)E[f ] max
|S|≤i,xS

{E[f |xS
]1/4} (Booleanity)
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On the other hand, recall the influence of f can be written as I[f ] =
d∑

i=0

i⟨f, f=i⟩, so in

particular

KVar(f) ≥ I[f ] ≥ (K + 1)

(
Var(f)−

K∑
i=1

⟨f, f=i⟩

)
− 2O(d)γ∥f∥22.

Re-arranging and using Booleanity, for small enough γ we then have

⟨f, f≤K⟩ ≥ 1

2
E[f ],

which combined with the level-i inequality implies the claimed bound.

We now turn to the proof of Theorem 2.6.1, which relies on the following corollary

of the approximate Fourier properties of Efron-Stein from Section 2.3.

Claim 2.6.4.

∥TrT2f
≤i −

∑
|S|≤i

2|S|f=SrS∥4 ≤ 2O(d)γ∥f∥1/22 max
|S|≤i,xS

{∥f |xS
∥1/22 }

The proof is essentially immediate from Lemma 2.3.11 and Lemma 2.3.12, and is

deferred to the end of the section. We can now prove global hypercontractivity.

Proof of Theorem 2.6.1. By symmetrization, Claim 2.6.4, and Cauchy-Schwarz:

∥f≤i∥44 ≤ 2∥TrT2f
≤i∥44

= 2E

∑
|S|≤i

2|S|rSf
=S +

TrT2f
≤i −

∑
|S|≤i

2|S|rSf
=S

4
≤ 16E

∑
|S|≤i

2|S|rSf
=S

4+ 16E

TrT2f
≤i −

∑
|S|≤i

2|S|rSf
=S

4
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≤ 16E
x

E
r

∑
|S|≤i

2|S|f=S(x)rS

4+ 2O(d)γ∥f∥22 max
|S|≤i,xS

{∥f |xS
∥22}.

Notice that the inner expectation is now over a degree-i boolean function with Fourier

coefficients 2|S|f=S(x). Thus applying the standard Bonami Lemma and Parseval gives:

16E
x

E
r

∑
|S|≤i

2|S|f=S(x)rS

4
≤2O(i)E

x

E
r

∑
|S|≤i

2|S|f=S(x)rS

22
 (Bonami Lemma)

=2O(i)E
x

∑
|S|≤i

22|S|f=S(x)2

2 (Parseval)

≤2O(i)E
x

∑
|S|≤i

f=S(x)2

2 .

We now turn our attention to the term:

E
x

∑
|S|≤i

f=S(x)2

2 = E
x

∑
|S|≤i

f=S(x)2

∑
|T |≤i

f=T (x)2


Our goal is now to isolate and pull out the shared variables between the two terms, so we

can handle each term ‘independently’. To this end, following [364] we re-index the sum

over intersections I = S ∩ T . In particular, we can re-write the above as

∑
|I|≤i

E
xI

 ∑
S⊃I:|S|≤i

E
xS\I∼XxI

f=S(xS)
2

 ∑
T :|T |≤i,S∩T=I

E
xT\I∼XxS

[
f=T (xT )

2
] . (2.6)

On a product space, xT\I and xS\I are independent, which allows the above to upper
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bounded by the much simpler expression

∑
|I|≤i

E
x

 ∑
S⊃I:|S|≤i

f=S(x)2

 ∑
T⊃I:|T |≤i

f=T (x)2

 .

Unfortunately, this strategy does not work as is on a γ-product. In particular, xS\I and

xT\I are not independent, since the latter is drawn from the link of the former. A similar

issue appeared in the analysis of hypercontractivity on two-sided HDX of [39]. The fix

is to observe that since the right-hand function does not actually depend on the xS\I

variables in its input, we can use the swap walks to ‘de-correlate’ xS\I and xT\I up to an

appropriate error term in γ.

Claim 2.6.5.

(2.6) ≤
∑
|I|≤i

E
xI

 ∑
S⊃I:|S|≤i

E
xS\I

[
f=S(xS)

2
]2+ 2O(d)γ∥f∥22 max

|S|≤i,xS

{
∥f |xS

∥22
}
.

We defer the proof of the claim and complete the argument. Pulling out the

maximum we can bound the main term by

max
|I|≤i,yI

 ∑
T⊃I:|T |≤i

E
xT\I∼XyI

[
f=T (yI , xT\I)

2
]∑

|I|≤i

E
xI

 ∑
S⊃I:|S|≤i

E
xS\I∼XxI

[
f=S(xS)

2
]

We bound the two terms separately. The latter is the easier of the two, and can be

bounded by approximate Parseval (Theorem 2.3.7):

∑
|I|≤i

E
xI

 ∑
S⊃I:|S|≤i

E
xS\I∼XxI

[
f=S(xS)

2
] =

∑
|I|≤i

∑
S⊃I:|S|≤i

E
xS

[
f=S(xS)

2
]

≤ 2i
∑
|S|≤i

⟨f=S, f=S⟩

≤ 2i∥f≤i∥22 + 2O(d)γ∥f∥22.
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To bound the maximum, recall from Lemma 2.3.13 that

f=I∪B(yI , xB) =
∑
J⊂I

(−1)|I|−|J |(f |yJ )=B(xB).

Thus for any possible yI ∈ X[I], a simple application of Cauchy-Schwarz gives:

∑
T⊃I:|T |≤i

E
xT\I∼XyI

[
f=T (yI , xT\I)

2
]
≤
∑
T⊃I

E
xT\I∼XyI

[
f=T (yI , xT\I)

2
]

≤ 2i
∑
J⊂I

∑
S⊂Ī

E
xS

[(fyJ )
=S(xS)

2]

≤ 2i
∑
J⊂I

∑
S⊂Ī

E
xS

[(fyJ )
=S(xS)

2]

≤ 2O(i) max
|J |≤|I|,xJ

{∥f |xJ
∥22}.

Putting everything together, we get the final bound

∥f≤i∥44 ≤ 2O(i)∥f≤i∥22 max
|S|≤i,xS

{
∥f |xS

∥22
}
+ 2O(d)γ∥f∥22 max

|S|≤i,xS

{
∥f |xS

∥22
}

as desired.

2.6.1 Auxiliary Proofs

We now give the proofs of Claim 2.6.4 and Claim 2.6.5.

Proof of Claim 2.6.4. The proof is immediate from linearity of the noise operator and the

triangle inequality if we can show for any |S| ≤ i:

∥TrT2f
=S − 2|S|rSf

=S∥4 ≤ 2O(d)γ∥f∥1/22 max
|S|≤i,xS

{∥f |xS
∥1/22 }.
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By Claim 2.3.15 we can write

TrT2f
=S =

∑
S′⊆[d]

2|S|Tr(f
=S)=S′

.

Since the projection operators {ET} contract p-norms and Tρ is a (bounded) linear

combination of projections, Lemma 2.3.12 implies the righthand side satisfies

∥
∑
S′⊆[d]

2|S|Tr(f
=S)=S′ − 2|S|Trf

=S∥4 ≤ 2O(d)γ∥f∥1/22 max
|S|≤i,xS

{∥f |xS
∥1/22 }

Expanding out Tr, the main term is then

2|S|
∑
T⊆[d]

rT
∏
i/∈T

(1− ri)ETf
=S.

Now by Lemma 2.3.9, ∥ETf
=S∥4 ≤ 2O(d)γ∥f∥1/22 max|S|≤i,xS

{∥f |xS
∥1/22 } unless S ⊂ T , in

which case ETf
=S = f=S. Thus the above is close in 4-norm to

2|S|
∑
T⊃S

rT
∏
i/∈T

(1− ri)f
=S = 2|S|rSf

=S

as in Claim 2.3.15.

Proof of Claim 2.6.5. Recall our goal is to de-correlate xS\I and xT\I to approximately

upper bound

∑
|I|≤i

E
xI

 ∑
S⊃I:|S|≤i

E
xS\I∼XxI

[f=S(xS)
2]

 ∑
T :|T |≤i,S∩T=I

E
xT\I∼XxS

[f=T (xT )
2]
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by the ‘independent’ variant

∑
|I|≤i

E
xI

 ∑
S⊃I:|S|≤i

E
xS\I∼XxI

[
f=S(xS)

2
]2 . (2.7)

To do this, first note we may pull out the inner sum in the former expectation and write

∑
|I|≤i

E
xI

 ∑
S⊃I:|S|≤i

∑
T :|T |≤i,S∩T=I

E
xS\I∼XxI

[
f=S(xS)

2 E
xT\I∼XxS

[
f=T (xT )

2
]]

where we first draw xI , then xS\I conditional on xI , and finally xT\I conditional on xS.

The trick is now to re-write each inner expectation as an application of the swap

walk on the link of xI :

E
xS\I∼XxI

[
f=S(xS)

2 E
xT\I∼XxS

[
f=T (xT )

2
]]

=
〈
(f=S|xI

)2, AxI

T\I,S\I(f
=T |xI

)2
〉
XxI

≤ E
xS\I∼XxI

[(f=S|xI
)2] E

xT\I∼XxI

[(f=T |xI
)2]

+ 2O(d)γ∥f=S|xI
∥24∥f=T |xI

∥24

where the final step is by Cauchy-Schwarz and expansion of the swap walk. Since xS\I

and xT\I are now independent (conditioned on xI), we can plug them back into the above

and upper bound by Equation (2.7) as in the product setting.

It is left to handle the error term, which can similarly be upper bounded as

2O(d)γ
∑
|I|≤i

E
xI

 ∑
S⊃I:|S|≤i

E[f=S(x)4]1/2

2 ≤ 2O(d) max
|S|≤i

{
∥f=S∥44

}
≤ 2O(d)γ∥f∥1/22 max

|S|≤i,xS

{∥f |xS
∥1/22 }

where the first inequality is by Cauchy-Schwarz and the latter Lemma 2.3.8.
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2.7 Bourgain’s Booster Theorem

In this section we prove γ-products satisfy a booster theorem, resolving a main

open question of [39].

Theorem 2.7.1. Let X be a ({2, 4}, γ)-product for γ ≤ 2−Ω(d) and f : X(d) → {±1} a

function with I[f ] ≤ K. If Var(f) ≥ .01, there is some |τ | ≥ 2−O(K2) such that

P
x∼X(d)

[∃T ⊂ [d] : |T | ≤ O(K) and xT is a τ -booster] ≥ |τ |

Our proof closely follows O’Donnell’s treatment of Bourgain’s Theorem for product

spaces in [308], adjusting where necessary to handle lack of independence. The key technical

component is to show that for any low influence function, it is possible to identify a small

input-dependent set of coordinates which account for most of the Fourier mass. This is

similar to the proof of Friedgut’s Junta theorem, which does this in an input-independent

fashion. Unfortunately, the latter is not possible on products or HDX.

Proposition 2.7.2. Let X be a ({2, 4}, γ)-product with γ ≤ 2−Ω(d), ε ∈ (2O(d)γ, 1/2), and

f : X(d) → {±1} any function satisfying Var(f) ≥ .01. Let ℓ = I[f ]/ε. There exists a

family of ‘notable coordinates’ {Jx}x∈X(d) such that

1. Jx is small:

∀x, |Jx| ≤ 2O(ℓ)

2. Small subsets of Jx contain of most of the Fourier mass:

E

[∑
S/∈Fx

f=S(x)2

]
≤ 3ε

where Fx := {S : S ⊆ Jx, |S| ≤ ℓ}.
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We first prove the booster theorem assuming this fact. The proof is essentially

exactly as in the product case (see e.g. [308, Page 311]). We include the argument for

completeness.

Proof of Theorem 2.7.1. Set ε of Proposition 2.7.2 to .001 (note this is admissible when

γ ≤ 2−Θ(d) is small enough), and let |Fx| ≤ 2O(K2) be the resulting family of subsets. Since

we have assumed Var(f) ≥ .01, we have f=∅(x)2 ≤ .99, so

Ex

 ∑
S∈Fx\{∅}

f=S(x)2

 ≥ 1− 3ε− .99− 2O(d)γ ≥ .005

for small enough γ. As a result, we must have that the maximum is at least 2−O(K2):

Ex

[
max

S∈Fx\{∅}
f=S(x)2

]
.

In particular, this means for every x we can define a set 0 < |Sx| ≤ O(K) such that

Ex

[
f=Sx(x)2

]
≥ 2−O(K2)

Since f=Sx(x) =
∑

T⊆Sx

(−1)|Sx|−|T |ETf(x) ≤ 2|Sx| for {±1}-valued f , so we have f=Sx(x)2 ≤

2O(K) for all terms above and therefore

P
x
[f=Sx(x)2 ≥ 2−O(K2)] ≥ 2−O(K2).

Finally, we argue that whenever f=Sx(x)2 ≥ 2−O(K2), there exists T ⊆ Sx which is a

2−O(K2)-booster, completing the proof.

Toward this end, let g = f −E[f ], and note for all S ≠ ∅, g=S = f=S. Since Sx ≠ ∅,
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we therefore have |g=Sx(x)| ≥ 2−O(K2). Finally, recall

g=Sx(x) =
∑

∅≠T⊆Sx

(−1)|Sx|−|T |ETg(x),

so there must exist some 0 < T ≤ O(K) such that |ETg| ≥ 2−O(K2). However since

g = f − E[f ], we then have

|ETg(x)| = |E[f |xT
]− E[f ]| ≥ 2−O(K2)

as desired.

We now prove the core Proposition.

Proof of Proposition 2.7.2. First observe that the expected Fourier mass on components

beyond level ℓ is small

Ex

∑
|S|>ℓ

f=S(x)2

 ≤ 2ε.

This follows by viewing the components
∑
|S|=i

Ex[f
=S(x)2] as an approximate distribution

over [d]. Namely using the fact that

1 = Ex[f
2] ∈ (1± 2O(d)γ)

∑
S⊆[d]

Ex[f
=S(x)2],

for small enough γ, there is some normalizing factor c ∈ [.9, 1.1] such that cEx[f
=S(x)2] is

a distribution. Now consider the random variable Z that takes value |S| with probability

cEx[f
=S(x)2]. Markov’s inequality implies

P[Z > ℓ] ≤ E[Z]
ℓ

=
c−1I[f ] + cdγ

ℓ
= c−1ε+

εcdγ

I[f ]
≤ 2ε

for small enough γ, where we’ve used Corollary 2.3.17 and the standard fact that I[f ] ≥
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dVar[f ].

We may now restrict our attention to the components of degree at most ℓ. In

particular, we need to find small sets Jx such that

Ex

 ∑
|S|≤ℓ,S ̸⊆Jx

f=S(x)2

 ≤ ε

The natural strategy to define such a set is simply to take any coordinate with large

influence, that is

J ′
x :=

{
j ∈ [d] :

∑
S∋j

f=S(x)2 ≥ τ

}

where τ = 2−Θ(ℓ) is a sufficiently small constant. In fact we will show for this definition

Ex

 ∑
|S|≤ℓ,S ̸⊆J ′

x

f=S(x)2

 ≤ ε/2 (2.8)

The issue is that |J ′
x| may not be bounded. We will argue that truncating J ′

x as

Jx =


J ′
x if |J ′

x| ≤ Cℓ

∅ otherwise

for some large enough constant C > 0, gives the desired set family. In particular, it is

enough to additionally show

E

1[|J ′
x| > Cℓ]

∑
0<|S|≤ℓ

f=S(x)2

 ≤ ε/2. (2.9)

We first show Equation (2.8). Toward this end, we’ll require the following Lemma (gener-

alizing [308, Lemma 10.48] to γ-products) which follows from standard hypercontractivity

and approximate Parseval. We defer the proof.
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Lemma 2.7.3. Fix x ∈ X(d) and i /∈ J ′
x. If γ ≤ 2−Ω(d) is sufficiently small, for

g = T2/5Lif we have:

∥T 1√
3
g̃|x∥22 ≤ 2τ 1/3∥g̃|x∥4/34/3

We now prove Equation (2.8):

Ex

 ∑
|S|≤ℓ,S ̸⊆J ′

x

f=S(x)2

 ≤ 2O(ℓ)Ex

∑
S ̸⊆J ′

x

(T1/
√
3T2/5f

=S)(x)2

+ 2O(d)γ

≤ 2O(ℓ)Ex

∑
i ̸∈J ′

x

∑
S∋i

(T1/
√
3T2/5f

=S)(x)2

+ 2O(d)γ

≤ 2O(ℓ)Ex

∑
i ̸∈J ′

x

(T1/
√
3T2/5Lif)(x)

2

+ 2O(d)γ

where the last step follows from observing

Ex

[∑
S∋i

(T1/
√
3T2/5f

=S)(x)2

]

=Ex

[
(T1/

√
3T2/5Lif)(x)

2
]
−
∑

S ̸=S′∋i

⟨T1/
√
3T2/5f

=S, T1/
√
3T2/5f

=S′⟩

≤2O(d)γ

by approximate orthogonality and the fact that

∥T1/
√
3T2/5f

=T − (
2√
35

)|T |f=T∥2 ≤ 2O(d)γ∥f∥2

for any T by the same argument as in Claim 2.6.4.

Define gi := T2/5Lif . We’d like to pass to the symmetrization of gi so we can apply

Lemma 2.7.3. To this end, we observe that

Ex

[
T1/

√
3g

i(x)2
]
≤ Ex

[
∥T1/

√
3g̃

i|x∥22,r
]
+ 2O(d)γ
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This follows since by definition g̃i|x is the boolean function whose Fourier coefficients are

(gi)=S(x), so by Parseval

Ex

[
∥T1/

√
3g̃

i|x∥22,r
]
= Ex

∑
S⊆[d]

(
1√
3

)|S|

(gi)=S(x)2


≥ Ex

[
T1/

√
3g

i(x)2
]
− 2O(d)γ

where the last step is again by the fact that Efron-Stein is approximately orthogonal and

approximately an eigenbasis.

This allows us to apply Lemma 2.7.3 and ‘un-symmetrize’. Namely we have:

Ex

 ∑
|S|≤ℓ,S ̸⊆J ′

x

f=S(x)2

 ≤ 2O(ℓ)
∑
i ̸∈J ′

x

Ex

[
∥T1/

√
3g̃

i|x∥22,r
]
+ 2O(d)γ

≤ 2O(ℓ)τ 1/3
∑
i ̸∈J ′

x

Ex

[
∥g̃i|x∥4/34/3,r

]
+ 2O(d)γ

≤ 2O(ℓ)τ 1/3
∑
i∈[d]

∥Lif∥4/34/3 + 2O(d)γ

≤ 2O(ℓ)τ 1/3I[f ] + 2O(d)γ

≤ ε/2

for small enough τ, γ. Note here we’ve used the standard inequality ∥Lif∥4/34/3 ≤ O(⟨f, Lif⟩)

(see e.g. [308, Exercise 8.10]) which holds for {±1}-valued functions via relating the

coordinate-wise influence to the probability f(x) ̸= f(x(i)) up re-randomizing the ith

coordinate.

We now need to show that |J ′
x| is typically small (Equation (2.9)). We first separate
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the indicator and Fourier sum by Cauchy-Schwarz:

E

1[|J ′
x| > Cℓ]

∑
0<|S|≤ℓ

f=S(x)2

 ≤ P
x
[|J ′

x| > Cℓ]1/2 · E

 ∑
0<|S|≤ℓ

f=S(x)2

21/2

We bound the two terms separately. The first can be bounded by a simple application of

Markov and

P
x
[|J ′

x| > Cℓ] ≤ C−ℓEx[|J ′
x|]

≤ C−ℓEx[
1

τ

∑
i∈[d]

∑
S∋i

f=S(x)2]

≤ C−ℓ

τ
(I[f ] + 2O(d)γ)

for large enough C and small enough γ.

Bounding the latter term requires slightly more care. Let h = T2/5(f − f=∅). We

have

Ex

 ∑
0<|S|≤ℓ

f=S(x)2

2 ≤ 2O(ℓ)E

∑
S ̸=∅

T2/5f
=S(x)2

2+ 2O(d)γ

≤ 2O(ℓ)Ex

[
∥h̃|x∥42,r

]
+ 2O(d)γ

≤ 2O(ℓ)Ex

[
∥h̃|x∥44,r

]
+ 2O(d)γ

≤ 2O(ℓ)∥f − f ∅∥44 + 2O(d)γ

≤ 2O(ℓ)Var(f) + 2O(d)γ

≤ 2O(ℓ)I[f ] + 2O(d)γ

where we have used the standard fact that Var(f) ≤ I[f ], and in the second inequality

have applied the same properties of approximate Efron-Stein as in the prior arguments.
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Combining these we have

E

1[|J ′
x| > Cℓ]

∑
0<|S|≤ℓ

f=S(x)2

 ≤ (2O(ℓ)I[f ] + 2O(d)γ)1/2
(
C−ℓ

τ
(I[f ] + 2O(d)γ)

)1/2

≤ ε/2

for large enough constant C > τ−1 and small enough γ.

It is left to prove Lemma 2.7.3.

Proof of Lemma 2.7.3. We first appeal to (4/3, 2)-hypercontractivity which states that

∥T1/
√
3f∥2 ≤ ∥f∥4/3 for any f : {±1}d → R. Then we have:

∥T1/
√
3g̃|x∥22 ≤

(
∥g̃|x∥24/3

)1/3 · ∥g̃|x∥4/34/3 ≤
(
∥g̃|x∥22

)1/3 · ∥g̃|x∥4/34/3

Our goal is now to bound ∥g̃|x∥22 ≤ τ + 2O(d)γ ≤ 2τ . By standard Parseval

∥g̃|x∥22 =
∑
S⊆[d]

(T2/5Lif)
=S(x)2

≤
∑
S∋i

(2/5)2|S|f=S(x)2 + 2O(d)γ

≤ τ + 2O(d)γ

since i /∈ J ′
x. The second inequality comes expanding Lif as

∑
T∋i

f=T and applying

Lemma 2.3.11 and Lemma 2.3.12.
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Chapter 3

On Low Influence Functions on Weak
HDX

3.1 Introduction

In 1988, Kahn, Kalai, and Linial [226] proved the ‘KKL Theorem’: a characterization

of low influence (non-expanding) functions1 on the hypercube that revolutionized the field

of boolean function analysis. In recent years, variants of the KKL Theorem beyond the

cube, including on products [78, 349, 160, 157, 194, 245, 280], Lie groups [139], and the

Grassmann have become a powerful tool in hardness of approximation, leading to the theory

of sharp thresholds [158], the 2-2 Games Conjecture [253, 126, 125, 47, 252, 255], and PCPs

with near-optimal alphabet-soundness tradeoff [297]. Despite this, our understanding of

KKL-type theorems on general spaces remains poor. As a result, many approaches in this

direction (e.g. towards the unique games conjecture) have hit substantial barriers.

Toward this end, a series of works [239, 111, 38, 39, 187, 162] proposed a new

framework for unifying our understanding of KKL-type Theorems beyond the cube: high

dimensional expanders (HDX). HDX are a generalization of expanders to hypergraphs and

ranked posets that have seen a recent explosion of application within theoretical computer

science [239, 111, 38, 39, 187, 162, 124, 109, 236, 9, 119, 208, 52, 25, 11, 24, 95, 96, 94, 146,
1Informally, a low-influence function on the hypercube is one which has low expected probability of

changing value under a random coordinate flip.
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218, 286, 66, 117, 315, 127, 114, 113, 40]. Recently, Bafna, Hopkins, Kaufman, and Lovett

[38, 39] and Gur, Lifshitz, and Liu [187] proved a KKL-Type Theorem for high dimensional

expanders stating that any low influence function must be local, highly concentrated in

some restriction of the hypergraph. Unfortunately, BHKL and GLL’s techniques only

work in the regime of near-perfect expansion, a very strong requirement only known for

three algebraic families of sparse constructions [290, 238, 108], and as such remain difficult

to handle in application where simpler constructions might be more amenable (e.g. in

classical PCP reductions).

In this work, we study KKL type theorems on weak high dimensional expanders.

It is typical in this setting tow ork from the contrapositive view, which states that any

function f which is ‘(ε, i)-global’, i.e. f does not increase by more than ε upon restricting

i vertices, expands. Our main result is an expansion theorem which scales with the

underlying local-spectral parameters of the hypergraph X, and a corresponding family of

weak HDX exhibiting a similar lower bound.

Theorem 3.1.1 (Structure of Low Influence Functions (Informal)). For any hypergraph

X and (ε, i)-global function f : X(k)→ F2 on k-faces of X:

Φ(f) ≥ (1− E[f ])
1

k − i

k−2∏
j=i

(1− γj) + ck,γε

Moreover, for every i ≤ k there exists an infinite family of hypergraphs {Xn} and (0, i)-

global functions {fn : Xn(k)→ F2} satisfying

Φ(f) ≤ (1− E[f ])
i+ 1

k

k−2∏
j=i

(1− γj)

Here Φ(f) is the total influence (expansion) of f and {γj}-correspond to the largest

non-trivial positive eigenvalues on j-links of X (see Section 3.1.1). Under weak assumptions,

we emphasize ck,γ ≤ O(1) is an absolute constant. Here the result should be compared to
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[39, 187] who show

Φ(f) ≥ (1− E[f ])
i+ 1

k
+Oi(ε) + exp(−k),

essentially matching the lower bound, but only when γj, |γ(−)
j | ≤ exp(−k). It remains an

important question whether weak HDX match this behavior. See Section 3.1.4 for further

discussion.

Leveraging Theorem 3.1.1, we give new characterizations of low-influence functions

on natural families of combinatorial high dimensional expanders, including clique complexes

and product-based HDX. As an immediate corollary, we also derive a new ‘Kruskal-Katona’

theorem for global functions on such objects. Finally, using similar ideas, we prove a

‘local-to-global’ small-set expansion theorem (a KKL variant corresponding to the noise

operator), and as an application give the first such result for Ramanujan complexes [290],

a seminal construction of high dimensional expanders failing the requirements of [39, 187].

At a technical level, our work builds on a growing body of Fourier analytic tools for

high dimensional expanders [239, 111, 38, 39, 187, 162, 109, 9, 176] and relies in particular

on a recent decomposition theorem of Gotlib and Kaufman (GK) [176]. Our work makes

two main technical contributions beyond these prior methods. First, we show that as long

as the complex X has negative local spectra bounded away from −1, global functions have

bounded projection onto low levels of the GK-decomposition. Second, inspired by GK’s

proof technique, we consider an inductive approach for bounding expansion through a

new variant of Garland’s Lemma, breaking the expansion of f as a function-dependent

expectation across local parts of the complex. This latter component is critical to ensure

the density dependence in the resulting characterization is independent of dimension. In

comparison, directly applying GK’s decomposition gives an expansion bound for arbitrary

one-sided HDX (that is with no assumption on the negative spectra), but deteriorates

with the number of vertices of X [175]. Extending our results to the true one-sided case
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remains an interesting open problem.

3.1.1 Background

High Dimensional Expanders:.

We focus on weighted pure simplicial complexes (X,Π) where

X = X(0) ∪ . . . ∪X(d)

for X(d) ⊂
(
n
d

)
an arbitrary d-uniform hypergraph and X(i) ⊂

(
n
i

)
given by downward

closure, and

Π = (π0, . . . , πd)

for πd an arbitrary distribution over X(d) and πi given by selecting a uniformly random

i-set from τ ∼ πd.

Our bounds will depend on a recently popular local notion of high dimensional

expansion which examines the structure of local components called links. For every face

τ ∈ X(i), the link of τ is given by:

Xτ := {σ ∈ X : σ ∪ τ ∈ X}.

Given a function f : X(k)→ R, its localization f |τ : Xτ (k − |τ |)→ R is fτ (σ) = f(τ ∪ σ).

Denote the normalized adjacency matrix of the graph underlying Xτ by Aτ , and

for 0 ≤ j ≤ d− 2 denote the worst-case spectral parameters of j-links by

γj := max
τ∈X(j)

{λ2(Aτ )}, γ
(−)
j := min

τ∈X(j)
{λmin(Aτ )}.

A complex is called strongly connected if every γj < 1, a (one-sided) local-spectral expander

if every γj is bounded away from 1 [309], and a (two-sided) local-spectral expander if every

γ
(−)
j is additionally bounded away from −1 [124].
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Influence and the Down-Up Walk:.

As in the seminal work of KKL, we are interested in characterizing the structure of

boolean functions Ck(X,F2) := {f : X(k)→ F2} with low total influence. In our setting

it will be convenient to use an equivalent definition (up to normalization) concerning

the expansion of a celebrated random walk on complexes called the lower or down-up

walk. The lower walk at level k, denoted N1
k , moves between k-faces of the complex via

a shared (k − 1)-face, removing a vertex uniformly at random and re-sampling from the

appropriate conditional distribution on the remaining (k − 1)-face. The edge expansion of

a set S ⊂ X(k) with respect to the lower walk is the expected probability of leaving S in

a single step, or equivalently:

Φ(S) = 1− ⟨N
1
k1S, 1S⟩
⟨1S, 1S⟩

.

It is not hard to see that expansion, which can also be written as ⟨1S ,L1S⟩
⟨1S ,1S⟩

for the ‘Laplacian

Operator’ L, is equivalent to standard notions of influence up to normalization (see

Section 3.2 for details), so we will focus on this notion throughout instead.

Small-Set Expansion and the Noise Operator:.

The small-set expansion theorem is a classical and closely related result to the

KKL theorem [3, 226]. In its standard form, it states that small sets on the noisy cube

expand near perfectly. To prove an analog result beyond the cube, we need to define a

corresponding notion of the noise operator Tρ on simplicial complexes. Informally, Tρ is the

random walk on k-faces of X which fixes each vertex with probability ρ, and re-samples

the remaining vertices. Formally, the operator can be expressed as a convex combination

of ‘longer’ down-up walks

Tρ :=
k∑

i=0

(
k

i

)
(1− ρ)k−iρiNk−i

k ,
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where N j
k moves between k-faces via a shared (k− j)-face. Note this recovers the standard

operator when X is a product space (see [39]). We will always write expansion with

respect to the noise operator at ΦTρ , and write just Φ for the down-up walk. Finally, it

will sometimes be useful to reference the opposite variant of the lower walks, the ‘upper’

walks pN i
k, which moves between k-faces via a shared (k + i)-face.

3.1.2 Results

We are now ready to more formally cover our results. We split the subsection

into two parts: structure theorems for low-influence functions on arbitrary HDX, and a

local-to-global small-set expansion theorem.

A Structure Theorem for Low Influence Functions

The canonical examples of low influence sets on simplicial complexes are links.2

Our goal is to show these are the only such examples. To this end, we call a function f

(ε, i)-global if it is uncorrelated with i-links:

∀τ ∈ X(i) : E
Xτ

[fτ ] ≤ E[f ] + ε.

We prove that global functions expand, where the quantitative parameters depend on the

underlying local-spectral expansion of the complex.

Theorem 3.1.2 (Expansion of Global Functions (Informal Theorem 3.3.1)). Let (X,Π)

be a k-dimensional simplicial complex and f ∈ Ck any (ε, i)-global boolean function. Then

Φ(f) ≥ 1− E[f ]
k − i

k−2∏
j=i

(1− γj)− ck,i,γε.

2Note here we really mean the set of k-face including some fixed i-face (rather than removing the
common element as in the formal definition).
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where ck,i,γ ≤ (k − i+ 1)

(
1

k−i

k−2∏
j=i

(1− γj)− 1
k−i+1

k−2∏
j=i−1

(1− γj)

)(
1 + (k − i)γ

(−)
i−1

)−1

For many regimes of interest, e.g. when either γk−2 or |γ(−)
k−2| is less than roughly 1

k
,

cγ,k,i ≤ O(1) is an absolute constant, with no dependence on dimension. In such cases the

contrapositive of Theorem 3.1.2 states any non-expanding function has constant density

in some restriction.

Perhaps the most important question regarding Theorem 3.1.2 is to what extent

the bound is tight. Using a combinatorial HDX construction of Golowich [170, 172] and

Liu, Mohanty, and Yang [287], we construct families of global functions on weak HDX

matching the above up to replacing the dependence on 1
k−i

with i+1
k

.

Theorem 3.1.3 ((Non)-Expansion of Global Functions (Informal Theorem 3.3.2)). For

every 0 < i < k, there exists a k-dimensional family of complexes {Xn} and (0, i)-global

functions {fn} such that

Φ(fn) ≤ (1− E[f ])
i+ 1

k

k−2∏
j=i

(1− γj).

We discuss the two dependencies in these bounds and their relation to bounds

in the literature further in Section 3.1.4. The former, 1
k−i

, is the natural consequence

of an inductive approach, while i+1
k

corresponds to the approximate eigenvalues of HDX

with exp(−k)-local-spectral expansion [111, 38]. It remains an interesting question which

dependence is correct for weak HDX.

As applications of Theorem 3.1.2, we give the first structure theorems for simpler

combinatorial constructions of high dimensional expanders. We’ll start by looking at one of

the most classical constructions of simplicial complexes: clique-complexes. Given a graph

G = (V,E), the k-dimensional clique-complex KG,k is the complex induced by taking the

uniform distribution over k-cliques of G. Using Theorem 3.1.2, we give the first non-trivial

characterization of non-expanding sets on (dense) clique-complexes.
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Corollary 3.1.4 (Expansion in Clique-Complexes (Informal Theorem 3.5.2)). Fix k ∈ N

and let G = (V,E) be any graph with minimum degree at least ∆min ≥ 2k−2
2k−1
|V |. Then the

expansion of any (ε, i)-global boolean function f on the k-dimensional clique-complex KG,k

is at least:

Φ(f) ≥ (1− E[f ])
(i+ 1)

k(k − i)
−O(ε)

While Corollary 3.1.4 is non-trivial in any dimension, it is strongest in low dimen-

sions. For instance, an interesting implication for 3-clique (triangle) complexes is that any

function of triangles with expansion worse than 1/3 must have a dense vertex.

Corollary 3.1.5 (Low Influence Functions on Triangle Complexes (Informal Corol-

lary 3.5.3)). Let G = (V,E) be any graph of minimum degree at least ∆min ≥ 5
6
|V | and

S ⊂ KG,3(3) any set with expansion

Φ(S) ≤ 1

3
− δ.

Then there exists a vertex v ∈ G such that S contains at least a δ
2
-fraction of the triangles

touching v.

Of course, clique-complexes arising from dense graphs are themselves dense objects.

A major selling points of prior work was the ability to characterize low-influence functions

on several families of sparse complexes. While our work cannot match the quantitative

strength of these results, it does lead to new insight on the structure of functions on

simpler constructions of bounded-degree HDX with quantitatively weaker parameters.

In particular, we consider (cutoffs of) the elementary combinatorial HDX of Golowich,

which tensors a bounded-degree expander G with the complete complex to give a weak

bounded-degree two-sided HDX.

Corollary 3.1.6 (Expansion in Combinatorial HDX (Informal Corollary 3.5.5)). Let X be

a 2k-dimensional ‘product-HDX’ of any graph G and ∆4k(2k), and f ∈ Ck any (ε, i)-global
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boolean function. Then

Φ(f) ≥ (1− E[f ])i
(k − 1)(k − i)

−O(ε)

As for the case of clique-complexes, this is especially powerful in low dimensions.

For concreteness, we again look at the first non-trivial setting of k = 3.

Corollary 3.1.7 (Low Influence Functions on Combinatorial HDX (Informal Corol-

lary 3.5.6)). Let X be a 3-dimensional ‘product-HDX’ of any graph G and ∆n(6), and

S ⊂ X(3) be any subset of triangles with expansion at most

Φ(S) ≤ 1

4
− δ.

Then there exists a vertex v ∈ X(1) such that S contains a Ω(δ) fraction of triangles

including the vertex v.

Finally, we note that as an immediate corollary of Theorem 3.1.2 we also get a

‘Kruskal-Katona’ type theorem in all the above settings. Kruskal-Katona is a seminal and

broadly used result in extremal combinatorics which given a set S ⊂ X(k), lower bounds

the number of (k − 1)-faces that sit inside S, called its ‘lower shadow’ and denoted ∂S.

Corollary 3.1.8 (Kruskal-Katona for Weak HDX). Let (X,Π) be a k-dimensional simpli-

cial complex and S ⊂ X(k) any (ε, i)-global set. Then

E[∂S] ≥ E[S]

(
1 +

1− E[S]
k − i

k−2∏
j=i

(1− γj)− ck,i,γε.

)

where ck,i,γ ≤ (k − i+ 1)

(
1

k−i

k−2∏
j=i

(1− γj)− 1
k−i+1

k−2∏
j=i−1

(1− γj)

)(
1 + (k − i)γ

(−)
i−1

)−1

Small-Set Expansion

Similar to the setting of the lower walk, links also provide a canonical family of

non-expanding sets for the noise operator on simplicial complexes. In this setting, it
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is typical [245, 187, 39] to use a slightly stronger notion of global functions we’ll call

‘(ε, i)-strongly global’, which simply assumes f is sparse on every link:

∀τ ∈ X(i) : E
Xτ

[fτ ] ≤ ε.

BHKL [39] and GLL [187] prove small-set expansion for strongly global functions on

near-perfect two-sided and one-sided partite high dimensional expanders. While these

properties are satisfied by some constructions (e.g. [239]), the seminal construction of

good HDX, the so-called Ramanujan complexes of Lubotzky, Samuels, and Vishne [290],

actually fail these conditions. These complexes (and their variants, e.g. [113, 40]) satisfy a

variety of useful topological properties [119, 208]

One of the advantages of the Ramanujan complexes is their simple local structure.

In particular, their links are near-perfect partite HDX, and therefore satisfy a small-set

expanison theorem. This raises a natural question: is any complex X whose links satisfy

global small-set expansion itself a global small-set expander? We answer this question in

the affirmative.

Theorem 3.1.9 (Local-to-Global SSE (Informal Corollary 3.4.6)). Let X be a complex

such that ∀v ∈ X(1):

1. Any (ε, i− 1)-strongly global function f on Xv has expansion

ΦTρ(f) ≥ ϕ(ε, k, i)

2. Xv is a γ-two-sided or γ-one-sided partite HDX

Then any (ε, i)-global boolean function f has expansion at least

ΦTρ(f) ≥ ϕ(ε, k, i)− 2O(k)γ − 2−Ω(k).
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We note the requirement that links of X are HDX can be removed up to worsened

dependence in the dimensional error term (see Corollary 3.4.6). The inverse exponential

error above is essentially negligible, since any function with respect to the noise operator

has non-expansion at least inverse exponential in k.

As an immediate corollary, we prove the Ramanujan complexes are global small-set

expanders.

Corollary 3.1.10 (Ramanujan Complexes are Global SSEs (Informal Corollary 3.5.9)).

Let f ∈ Ck be an (ε, i)-strongly global boolean function on a Ramanujan Complex with

2−Ω(k) one-sided local-spectral expansion. The expansion of f is at least

ΦTρ(f) ≥ 1− ρi+1 −Oi(ε)− 2−Ω(k).

3.1.3 Techniques

We sketch the proofs of Theorem 3.1.2 and Theorem 3.1.9, starting with the former.

Upper Bound:.

Our general approach to prove global sets expand is broken into three core com-

ponents. The first is a new function-dependent variant of ‘Garland’s Lemma’, a classical

method of breaking global functions into local components over the complex. In particular,

we show the expansion of a function f with respect to the lower walks can be written as

an expectation of its expansion over links of X.

Lemma 3.1.11 (Garland’s Lemma for Expansion (Informal Lemma 3.3.5). Let (X,Π)

be a weighted, pure simplicial complex and f ∈ Ck any function on k-faces. Then for all

i ≤ k and j ≤ k − i:

Φ(f) = E
τ∼πf

j

[ΦXτ (f |τ )], (3.1)

where f |τ (σ) = τ ∪ σ is the localization of f to the link of τ , and πf
j is some f -dependent

distribution over i-faces of X.
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The second core component is a variant of the GK’s decomposition theorem [176]

for the lower walk.

Theorem 3.1.12 (GK-Decomposition (Informal Theorem 3.7.1)). Let (X,Π) be a k-

dimensional simplicial complex. Then for any f ∈ Ck there is an orthogonal decomposition

f =
k∑

i=0

fi such that:

⟨Nk
1 f, f⟩ ≤ E[f ]2 +

k−1∑
i=1

(
1− 1

k − i+ 1

k−2∏
j=i−1

(1− γj)

)
⟨f, fi⟩.

Finally, the third main component is a ‘level-1 inequality’ showing any (1, ε)-global

function has low projection onto the first level of the GK-decomposition.

Proposition 3.1.13 (Level-1 Inequality (Informal Corollary 3.3.9)). Let (X,Π) be a

k-dimensional complex and f any (ε, 1)-global boolean function f ∈ Ck. Then

⟨f, f1⟩ ≤
k

1 + γ
(−)
0 (k − 1)

ε.

We remark that this is a corollary of a more general level i inequality that scales

with the minimum non-zero eigenvalue of the upper walks (see Theorem 3.3.8). One could

instead apply this directly with the GK decomposition, but the resulting dependence on ε

is substantially worse than can be achieved by combining these with Garland’s method.

Given these three components, Theorem 3.1.2 follows from a fairly simple induction.

We first prove the statement directly for (ε, 1)-global functions using the GK-Decomposition

and Level-1 inequality. For general i, we use Garland’s lemma to reduce to i = 1 inside links

of X, writing the expansion as Φ(f) = Eτ∼πf
i−1

[Φτ (f |τ )], and observe that the localization

f |τ of a (ε, i) global function is itself (1, ε − δτ ) global for some |δτ | ≤ ε. Applying the

statement for 1-global functions inside the expectation (carefully handling dependence on

Eτ∼πf
i−1

[δτ ]) then gives the claimed bound.
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Lower Bound:.

Our lower bound relies on the ‘product-HDX’ of Golowich [170, 172] and Liu,

Mohanty, and Yang [287]. Roughly speaking, these complexes are constructed by tensoring

a ‘low-dimensional’ complex X (say of dimension j) and a ‘high-dimensional’ complete

complex Y = ∆k(n) in the following fashion:

FX,Y (k) = {s = (x1, y1), . . . , (xk, yk) : ΠX(s) ∈ X(j) ∧ ΠY (s) ∈ Y (k)}

where ΠX and ΠY are the projections onto the first and second coordinates respectively.

Equipped with the correct weight function, FX,Y has top level local-spectral expansion

roughly γk−2, |γ(−)
k−2| ≈ 1

k−1
[172].

For every i ≤ k, we’d like to construct an i-global function f ∈ Ck with expansion

as close as possible to Theorem 3.1.2. To do this, we will use a product complex where X

has dimension i+ 1 and Y has dimension k. The idea of the construction is to ‘lift’ an

i-global boolean function f on X to the product. In particular, to construct f , for every

i-face τ ∈ X, we set f = 1 on exactly a µ = E[f ] fraction of the (i+ 1)-faces containing

τ . We may then take the final function f ′ on the product to simply be the value of f on

the face’s X-projection. It is easy to check that if X and Y are sufficiently regular, this

results in a perfectly balanced function at level i of the product F .

Recall that the down-up walk operates on a face s = {(x1, y1), . . . , (xk, yk)} by

removing a uniformly random vertex (xi, yi), and re-sampling (x′
i, y

′
i) such that s\ (xi, yi)∪

(x′
i, y

′
i) ∈ X(k). To analyze (non)-expansion of this walk, we observe the only way to escape

f ′ is for the lower walk to escape the X projection of s, πX(s) = {x1, . . . , xk}. This only

occurs when down-step removes a vertex (xi, yi) where the xi value is unique within the

face. The weighting of product complexes ensures that every multiset pattern of X-values

appears with equal probability. As a result, a direct multinomial computation shows a

unique x is selected in the down step exactly with probability i+1
k

k−2∏
j=i

(1− γj). Finally, if a
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unique vertex is selected, the conditional probability of then escaping f ′ in the up-step is

exactly (1− µ) (the fraction of possible resulting new X-projections that land in f) as

desired.

SSE and the Noise Operator:.

The first main component of our low influence characterization, Lemma 3.1.11,

already shows that expansion of the lower walk exhibits local-to-global behavior. The

proof of Theorem 3.1.9 would follow immediately if the same form of localization were to

hold for the noise operator. Unfortunately, while the lemma may be extended to lower

walks of arbitrary length, such a statement does not hold directly for the noise operator.

To see why, recall the noise operator is a convex combination of lower walks

Tρ =
k∑

i=0

Bρ
k(i)N

k−i
k where Bρ

k(i) =
(
k
i

)
(1 − ρ)k−iρi. Since expansion is linear, for any

function f we can write

ΦTρ(f) =
k∑

i=0

Bρ
k(i)ΦNk−i

k
(f).

Localizing Tρ naively hits two main issues. First, a walk N i
k can only be appropriately

localized to j-links when j ≤ k − i (otherwise the walk goes below the level of the link,

and cannot be captured at this level of locality). Second, the coefficients of Tρ, which are

binomially distributed, depend on dimension and therefore do not localize correctly. In

particular, after localizing ‘permissible’ the lower walks in the sum, we’d get:

ΦTρ(f) =

j−1∑
i=0

Bρ
k(i)ΦN i

k
(f) +

k∑
i=j

Bρ
k(i)ΦNk−i−j

k−j
(f |τ ).

To correspond to the local noise operator on the right-hand side, we’d instead need the

corresponding coefficients to be Bρ
k−j(i), the binomial distribution on k − j trials, not

k trials as in the original instance. A first approach to solving these issues is to define

a ‘shifted’ noise operator over the original space that simply throws out the lefthand

sum, which is negligible, and replaces the remaining coefficients with Bρ
k−j(i) over the
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original space. One can then argue that the expansion with respect to the shifted operator

‘localizes correctly’ (allowing us to apply local SSE), and is moreover close to the expansion

of the original noise operator. Unfortunately, this procedure results in error scaling with

the TV-distance between Binomial distributions on k and k− j trials. This costs poly(k−1)

additive error, and therefore does not give the desired global SSE theorem.

To fix this issue, we instead make the stronger assumption that links of X are good

two-sided or partite one-sided high dimensional expanders, a property satisfied by our

main motivating example (the Ramanujan complexes). This allows us to appeal to the

theory of Fourier analysis developed in [111, 38, 39, 187], which shows one may decompose

expansion with respect to the lower walks as

ΦN i
k
(f) ≈ 1

⟨f, f⟩

k∑
i=0

λ(N i
k)⟨fℓ, fℓ⟩

for some decomposition f =
k∑

i=0

fi and approximate eigenvalues λ(N i
k). With this in mind,

instead of shifting the noise operator, we can decompose the localized expansion in the

Fourier basis as

ΦTρ(f) ≲
j−1∑
i=0

Bρ
k(i) + E

τ∼πf
j

[
1

⟨f |τ , f |τ ⟩

k∑
i=j

Bρ
k(i)

k−j∑
ℓ=0

λℓ(N
k−i−j
k−j |τ )⟨(f |τ )ℓ, (f |τ )ℓ⟩

]

Finally for each fixed ℓ, we show its corresponding coefficient in the above sum is at most

ρℓ, the (approximate) eigenvalue of the local noise operator itself [39, 187]. This allows us

to write the desired localized inequality

ΦTρ(f) ≲
j−1∑
i=0

Bρ
k(i) + E

τ∼πf
j

[
ΦTρ(f |τ )

]
which may finally be bounded by the local SSE theorem using the fact that any j-restriction

f |τ of an (ε, i)-strongly global function is (2ε, i − j)-strongly global. The error in this
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analysis scales only with the cost of cutting off small i (the first term) and the approximation

error of the Fourier decomposition. For constant j, the former is at most exp(−k), while

the latter is 2O(k)γ when j-links are γ-HDX. Thus for complexes with sufficiently expanding

links, we get an SSE theorem with negligible additive error as desired.

3.1.4 Discussion and Related Work

We close the section with a more in-depth comparison with prior work and discuss

a natural open problem such comparisons raise. At a high level, our work fits into a long

line of research examining the structure of low-influence functions beyond the hypercube,

starting not long after the KKL Theorem itself with the study of product spaces and the

p-biased cube [78, 349, 160, 157, 194, 245] and more recently in extended settings such

as the slice [252], multi-slice [148, 335], symmetric group [147], Grassmannian [255, 137],

high dimensional expanders [38, 39, 187, 162, 176], and Lie groups [139]. We rely heavily

on the Fourier analytic machinery initiated by Dikstein, Dinur, Filmus, and Harsha [111],

and Kaufman and Oppenheim [239], and further extended by Bafna, Hopkins, Kaufman,

and Lovett [38, 39], Gur Lifshitz, and Liu [187], Hopkins [200], and Gotlib and Kaufman

[176].

Concretely, several bounds are known for the expansion of global sets with respect to

the lower walk. In the regime of near-perfect expansion, BHKL [38] prove any (ε, i)-global

function has expansion at least

Φ(f) ≳ (1− E[f ])
i+ 1

k
−
(
k

i

)
ε.

This is tight in the regime that ε≪ 1

(ki)
, and mimics the structure one would expect to

see on general k-fold product spaces. For strongly global functions, BHKL [39], GLL [187],
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and Hopkins [200] improve the ε-dependence to be independent of dimension:

Φ(f) ≳ (1− E[f ])
i+ 1

k
− 2O(i)ε.

In the regime of weak high dimensional expansion, the only known bound for global

functions is due to Gotlib and Kaufman [175], who show that on any one-sided HDX:

Φ(f) ≥ (1− E[f ])
1

k − i

k−2∏
j=i

(1− γj) + |X(k)|ε.

Unlike the prior bounds, however, this is only really meaningful when ε ≈ 0, a non-trivial

but extremely strong notion of globalness that does not lead to meaningful structural

characterizations.

In some sense our bound, Theorem 3.1.2, sits somewhere between the latter two. it

has the beneficial properties of the latter in that it holds for global functions and under

arbitrary (two-sided) local-spectral expansion, and of the former in that the dependence

on ε is typically constant. On the other hand, due to being obtained through an inductive

approach, it also inherits the main term of Gotlib-Kaufman [176], scaling with 1
k−i

instead

of i+1
k

. When k is large, the former dependence is substantially worse.

At a technical level, this difference in main term stems from the fact that our

‘advantage’ for i-global functions, like in Gotlib-Kaufman [176], comes from the second

eigenvalue of the lower walk inside i-links of X, which scales as 1 − 1
k−i+1

k−2∏
j=i−1

(1 − γj).

On the other hand, on very strong HDX, the advantage of i-global functions comes from

the ith approximate eigenvalue of the global lower walk on X itself, which scales with

1− i
k
, combined with a strong level-i inequality. It is natural to conjecture the ‘correct’

dependence sits between these two bounds, as 1 − i
k

k−2∏
j=i−1

(1 − γj). This is exactly the

form appearing in our lower bound for global expansion of product-HDX. Unfortunately,

both the techniques of this paper and Fourier analytic techniques from prior work (which
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typically incur exponential error) are very far from proving such a bound.

3.2 Background

We now give a more formal introduction to the language of high dimensional

expansion, including simplicial complexes, local-spectral expansion, high order random

walks, and influence/expansion of sets.

3.2.1 Simplicial Complexes and Local-Spectral Expansion

We study the structure of low influence functions on weighted pure simplicial

complexes.

Definition 3.2.1 (Simplicial Complex). A weighted, d-dimensional3 pure simplicial

complex (X,Π) on n vertices consists of a complex

X = X(0) ∪ . . . ∪X(d)

where X(d) ⊆
(
[n]
d

)
is a d-uniform hypergraph and each X(i) ⊆

(
[n]
i

)
is given by downward

closure:

X(i) :=

{
σ ∈

(
[n]

i

)
: ∃τ ∈ X(d), σ ⊂ τ

}
,

and a joint distribution Π = (π1, . . . , πd) over X(0)× . . .×X(d) where πi is induced from

πd by sampling a uniformly random size-i subset:

πi(σ) =
1(
k
i

) ∑
τ⊃σ:|τ |=d

πd(τ).

Since all complexes considered in this work will be pure, weighted, and d-dimensional,

we drop these monikers throughout and usually refer to (X,Π) as just a simplicial complex.
3We note that our notion of dimension is off by 1 from much of the historical HDX literature, but

generally leads to simpler expressions in our setting.
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We write ∆n to denote the complete simplicial complex on n vertices.

We will sometimes work in the special setting of partite complexes, which often

play a special role in the theory of high dimensional expansion.

Definition 3.2.2 (Partite Complex). A simplicial complex (X,Π) is called partite if its

vertices can be partitioned into d ‘colors’:

X(1) = X1 ⨿ . . .⨿Xd

such that every d-face has exactly one vertex from each color.

There are many notions of high dimensional expansion on simplicial complexes. In

this work we take the recently popular local-spectral approach that analyzes the spectrum

of local components called links.

Definition 3.2.3 (Link). Given a complex (X,Π) and a face τ ∈ X(i), the link of τ is

the (d− i)-dimensional sub-complex (Xτ ,Πτ ) where

Xτ := {σ ∈ X : σ ∪ τ ∈ X}

and Πτ = (πτ,0, . . . , πτ,d−i) is the distribution induced by restricting Π to Xτ in the natural

manner

πτ,d−i(σ) =
πd(σ ∪ τ)∑

σ′∈Xτ

πd(σ′ ∪ τ)
.

Typically, a complex is said to be a local-spectral expander if the graph underlying

each (co-dimension ≥ 2) link is a spectral expander [309, 239].

Definition 3.2.4 (Underlying Graph). Given a simplicial complex (X,Π) and a link

(Xτ ,Πτ ), the (edge)-weighted graph underlying Xτ is given by GXτ = (Xτ (1), Xτ (2), π2),
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and has weighted adjacency (random walk) matrix

Aτ (v, w) = πτ∪v,1(w).

In our work, it will be convenient to have finer grain control over the local spectral

structure of these operators than is typically considered in the literature.

Definition 3.2.5 (Local Spectra). Let (X,Π) be a simplicial complex. We define the

local-spectral parameters {γi}d−2
i=0 and {γ(−)

i }d−2
i=0 to be the worst non-trivial positive and

negative eigenvalues respectively across links of each dimension:

γi := max
τ∈X(j)

{λ2(Aτ )}, γ
(−)
i := min

τ∈X(j)
{λmin(Aτ )}.

In more standard language, an infinite family of complexes are called one-sided local-

spectral expanders [309] if every γi is bounded away from 1, and two-sided local-spectral

expanders [124] if additionally each γ
(−)
i is also bounded away from −1.

3.2.2 Averaging Operators and the KO-Decomposition

Given a complex (X,Π), let Ck = Ck(X,R) := {f : X(k)→ R} denote the space of

real-valued functions over k-sets of X. The function spaces associated with any complex

come with a set of standard analysis tools, including a natural weighted inner product:

⟨f, g⟩ := E
πi

[fg],

and averaging operators (sometimes called ‘unsigned boundary operators’) that map

between the Ci. In particular, for every 0 ≤ i < d, the Up Operator Ui : Ci → Ci+1 lifts
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functions between levels:

∀σ ∈ X(i+ 1) : Uif(σ) =
1

i+ 1

∑
τ⊂σ: |τ |=i

f(τ),

and for every 0 < i ≤ d the Down Operator Di : Ci → Ci−1 conversely lowers functions:

∀σ ∈ X(i− 1) : Dif(σ) =
∑

τ⊃σ: |τ |=i

πσ,1(τ \ σ)f(τ).

It will often be convenient to lift or lower a function multiple levels, which can be done

through the following compositions

Uk
i := Uk−1 ◦ . . . ◦ Ui, Dk

i := Di+1 ◦ . . . ◦Dk.

A crucial and well-known fact is that the averaging operators D and U are adjoint.

Lemma 3.2.6. Let (X,Π) be a simplicial complex and 0 ≤ k < d. Then for all f ∈ Ck

and g ∈ Ck+1 we have

⟨Uif, g⟩ = ⟨f,Di+1g⟩.

The averaging operators also give a natural formalization of what it means for a

function to ‘come from below,’ namely being in Im(Uk
i ). This can be used in a number of

ways to build natural function decompositions on simplicial complexes that break up a

function into contributions from each level. In this work, we rely on the basis developed by

Kaufman and Oppenheim [239] which can be stated in terms of the averaging operators

as follows.

Definition 3.2.7 (KO-Decomposition [239]). Let (X,Π) be a simplicial complex, 0 ≤

k ≤ d, and f ∈ Ck. There exists an orthogonal decomposition f =
k∑

i=0

fi such that each

fi ∈ Im(Uk
i ) ∩Ker(Dk

i−1).
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3.2.3 High Order Random Walks

Just as expander graphs are inextricably tied to their underlying random walk, high

dimensional expanders also bear close connection to high order analogs on their underlying

complex. We will focus in particular in this work on two classical settings, the down-up

walks, and the noise operator.

Definition 3.2.8 (Down-up Walk [234, 124]). Given a complex (X,Π), for any 0 < k ≤ d

the down-up walk on k-faces, denoted N1
k , walks between k-faces of X via a shared

(k − 1)-face, and can be written formally as

N1
k := Uk−1Dk.

It will also be useful for the sake of analysis to have access to longer versions of the

down-up walk, as well as their corresponding up-down walks. With this in mind, define

N i
k := Uk

k−iD
k
k−i,

xN i
k := Dk

k−iU
k
k−i

to be the walks that move between k-faces via a shared (k − i)-face and (k + i)-face

respectively. Finally, we’ll also need the following ‘non-lazy’ variant of the up-down walk

M+
k :=

k

k + 1
Dk+1Uk −

1

k + 1
I.

Note that by adjointness of D and U , all these walks are self-adjoint and therefore have

spectral decompositions.

The lower walk can be phrased as the random process that removes a uniformly

random element v ∈ σ, and re-samples a new element conditioned on the remaining face

σ \ {v}. We will also study a variant of this process called the noise operator, which

removes each element in σ with some fixed probability, then jointly re-samples these
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elements conditioned on the rest.

Definition 3.2.9 (The Noise Operator). Given a complex (X,Π), for any 0 < k ≤ d

and 0 ≤ ρ ≤ 1, the ρ-noise operator on k-faces, denoted T k
ρ , re-samples each vertex with

probability 1− ρ:

T k
ρ :=

k∑
i=0

(
k

i

)
(1− ρ)iρk−iN i

k,

3.2.4 Boolean Function Analysis and Expansion

The down-up walk and its variants capture a broad variety of structures studied

throughout theoretical computer science. On the complete complex it gives the Johnson

graphs, on spin-systems it gives the celebrated Glauber Dynamics [24], and on the natural

complex embedding of Fd
2 it simply results in the standard hypercube graph [39] (up to

laziness). It is this final connection which allows us to generalize the classical notion of

total influence of a boolean function, traditionally defined the hypercube as4

I(f) =
∑
i∈d

Ex∼Fd
2

[(
f(x)− f(x⊕i)

2

)2
]
= d⟨f, Lf⟩

where L = I − Uk−1Dk is the standard Laplacian operator. The latter equality leads to a

natural interpretation on general simplicial complexes.

Definition 3.2.10 (Total Influence on Complexes [111, 39, 187]). Given a complex (X,Π)

and 0 < k ≤ d, the total influence of a boolean function f ∈ Ck on k-sets is

I(f) := k⟨f, (I − Uk−1Dk)f⟩

The total influence of a boolean function is also classically related to its combinatorial

expansion.
4Here x⊕i denotes the string x with the ith bit flipped.
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Definition 3.2.11 (Combinatorial (Edge)-Expansion). Let M be random walk on universe

Ω with stationary distribution π. The edge expansion of a subset S ⊂ Ω is the expected

probability of leaving S in a single step of M :

ΦM(f) := Eπ|S [M(v,X \ S)]

where π|S(x) is the natural distribution induced from restricting π to S and M(v,X \ S)

is the total outgoing weight from v. It will also sometimes be useful to refer to non-

expansion, denoted Φ̄M := 1− ΦM .

It is a simple exercise to show that the expansion of S can also be written as the

Rayleigh quotient of 1S with respect to I −M :

ΦM(1S) =
⟨1S, (I −M)1S⟩π
⟨1S, 1S⟩π

where ⟨f, g⟩π = Eπ[fg]. With this in mind, it is an easy observation that since the

stationary distribution of N1
k is πk, the total influence of a function is (up to normalization)

exactly its expansion with respect to the down-up walk.

Expansion of the noise operator is also a classical object of study in boolean function

analysis, where it is sometimes referred to as a function’s noise-sensitivity. It is a classical

result that sparse functions on the hypercube are noise-sensitive

Theorem 3.2.12. Let X = Fk
2 be the hypercube complex. Then for any 0 ≤ ρ ≤ 1 and

S ⊂ X(k):

ΦTρ(S) ≥ 1− E[1S]
1−ρ
1+ρ

This result is also called the small-set expansion theorem, as it states that small

sets on the noisy hypercube expand near perfectly.
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3.2.5 Global Functions

The small-set expansion theorem fails inherently over unbalanced domains, even in

settings as simple as the p-biased cube. In particular, ‘local’ functions like indicators or

juntas which would be large sets on the cube become small, but maintain their otherwise

poor expansion. A long and influential line of work has studied the extension of small-set

expansion theorems to this and other settings byeond the cube by showing these are the

only bad examples. To this end, we call a function global if it does not become much

denser upon any restriction.

Definition 3.2.13 (Global Function). A function f : X(k)→ F2 is called (ε, i)-weakly

global if

∀τ ∈ X(i) : E
Xτ

[fτ ] ≤ E[f ] + ε.

KKL-type theorems for global functions are sometimes called ‘booster’ theorems,

since they state any function with low total influence must see a density ‘bump’ or ‘boost’

inside some small restriction. This is the content, for instnace, of Bourgain’s influential

Booster Theorem used in analysis of sharp thresholds [158].

For the case of small-set expansion, a more typical definition in the literature

beyond the cube is to require the stronger guarantee that the set is not strongly correlated

with any restriction. We call such functions strongly global.

Definition 3.2.14 (Strongly Global Function). A function f : X(k) → F2 is called

(ε, i)-strongly global if

∀τ ∈ X(i) : E
Xτ

[fτ ] ≤ ε.

Small-set expansion for strongly global functions roughly translates to statements

of the form:

ΦTρ(S) ≥ 1− ρi − ciε
Oρ(1).
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In other words, any function with expansion substantially worse than 1− ρi must be dense

inside some i-link.

3.2.6 Localization, Garland’s Method, and the Trickling-Down
Theorem

One of the most powerful tools in the study of high dimensional expansion is the

idea of localization: breaking analysis of global functions or properties into localized parts.

Given f ∈ Ck and τ ∈ X(i), we define the localization of f to τ , f |τ : Xτ (k − i)→ R, as

∀σ ∈ Xτ (k − |τ |) : f |τ (σ) = f(σ ∪ τ).

We will similarly need to consider localizations of the averaging operators. For any

τ ∈ X(i), we write U |τ and D|τ to denote the up and down operators respectively on the

link (Xτ ,Πτ ), and similarly denote the localized upper and lower walks as N i
k−|τ ||τ and

pN i
k−|τ ||τ .

The key observation, often referred to as Garland’s method,5 is that the natural

inner product on X ‘respects localization.’ We will use the following three formalizations

of this notion which can be found across a variety of works [309, 239, 111].6

Lemma 3.2.15 (Garland’s Method [309, 239, 111]). On any simplicial complex (X,Π):

∀0 ≤ i ≤ k ≤ d and f, g ∈ Ck : ⟨f, g⟩ = E
τ∼πi

[⟨f |τ , g|τ ⟩] (3.2)

∀0 < k ≤ d and f ∈ Ck : ⟨N1
kf, f⟩ = E

v∼π1

[
⟨N1

k−1|vf |v, f |v⟩
]

(3.3)

∀0 ≤ k < d and f ∈ Ck : ⟨M+
k f, f⟩ = E

τ∼πk−1

[⟨Aτf |τ , f |τ ⟩] (3.4)

The first modern application of Garland’s method (albeit applied to a different type
5In reference to Garland’s original work [163] using similar ideas far before the invent of high dimensional

expansion.
6We note that some of these equalities hold more generally, but the above is sufficient for our purposes.
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of localization) is Oppenheim’s Trickling-Down Theorem [309], which shows the spectral

behavior of co-dimension 2 links is inherited throughout the rest of the complex.

Theorem 3.2.16 (Trickling-Down [309]). Let (X,Π) be a strongly connected complex.

Then for all 0 ≤ i ≤ d− 2:

1. γi ≤ γd−2

1−(d−2−i)γd−2

2. γ
(−)
i ≥ γ

(−)
d−2

1−(d−2−i)γ
(−)
d−2

.

Moreover the latter holds without the assumption of strong connectivity.

We will make liberal use of Garland’s method and the Trickling-Down Theorem

throughout.

3.3 A Booster Theorem for Arbitrary HDX

Our first application of the basic inductive method is a weak KKL-type theorem for

arbitrary (two-sided) HDX. In particular, we will show that any function with low total

influence on a complex whose local-spectral expansion is bounded away from 1 must be

local (in particular, must have a booster). We first state the result in the contrapositive,

that global sets expand.

Theorem 3.3.1 (Global Sets Expand). Let (X,Π) be a simplicial complex, 0 ≤ k ≤ d,

and f ∈ Ck any (ε, i)-global boolean function. Then the expansion of f with respect to the

lower walk is at least

Φ(f) ≥ 1− E[f ]
k − i

k−2∏
j=i

(1− γj)− ck,i,γε

where ck,i,γ ≤ (k − i+ 1)

(
1

k−i

k−2∏
j=i

(1− γj)− 1
k−i+1

k−2∏
j=i−1

(1− γj)

)(
1 + (k − i)γ

(−)
i−1

)−1

While the constant ck,i,γ in Theorem 3.3.1 is somewhat hard to interpret a priori,

we emphasize that for many reasonable settings ck,i,γ ≤ O(1) is an absolute constant, with
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no dependence on the dimension. This is the case, for instance, if |γ(−)
i−1| ≪ 1

k−i
,7 or when

γk−2 ≤ 1
k−1

and γ
(−)
d−2 is bounded away from one.

We prove a lower bound matching within a factor of (k−i)(i+1)
k

(at most i, and a

constant when i = k −O(1)).

Theorem 3.3.2. For every i ≤ k and rational µ ∈ [0, 1], there exists an infinite family

of k-dimensional complexes {Zn} and corresponding functions {fn : Zn(k) → F2} of

expectation µ satisfying

1. fn is (0, i)-global and (µ, i)-strongly global

2. Φ(fn) ≤ (1− E[f ]) i+1
k

k−2∏
j=i

(1− γj)

Theorem 3.3.1 is strongest in low dimensions due to the leading coefficient, but

still has the following interesting interpretation in the high dimensional regime: any

low-influence function must have a constant booster inside some link of reasonably large

co-dimension.8

Corollary 3.3.3 (Booster Theorem for general HDX). There is a universal constant

c > 0 such that for any i ∈ N, 1
i
> δ > 0, and k-dimensional complex (X,Π), any subset

S ⊂ X(k) with expansion at most:

Φ(S) ≤ 1− E[1S]
i

k−2∏
j=k−i

(1− γj)− δ

has constant correlation with a link of co-dimension i:

∃τ ∈ X(k − i) : E
Xτ

[1S] ≥ E[1S] + c′δ

where c′ ≤ O(c−1
k,k−i,γ).

7Note |γ(−)
i−1| is always at most 1

k−i by Trickling-Down, so this is not such a strong assumption.
8We thank Yotam Dikstein for pointing out this interpretation.
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We remark this is actually not implied by prior expansion theorems for the lower

walk, even on stronger HDX, which would instead roughly imply the existence of an

Oδ(k)-link with 2−Oδ(k) density.

Finally, GLL observe that a bound on expansion of the lower walk of any simplicial

complex X immediately implies a Kruskal-Katona Theorem (see [187, Section 8.3]). Recall

that give a set S ⊂ X(k), the lower shadow of S, denoted ∂S, is the set of all (k− 1)-faces

τ contained in some s ∈ S. We get the following corollary for general simplicial complexes.

Corollary 3.3.4. Let (X,Π) be a k-dimensional simplicial complex and S ⊂ X(k) any

(ε, i)-global set. Then

E[∂S] ≥ E[S]

(
1 +

1− E[S]
k − i

k−2∏
j=i

(1− γj)− ck,i,γε.

)

where ck,i,γ ≤ (k − i+ 1)

(
1

k−i

k−2∏
j=i

(1− γj)− 1
k−i+1

k−2∏
j=i−1

(1− γj)

)(
1 + (k − i)γ

(−)
i−1

)−1

3.3.1 Garland’s Lemma for Expansion

The first key component of Theorem 3.3.1 is a new variant of Garland’s Lemma.

While the tool is already broadly used in the study of expansion of walks on HDX (see e.g.

[111, 38, 39]), it is typically applied indirectly throughout the analysis. We rely on the key

(albeit basic) insight that Garland’s Method also applies directly to expansion itself.

Lemma 3.3.5 (Garland’s Lemma for Expansion). Let (X,Π) be a weighted, pure simplicial

complex and f ∈ Ck any function on k-faces. Then the expansion of f with respect to the

lower walk N i
k can be written as an expectation of the expansion of f restricted to links.

That is for all i ≤ k and j ≤ k − i:

Φ̄N i
k
(f) = E

τ∼πf
j

[Φ̄N i
k−j |τ (f |τ )], (3.5)
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where πf
j is the distribution given by:

πf
j (τ) = πj(τ)

⟨f |τ , f |τ ⟩
⟨f, f⟩

.

Proof. Localizing via Equation (3.3), we have:

Φ̄(f) =
1

⟨f, f⟩
∑

τ∈X(j)

πj(τ)⟨f |τ , N i
k−j|τf |τ ⟩

=
1

⟨f, f⟩
∑

τ∈X(j)

πj(τ)⟨f |τ , f |τ ⟩Φ̄N i
k−j |τ (f |τ )

=
∑

τ∈X(j)

πf
j (τ)Φ̄N i

k−j |τ (f |τ ).

The fact that πf
j is a distribution follow from noting that πf

j > 0 by construction, and by

a simple application of Equation (3.2):

∑
τ∈X(j)

πf
j (τ) =

∑
τ∈X(j)

πj(τ)
⟨f |τ , f |τ ⟩
⟨f, f⟩

=
1

⟨f, f⟩
E

τ∼πj

[⟨f |τ , f |τ ⟩]

= 1

We emphasize that this variant of Garland’s lemma differs from the typical form

in that the distribution over links is function dependent. Thus slightly more care must

be taken in its application, as typical terms which average out over the standard link

distribution may not do so in the function dependent one.
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3.3.2 The KO/GK Decomposition

The proof of Theorem 3.3.1 also relies on recent decomposition of Gotlib and

Kaufman [176], itself based on the following decomposition of Kaufman and Oppenheim

[239].

Definition 3.3.6 (KO-Decomposition [239]). Let (X,Π) be a simplicial complex, 0 ≤

k ≤ d, and f ∈ Ck. There exists an orthogonal decomposition of f into levels

f =
k∑

i=0

fi

such that fi ∈ Im(Uk
i ) ∩Ker(Dk

i−1).

The KO-basis is not known to be an eigenbasis (even approximately) on weak HDX,

but Gotlib and Kaufman [176] recently showed it is still possible to gain some advantage

by understanding how a function projects onto its components. We will use a variant of

their result for the lower walk.

Theorem 3.3.7. For any simplicial complex (X,Π), 0 < k ≤ d, and f ∈ Ck, we have:

⟨N1
kf, f⟩ ≤ E[f ]2 +

k−1∑
i=1

(
1− 1

k − i+ 1

k−2∏
j=i−1

(1− γj)

)
⟨f, fi⟩.

The proof is similar to [176, Theorem 7.9], which focuses on the non-lazy upper

walk instead, and is given in Section 3.7.

3.3.3 A Level-i Inequality and the Upper Bound

With this in mind, a natural goal is now to show that global functions project

mostly onto large components, and therefore expand well. In fact, it turns out a variant of

this statement is true for all simplicial complexes, where the strength of the bound scales

with the smallest non-zero eigenvalue of the upper walks.
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Theorem 3.3.8 (Level-i Inequality). Let (X,Π) be a simplicial complex. Then for any

0 < k ≤ d and (ε, i)-global boolean function f ∈ Ck, the following level-i inequality holds:

i∑
j=1

⟨f, fj⟩ ≤
1

λ�0min(
pNk−i
i )

εE[f ].

Unfortunately, while Theorem 3.3.8 is a non-trivial statement for any fixed complex,

it may not be bounded away from 0 asymptotically (i.e. the right-hand side may depend

on the number of vertices in the complex). The crucial observation is that this issue can

be fixed whenever the complex is locally far from bipartite.

We focus in particular on the special case of i = 1, which is the only setting we

need for our approach.

Corollary 3.3.9 (Level-1 Inequality). Let (X,Π) be a simplicial complex, k ≤ d, and

f ∈ Ck any function on k-faces. Then

⟨f, f1⟩ ≤
k

1 + γ
(−)
0 (k − 1)

εE[f ] ≤ k

1 + γ
(−)
d−2 · k−1

1−(d−2)γ
(−)
d−2

εE[f ]

Proof. The second inequality follows from the Trickling-Down Theorem. Then by Theo-

rem 3.3.8, it is enough to lower bound λmin(D
k
1U

k
1 ) ≤ λ�0min(D

k
1U

k
1 ), i.e. to show that for

any f ∈ Ck:
⟨f,Dk

1U
k
1 f⟩

⟨f, f⟩
≥
(
1

k
+ γ

(−)
0

k − 1

k

)
.

We appeal to the fact that Dk
1U

k
1 = k−1

k
M+

1 + 1
k
I (see e.g. [9, 176]) and observe that for

any f ∈ Ck:

⟨f,Dk
1U

k
1 f⟩ =

1

k
⟨f, f⟩+ k − 1

k
⟨f,M+

1 f⟩

≥
(
1

k
+ γ

(−)
0

k − 1

k

)
⟨f, f⟩
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as desired.

We now prove Theorem 3.3.8 itself. Similar to the approach of [38], we first show a

level-i inequality in terms of variance before reducing to the standard setting.

Lemma 3.3.10 (Level-i Inequality (Variance)). Let (X,Π) be a simplicial complex, k ≤ d,

and f : Ck → R any function on k-faces. Then for all i > 0:

Var(Dk
i f) ≥ λ�0min( pNk−i

i )
i∑

j=1

⟨f, fj⟩

Proof. First, observe that by adjointness of the averaging operators we can write:

⟨Dk
i f,D

k
i f⟩ = ⟨f, Uk

i D
k
i f⟩

=
k∑

j=0

⟨f, Uk
i D

k
i fj⟩

=
i∑

j=0

⟨f, Uk
i D

k
i fj⟩

since fj ∈ Ker(Dk
j−1), and therefore that

Var(Dk
i f) =

i∑
j=1

⟨f, Uk
i D

k
i fj⟩

since ⟨f, f0⟩ = E[f ]2 = E[Dk
i f ]

2.

The trick is now to observe that each fj is completely orthogonal to the kernel of

Uk
i D

k
i . If this is the case, we then have

Var(Dk
i f) ≥ λ�0min(U

k
i D

k
i )

i∑
j=1

⟨f, fj⟩

= λ�0min( pNk−i
i )

i∑
j=1

⟨f, fj⟩
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since Uk
i D

k
i and Dk

i U
k
i are PSD and have the same non-zero spectrum.

To see that fj has no projection onto Ker(Uk
i D

k
i ), observe that Ker(Uk

i D
k
i ) =

Ker(Dk
i ) by adjointness of D and U . Namely if Uk

i D
k
i f = 0, then ⟨f, Uk

i D
k
i f⟩ = ∥Dk

i f∥2 = 0

so f ∈ Ker(Dk
i ) (the inclusion in the other direction is trivial). Finally since

fj ∈ Im(Uk
j ) ⊃ Im(Uk

i ) = Ker(Dk
i )

⊥

by construction, we are done.

The proof of Theorem 3.3.8 now follows immediately from the ℓ∞-to-ℓ2 reduction

introduced in [38].

Proof of Theorem 3.3.8. BHKL observed that any (ε, i)-global boolean function satisfies

Var(Dk
i f) ≤ εE[f ]. Combined with Lemma 3.3.10 this completes the proof.

We note that this result can be generalized to real-valued functions under some

light regularity conditions (and arbitrary non-negative functions) as in [38], but we focus

on the boolean case here for simplicity.

We are finally equipped to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. For notational convenience, for 1 ≤ ℓ < k ≤ d define

λk,ℓ := 1− 1

k − ℓ+ 1

k−2∏
j=ℓ−1

(1− γj)

and set λk,0 = 1 and λk,k = 0.

We first prove the result for i = 1, then show how to reduce to this setting in

general via localization. When i = 1, we actually show a slightly stronger bound

(1− E[f ])(1− λk,2)−
(λk,1 − λk,2)
1
k
+ k−1

k
γ
(−)
0

ε. (3.6)
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This follows fairly immediately from Theorem 3.3.7 and properties of the {λk,i} and {fi}

decomposition:

Φ(f) ≥ 1− 1

E[f ]

k∑
ℓ=0

λk,ℓ⟨f, fℓ⟩

≥ 1− 1

E[f ]

1∑
ℓ=0

λk,ℓ⟨f, fℓ⟩ −
λk,2

E[f ]

k∑
ℓ=2

⟨f, fℓ⟩ (λk,i are non-increasing)

≥ 1− 1

E[f ]

1∑
ℓ=0

λk,ℓ⟨f, fℓ⟩ −
λk,2

E[f ]

(
E[f ]−

1∑
ℓ=0

⟨f, fℓ⟩

)
(Booleanity)

= 1− 1

E[f ]

1∑
ℓ=0

(λk,ℓ − λk,2)⟨f, fℓ⟩ − λk,2

= (1− E[f ])(1− λk,2)−
1

E[f ]
(λk,1 − λk,2)⟨f, f1⟩ (⟨f, f0⟩ = E[f ]2)

≥ (1− E[f ])(1− λk,2)−
(λk,1 − λk,2)
1
k
+ k−1

k
γ
(−)
0

ε (Corollary 3.3.9)

We observe by the same proof, the above also holds even when λk,1 and λk,2 are replaced

with any values a,b such that a ≥ λk,1 and b ≥ λk,2.

The inductive step relies on the observation that global functions are approximately

closed under localization. This requires some care to achieve the stated bound. In

particular, observe that if f is (ε, i)-global, for any τ ∈ X(i− 1) we can write

E[f |τ ] = E[f ] + δτ

where |δτ | ≤ ε, and further that f |τ is then (ε− δτ , 1)-global. With this in mind, applying

Garland’s method for expansion (Lemma 3.3.5), we have

Φ(f) = E
τ∼πf

i−1

[Φτ (f |τ )].

Observe that for all τ ∈ X(i− 1), the ‘local’ λi,j values in the link Xτ (denoted λτ
i,j and

defined analogously with respect to Xτ ) are upper bounded by their corresponding values
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in the original complex, that is λτ
k−i+1,1 ≤ λk,i and λτ

k−i+1,2 ≤ λk,i+1. Then applying the

base case to the above localization, we get

Φ(f) ≥ E
τ∼πf

i−1

[
(1− E[f ]− δτ )(1− λk,i+1)−

(λk,i − λk,i+1)
1

k−i+1
+ k−i

k−i+1
γ
(−)
i−1

(ε− δτ )

]

= (1− E[f ])(1− λk,i+1)−
(λk,i − λk,i+1)
1

k−i+1
+ k−i

k−i+1
γ
(−)
i−1

ε

+

(
(λk,i − λk,i+1)
1

k−i+1
+ k−i

k−i+1
γ
(−)
i−1

− (1− λk,i+1)

)
E

τ∼πf
i−1

[δτ ]

≥ (1− E[f ])(1− λk,i+1)−
(λk,i − λk,i+1)
1

k−i+1
+ k−i

k−i+1
γ
(−)
i−1

ε

where in the final inequality we have used the fact that

(
(λk,i − λk,i+1)
1

k−i+1
+ k−i

k−i+1
γ
(−)
i−1

− (1− λk,i+1)

)
≥ 0.

This in turn follows from noting that γ
(−)
i−1 ≤ 0, and

(k − i+ 1)(λk,i − λk,i+1) = (k − i+ 1)

(
1

k − i
− 1

k − i+ 1
(1− γi−1)

) k−2∏
j=i

(1− γj)

=

(
1

k − i
+ γi−1

) k−2∏
j=i

(1− γj)

≥ 1

k − i

k−2∏
j=i

(1− γj)

= 1− λk,i+1.

3.3.4 A Lower Bound for Global Expansion

We now move to the proof of our corresponding lower bound. The construction is

based on Golowich’s [170, 172] ‘product-based’ HDX, which product a (typically sparse)
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low-dimensional complex X with a (typically dense) high dimensional complex Y to get a

resulting HDX with roughly γj =
1

j+1
local-spectral expansion. We follow the exposition

of [172] closely.

Definition 3.3.11 (Product-Complexes [172, Definition 13]). Let X and Y be simplicial

complexes with measures πX and πY respectively. Let HX = dim(X), HY = dim(Y ), and

assume that 1 ≤ HX ≤ HY . Define the high-dimensional product Z = X h Y to be the

simplicial complex of dimension HZ = HY with vertex set Z(0) = X(0)× Y (0) such that

Z(HZ) := {σ ⊂ σX × σY : σX ∈ X(HX), σY ∈ Y (HY ), ΠX(σ) = σX , ΠY (σ) = σY }.

Define a weight function πZ on Z = X h Y so that for any σ ∈ Z(HZ) with ΠX(σ) =

{x1, . . . , xHX
} such that for 1 ≤ i ≤ HX , the value xi occurs with multiplicity Mi =

|({xi} × Y ) ∩ σ| in σ, then

πZ(σ) =
πX(ΠX(σ))πY (ΠY (σ))(

HY −HX

M1−1,...,MHX
−1

) ,

where
(

HY −HX

M1−1,...,MHX
−1

)
= (HY −HX)!

(M1−1)!···(MHX
−1)!

denotes the multinomial coefficient.

It is important for our purposes that the complexes we build have expansion exactly

γi =
1

i+1
. To ensure this, we need to introduce a non-degeneracy condition on the first

complex in the product. In particular, we call a k-dimensional complex X non-degenerate

if there exists σ ∈ X(k − 1) such that |Xσ(1)| > 1. Golowich [172] proves the following

local-spectral bound for non-degenerate products.

Theorem 3.3.12. Let X and Y be simplicial complexes of dimensions HX and HY

respectively, such that X is non-degenerate, 2 ≤ HX < HY and γ(HY −2)(Y ) ≤ 1
HZ−1

.

Furthermore, if dim(X) ≥ 2, then assume that max{γHX−2(X), γ
(−)
HX−2} ≤ 1

HZ−1
. Let Z =

X h Y and HZ = dim(Z) = HY . Then for all HX − 1 ≤ i ≤ HZ − 2, γi(Z) = 1
i+1

.
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We are now ready to prove Theorem 3.3.2. Roughly speaking, the idea is to

construct an i-global function by producting an (i + 1)-dimensional complex X with a

higher dimensional complete complex. For each i-face τ of X, we’ll define our function

on the tensor to be 1 when its projection onto X lies on some specified (say) half the

(i+ 1)-faces containing τ . This forces the function to be perfectly global at level i, but

on the other hand results in ‘poor’ expansion since the high dimension face must ‘escape’

from its current X-component to leave the set. We formalize the idea below.

Proof of Theorem 3.3.2. For notational simplicity, we will work with (i−1)-global functions

instead of i-global functions. Let µ = a/b for a, b ∈ N and take the complex family {Zn} to

be the products X h Y where X = ∆nb/µ(i) and Y = ∆2k(k). Let Xf be any sub-complex

of X such that for every τ ∈ X(i − 1), exactly a µ fraction of faces σ ⊃ τ are in Xf .

We define fn : Zn(k) → F2 to be the indicator of Xf on the projection of Z to its X

component:

fn(σ) =


1 if ΠX(σ) ∈ Xf

0 else.

We first argue that fn is (0, i − 1)-global and (µ, i − 1)-strongly global. Since a the X-

projection of a random k-face σ ∈ Zn(k) is uniformly distributed on X(i), the expectation

of fn is µ. Let τ ∈ Z(i − 1). If the projection of ΠX(τ) ∈ X(i − 1) (that is every

X-component is unique), then the projection of a random σ ∈ Zτ is a uniformly i-face

containing ΠX(τ). By definition, a µ fraction of these are in Xf . A similar argument holds

for general τ , though the distribution is now uniform over faces whose projections which

contain ΠX(τ). One can check this still has expectation µ.

It is left to bound the expansion of fn. Consider the random walk starting from a

face σ ∈ fn. The only way for the walk to leave fn is for it to switch projections onto X.

This can only happen if the down-step samples a ‘singleton’, that is a vertex (a, i) ∈ σ such

that no other vertex has a as its X-coordinate. In particular, if σ has j singletons, the
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probability of escaping the set during the down-up walk is exactly j
k
(1−µ), the probability

of selecting a singleton in the down-step, and an i-face from Xf in the up-step. Thus the

total expansion is

Φ(fn) ≤ (1− µ)
i−1∑
j=0

j

k
P

σ∈Z
[σ has j singletons]

The key is now to observe that each possible multiset of X projections occurs in Z

with equal probability, due to the weighting scheme imposed on Z. This means we can

compute the probability of j singletons simply by counting what fraction of multisets have

j singletons. This boils down to a ‘stars-and-bars’ type computation and gives the bound

P[σ has j singletons] =

(
i
j

)(
k−i−1
i−j−1

)(
k−1
i−1

) .

Combining these, a second combinatorial calculation gives the simplified bound

Φ(fn) ≤ (1− µ)
i−1∑
j=0

j

k

(
i
j

)(
k−i−1
i−j−1

)(
k−1
i−1

) ≤ (1− µ)
(i− 1)i

(k − 1)k
.

Finally, by Theorem 3.3.12, the local spectral expansion of Z implies

k−2∏
j=i−1

(1− γj) =
k−2∏

j=i−1

(
1− 1

j + 1

)
=

i− 1

k − 1
,

so altogether we have

Φ(fn) ≤
i

k

k−2∏
j=i−1

(1− γj)

as claimed.

We note that while we have picked a specific instantiation of the product complexes,

this lower bound will work with any sufficiently regular product complex whose lower-

dimensional component has an appropriate degree sub-complex. This holds (approximately)
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for any regular complex of large enough degree, simply by taking a random sub-complex.

3.4 A Local-to-Global Small-Set Expansion Theorem

In the previous section, we analyzed the structure of non-expanding functions with

respect to the down-up walk. A second key operator of interest in application is the

noise operator, where the analogous bounds on e.g. the cube lead to classical ‘small-set

expansion’ theorems. In this section, we show a ‘local-to-global’ theorem for (global)

small-set expansion: any complex whose links satisfy such a notion must itself be a global

small-set expander. Later, we’ll see this gives as an application the first small-set expansion

theorem for (non-partite) Ramanujan complexes [290], a regime in which prior Fourier

analytic techniques fail.

3.4.1 Localizing the Noise Operator

The first step in our proof is to generalize Lemma 3.3.5 to the noise operator. To

this end, let Bp
n denote the standard mean p binomial distribution on n trials, and let dTV

denote the Total Variation Distance, that is the distance measure between distributions D

and D′ over universe Ω defined by:

dTV (D,D′) := max
E⊆Ω
|D(E)−D′(E)| = 1

2

∑
x∈Ω

|D(x)−D′(x)|

We first argue the noise operator can be localized up to an error term that scales with the

TV-distance between adjacent binomial distributions.

Proposition 3.4.1 (Garland’s Lemma for Noise Operators). Let (X,Π) be a weighted

simplicial complex. Let ρ ∈ [0, 1] and j, k ∈ N. The expansion of Tρ can be approximately

localized over j-links:

Φ̄Tk
ρ
(f) = Eτ∼πf

j
[Φ̄Tk−j

ρ |τ (f |τ )]± 2dTV (Bρ
k,B

ρ
k−j).
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Proof. Recall that the noise operator is given by a binomially-distributed convex combina-

tion of lower walks:

T k
ρ :=

k∑
i=0

Bρ
k(i)N

k−i
k ,

Naively, one might wish to apply Lemma 3.3.5 directly to move to the localized noise

operators, but this has two issues. First, we can only apply Lemma 3.3.5 whenever

i ≤ k− j. Second even accounting for this fact, the binomial coefficients need to be shifted

to dimension k − j as well. To account for this, we introduce the shifted noise operator:

T k,j↓
ρ :=

k−j∑
i=0

Bρ
k−j(i)N

k−i
k .

By Lemma 3.3.5, the shifted noise operator localizes to the desired form:

Φ̄Tk,j↓
ρ

(f) =

k−j∑
i=0

Bρ
k−j(i)Φ̄Nk−i

k
(f)

=

k−j∑
i=0

Bρ
k−j(i) E

τ∼πj

[Φ̄Nk−i
k |τ (f |τ )]

= E
τ∼πj

[Φ̄Tk−j
ρ |τ (f |τ )]

where the final step is by linearity of inner products. Thus it is enough to show that

|Φ̄Tk
ρ
(f)− Φ̄Tk,j↓

ρ
(f)| ≤ 2dTV (Bρ

k,B
ρ
k−j).

This is immediate from the fact that Φ̄N i
k
(f) ∈ [0, 1], since by the triangle inequality:

|Φ̄Tk
ρ
(f)− Φ̄Tk,j↓

ρ
(f)| ≤

k∑
i=0

|Bρ
k(i)−Bρ

k−j(i)|Φ̄Nk−i
k

(f)

≤
k∑

i=0

|Bρ
k(i)−Bρ

k−j(i)|
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= 2dTV (Bρ
k,B

ρ
k−j)

as desired.

For fixed j, the additive error term in Proposition 3.4.1 goes to 0 at a rate of about

1√
k
. While this is sufficient for most use cases, it only recovers small-set expansion for sets

of size at least poly(k−1), while one might hope to show such a bound for sets of size up

to exp(−k). We show this is possible if the links are additionally good high dimensional

expanders.

Proposition 3.4.2 (Refined Garland’s Lemma for Noise Operators on HDX). Let (X,Π)

be a k-dimensional weighted simplicial complex such that every j-link is a γ-two-sided or

partite one-sided HDX. Then for any ρ ∈ [0, 1− 1/e] and j ≤ d The expansion of Tρ can

be approximately localized over j-links:

Φ̄Tk
ρ
(f) ≤ Eτ∼πf

j
[Φ̄Tk−j

ρ |τ (f |τ )] + FBρ
k
(j − 1) + ckγ

where ck ≤ 2O(k) and FBρ
k
(·) denotes the CDF of Bρ

k.

For constant j and γ sufficiently small, both error terms are inverse exponential

in k. Such error is negligible since the noise operator always has non-expansion at least

inverse exponential in k anyway.

The proof of Proposition 3.4.2 combines the basic localization of Lemma 3.3.5 with

the Fourier analytic machinery of [111, 39, 187]. To this end, we first introduce a basic

version of the latter.

Theorem 3.4.3 (Fourier Analysis on HDX [111, 39, 187]). Let (X,Π) be a k-dimensional

γ-two-sided or partite one-sided HDX. Then there exists a decomposition f =
k∑

i=0

fi such

that:

Φ̄Nk−i
k

(f) =
i∑

ℓ=0

(
k−ℓ
i−ℓ

)(
k
i

) ⟨fi, fi⟩
⟨f, f⟩

± ckγ
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where ck ≤ 2O(k). Similarly:

Φ̄Tk
ρ
(f) =

k∑
i=0

ρi
⟨fi, fi⟩
⟨f, f⟩

± ckγ.

We note that Theorem 3.4.3 does not appear anywhere in the literature, but follows

without too much difficulty from techniques developed in [111, 39, 187]. We give the proof

for completeness in Section 3.6. We can now prove Proposition 3.4.2.

Proof of Proposition 3.4.2. At a high level, the proof is similar to Proposition 3.4.1, but

we will separate the ‘shifting’ of Tρ into two parts. The first, which will introduce our

additive error, is to truncate the terms for i ≤ j which cannot be localized via Lemma 3.3.5:

Φ̄Tk
ρ
(f) =

k∑
i=j

Bρ
k(i)Φ̄Nk−i

k
(f) +

j−1∑
i=0

Bρ
k(i)Φ̄Nk−i

k
(f)

≤
k∑

i=j

Bρ
k(i)Φ̄Nk−i

k
(f) + FBρ

k
(j − 1)

once again using the fact that Φ̄Nj
k
∈ [0, 1]. We can apply now Lemma 3.3.5 to the left-hand

term directly:
k∑

i=j

Bρ
k(i)Φ̄Nk−i

i
(f) = E

τ∼πf
j

[
k∑

i=j

Bρ
k(i)Φ̄Nk−i

k−j |τ
(f |τ )

]
.

The second step is to give a finer-grained analysis of the inner expectation for each τ ∈ X(j)

(rather than simply shifting Bρ
k and bounding by TV-distance). In particular, we’ll argue

that for every τ ∈ X(j):

k∑
i=j

Bρ
k(i)Φ̄Nk−i

k−j |τ
(f |τ ) ≤ Φ̄Tk−j

ρ |τ (f |τ ) + ckγ
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which completes the proof. To see this, first expand the LHS in terms of its Fourier basis:

k∑
i=j

Bρ
k(i)Φ̄Nk−i

k−j |τ
(f |τ )

≤ 1

⟨f |τ , f |τ ⟩

k−j∑
i=0

Bρ
k(i+ j)

i∑
ℓ=0

(
k−j−ℓ
i−ℓ

)(
k−j
i

) ⟨(f |τ )ℓ, (f |τ )ℓ⟩
=

1

⟨f |τ , f |τ ⟩

k−j∑
ℓ=0

(
k−j∑
i=ℓ

(
k

i+ j

)(k−j−ℓ
i−ℓ

)(
k−j
i

) ρi+j(1− ρ)k−j−i

)
⟨(f |τ )ℓ, (f |τ )ℓ⟩.

The key is now to observe that the inner sum can be bounded by the (approximate)

eigenvalues of Tρ, namely that the following binomial inequality holds.

Claim 3.4.4. For all k ∈ N, j ≤ k, and ℓ ≤ k − j:

k−j∑
i=ℓ

(
k

i+ j

)(k−j−ℓ
i−ℓ

)(
k−j
i

) ρi+j(1− ρ)k−j−i ≤ ρℓ.

Then re-applying Theorem 3.4.3 we’d have:

k∑
i=j

Bρ
k(i)Φ̄Nk−i

k−j |τ
(f |τ ) ≤

1

⟨f |τ , f |τ ⟩

k−j∑
ℓ=0

ρℓ⟨(f |τ )ℓ, (f |τ )ℓ⟩

≤ Φ̄Tk−j
ρ |τ (f |τ ) + ckγ

as desired.

We leave the proof of Claim 3.4.4, which follows from fairly elementary binomial

manipulation, to Section 3.6.

3.4.2 The Small-Set Expansion Theorem

We now give the general statement of our local-to-global small-set expansion

theorem. We call a complex j-locally (global) SSE if its links satisfy an SSE Theorem for

strongly global functions.

208



Definition 3.4.5 (Locally SSE Complexes). Let (X,Π) be a simplicial complex. We say

(X,Π) is j-locally ϕ-SSE if for every i ≤ d − j, ε > 0, j-link Xτ , and (ε, i − j)-strongly

global function h ∈ Ck−j(Xτ ) the expansion of h is at least:

ΦT d−j
ρ |τ (f |τ ) ≥ ϕ(ε, i)

It is an almost immediate corollary of Propositions 3.4.1 and 3.4.2 that global sets

on nice complexes expand.

Corollary 3.4.6. Let (X,Π) be a j-locally ϕ-nice simplicial complex. Then the expansion

of any (ε, i)-strongly global function f ∈ Ck of density at most ε satisfies:

ΦTk
ρ
(f) ≥ ϕ(ε, i)− 2dTV (Bρ

k,B
ρ
k−j).

Moreover, if the j-links are γ-two-sided or partite one-sided HDX then

ΦTk
ρ
(f) ≥ ϕ(ε, i)− FBρ

k
(j − 1)− ckγ

where ck ≤ 2O(k).

Proof. This is essentially immediate from combining Propositions 3.4.1 and 3.4.2 with the

observation that any (i, ε)-strongly global function is (i− j, ε)-global upon localization to

any j-link. We therefore have:

ΦTk
ρ
(f) ≥ E

τ∼πf
j

[ΦTk−j
ρ |τ (f |τ )]− 2dTV (Bρ

k,B
ρ
k−j) ≥ ϕ(ε, i)− 2dTV (Bρ

k,B
ρ
k−j)

in the general case and

ΦTk
ρ
(f) ≥ E

τ∼πf
j

[ΦTk−j
ρ |τ (f |τ )]− FBρ

k
(j − 1)− ckγ ≥ ϕ(ε, i)− FBρ

k
(j − 1)− ckγ
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when the j-links are γ-HDX as desired.

3.5 Applications

In this section we give applications of our framework to the behavior of non-

expanding sets on several families of well-studied complexes. In particular, we give a

new characterization of low influence functions on clique and product complexes, and a

small-set expansion theorem for the seminal Ramanujan complexes.

3.5.1 Low Influence Functions on Weak HDX

Bafna, Hopkins, Kaufman, and Lovett [38, 39], and independently Gur, Lifshitz,

and Liu [187] characterized the structure of non-expanding sets on near-perfect local-

spectral expanders. Unfortunately, very few families of HDX are known to satisfy such

strong requirements, and those that do are highly algebraic in nature, making them a

difficult fit for some potential lines of application such as PCP-type reductions. Applying

our framework for weak expansion, we show such characterizations also holds on more

‘everyday’ objects, albeit in a quantitatively weaker sense. To illustrate this fact, we’ll first

take a closer look at a classical combinatorial setting: clique-complexes.

Definition 3.5.1 (Clique-complex). Given a graph G = (V,E), the k-dimensional clique-

complex KG,k is the simplicial complex induced by the uniform distribution over k-cliques

of G.

We show global sets expand on clique-complexes of dense graphs.

Theorem 3.5.2 (Expansion in Clique-complexes). Fix k ∈ N and let G = (V,E) be

any graph with minimum degree at least ∆min ≥ k−2
k−1
|V |+ k||AḠ||−1

k−1
, where AḠ denotes the

un-normalized adjacency matrix of G’s complement. Then the expansion of any boolean
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(ε, i)-global function f is at least:

Φ(f) ≥ (1− E[f ])
i+ 1

k(k − i)
− 5

4
ε.

Proof. It will be convenient to phrase the result in the equivalent setup of k-size independent

sets, denoted IG,k. In particular, it is enough to prove the result holds over IG,k so long as

∆max ≤
|V | − k||AG||+ 1

k − 1
(3.7)

as we can then apply this to the independent set complex of the complement of G (which

is exactly KG,k).

In their celebrated work on the spectral gap of high order random walks, Alev and

Lau [11] showed that IG,k satisfies γk−2 ≤ 1
k

as long as9

∆max ≤
|V | − k|λmin(AG)|+ 1

k − 1
.

Note that this always holds for any graph satisfying Equation (3.7).

Thus to apply our characterization theorem, it is enough to bound the negative

local spectra. We will do this by proving that under Equation (3.7), the co-dimension 2

links of IG,k also satisfy γ
(−)
k−2 ≥ − 1

k
. Then by Oppenheim’s Trickling-Down Theorem we

have

γ
(−)
i ≥ − 1

2k − 2− i

and the result follows immediately from plugging this bound into Theorem 3.3.1.

Our bound on γ
(−)
k−2 follows largely the same strategy as Alev and Lau’s original

analysis. Let GS denote the link of a co-dimension 2 face S ∈ X(k − 2), and let N [S]

denote the union of S and vertices of G with a neighbor in S. As in Alev-Lau, the idea is
9This is not exactly the statement given in [11, Lemma 4.3], but it is immediate from the proof solving

for dependence on ∆max instead of k.
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now to observe that since the top level faces are distributed uniformly, the random walk

matrix underlying MS can be written as

MS = D−1
S (J − I − AG[N [S]]),

where AG[N [S]] is the un-normalized adjacency matrix of the induced graph on G[N [S]] and

DS is the standard diagonal degree matrix of GS. We can then lower bound the smallest

eigenvalue of MS by upper bounding the largest eigenvalue of −MS as:

λ1(−MS)

≤ λ1(D
−1/2
S (AG[N [S]] + I)D

−1/2
S )− λ1(D

−1
S J)

= λ1(D
−1/2
S (AG[N [S]] + I)D

−1/2
S )−

∑
v∈GS

1

degGS
(v)

≤ ∥D−1
S ∥λ1(AG[N [S]] + I)−

∑
v∈GS

1

degGS
(v)

(Variational Characterization)

= ∥D−1
S ∥(λ1(AG[N [S]]) + 1)−

∑
v∈GS

1

degGS
(v)

≤ ∥D−1
S ∥(λ1(AG) + 1)−

∑
v∈GS

1

degGS
(v)

(Cauchy’s Interlacing Theorem).

≤ ∥D−1
S ∥(λ1(AG)− 1)

where the last step follows from observing that ∥D−1
S ∥ = 1

min-deg(GS)
and

∑
v∈GS

1
degGS

(v)
≥

2
min-deg(GS)

.

Finally as observed in [11, Lemma 4.3], note that we can bound the degree of any

v ∈ GS by

degGS
(v) = |V | − |N [S]| − (degG[N [S]](v) + 1) ≥ |V | − (∆max + 1)(k − 1).
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Thus we have

∥D−1
S ∥ ≤

1

|V | − (∆max + 1)(k − 1)
,

and altogether

|λmin(MS)| ≤
λ1(AG)− 1

|V | − (∆max + 1)(k − 1)
.

Combined with Alev and Lau’s bound on λ2(MS) and our assumption on degree, this gives

max{λ2(MS), |λmin(MS)|} ≤
∥AG∥ − 1

|V | − (∆max + 1)(k − 1)
≤ 1

k

as desired.

Since ∥AḠ∥ ≤ ∆max(Ḡ) = |V | −∆min(G), the simplified version in the introduction

follows as an immediate corollary. We now take a look at two corollaries of this bound:

first to the structure of non-expanding sets on 3-dimensional clique complexes, then for

general k.

Corollary 3.5.3. Let G = (V,E) be a graph with ∆min ≥ 5
6
|V |. Then any subset

S ⊂ KG,3(3) of the 3-clique complex with expansion at most

Φ(S) ≤ 1

3
− δ

must contain a constant fraction of the triangles touching some vertex v ∈ G:

∃v ∈ V : E
Xv

[1S] ≥ cδ.

Proof. Assume for the sake of contradiction that f is (1, ε)-global. We will show it must

be the case that ε ≥ δ
2
. By Theorem 3.5.2 we have that

1

3
− δ ≥ Φ(f) ≥ 1

3
− 1

3
E[f ]− 5

4
ε
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and therefore that

ε ≥ 4

5
δ − 4

15
E[f ].

We can assume without loss of generality that E[f ] ≤ 1
2
δ (otherwise the result is trivial by

averaging), which in turn gives ε ≥ δ
2

as desired.

We are not aware of any other method for showing such a characterization on

low-dimensional clique complexes. It is further worth noting that while requiring min-

degree at least 5
6
|V | seems very restrictive (and indeed does imply the resulting complex

is dense), clique complexes of much lower degree complexes are not even guaranteed to

be connected (consider, e.g. two disjoint copies of the complete graph Kn/2, which has

min-degree roughly 5
6
|V |).

For large k, the same proof strategy can be used to show that any non-expanding

set has constant density in some k −O(1) dimension link.

Corollary 3.5.4. There is a universal constant c > 0 such that for any i, k ∈ N, 0 < δ < 1,

and graph G = (V,E) of minimum degree at least ∆min ≥ 2k−2
2k−1
|V |, any subset S ⊂ XG,k(k)

with expansion at most

Φ(S) ≤ 1

i
(1− δ)

has constant correlation with a link of co-dimension i:

∃τ ∈ X(k − i) : E
Xτ

[1S] ≥ cδ.

While characterizing non-expanding functions on common dense complexes is

interesting in its own right, much of the promise of high dimensional expanders comes from

their ability to give sparse models for dense objects such as the complete complex or product

spaces. Prior analysis of small set expansion on such objects was limited to algebraic

constructions of HDX [290, 238, 108]. In part due to their more complicated nature, it has
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been difficult to find natural embeddings into these constructions, and there are no known

ways to use them for PCPs or reductions within hardness of approximation. Towards this

direction, there is a great deal of interest in simpler, combinatorial constructions of high

dimensional expanders.

The most recent work in this direction is the product construction of Golowich

[170], discussed in Section 3.3.4. As an immediate application of our expansion framework,

we prove the following global expansion theorem and characterization of non-expanding

sets on product complexes. We state the result for cutoffs for simplicity.

Corollary 3.5.5. Let k ≥ 3, G be any graph on n vertices, X = G h ∆4k(2k), 0 < i < k,

and f ∈ Ck be any (ε, i)-global boolean function. The expansion of f with respect to the

lower walk is at least:

Φ(f) ≥ (1− E[f ])i
(k − 1)(k − i)

− 4ε

We omit the proof, which is immediate from the fact that the product satisfies

max{γk−2, |γ(−)
k−2} ≤ 1

k
by Theorem 3.3.12 and Theorem 3.2.16. As for the case of clique-

complexes, this leads to a novel characterization of non-expanding sets in low dimensions.

For concreteness, we again look at the setting of k = 3.

Corollary 3.5.6. Let G be any graph on n vertices, and X = G h ∆12(6). There exists

a universal constant c > 0 such that any S ⊂ X(3) with expansion at most

Φ(S) ≤ 1

4
− δ

must contain a constant fraction of the triangles touching some vertex v ∈ X(1):

∃v ∈ X(1) : E
Xv

[1S] ≥ cδ.

215



3.5.2 Small-Set Expansion of the Ramanujan Complexes

The Ramanujan complexes are the seminal construction of high dimensional ex-

panders [290], but are one-sided expanders and may be non-partite, failing the strong

conditions required by prior work. Nevertheless, the Ramanujan complexes come with

a variety of other substantial benefits not necessarily enjoyed by other constructions,

leading to applications ranging from property and agreement testing [236, 233] to quantum

codes [142, 244] and Sum-of-Squares lower bounds [119]. It is natural therefore to ask

whether these complexes also satisfy an analogous small-set expansion theorem to other

constructions with stronger spectral guarantees.

We refer the reader to [290] for the rather involved details of these constructions,

and state here only the salient points for our applications.

Theorem 3.5.7 (The LSV-Complexes [290]). For every γ > 0 and d ∈ N, there exists an

infinite family of complexes {(X,Π)n} satisfying:

1. (X,Π)n is a d-dimensional, non-partite γ-one-sided HDX on n vertices

2. For all v ∈ X(1): (Xv,Πv)n is a partite γ-one-sided HDX on Od,γ(1) vertices.

Since the Ramanujan complexes are one-sided and non-partite, they do not admit

any (known) theory of Fourier analysis, and as a result the tools and results developed in

[111, 38, 39, 187] do not apply. However, since their links are partite HDX, we can appeal

to the following result of [208] to show the complexes are 1-locally nice.

Theorem 3.5.8 (SSE for Partite HDX [187]). Let (X,Π) be a d-dimensional partite

γ-one-sided local-spectral expander. If f ∈ Cd is (ε, i)-global, then the expansion of f with

respect to Tρ is at least:

ΦTρ(f) ≥ 1− ρi+1 − ciε
1/2 − ckγ

where each ci ≤ iO(i).
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We give the proof in Section 3.6 for completeness, which is essentially immediate

from [187] and earlier work of Dikstein and Dinur [109]. As an immediate corollary, we

get the first KKL-type theorem for any non-partite one-sided HDX.

Corollary 3.5.9. Let (X,Π)n be a Ramanujan complex and f ∈ Ck a (ε, i)-global set of

density at most ε. Then the expansion of f is at least:

ΦTρ(f) ≥ 1− ρi − ciε
1/2 − ckγ − ρk

where each ci ≤ iO(i).

Proof. By Theorem 3.5.8, the Ramanujan complexes (X,Π)n are 1-locally ϕ-nice for

ϕ(ε, i) = 1− ρi+1 − ciε
1/2 − ckγ

The result is now immediate from Corollary 3.4.6.

Equivalently, we can view this result via its contrapositive: any non-expanding set

is local.

Corollary 3.5.10. For any ρ ∈ [0, 1], k > Ω(ρ−1), LSV-complex (X,Π)n with γ ≤ k−Ω(k)

and any δ > 0, there exist constants r = r(δ, ρ) and s = s(δ, ρ) such that for any boolean

f ∈ Ck with expansion Φ̄Tρ(f) > δ, f has density at least s in some r-link:

∃τ ∈ X(r) : E
Xτ

[f |τ ] ≥ s

Moreover, we can take r ≤ O( log δ
−1

log ρ−1 ), and s ≥ r−O(r).
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3.6 Fourier Analysis on HDX

Most of the Fourier analytic results needed for Proposition 3.4.2 follow without

too much difficulty from existing techniques. However since the results are not explicitly

stated in any work (and often require pulling from several sources), we give a contained

version here. Our main goal is to prove the following result:

Theorem 3.6.1 (Theorem 3.4.3 Restated). Let (X,Π) be a k-dimensional γ-two-sided or

partite one-sided HDX. Then there exists a decomposition f =
k∑

i=0

fi such that:

Φ̄Nk−i
k

(f) =
i∑

ℓ=0

(
k−ℓ
i−ℓ

)(
k
i

) ⟨fi, fi⟩
⟨f, f⟩

± ckγ

where ck ≤ kO(k). Similarly:

Φ̄Tk
ρ
(f) =

k∑
i=0

ρi
⟨fi, fi⟩
⟨f, f⟩

± ckγ

The two-sided variant is actually proven explicitly in [38, 39], so we focus on the

partite one-sided case which is studied implicitly in [187]. More formally, the authors

study a notion of expansion on partite complexes they call ‘γ-products.’ To define these,

we need to introduce a new type of random walk between colors on a partite complex,

originally introduced by Dikstein and Dinur [109] in the context of agreement testing.

Definition 3.6.2 (Colored Swap-Walks [109]). Given a partite simplicial complex (X,Π)

and i, j ∈ [d], the colored swap-walk M i,j walks from X i to Xj and has bipartite adjacency

operator:

M i,j(v, w) =
πw,1(v)∑

z∈Xi

πw,1(z)
.

On a product space, every M i,j is a complete bipartite graph (since colors are

completely independent). Gur, Lifshitz, and Liu introduced the notion of a γ-product to
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relax this constraint to simply requiring these operators expand.

Definition 3.6.3 (γ-Product [187]). A partite complex (X,Π) is a γ-product if every link

Xτ of co-dimension at least 2, every colored swap-walk is a γ-one-sided spectral expander:

∀i, j : λ2(M
i,j
τ ) ≤ γ,

It is not hard to show that γ-products are equivalent to one-sided partite HDX up

to a factor in dimension. Indeed the ‘hard’ direction (HDX → γ-product) was already

shown in prior work of Dikstein and Dinur [109], while the ‘easy’ direction follows from

Oppenheim’s Trickling-Down Theorem.

Theorem 3.6.4 (γ-Product ⇐⇒ Partite HDX). Let (X,Π) be a simplicial complex and

γ < 1
d−1

. Then:

1. If (X,Π) is a γ-one-sided HDX, then it is a γ
1−(d−1)γ

-product

2. If (X,Π) is a γ-product, it is a γ
1−(d−1)γ

-one-sided HDX

Proof. The first result is [109, Corollary 7.6], and follows from a partite variant of the

Trickling-Down Theorem. To prove the second, observe that

1. For τ ∈ X(d− 2): Aτ = M1,2
τ ,

2. For any i ≤ d− 2 and τ ∈ X(i): Aτ is connected.10

Since we are promised λ2(M
1,2
τ ) ≤ γ < 1

d−1
and all links are connected, Trickling-Down

(Theorem 3.2.16) implies the result.

GLL show that γ-products, and therefore partite one-sided HDX, have an approx-

imate Fourier basis. Their result is based off a classical basis for product spaces called
10if Aτ is disconnected, there exist disconnected vertices vi and vj of colors i and j. By construction, vi

and vj are then also disconnected in M i,j
τ , which violates the expansion assumption.
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the Efron-Stein Decomposition. To state this, it will first be useful to define a family of

partite averaging operators

Definition 3.6.5 (Partite Averaging Operators). Given a partite simplicial complex

(X,Π), the partite averaging operators {ET}T⊆[d] : C(d)→ C(d) average over elements in

[n] \ T :

ETf(x) = E
XxT

[f |xT
],

i.e. ETf is the conditional expectation of f given that coordinates T are fixed to xT .

The Efron-Stein decomposition divides f into components f=S that make up

the contribution to f from each coordinate set, which essentially amounts to applying

inclusion-exclusion to ESf .

Definition 3.6.6. Given a partite simplicial complex (X,Π) and f , define

f=S =
∑
T⊆S

(−1)|S\T |ETf

We denote the sum of components at a given level as fi :=
∑
|S|=i

f=S

It is not hard to check that {f=S} decompose f , that is.

f =
∑
S⊆[d]

f=S

GLL proved that the Efron-Stein decomposition is an approximate Fourier basis for the

partite averaging operators in the following sense.

Theorem 3.6.7 (Efron-Stein Decomposition on HDX). Let (X,Π) be a partite γ-one-sided

HDX. Then the Efron-Stein Decomposition is approximately orthogonal:

∀S, T : ⟨f=S, f=T ⟩ ≤ 2O(|S|+|T |)γ∥f∥22,
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and approximately an eigenbasis for every ET :

1. if S ⊆ T : ETf
=S = f=S

2. If S ⊈ T : ∥ETf
=S∥2 ≤

√
|S||T |2|S|γ∥f∥

high order random walks on partite complexes can typically be written as con-

vex combinations of the partite averaging operators. With this in mind, the proof of

Theorem 3.4.3 follows easily from expanding f into the Efron-Stein basis.

Proof of Theorem 3.4.3. Observe that the lower walks can be written as the following

convex combination of the colored averaging operators:

Nk−i
k =

1(
k
i

) ∑
|T |=i

ET

It then follows from Theorem 3.6.7 that Efron-Stein is also an approximate eigenbasis for

N i
k:

Nk−i
k f=S =

1(
k
i

) ∑
|T |=i

ETf
=S

=
1(
k
i

) ∑
|T |=i
T⊇S

ETf
=S +

1(
k
i

) ∑
|T |=i
T⊉S

ETf
=S

=

(
k−|S|
i−|S|

)(
k
i

) f=S + e⃗rr

where ∥e⃗rr∥2 ≤ 2O(k)γ. Note that the lefthand term is really 0 for |S| > i (which we’ve

denoted as a negative binomial coefficient for convenience).

The result for Nk−i
k then follows from expanding out Φ(f) in this basis and applying

approximate orthogonality:

Φ(f) = 1− 1

⟨f, f⟩
⟨f, pN i

kf⟩
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= 1− 1

⟨f, f⟩

k∑
ℓ=0

⟨f, pN i
kfℓ⟩

= 1− 1

⟨f, f⟩

i∑
ℓ=0

(
k−|S|
i−|S|

)(
k
i

) ⟨f, fℓ⟩+ c1γ

= 1− 1

⟨f, f⟩

i∑
ℓ=0

(
k−|S|
i−|S|

)(
k
i

) ⟨f, fℓ⟩+ c2γ

where c1, c2 ≤ 2O(k). The result for Tρ follows similarly, in fact as GLL ([187, Claim 8.3])

note the expansion decomposition in this case is exact:

ΦTρ(f) =
1

⟨f, f⟩

k∑
i=0

ρi⟨f, fi, ⟩

so approximate orthogonality again implies the desired result.

3.7 Gotlib-Kaufman for the Lower Walk

Theorem 3.7.1. For any simplicial complex (X,Π), 0 < k ≤ d, and f ∈ Ck, we have:

⟨N1
kf, f⟩ ≤ E[f ]2 +

k−1∑
i=1

(
1− 1

k − i+ 1

k−2∏
j=i−1

(1− γj)

)
⟨f, fi⟩.

Following GK [176], the proof revolves around reducing to level-1 by (inductively)

localizing the decomposition. The crucial observation is that in each step, it is enough to

analyze the contribution coming from the constant part of level 1, which is handled by the

following lemma.

Lemma 3.7.2 ([176, Lemma 7.8, Theorem 7.9]). Let (X,Π) be a simplicial complex and

g ∈ Ck any function orthogonal to 1⃗. Then the parallel part of g under restriction is small

in expectation:

E
v∼π1

[
∥(N |v)k−1

k−1g|v∥
2
2

]
≤
(
1− k − 1

k
(1− γ0)

)
∥g∥22
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Proof. First, observe that since (D|v)k−1
0 g|v is constant, we have:

∥(N |v)k−1
k−1g|v∥

2
2 = Dk

1g(v)
2

and therefore that

E
v∼π1

[
∥(N |v)k−1

k−1g|v∥
2
2

]
= ⟨Dk

1g,D
k
1g⟩ = ⟨Nk−1

k g, g⟩

by adjointness of D and U . Since g is orthogonal to 1⃗, it is enough to upper bound

λ2(N
k−1
k ). It will be convenient to instead work with the upper walk pNk−1

1 , which has the

same non-zero spectrum.

In particular, it is well known that the non-lazy component of pNk−1
1 is simply M+

1

(see e.g. [9, 176]), so we can write:

λ2( pNk−1
1 ) = λ2

(
1

k
I +

k − 1

k
M+

1

)
≤ 1

k
+

k − 1

k
γ0 = 1− k − 1

k
(1− γ0)

as desired.

The proof of the main theorem then follows from combining this fact with a basic

induction on k, performed by successive restrictions.

Proof of Theorem 3.7.1. The proof follows largely the same strategy as [176, Theorems

5.8,7.9] where the only real difference lies in the base case. The proof is by induction on k.

Note that since f0 = E[f ]⃗1, and the remaining fi are orthogonal, it is enough to consider

the case where f0 = 0.

Because the KO-decomposition does not behave well under restriction, as in [176]

we will instead prove the more general statement for any sum
k∑

i=1

fi satisfying the weaker
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constraint fi ∈ Ker(Dk
i−1):

〈
N1

k

k∑
i=1

fi,

k∑
i=1

fi

〉
≤

k−1∑
i=1

(
1− 1

k − i+ 1

k−2∏
j=i−1

(1− γj)

)
⟨fi, fi⟩+

∑
i ̸=j

ci,j⟨fi, fj⟩ (3.8)

Since the KO-decomposition is orthogonal and satisfies fi ∈ Ker(Dk
i−1), this is sufficient

to prove the result. For notational convenience, we continue to write f =
k∑

i=1

fi throughout.

With this in mind, we start with the base case of graphs. Notice that by adjointness of U

and D we have:

⟨N1
2 f, f⟩ = ⟨U1D2(f1 + f2), f1 + f2⟩ = ⟨D2f1, D2f1⟩

since f2 ∈ Ker(D2) by definition. The result now follows from [176, Lemma 7.8], who

shows that

⟨D2f1, D2f1⟩ ≤
(
1− 1

2
(1− γ0)

)
∥f1∥22

as desired (this also follows from the proof of Lemma 3.7.2 above).

The inductive step follows essentially the same argument as Gotlib-Kaufman

(replacing relevant parameters throughout), but we include the proof for completeness.

Because restriction is linear and respected by the lower walk, we have

⟨N1
kf, f⟩ =

〈
N1

k

k∑
i=1

fi,

k∑
i=1

fi

〉

= E
v∼π1

[〈
(N |v)1k−1

k∑
i=1

fi|v,
k∑

i=1

fi|v

〉]
.

Now that we have reduced to dimension k− 1 we’d hope to apply the inductive hypothesis,

but this requires a sum of the form
∑k−1

i=1 hi for hi ∈ Ker((D|v)k−1
i−1 ). Gotlib and Kaufman

observed that the only part of the previous expression that fails to achieve this form is the
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constant part of f |v. In particular, letting

hv
i := (fi+1)|v (1 < i < k)

hv
i := (f2)|v +

(
1− (N |v)k−1

k−1

)
(f1)|v (i = 1),

we have hv
i ∈ Ker((D|v)k−1

i−1 ) and can write:

⟨N1
kf, f⟩ = E

v∼π1

[〈
(N |v)1k−1

k−1∑
i=1

hv
i ,

k−1∑
i=1

hv
i

〉]

+ E
v∼π1

[〈
(N |v)1k−1(N |v)k−1

k−1(f1)|v, (N |v)
k−1
k−1(f1)|v

〉]
.

The first term can now be analyzed by the inductive hypothesis:

〈
(N |v)1k−1

k−1∑
i=1

hv
i ,

k−1∑
i=1

hv
i

〉
≤

k−2∑
i=1

(
1− 1

k − i

k−2∏
j=i

(1− γj)

)
⟨hv

i , h
v
i ⟩+

∑
i ̸=j

ci,j⟨hv
i , h

v
j ⟩

=
k−1∑
i=2

(
1− 1

k − i+ 1

k−2∏
j=i−1

(1− γj)

)
⟨(fi)|v, (fi)|v⟩

+

(
1− 1

k − 1

k−2∏
j=1

(1− γj)

)
∥
(
1− (N |v)k−1

k−1

)
(f1)|v∥22

+
∑
i ̸=j

c′i,j⟨(fi)|v, (fj)v⟩

where we have re-applied the definition of hv
i and collected mixed terms as in [176, Lemma

5.10]. Recall that by Garland’s method for any two functions g, g′ we have

E
v∼π1

[⟨g|v, g′|v⟩] = ⟨g, g′⟩,

and thus altogether that

⟨N1
kf, f⟩ ≤

k−1∑
i=2

(
1− 1

k − i+ 1

k−2∏
j=i−1

(1− γj)

)
⟨fi, fi⟩
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+ E
v∼π1

[(
1− 1

k − 1

k−2∏
j=1

(1− γj)

)
∥
(
1− (N |v)k−1

k−1

)
(f1)|v∥22 + ∥(N |v)k−1

k−1(f1)|v∥
2
2

]

+
∑
i ̸=j

c′i,j⟨fi, fj⟩

where we have used the fact that N1
k (N |v)k−1

k−1(f1)|v = (N |v)k−1
k−1(f1)|v since the latter is

constant. For notational simplicity let

λi,k :=

(
1− 1

k − i+ 1

k−2∏
j=i−1

(1− γj)

)
.

It is therefore left to prove the following claim:

Claim 3.7.3 ([176, Theorems 5.8,7.9]).

E
v∼π1

[
λk,2∥

(
1− (N |v)k−1

k−1

)
(f1)|v∥22 + ∥(N |v)k−1

k−1(f1)|v∥
2
2

]
≤ λk,1∥f1∥22 (3.9)

This follows from combining several more general claims in Gotlib-Kaufman, but

we’ll repeat the direct version here for completeness. GK observe the lefthand side can be

re-written as

E
v∼π1

[
λk,2∥

(
1− (N |v)k−1

k−1

)
(f1)|v∥22 + λk,2∥(N |v)k−1

k−1(f1)|v∥
2
2 + (1− λk,2)∥(N |v)k−1

k−1(f1)|v∥
2
2

]
=λk,2 E

v∼π1

[∥(f1)|v∥22] + (1− λk,2) E
v∼π1

[
∥(N |v)k−1

k−1(f1)|v∥
2
2

]
=λk,2∥f1∥22 + (1− λk,2) E

v∼π1

[
∥(N |v)k−1

k−1(f1)|v∥
2
2

]
With this in mind, we are finally ready to apply Lemma 3.7.2

E
v∼π1

[
∥(N |v)k−1

k−1(f1)|v∥
2
2

]
≤
(
1− k − 1

k
(1− γ0)

)
∥f1∥22
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which completes the proof since

λk,2 + (1− λk,2)

(
1− k

k + 1
(1− γ0)

)
= 1− (1− λk,2)

(
1− k

k + 1
(1− γ0)

)
= 1− 1

k

k−2∏
j=0

(1− γj)

= λk,1

as desired.

3.8 Garland’s Lemma

We prove the lower-walk variant of Garland’s Lemma from Lemma 3.2.15.

Lemma 3.8.1 (Garland’s Lemma for Lower Walks). Let (X,Π) be a weighted d-dimensional

simplicial complex. Then for any i < k < d, f ∈ Ck, j ≤ k − i and τ ∈ X(j):

⟨f,N i
kf⟩ = Eτ∼πj

[
⟨f |τ , N i

k−j|τf |τ
〉
]

where f |τ : Xτ (k − i)→ R is given by fτ (σ) = f(τ ∪ σ), and N i
k−j|τ is the lower walk on

the link Xτ .

Proof. Since D and U are adjoint, we can write:

Eτ∼πj

[
⟨f |τ , N i

k−j|τf |τ ⟩
]
= Eτ∼πj

[
⟨Dk−j

k−i−j|τf |τ , D
k−j
k−i−j|τf |τ ⟩

]
=
∑

τ∈X(j)

πj(τ)
∑

σ∈Xτ (k−i−j)

πτ,k−i−j(σ)(D
k−j
k−i−j|τf |τ (σ))

2

=
1(

k−i
j

) ∑
τ∈X(j)

∑
σ∈Xτ (k−i−j)

πk−i(τ ∪ σ)(Dk−j
k−i−j|τf |τ (σ))

2.

The key is now to observe that Dk−j
k−i−j|τf |τ (σ), the expected value of f |τ over the link

of σ in Xτ is equivalent to the expectation of f |τ∪σ over the link Xτ∪σ, which is just
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Dk
k−if(τ ∪ σ). Therefore we have:

1(
k−i
j

) ∑
τ∈X(j)

∑
σ∈Xτ (k−i−j)

πk−i(τ ∪ σ)(Dk−j
k−i−j|τf |τ (σ))

2

=
1(

k−i
j

) ∑
τ∈X(j)

∑
σ∈Xτ (k−i−j)

πk−i(τ ∪ σ)(Dk
k−if(τ ∪ σ))2

=
∑

T∈X(k−i)

πk−i(T )(D
k
k−if(T ))

2

=⟨f,N i
kf⟩,

where the second to last step follows from noting that the inner term depends only on the

union τ ∪ σ ∈ X(k − i), each of which is hit
(
k−i
j

)
times in the sum.

3.9 Proof of Claim 3.4.4

Claim 3.9.1 (Claim 3.4.4 Restated). For all k ∈ N, j ≤ k, and ℓ ≤ k − j:

k−j∑
i=ℓ

(
k

i+ j

)(k−j−ℓ
i−ℓ

)(
k−j
i

) ρi+j(1− ρ)k−j−i ≤ ρℓ

Proof. We first re-write the sum to be 0-indexed for simplicity:

k−j∑
i=ℓ

(
k

i+ j

)(k−j−ℓ
i−ℓ

)(
k−j
i

) ρi+j(1− ρ)k−j−i =

k−j−ℓ∑
i=0

(
k

i+j+ℓ

)(
k−j−ℓ

i

)(
k−j
i+ℓ

) ρi+j+ℓ(1− ρ)k−j−ℓ−i

The key is to observe that by standard counting arguments:

(
k

i+j+ℓ

)(
k−j−ℓ

i

)(
k−j
i+ℓ

) ≤
(
k − ℓ

i+ j

)
, (3.10)

since by the Binomial Theorem we then have

k−j−ℓ∑
i=0

(
k

i+ j + ℓ

)(k−j−ℓ
i

)(
k−j
i+ℓ

) ρi+j+ℓ(1− ρ)k−j−ℓ−i ≤ ρℓ
k−j−ℓ∑
i=0

(
k − ℓ

i+ j

)
ρi+j(1− ρ)k−j−ℓ−i
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≤ ρℓ
k−ℓ∑
z=0

(
k − ℓ

z

)
ρz(1− ρ)k−ℓ−z

= ρℓ

as desired. Proving Equation (3.10) is tedious but elementary. Standard binomial manipu-

lations give

(
k

i+j+ℓ

)(
k−j−ℓ

i

)(
k−j
i+ℓ

)(
k−ℓ
i+j

) =

(
k
j

)(
k−ℓ
j

) · (i+j
j

)(
i+j+ℓ

j

) ,
and the result follows from observing the RHS is increasing in i, and is exactly 1 when

i = k − j − ℓ.
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Chapter 4

Eigenstripping, Spectral Decay, and
Edge-Expansion on Posets

4.1 Introduction

Random walks on high dimensional expanders (HDX) have been the object of

intense study in theoretical computer science in recent years. Starting with their original

formulation by Kaufman and Mass [234], a series of works on the spectral structure

of these walks [239, 111, 11] led to significant breakthroughs in approximate sampling

[25, 11, 24, 95, 96, 94, 146, 218, 286, 66], CSP-approximation [9, 38], error-correcting codes

[220, 221], agreement testing [124, 109, 236], and more. Most of these works focus on the

structure of expansion in hypergraphs (typically called simplicial complexes in the HDX

literature). On the other hand, it has become increasingly clear that hypergraphs are

not always the right tool for the job—recent breakthroughs in locally testable [117] and

quantum LDPC codes [315, 281, 277], for instance, all rely crucially on cubical structure

not seen in hypergraphs, while many agreement testing results like the proof of the 2-2

Games Conjecture [255] rely crucially on linear algebraic rather than simplicial structure.

In this work, we study a generalized notion of high dimensional expansion on

partially ordered sets (posets) introduced by Dikstein, Dinur, Filmus, and Harsha (DDFH)

[111] called expanding posets (eposets). Random walks on eposets capture a broad range

of important structures beyond their hypergraph analogs, including natural sparsifications
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of the Grassmann graphs that recently proved crucial to the resolution of the 2-2 Games

Conjecture [255, 253, 126, 125, 47, 252]. DDFH’s notion of eposets is a global definition of

high dimensional expansion based on a relaxation of Stanley’s [346] sequentially differential

posets, a definition originally capturing both the Grassmanian and complete simplicial

complex. More recently, Kaufman and Tessler (KT) [243] have extended the study of

eposets in two important aspects. First, in contrast to DDFH’s original global definition,

KT introduced the local-to-global study of high dimensional expansion in eposets. Second,

they identified regularity as a key parameter controlling expansion. In particular, the

authors showed strengthened local-to-global theorems for strongly regular posets like the

Grassmann, giving the first general formulation for characterizing expansion based on an

eposet’s underlying architecture.

While analysis of the second eigenvalue is certainly an important consideration (e.g.

for mixing applications), a deeper understanding of the spectral structure of eposets is

required for applications like the proof of the 2-2 Games Conjecture. As such, our main

focus in this work lies in characterizing the spectral and combinatorial behavior of random

walks on eposets beyond the second eigenvalue. Strengthening DDFH and recent work

of Bafna, Hopkins, Kaufman, and Lovett (BHKL) [38], we prove that at a coarse level

(walks on) eposets indeed exhibit the same spectral and combinatorial characteristics as

expanding hypergraphs (e.g. spectral stripping, expansion of pseudorandom sets). On

the other hand, as in KT, we show that the finer-grained properties of these objects are

actually controlled by the underlying poset’s regularity, including the rate of decay of the

spectrum and combinatorial expansion of associated random walks. This gives a stronger

separation between structures like hypergraphs with weak (linear) eigenvalue decay, and

Grassmann-based eposets with strong (exponential) eigenvalue decay (a crucial property

in the proof of the 2-2 Games Conjecture [255]).

In slightly more detail, we show that all eposets exhibit a behaviour called “eigen-

stripping” [239, 111, 38]: the spectrum of any associated random walk concentrates around
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a few unique approximate eigenvalues. Moreover, the approximate eigenvalues of walks on

eposets are tightly controlled by the poset architecture’s regularity1 R(j, i), which denotes

the total number of rank-i elements2 less than any fixed rank-j element (see Section 4.1.1

for standard definitions). For simplicity, we specialize our result below to the popular

“lower” or “down-up” walk (this simply corresponds to taking a random step down and

back up the poset, again see Section 4.1.1); a more involved version holds for higher order

random walks in full generality.

Theorem 4.1.1 (Eigenstripping and Regularity (informal Corollary 4.4.5 and Theo-

rem 4.4.7)). The spectrum of the lower walk UD on a k-dimensional γ-eposet is concen-

trated in (k + 1) strips:

Spec(UD) ∈ {1} ∪
k⋃

i=1

[λi(UD) +Ok(γ), λi(UD)−Ok(γ)],

where the approximate eigenvalues λi(UD) are determined by the poset’s regularity:

λi(UD) =
R(k − 1, i)

R(k, i)
.

Theorem 4.1.1 generalizes and tightens recent work on expanding hypergraphs

of BHKL [38, Theorem 2.2] (which itself extended a number of earlier works on the

topic [239, 111, 9]). Additionally, our result on the connection between regularity and

approximate eigenvalues generalizes the work of KT [243], who show an analogous result

for λ2. Theorem 4.1.1 reveals a stark contrast between the spectral behavior of eposets

with different regularity parameters. As a prototypical example, consider the case of

hypergraphs versus subsets of the Grassmann (k-dimensional vector spaces over Fn
q ). In

the former, each k-set contains
(
k
i

)
i-sets, leading to approximate eigenvalues that decay

1We will additionally assume a slightly stronger condition introduced in KT [243] called middle regularity
throughout. See Section 4.2.1 for details.

2We consider regular graded posets, where each element has a corresponding rank. In a hypergraph, for
instance, rank is given by the size of a set, while in the Grassmann poset it is given by subspace dimension.
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linearly (λi ≈ (k− i)/k). On the other hand, each k-dimensional vector space contains
(
k
i

)
q

i-dimensional subspaces, which leads to eigenvalues that decay exponentially (λi ≈ q−i).

The latter property, which we call strong decay is often crucial in applications (e.g. for

hardness of approximation [255] or fast algorithms [38]), and while it is possible to recover

strong decay on weaker posets by increasing the length of the walk [38], this is often

untenable in application due to the additional degrees of freedom it affords.3

The spectral structure of walks on eposets is closely related to their edge-expansion,

an important combinatorial property that has recently played a crucial role both in

algorithms for [37, 38] and hardness of unique games [255]. The key insight in both cases

lay in understanding the structure of non-expanding sets. We give a tight understanding

of this phenomenon across all eposets in the so-called ℓ2-regime [38], where we show

that expansion is tightly controlled by the behavior of local restrictions called links (see

Definition 4.1.7).

Theorem 4.1.2 (Expansion in the ℓ2-Regime (informal Theorem 4.6.7)). The expansion

of any i-link is almost exactly 1− λi(M). Conversely, any set with expansion less than

1− λi+1(M) has high variance across i-links.

In [38], it was shown this characterization allows for the application of a local-

to-global algorithmic framework for unique games on such walks. This remains true on

eposets, and it is an interesting open question whether there are significant applications

beyond those given in BHKL’s original work.4

Finally, as an application of our structure theorems, we give an in-depth analysis

of the ℓ2-structure of walks on expanding subsets of the Grassmann poset called q-eposets

(first studied in [111]). We focus in particular on the natural q-analog of an important
3For instance such a walk might take exponential time to implement, or correspond to a more

complicated agreement test than desired.
4While one can apply the framework to playing unique games on the Grassmann poset (or sparsifications

thereof), the spectral parameters are such that this does not give a substantial improvement over standard
algorithms [29].
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set of walks called partial-swap walks introduced by Alev, Jeronimo, and Tulsiani [9] that

generalize the Johnson graphs when applied to expanding hypergraphs. We show that

applied to q-eposets, these objects give a natural set of walks generalizing the Grassmann

graphs and further prove that our generic analysis for eposets gives a tight characterization

of non-expansion in this setting. We note that this does not recover the result used for the

proof of the 2-2 Games Conjecture which lies in the ℓ∞-regime (replacing variance above

with maximum) and requires a dimension-independent bound. This issue was recently

(and independently) resolved for simplicial complexes in [39] and [187], and we view our

work as an important step towards a more general understanding for families like the

Grassmann beyond hypergraphs.

4.1.1 Background

Before jumping into our results in any further formality, we’ll briefly overview the

theory of expanding posets and higher order random walks. All definitions are covered

in full formality in Section 4.2. A d-dimensional graded poset is a set X equipped with

a partial order “<” and a ranking function r : X → [d] that respects the partial order

and partitions X into levels X(0) ∪ . . . ∪ X(d). When x < y and r(y) = r(x) + 1, we

write x⋖ y or equivalently y ⋗ x.5 Finally, we will assume throughout this work that our

posets are downward regular : there exists a regularity function R(k, i) such that every

k-dimensional element is greater than exactly R(k, i) i-dimensional elements.6

Graded posets come equipped with a natural set of averaging operators called the

up and down operators. Namely, for any function f : X(i)→ R, these operators average

f up or down one level of the poset respectively:

Uif(x) = E
y⋖x

[f(y)],

5This is traditionally called a ‘covering relation.’
6For notational convenience, we also define R(i, i) = 1 and R(j, i) = 0 whenever j < i.
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Dif(y) = E
x⋗y

[f(x)].

Composing the averaging operators leads to a natural notion of random walks on the

underlying poset called higher order random walks (HD-walks). The simplest example

of such a walk is the upper walk Di+1Ui which moves between elements x, x′ ∈ X(i) via

a common element y ∈ X(i+ 1) with y > x, x′. Similarly, the lower walk Ui−1Di walks

between x, x′ ∈ X(i) via a common y ∈ X(i − 1) with y < x, x′. It will also be useful

at points to consider longer variants of the upper and lower walks called canonical walks

pN i
k = Dk+1 ◦ . . . ◦Dk+i ◦Uk+i−1 ◦ . . . ◦Uk and qN i

k = Uk ◦ . . . ◦Uk−i ◦Dk−i+1 ◦ . . . ◦Dk which

similarly walk between k-dimensional elements in X(k) via a shared element in X(k + i)

or X(k − i) respectively.

Following DDFH [111], we call a poset a (δ, γ)-expander for δ ∈ [0, 1]d−1 and γ ∈ R+

if the upper and lower walks are spectrally similar up to a laziness factor:

∥Di+1Ui − (1− δi)I − δiUi−1Di∥ ≤ γ.

This generalizes standard spectral expansion which can be equivalently defined as looking

at the spectral norm of AG − U0D1, where AG (the adjacency matrix) is exactly the

non-lazy upper walk. We note that under reasonable regularity conditions (see [243, 111]),

this definition is equivalent to local-spectral expansion [124], which requires every local

restriction of the poset to be an expander graph. While most of our results hold more

generally, it will also be useful to assume a weak non-laziness condition on our underlying

posets throughout that holds in most cases of interest (see Definition 4.2.8).

4.1.2 Results

With these definitions in mind, we can now cover our results in somewhat more

formality. We split this section into three parts for readability: spectral stripping, charac-
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terizing edge expansion, and applications to the Grassmann.

Eigenstripping

We start with our generalized spectral stripping theorem for walks on expanding

posets.

Theorem 4.1.3 (Spectrum of HD-Walks (informal Corollary 4.4.5)). Let M be an HD-walk

on the kth level of a (δ, γ)-eposet. Then the spectrum of M is highly concentrated in k + 1

strips:

Spec(M) ∈ {1} ∪
k⋃

i=1

[λi(M)− e, λi(M) + e]

where e ≤ Ok,δ(γ). Moreover, the span of eigenvectors in the ith strip approximately

correspond to functions lifted from X(i) to X(k).

This generalizes and improves an analogous result of BHKL [38] on expanding

hypergraphs, which had sub-optimal error dependence of Ok(γ
1/2). The main improvement

stems from an optimal spectral stripping result for arbitrary inner product spaces of

independent interest.

Theorem 4.1.4 (Eigenstripping (informal Theorem 4.3.2)). Let M be a self-adjoint

operator over an inner product space V , and V = V 1 ⊕ . . . ⊕ V k be an “approximate

eigendecomposition” in the sense that there exist {λi}ki=1 and sufficiently small error factors

{ci}ki=1 such that for all fi ∈ V i:

∥Mfi − λifi∥2 ≤ ci∥fi∥.

Then the spectrum of M is concentrated around each λi:

Spec(M) ⊆
k⋃

i=1

[λi − ci, λi + ci] .
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Note that this result is tight—when there is ci “error” in our basis we cannot expect

to have better than ci error in the resulting spectral strips. Theorem 4.1.4 improves over a

preliminary result to this effect in [38] which had substantially worse dependence on ci and

required much stronger assumptions.7 Theorem 4.1.3 then follows by work of DDFH ([111,

Theorem 8.6]), who introduced a natural approximate eigendecomposition on eposets we

call the HD-Level-Set Decomposition.

In full generality, the approximate eigenvalues in Theorem 4.1.3 depend on the

eposet parameters δ, and can be fairly difficult to interpret. However, we show that under

weak assumptions (see Section 4.2) the eigenvalues can be associated with the regularity

of the underlying poset. We focus on the lower walks for simplicity, though the result can

be similarly extended to general walks on eposets.

Theorem 4.1.5 (Regularity Controls Spectral Decay (informal Theorem 4.4.7)). The

approximate eigenvalues of the lower walk qNk−i
k on a (δ, γ)-eposet are controlled by the

poset’s regularity function:

λj( qNk−i
k ) ∈ R(i, j)

R(k, j)
±Ok,δ(γ).

As discussed in Section 4.1, this generalizes work of Kaufman and Tessler [243] for

the second eigenvalue of the upper/lower walks, and reveals a major distinction among

poset architectures: posets with higher regularity enjoy faster decay of eigenvalues. We

note that Theorem 4.1.1 can also be obtained by combining Theorem 4.1.4 with recent

independent work of Dikstein, Dinur, Filmus, and Harsha on connections between eposets

and regularity (namely in the recent update of their seminal eposet paper, see [111, Section

8.4.1]).

On a more concrete note, Theorem 4.1.5 gives a new method of identifying potential
7It is also worth noting that the proof in this work is substantially simplified from [38], requiring no

linear algebraic manipulations at all.
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poset architectures exhibiting strong spectral decay in the sense that for any δ > 0, the

lower walk only contains Oδ(1) approximate eigenvalues larger than δ (rather than a

number growing with dimension). This property, referred to as constant ST-Rank in

the context of hypergraphs in [38], is an important factor not only for the run-time of

approximation algorithms on HDX [38], but also for the soundness of the Grassmann-based

agreement test in the proof of the 2-2 Games Conjecture [255].

Characterizing Edge Expansion

Much of our motivation for studying the spectrum of HD-walks comes from the

desire to understand a fundamental combinatorial quantity of graphs called edge expansion.

Definition 4.1.6 (Edge Expansion). Let X be a graded poset and M an HD-Walk on

X(k). The edge expansion of a subset S ⊂ X(k) with respect to M is

Φ(S) = E
v∼S

[M(v,X(k) \ S)] ,

where

M(v,X(k) \ S) =
∑

y∈X(k)\S

M(v, y)

and M(v, y) denotes the transition probability from v to y.

As mentioned in the introduction, characterizing the edge-expansion of sets in

HD-walks has recently proven crucial to understanding both algorithms for [37, 38] and

hardness of unique games [255]. On expanding hypergraphs, it has long been known that

links give the canonical example of small non-expanding sets.

Definition 4.1.7 (Link). Let X be a d-dimensional graded poset. The k-dimensional link
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of an element σ ∈ X is the set of rank k elements greater than σ:8

Xk
σ = {y ∈ X(k) : y > σ}.

We call the link of a rank-i element an “i-link.” When the level k is clear from context, we

write Xσ for Xk
σ for simplicity.

In greater detail, BHKL [38] proved that on hypergraphs, the expansion of links

is exactly controlled by their corresponding spectral strip. While their proof of this fact

relied crucially on simplicial structure, we show via a more general analysis that the result

can be recovered for eposets.

Theorem 4.1.8 (Expansion of Links (informal Theorem 4.6.3)). Let X be a (δ, γ)-eposet

and M an HD-walk on X(k). Then for all 0 ≤ i ≤ k and τ ∈ X(i):

Φ(Xτ ) = 1− λi(M)±OM,k,δ(γ).

As an immediate consequence, we get that when M is not a small-set expander,

links are examples of small non-expanding sets. One might reasonably wonder whether

the converse is true as well: are all non-expanding sets explained by links? This requires a

bit of formalization. Following BHKL’s exposition [38], given a set S consider the function

LS,i : X(i)→ R that encodes the behavior of S ⊂ X(k) on links:

∀τ ∈ X(i) : LS,i(τ) = E
Xτ

[1S]− E[1S].

The statement “Non-expansion is explained by links” can then be interpreted as saying

that a non-expanding set S should be detectable by some simple measure of LS,i. There

are two standard formalizations of this idea studied in the literature: the ℓ2-regime, and
8We note that in the literature a link is usually defined to be all such elements, not just those of rank

k. We adopt this notation since we are mostly interested in working at a fixed level of the complex.
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the ℓ∞-regime. These are captured by the following notion of pseudorandomness based on

LS,i.

Definition 4.1.9 (Pseudorandom Sets [38] (informal Definitions 4.5.2, 4.5.5)). We say a

set S is (ε, ℓ)-ℓ2-pseudorandom if9

∀i ≤ ℓ : ∥LS,i∥22 ≤ εE[1S].

A set is (ε, ℓ)-ℓ∞-pseudorandom if:

∀i ≤ ℓ : ∥LS,i∥∞ ≤ ε.

In cases that ℓ2 and ℓ∞-pseudorandomness can be used interchangeably, we will simply

write (ε, ℓ)-pseudorandom.

We prove that pseudorandom sets expand near-optimally.

Theorem 4.1.10 (Pseudorandom Sets Expand (informal Theorem 4.6.7)). Let X be a

(δ, γ)-eposet and M a walk on X(k). Then the expansion of any (ε, i)-pseudorandom set S

is at least:

Φ(S) ≥ 1− λi+1 −Oδ(R(k, i)ε)−Ok,δ,M(γ).

In other words, any set with expansion less than 1− λi+1 must have appreciable

variance across links at level i. We note that the formal version of this result is essentially

tight in the ℓ2-regime, but can be improved in many important cases in the ℓ∞-regime.

We’ll discuss this further in the next section, especially in the context of the Grassmann

poset.

Before this, however, it is worth separately mentioning the main technical component

behind Theorem 4.1.10, a result traditionally called a “level-i” inequality.
9Throughout, ∥·∥2 will always refer to the expectation norm ∥f∥2 = E[f2]1/2.
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Theorem 4.1.11 (Level-i inequality (informal Theorem 4.5.7)). Let X be a (δ, γ)-eposet

and S ⊂ X(k) a (ε, ℓ)-pseudorandom set. Then for all 1 ≤ i ≤ ℓ:

|⟨1S,1S,i⟩| ≤ (R(k, i)ε+Ok,δ(γ)) ⟨1S,1S⟩

where 1S,i is the projection of 1S onto the ith eigenstrip.10

In other words, pseudorandomness controls the projection of S onto eigenstrips.

Theorems 4.1.10 and 4.1.11 recover the analogous optimal bounds for simplicial high

dimensional expanders in [38], where the regularity parameter R(k, i) =
(
k
i

)
, and are

tight in a number of other important settings such as the Grassmann (discussed below).

Theorem 4.1.10 and Theorem 4.1.11 can also be viewed as another separation between

eposet architectures, this time in terms of combinatorial rather than spectral properties.

Application: q-eposets and the Grassmann Graphs

Finally, we’ll discuss the application of our results to a particularly important class

of eposets called “q-eposets.” Just like standard high dimensional expanders arise from

expanding subsets of the complete complex (hypergraph), q-eposets arise from expanding

subsets of the Grassmann Poset.

Definition 4.1.12 (Grassmann Poset). The Grassmann Poset is a graded poset (X,<)

where X is the set of all subspaces of Fn
q of dimension at most d, the partial ordering “<”

is given by inclusion, and the rank function is given by dimension.

We call a (downward-closed) subset of the Grassmann poset a q-simplicial complex,

and an expanding q-simplicial complex a q-eposet (see Section 4.2.5 for exact details). Using

our machinery for general eposets, we prove a tight level-i inequality for pseudorandom

sets.
10Note that since walks on eposets are simultaneously diagonalizable, the decomposition of X into

eigenstrips is independent of the choice of walk.
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Corollary 4.1.13 (Grassmann level-i inequality (informal Theorem 4.7.7)). Let X be a

γ-q-eposet and S ⊆ X(k). If S is (ε, ℓ)-pseudorandom, then for all 1 ≤ i ≤ ℓ:

|⟨1S,1S,i⟩| ≤

((
k

i

)
q

ε+Oq,k(γ)

)
⟨1S,1S⟩

where
(
k
i

)
q
= (1−qk)···(1−qk−i+1)

(1−qi)···(1−q)
is the Gaussian binomial coefficient.

Corollary 4.1.13 is tight in a few senses. First, we prove the bound cannot be

improved by any constant factor, even in the ℓ∞-regime. In other words, for every c < 1,

it is always possible to find an (ε, i)-pseudorandom function satisfying:

|⟨1S,1S,i⟩| > c

((
k

i

)
q

ε+Oq,k(γ)

)
⟨1S,1S⟩.

Furthermore, it is well known the dependence on k in this result is necessary [253], even if

one is willing to suffer a worse dependence on the pseudorandomness ε. This is different

from the case of standard simplicial complexes, where the dependence can be removed in

the ℓ∞-regime [252, 39, 187]. However, there is a crucial subtlety here. It is likely that the

k-dependence in this result can be removed by changing the definition of pseudorandomness.

On the Grassmann poset itself, for instance, it is known that this can be done by replacing

links with a closely related but finer-grained local structure known as “zoom-in zoom-outs”

[255]. Indeed, more generally it is an interesting open problem whether there always exists

a notion of locality based on the underlying poset structure that gives rise to k-independent

bounds in the ℓ∞-regime.

We close out the section by looking at an application of this level-i inequality to

studying edge-expansion in an important class of walks that give rise to the well-studied

Grassmann graphs.

Definition 4.1.14 (Grassmann Graphs). The Grassmann Graph Jq(n, k, t) is the graph

on k-dimensional subspaces of Fn
q where (V,W ) ∈ E exactly when dim(V ∩W ) = t.
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It is easy to see that the non-lazy upper walk on the Grassmann poset is exactly

the Grassmann graph Jq(n, k, k − 1). In fact, it is possible to express any Jq(n, k, t) as a

sum of standard higher order random walks.

Proposition 4.1.15 (Grassmann Graphs are HD-Walks (informal Proposition 4.7.5)).

The Grassmann graphs are a hypergeometric sum of canonical walks:

Jq(n, k, t) =
1

q(k−t)2
(
k
t

)
q

k−t∑
i=0

(−1)k−t−iq(
k−t−i

2 )
(
k − t

i

)
q

(
k + i

i

)
q

N i
k.

In Section 4.7 we prove a more general version of this result for any q-simplicial

complex. This leads to a set of natural sparsifications of the Grassmann graphs that may be

of independent interest for agreement testing, PCPs, and hardness of approximation. For

simplicity, on a given q-simplicial complex X, we’ll refer to these “sparsified” Grassmann

graphs as JX,q(n, k, t) for the moment (more formally they are the “partial-swap walks,”

see Section 4.2.5). With this in mind, let’s take a look at what our level-i inequality

implies for the edge-expansion of these graphs.

Corollary 4.1.16 (q-eposets Edge-Expansion (informal Corollary 4.7.10)). Let X be a

d-dimensional γ-q-eposet and S ⊂ X(k) a (ε, ℓ)-pseudorandom set. Then the expansion of

S with respect to the sparsified Grassmann graph JX,q(n, k, t) is at least:

Φ(S) ≥ 1− E[1S]− ε
ℓ∑

i=1

(
t

i

)
q

− q−(ℓ+1)j −Oq,k(γ).

In practice, t is generally thought of as being Ω(k) (or even k−O(1)), which results

in a k-dependent bound. It remains an open problem whether a k-independent version

can be proved for any q-eposet beyond the Grassmann poset itself. We conjecture such a

result should indeed hold (albeit under a different notion of pseudorandomness), and may

follow from q-analog analysis of recent work proving k-independent bounds for standard

expanding hypergraphs [39, 187].
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4.1.3 Related Work

Higher Order Random Walks..

Higher order random walks were first introduced in 2016 by Kaufman and Mass

[234]. Their spectral structure was later elucidated in a series of works by Kaufman

and Oppenheim [239], DDFH [111], Alev, Jeronimo, and Tulsiani [9], Alev and Lau

[11], and finally BHKL [38]. With the exception of DDFH (who only worked with

approximate eigenvectors without analyzing the true spectrum), all of these works focused

on hypergraphs rather than general posets. Our spectral stripping theorem for eposets

essentially follows from combining eposet machinery developed by DDFH with our improved

variant of BHKL’s general spectral stripping theorem.

Higher order random walks have also seen an impressive number of applications in

recent years, frequently closely tied to analysis of their spectral structure. This has included

breakthrough works on approximate sampling [25, 11, 24, 95, 96, 94, 146, 218, 286, 66],

CSP-approximation [9, 38], error-correcting codes [220, 221], and agreement testing [124,

109, 236]. In this vein, our work is most closely related to that of Bafna, Barak, Kothari,

Schramm, and Steurer [37], and BHKL [38], who used the spectral and combinatorial

structure of HD-walks to build new algorithms for unique games. As previously discussed,

the generalized analysis in this paper also lends itself to the algorithmic techniques

developed in those works, but we do not know of any interesting examples beyond those

covered in BHKL.

High Dimensional Expansion Beyond Hypergraphs..

Most works listed above (and indeed in the high dimensional expansion literature

in general) focus only on the setting of hypergraphs. However, recent years have also seen

the nascent development and application of expansion beyond this setting [117, 315, 281,

277, 208], including the seminal work of DDFH [111] on expanding posets as well as more

recent breakthroughs on locally testable and quantum codes [117, 315]. While DDFH
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largely viewed eposets as having similar structure (with the exception of the Grassmann),

we strengthen the case that different underlying poset architectures exhibit different

properties. This complements the recent result of Kaufman and Tessler [243], who showed

that expanding posets with strong regularity conditions such as the Grassmann exhibit

more favorable properties with respect to the second eigenvalue. Our results provide

a statement of the same flavor looking at the entire spectrum, along with additional

separations in more combinatorial settings. We note that a related connection between

poset regularity and the approximate spectrum of walks on eposets was independently

developed by DDFH in a recent update of their seminal work [111].

Expansion and Unique Games..

One of the major motivations behind this work is towards building a more general

framework for understanding the structure underlying the Unique Games Conjecture [250],

a major open problem in complexity theory that implies optimal hardness of approximation

results for a large swath of combinatorial optimization problems (see e.g. Khot’s survey

[259]). In 2018, Khot, Minzer, and Safra [255] made a major breakthrough towards the

UGC in proving a weaker variant known as the 2-2 Games Conjecture, completing a long

line of work in this direction [253, 126, 125, 47, 252, 255]. The key to the proof lay in

a result known as the “Grassmann expansion hypothesis,” which stated that any non-

expanding set in the Grassmann graph Jq(d, k, k − 1) had to be non-trivially concentrated

inside a local-structure called “zoom-in zoom-outs.” As noted in the previous section, this

result differs from our analysis in two key ways: it lies in the ℓ∞-regime, and must be

totally independent of dimension.

Unfortunately, very little progress has been made towards the UGC since this

result. This is in part because KMS’ proof of the Grassmann expansion hypothesis, while

a tour de force, is complicated and highly tailored to the exact structure of the Grassmann.

To our knowledge, the same proof cannot be used, for instance, to resolve the related
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“shortcode expansion hypotheses” beyond degree-2, similar conjectures offered by Barak,

Kothari, and Steurer [47] in an effort to push beyond hardness of 2-2 Games. Just as the

ℓ2-regime analysis of DDFH and BHKL recently lead to a dimension independent bound

in the ℓ∞-regime for standard HDX [39, 187], we expect the groundwork laid in this paper

will be important for proving generalized dimension independent expansion hypotheses in

the ℓ∞-regime beyond the special case of the Grassmann graphs.

4.2 Preliminaries

Before jumping into the details in full formality, we give a more careful review of

background definitions regarding expanding posets, higher order random walks, and the

Grassmann.

4.2.1 Graded Posets

We start with eposets’ underlying structure, graded posets. A partially ordered set

(poset) P = (X,<) is a set of elements X endowed with a partial order “<”. A graded poset

comes equipped additionally with a rank function r : X → N satisfying two properties:

1. r preserves “<”: if y < x, then r(y) < r(x).

2. r preserves cover relations: if x is the smallest element greater than y, then r(x) =

r(y) + 1.

In other words, the function r partitions X into subsets by rank:

X(0) ∪ . . . ∪X(d),

where maxX(r) = d, and X(i) = r−1(i). We refer to a poset with maximum rank d as

“d-dimensional”, and elements in X(i) as “i-faces”. Throughout this work, we will consider

only d-dimensional graded posets with two additional restrictions:
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1. They have a unique minimal element, i.e. |X(0)| = 1.

2. They are “pure”: all maximal elements have rank d.

Finally, many graded posets of interest satisfy certain regularity conditions which will be

crucial to our analysis. The first condition of interest is a natural notion called downward

regularity.

Definition 4.2.1 (Downward Regularity). We call a d-dimensional graded poset downward

regular if for all i ≤ d there exists some constant R(i) such that every element x ∈ X(i)

covers exactly R(i) elements y ∈ X(i− 1).

Second, we will also need a useful notion called middle regularity that ensures

uniformity across multiple levels of the poset.

Definition 4.2.2 (Middle Regularity). We call a d-dimensional graded poset middle-

regular if for all 0 ≤ i ≤ k ≤ d, there exists a constant m(k, i) such that for any

xk ∈ X(k) and xi ∈ X(i) satisfying xk > xi, there are exactly m(k, i) chains11 of elements

xk > xk−1 > . . . > xi+1 > xi where each xj ∈ X(j).

We call a poset regular if it is both downward and middle regular. We note that

regular posets also have the nice property that for any dimensions i < k, there exists a

higher order regularity function R(k, i) such that any x ∈ X(k) is greater than exactly

R(k, i) elements in X(i) (see Section 4.8). We will use this notation throughout. For

notational convenience, we also define R(i, i) = 1 and R(j, i) = 0 whenever j < i.

Important examples of regular posets include pure simplicial complexes and the

Grassmann poset (subspaces of Fn
q ordered by inclusion). We will assume all posets we

discuss in this work are regular from this point forward.
11Such objects are sometimes called flags, e.g. in the case of the Grassmann poset.
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4.2.2 Measured Posets and The Random Walk Operators

Higher order random walks may be defined over posets in a very similar fashion

to simplicial complexes. The main difference is simply that “inclusion” is replaced with

the poset order relation. Just as we might want these walks on HDX to have non-uniform

weights, the same is true for posets, which can be analogously endowed with a distribution

over levels. In slightly more detail, a measured poset is a graded poset X endowed with a

distribution Π = (π0, . . . , πd), where each marginal πi is a distribution over X(i). While

measured posets may be defined in further generality (cf. [111, Definition 8.1]), we will

focus on the case in which the distribution Π is induced entirely from πd, analogous to

weighted simplicial complexes. More formally, we have that for every 0 ≤ i < d:

πi(x) =
1

R(i+ 1, i)

∑
y⋗x

πi+1(y).

In other words, each lower dimensional distribution πi may be induced through the following

process: an element y ∈ X(i+1) is selected with respect to πi+1, and an element x ∈ X(i)

such that x < y is then chosen uniformly at random.

The averaging operators U and D are defined analogously to their notions on

simplicial complexes, with the main change being the use of the general regularity function

R(i+ 1, i):

Uif(y) =
1

R(i+ 1, i)

∑
x⋖y

f(x),

Di+1f(x) =
1

πi+1(Xx)

∑
y⋗x

πi+1(y)f(y),

where for i < k and x ∈ X(i),

πk(Xx) =
∑

y∈X(k):y>x

πk(y) = R(k, i)πi(x)
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is the appropriate normalization factor (we will use this notation throughout). On regular

posets, it is useful to note that the up operators compose nicely, and in particular that:

Uk
i f(y) := Uk−1 ◦ . . . ◦ Uif(y) =

1

R(k, i)

∑
x∈X(i):x<y

f(x)

(see Section 4.8). Furthermore, just like on simplicial complexes, the down and up operators

are adjoint with respect to the standard inner product on measured posets:

⟨f, g⟩X(k) =
∑

τ∈X(k)

πk(τ)f(τ)g(τ),

that is to say for any f : X(k)→ R and g : X(k − 1)→ R:

⟨f, Uk−1g⟩X(k) = ⟨Dkf, g⟩X(k−1).

Note that we’ll generally drop the X(k) from the notation when clear from context. This

useful fact allows us to define basic self-adjoint notions of higher order random walks just

like on simplicial complexes.

4.2.3 Higher Order Random Walks

Let Ck denote the space of functions f : X(k) → R. We define a natural set of

random walk operators via the averaging operators.

Definition 4.2.3 (k-Dimensional Pure Walk [234, 111, 9]). Given a measured poset (X,Π),

a k-dimensional pure walk Y : Ck → Ck on (X,Π) (of height h(Y )) is a composition:

Y = Z2h(Y ) ◦ · · · ◦ Z1,

where each Zi is a copy of D or U , and there are h(Y ) of each type.
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Following AJT and BHKL, we define general higher order random walks to be

affine combinations12 of pure walks.

Definition 4.2.4 (HD-walk). Let X be a graded poset. Let Y be a family of pure walks

Y : Ck → Ck on (X,Π). We call an affine combination

M =
∑
Y ∈Y

αY Y

a k-dimensional HD-walk on (X,Π) if it is stochastic and self-adjoint. The height of M ,

denoted h(M), is the maximum height of any pure Y ∈ Y with a non-zero coefficient. The

weight of M , denoted w(M), is |α|1.

While most of our results will hold for general HD-walks (or at least some large

subclass), we pay special attention to a basic class of pure walks that have seen the most

study in the literature: canonical walks.

Definition 4.2.5 (Canonical Walk). Given a d-dimensional measured poset (X,Π) and

parameters k + j ≤ d, the upper canonical walk pN j
k is:

pN j
k = Dk+j

k Uk+j
k ,

and for j ≤ k the lower canonical walk qN j
k is:

qN j
k = Uk

k−jD
k
k−j,

where Uk
ℓ = Uk−1 . . . Uℓ, and Dk

ℓ = Dℓ+1 . . . Dk.

Since the non-zero spectrum of pN j
k and qN j

k+j are equivalent (c.f. [11]), we focus in

this work mostly on the upper walks which we write simply as N j
k .

12An affine combination is a linear combination whose coefficients sum to 1.
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For certain specially structured posets, we will also study an important class of HD-

walks known as (partial) swap walks. We will introduce these well-studied walks in more

detail in Section 4.2.5, and for now simply note that they give a direct generalization of the

Johnson and Grassmann graphs when applied to the complete complex and Grassmann

poset respectively.

4.2.4 Expanding Posets and the HD-Level-Set Decomposition

Dikstein, Dinur, Filmus, and Harsha [111] observed that one can use the averaging

operators to define a natural extension of spectral expansion to graded posets. Their

definition is inspired by the fact that γ-spectral expansion on a standard graph G can be

restated as a bound on the spectral norm of the adjacency matrix minus its stationary

operator:

∥AG − UD∥ ≤ γ.

Informally, DDFH’s definition can be thought of as stating that this relation holds for

every level of a higher dimensional poset.

Definition 4.2.6 (eposet [111]). Let (X,Π) be a measured poset, δ ∈ [0, 1]d−1, and γ < 1.

X is an (δ, γ)-eposet if for all 1 ≤ i ≤ d− 1:

∥Di+1Ui − (1− δi)I − δiUi−1Di∥ ≤ γ

.

We note that for a broad range of posets, this definition is actually equivalent (up

to constants) to local-spectral expansion, a popular notion of high dimensional expansion

introduced by Dinur and Kaufman [124]. This was originally proved for simplicial complexes

by DDFH [111], and later extended to a more general class of posets by Kaufman and

Tessler [243]. It is also worth noting that when γ = 0, posets satisfying the guarantee in
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Definition 4.2.6 are known as sequentially differential, and were actually introduced much

earlier by Stanley [346] in the late 80s.

Much of our analysis in this work will be based off of an elegant approximate

Fourier decomposition for eposets introduced by DDFH [111].

Theorem 4.2.7 (HD-Level-Set Decomposition, Theorem 8.2 [111]). Let (X,Π) be a

d-dimensional (δ, γ)-eposet with γ sufficiently small. For all 0 ≤ k ≤ d, let

H0 = C0, H
i = Ker(Di), V

i
k = Uk

i H
i.

Then:

Ck = V 0
k ⊕ . . .⊕ V k

k .

In other words, every f ∈ Ck has a unique decomposition f = f0 + . . . + fk such that

fi = Uk
i gi for gi ∈ Ker(Di).

It is well known that the HD-Level-Set Decomposition is approximately an eigenbasis

for HD-walks on simplicial complex [111, 9, 38]. We show this statement extends to all

eposets in Section 4.4 (extending DDFH’s similar analysis of the upper walk N1
k ).

Finally, before moving on, we will assume for simplicity throughout this work an

additional property of eposets we called (approximate) non-laziness.

Definition 4.2.8 (β-non-Lazy Eposets). Let (X,Π) be a d-dimensional measured poset.

We call (X,Π) β-non-lazy if for all 1 ≤ i ≤ d, the laziness of the lower walk satisfies:

max
σ∈X(i)

{1T
σUi−1Di1σ} ≤ β.

Another way to think about this condition is that no element in the poset carries

too much weight, even upon conditioning. All of our results hold for general eposets,13 but
13The one exception is the lower bound of Theorem 4.1.8.
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their form is significantly more interpretable when the poset is additionally non-lazy. In

fact, most γ-eposets of interest are O(γ)-non-lazy. It is easy to see for instance that any

“γ-local-spectral” expander satisfies this condition, an equivalent notion of expansion to

γ-eposets under suitable regularity conditions [243]. We discuss this further in Section 4.8.

4.2.5 The Grassmann Poset and q-eposets

At the moment, there are only two known families of expanding posets of significant

interest in the literature: those based on pure simplicial complexes (the downward closure

of a k-uniform hypergraph), and pure q-simplicial complexes (the analogous notion over

subspaces). The ℓ2-structure of the former set of objects is studied in detail in [38]. In

this work, we will focus on the latter which has seen less attention in the literature, but is

responsible for a number of important results including the resolution of the 2-to-2 Games

Conjecture [255].

Definition 4.2.9 (q-simplicial complex). Let Gq(n, d) denote the d-dimensional subspaces

of Fn
q . A weighted, pure q-simplicial complex (X,Π) is given by a family of subspaces

X ⊆ Gq(n, d) and a distribution Π over X. We will usually consider the downward closure

of X in the following sense:

X = X(0) ∪ . . . ∪X(d),

where X(i) ⊆ Gq(n, i) consists of all i-dimensional subspaces contained in some element

in X = X(d). Further, on each level X(i), Π induces a natural distribution πi:

∀V ∈ X(i) : πi(V ) =
1(
d
i

)
q

∑
W∈X(d):W⊃V

πd(W ),

where πd = Π and
(
d
i

)
q
= (1−qd)···(1−qd−i+1)

(1−qi)···(1−q)
is the Gaussian binomial coefficient.

The most basic example of a q-simplicial complex is the Grassmann poset, which

corresponds to taking X = Gq(n, d). This is the q-analog of the complete simplicial
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complex. The Grassmann poset is well known to be a expander in this sense (see e.g.

[346])—in fact it is a sequentially differential poset with parameters

δi =
(qi − 1)(qn−i+1 − 1)

(qi+1 − 1)(qn−i − 1)
,

the q-analog of the eposet parameters for the complete complex [111]. With this in mind,

let’s define a special class of eposets based on q-simplicial complexes.

Definition 4.2.10 (γ-q-eposet [111]). A pure, d-dimensional weighted q-simplicial complex

(X,Π) is a γ-q-eposet if it is a (δ, γ)-eposet satisfying δi = q qi−1
qi+1−1

for all 1 ≤ i ≤ d− 1.

Constructing bounded-degree q-eposets (a problem proposed by DDFH [111])

remains an interesting open problem. Kaufman and Tessler [243] recently made some

progress in this direction, but the expansion parameter of their construction is fairly poor

(around 1/2).

Finally, in our applications to the Grassmann we’ll focus our attention on a

particularly important class of walks called partial-swap walks. These should essentially

be thought of as non-lazy variants of the upper canonical walks.

Definition 4.2.11 (Partial-Swap Walk). Let (X,Π) be a weighted, d-dimensional q-

simplicial complex. The partial-swap walk Sj
k is the restriction of the canonical walk N j

k

to faces whose intersection has dimension k − j. In other words, if |V ∩W | > k − j then

Sj
k(V,W ) = 0, and otherwise Sj

k(V,W ) ∝ N j
k(V,W ).

When applied to the Grassmann poset itself, it is clear by symmetry that the

partial-swap walk Sj
k returns exactly the Grassmann graph Jq(d, k, k − j). On the other

hand, it is not immediately obvious these objects are even HD-walks when applied to a

generic q-simplicial complex. We prove this is the case in Section 4.7.
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4.3 Eigendecompositions and Eigenstripping

With preliminaries out of the way, we can move on to understanding HD-walks’

spectral structure. It turns out that on expanding posets, these walks exhibit almost

exactly the same properties as on the special case of simplicial complexes studied in

[239, 111, 9, 38]: a walk’s spectrum lies concentrated in strips corresponding to levels of

the HD-Level-Set Decomposition. The key to proving this lies in a more general theorem

characterizing the spectral structure of any inner product space admitting a “approximate

eigendecomposition.”

Definition 4.3.1 (Approximate Eigendecomposition [38]). Let M be an operator over an

inner product space V . A decomposition V = V 1 ⊕ . . .⊕ V k is called a ({λi}ki=1, {ci}ki=1)-

approximate eigendecomposition if for all i and vi ∈ V i, Mvi is close to λivi:

∥Mvi − λivi∥ ≤ ci∥vi∥.

We will always assume for simplicity (and without loss of generality) that the λi are sorted:

λ1 ≥ . . . ≥ λk.

BHKL [38] proved that as long as the ci are sufficiently small, each V i (loosely)

corresponds to an “eigenstrip,” the span of eigenvectors with eigenvalue closely concentrated

around λi, and that these strips account of the entire spectrum of M . While sufficient

for their purposes, their proof of this result was complicated and resulted in a variety of

sub-optimal parameters. We give a tight variant of this result and significantly simplify

the proof.

Theorem 4.3.2 (Eigenstripping). Let M be a self-adjoint operator over an inner product

space V , and V = V 1⊕ . . .⊕V k a ({λi}ki=1, {ci}ki=1)-approximate eigendecomposition. Then
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as long as ci + ci+1 < λi − λi+1, the spectrum of M is concentrated around each λi:

Spec(M) ⊆
k⋃

i=1

[λi − ci, λi + ci]

Proof. The idea is to examine for each i the operator M2
i = (M − λiI)

2. In particular, we

claim it is enough to show the following:

Claim 4.3.3. For all 1 ≤ i ≤ k, Spec(M2
i ) contains dim(V i) eigenvalues less than c2i .

Let’s see why this implies the desired result. Notice that the eigenvalues of M2
i

are exactly (µ− λi)
2 for each µ in Spec(M) (with matching multiplicities), and therefore

that any eigenvalue µi ∈ Spec(M2
i ) less than c2i implies the existence of a corresponding

eigenvalue of M in [λi ± ci]. If each M2
i has dim(V i) eigenvalues less than c2i , then M has

at least dim(V i) eigenvalues in each interval [λi ± ci]. Moreover, since these intervals are

disjoint by assumption and
∑

dim(V i) = dim(V ), this must account for all eigenvalues of

M .

It remains to prove the claim, which is essentially an immediate application of

Courant-Fischer theorem [149].

Proof of Claim 4.3.3. The Courant-Fischer theorem states that the kth smallest eigenvalue

of a self-adjoint operator A is:

λn−k+1 = min
U

{
max
f∈U

{
⟨f, Af⟩
⟨f, f⟩

} ∣∣∣∣ dim(U) = k

}
.

Setting U = V i, A = M2
i and k = dim(V i) gives the claim:

λn−k+1(M
2
i ) ≤ max

f∈V i

{
⟨f,M2

i f⟩
⟨f, f⟩

}
= max

f∈V i

{
∥(M − λiI)f∥22

⟨f, f⟩

}
≤ c2i

since (M − λiI) is self-adjoint and
⊕

i∈[k] V
i is a ({λi}ki=1, {ci}ki=1)-approximate eigende-

composition.

256



Note that this result is also trivially tight, as any true eigendecomposition is also

a ({λi ± ci}, {ci})-approximate eigendecomposition. We also note that similar strategies

have been used in the numerical analysis literature (see e.g. [210]).

4.4 Spectra of HD-walks

Given Theorem 4.3.2, it is enough to prove that the HD-Level-Set Decomposition is

an approximate eigenbasis for any HD-walk. This follows by the same inductive argument

as for local-spectral expanders in [38], where the only difference is that somewhat more

care is required to deal with general eposet parameters. To start, it will be useful to lay out

some notation along with a simple observation from repeated application of Definition 4.2.6.

Lemma 4.4.1 ([111, Claim 8.8]). Let (X,Π) be a d-dimensional (δ, γ)-eposet. Then

∥Dk+1U
k+1
k−j − (1− δkj )U

k
k−j − δkjU

k
k−j−1Dk−j∥ ≤ γk

j ,

where

δk−1 = 1, δkj =
k∏

i=k−j

δi, γk
j = γ

j−1∑
i=−1

δki .

Applying this fact inductively implies that functions in the HD-Level-Set Decom-

position are close to being eigenvectors.

Proposition 4.4.2. Let (X,Π) be a (δ, γ)-eposet, and Y the pure balanced walk of height

j, with down operators at positions (i1, . . . , ij). For 1 ≤ ℓ ≤ k, let fℓ = Uk
ℓ gℓ for some

gℓ ∈ Hℓ, and let

δkj =
k∏

i=k−j

δi, γk
j = γ

j−1∑
i=−1

δki ,
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where δki = 1 for any i < 0 for notational convenience. Then fℓ is an approximate

eigenvector of Y :

∥Y fℓ −
j∏

s=1

(
1− δk−2s+is

k−2s+is−ℓ

)
fℓ∥ ≤ ∥gℓ∥

j∑
s=1

γk−2s+is
k−2s+is−ℓ

s−1∏
t=1

(
1− δk−2t+it

k−2t+it−ℓ

)
≤ (j + k)jγ∥gℓ∥.

Proof. We prove a slightly stronger statement to simplify the induction. For b > 0, let

Y b
j : Cℓ → Cℓ+b denote an unbalanced walk with j down operators, and j + b up operators.

If Y b
j has down operators in positions (i1, . . . , ij) and gℓ ∈ Hℓ, we claim:

∥Y b
j gℓ −

j∏
s=1

(
1− δis+ℓ−2s

is−2s

)
Y b
0 gℓ∥ ≤ ∥gℓ∥

j∑
s=1

γis+ℓ−2s
is−2s

s−1∏
t=1

(
1− δit+ℓ−2t

it−2t

)
,

which implies the result (notice that the indices is shift by b = k− ℓ). The base case j = 0

is trivial. Assume the inductive hypothesis holds for all Y b
i , i < j. By Lemma 4.4.1 and

recalling gℓ ∈ ker(Dℓ), we have:

Y b
j gℓ =

(
1− δi1+ℓ−2

i1−2

)
Y b
j−1gℓ + Γgℓ,

where Γ has spectral norm

∥Γ∥ ≤ γi1+ℓ−2
i1−2 .

Notice that Y b
j−1 has down operator indices {i2 − 2, . . . , ij − 2}. The inductive hypothesis

then implies:

Y b
j gℓ =

(
1− δi1+ℓ−2

i1−2

) j∏
s=2

(
1− δis+ℓ−2s

is−2s

)
Y b
0 gℓ +

(
1− δi1+ℓ−2

i1−2

)
Γ′gℓ + Γgℓ

=

j∏
s=1

(
1− δis+ℓ−2s

is−2s

)
gℓ +

(
1− δi1+ℓ−2

i1−2

)
Γ′gℓ + Γgℓ,
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where Γ′gℓ has norm

∥Γ′gℓ∥ ≤ ∥gℓ∥
j∑

s=2

γis+ℓ−2s
is−2s

s−1∏
t=2

(
1− δit+ℓ−2t

it−2t

)
.

Thus we may bound the norm of the righthand error term by:

∥
(
1− δi1+ℓ−2

i1−2

)
Γ′gℓ + Γgℓ∥ ≤

(
1− δi1+ℓ−2

i1−2

)
∥Γ′∥∥gℓ∥+ ∥Γ∥∥gℓ∥

≤
j∑

s=1

γis+ℓ−2s
is−2s

s−1∏
t=1

(
1− δit+ℓ−2t

it−2t

)
∥gℓ∥,

as desired. Recalling the shift in is by k − ℓ, we can then bound the resulting error by

(j + k)jγ∥gℓ∥ since δ ∈ [0, 1]d−1.

It is worth noting that when γ = 0, this implies that the HD-Level-Set decomposition

is a true eigendecomposition. Since balanced walks are simply affine combinations of pure

walks, this immediately implies a similar result for the more general case. To align with

our definition of approximate eigendecompositions and Theorem 4.3.2, we’ll also need the

following general relation between ∥gℓ∥ and ∥fℓ∥ for eposets proved in [111] (albeit without

the exact parameter dependence).

Lemma 4.4.3 ([111, Lemma 8.11]). Let (X,Π) be a d-dimensional (δ, γ)-eposet, 0 ≤ ℓ ≤

k < d, and let

ρkℓ =
k−ℓ∏
i=1

(
1− δk−i

k−ℓ−i

)
, ρmin = min

0≤ℓ≤k
{ρkℓ}.

Then for any fℓ = Uk
ℓ gℓ for gℓ ∈ Ker(Dℓ) we have:

⟨fℓ, fℓ⟩ ∈ (ρkℓ ± k2γ)⟨gℓ, gℓ⟩,

and for all i ̸= ℓ:

⟨fℓ, fi⟩ ≤ O

(
k2

ρmin
γ∥fℓ∥∥fi∥

)
.
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As an aside, we remark that the parameter ρkℓ turns out to be a crucial throughout

much of our work, and while it is difficult to interpret on general eposets, we prove it has

a very natural form as long as non-laziness holds.

Claim 4.4.4 (ρkℓ for regular eposets). Let (X,Π) be a regular, γ-non-lazy14 d-dimensional

(δ, γ)-eposet. Then for any i ≤ k < d, we have:

ρki ∈
1

R(k, i)
± err,

where err ≤ O
(

i3k2Rmax
δi(1−δi−1)

γ
)
. Likewise as long as γ ≤ O

(
maxi{δi(1−δi−1)}

i3k2R2
max

)
we have

ρ−1
min ≤ O(Rmax),

where Rmax := max0≤i≤k{R(k, i)}.

This gives a nice generalization of the interpretation of ρki on hypergraphs, which

is well known to be 1

(ki)
[111]. We prove this claim in Section 4.8. For simplicity, we will

assume throughout the rest of this work that our eposets are γ-non-lazy, which is true for

most cases of interest (see Section 4.8). All results holds in the more general case using ρki

unless otherwise noted.

Combining Proposition 4.4.2 and Lemma 4.4.3 immediately implies that the HD-

Level-Set Decomposition is an approximate eigendecomposition in the sense of Defini-

tion 4.3.1.

Corollary 4.4.5. Let (X,Π) be a (δ, γ)-eposet and let M =
∑
Y ∈Y

αY Y be an HD-walk. For

1 ≤ ℓ ≤ k, if fℓ = Uk
ℓ gℓ for some gℓ ∈ Hℓ, then for γ ≤ O

(
maxi{δi(1−δi−1)}

k5R2
max

)
:

∥Mfℓ −

(∑
Y ∈Y

αY λY,δ,ℓ

)
fℓ∥ ≤ cγ∥fℓ∥,

14One can prove this claim more generally for any β-non-laziness, but most γ-eposets of interest are
additionally γ-non-lazy, so this simplified version is generally sufficient.
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where λY,δ,ℓ is the corresponding eigenvalues of the pure balanced walk Y on a (δ, 0)-eposet

(see Proposition 4.4.2), and c ≤ O ((h(M) + k)h(M)R(k, ℓ)w(M)).

Thus as long as the walk in question is self-adjoint (e.g. canonical or swap walk),

Theorem 4.3.2 immediately implies that the true spectrum is concentrated around these

approximate eigenvalues.

Before moving on it is instructive (and as we will soon see quite useful) to give an

example application of Corollary 4.4.5 to a basic higher order random walk.

Corollary 4.4.6 (Spectrum of Lower Canonical Walks). Let (X,Π) be a (δ, γ)-eposet.

The approximate eigenvalues of the canonical lower walk qNk−ℓ
k are:

λj( qNk−ℓ
k ) =

k−ℓ∏
s=1

(1− δk−s
k−s−j).

Proof. The lower canonical walk qNk−ℓ
k = Uk

ℓ D
k
ℓ is of height k − ℓ, and has down operator

at positions {1, . . . , k − ℓ}. In the language of Proposition 4.4.2 we therefore have is = s,

which therefore gives:

λj( qNk−ℓ
k ) =

k−ℓ∏
s=1

(1− δk−s
k−s−j).

Note this is 0 when j > ℓ.

Similar to the case of ρki , while this is difficult to interpret in the general setting,

the eigenvalues have a very natural form on non-lazy eposets given by the regularity

parameters.

Theorem 4.4.7. Let (X,Π) be a γ-non-lazy (δ, γ)-eposet. The approximate eigenvalues

of the canonical lower walk qNk−i
k are:

λj( qNk−i
k ) ∈ R(i, j)

R(k, j)
± cγ,

where c ≤ O
(

i4k2Rmax
δi(1−δi−1)

γ
)
.
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The proof requires machinery developed in Section 4.6 and Section 4.8, and is given

in Section 4.8.

4.5 Pseudorandomness and the HD-Level-Set Decom-
position

Now that we know the spectral structure of HD-walks, we shift to studying their

combinatorial structure. In particular, we will focus on how natural notions of pseudoran-

domness control the projection of functions onto the HD-Level-Set Decomposition.

Before proceeding, we state a simple corollary of Lemma 4.4.3 that will prove useful

going forward:

Corollary 4.5.1. Let (X,Π) be a (δ, γ)-eposet and suppose f ∈ Ck has HD-Level-Set

Decomposition f = f0 + . . .+ fk. If γ ≤ c′ρmin

k3
for a sufficiently small constant c′ > 0, then

k∑
j=0

∥fj∥ ≤ O(
√
k∥f∥). (4.1)

Moreover, for any subset of indices I, it holds that

−
∑
j∈I

⟨f, fj⟩ ≤ O

(
k3γ∥f∥2

ρmin

)
.

In particular, if I = {j : ⟨f, fj⟩ ≤ 0}, then

∑
j∈I

|⟨f, fj⟩| ≤ O

(
k3γ∥f∥2

ρmin

)
.

Proof. For the first claim, recall that by the approximate orthogonality of the HD-Level-Set

Decomposition (Lemma 4.4.3), we have for all i ̸= j:

|⟨fi, fj⟩| ≤ O

(
k2

ρmin
γ∥fi∥∥fj∥

)
.
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Then, applying Cauchy-Schwarz gives:

(
k∑

j=1

∥fj∥

)2

≤ k

k∑
j=1

∥fj∥2

≤ k⟨f, f⟩ − k
∑
i ̸=j ̸=0

⟨fi, fj⟩

≤ k⟨f, f⟩+ cγ
∑
i ̸=j ̸=0

∥fi∥∥fj∥

≤ k⟨f, f⟩+ cγ

(
k∑

j=1

∥fj∥

)2

where c ≤ O
(

k3

ρmin

)
. By our assumption on γ, we have cγ ≤ 1

2
, and therefore rearranging

yields
k∑

i=1

∥fj∥ ≤ O(
√
k∥f∥).

We now show how the second claim is a consequence of the first. For any subset I,

we have

−
∑
j∈I

⟨f, fj⟩ ≤ −
∑
j∈I

∑
i ̸=j

⟨f, fj⟩

≤ Ck2γ

ρmin

∑
i,j

∥fi∥∥fj∥

=
O(k2γ)

ρmin

(
k∑

i=0

∥fi∥

)2

≤ O

(
k3γ∥f∥
ρmin

)
.

4.5.1 ℓ2-pseudorandomness

We start with pseudorandomness in the ℓ2-regime, which measures the variance of

a set across links.
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Definition 4.5.2 (ℓ2-Pseudorandom functions [38]). A function f ∈ Ck is (ε1, . . . , εℓ)-ℓ2-

pseudorandom if its variance across i-links is small for all 1 ≤ i ≤ ℓ:

Var(Dk
i f) ≤ εi|E[f ]|.

In their work on simplicial complexes, BHKL [38] observed a close connection

between ℓ2-pseudorandomness, the HD-Level-Set Decomposition, and the spectra of the

lower canonical walks. We’ll show the same connection holds in general for eposets.

Theorem 4.5.3. Let (X,Π) be a (δ, γ)-eposet with γ ≤ O
(

maxi{δi(1−δi−1)}
k5R2

max

)
. If f ∈ Ck has

HD-Level-Set Decomposition f = f0 + . . .+ fk, then for any ℓ ≤ k, Var(Dk
ℓ f) is controlled

by its projection onto V 0
k ⊕ . . .⊕ V ℓ

k in the following sense:

Var(Dk
ℓ f) ∈

ℓ∑
j=1

λj( qNk−ℓ
k )⟨f, fj⟩ ± ckγ∥f∥2,

where ck ≤ O(k5/2Rmax) and λj( qNk−ℓ
k ) =

∏k−ℓ
s=1(1− δk−s

k−s−j).

Proof. To start, notice that since ⟨Dk
ℓ f,D

k
ℓ f⟩ = ⟨ qNk−ℓ

k f, f⟩ it is enough to analyze the

application of qNk−ℓ
k to f . By Corollary 4.4.6, we know that each fj is an approximate

eigenvector satisfying:

∥ qNk−ℓ
k fj − λj( qNk−ℓ

k )fj∥ ≤ O(k2R(k, ℓ)γ)∥fj∥,

where λj( qNk−ℓ
k ) = 0 for j > ℓ. Combining these observations gives:

Var(Dk
ℓ f) =

〈
Dk

ℓ f,D
k
ℓ f
〉
− E[Dk

ℓ f ]
2

=
〈
f, Uk

ℓ D
k
ℓ f
〉
− ⟨f, f0⟩

=
k∑

j=1

⟨f, Uk
ℓ D

k
ℓ fj⟩
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∈
ℓ∑

j=1

λj( qNk−ℓ
k )⟨f, fj⟩ ±O

(
k2

ρmin
γ∥f∥

k∑
j=1

∥fj∥

)
.

where we have additionally used the fact that ⟨f, f0⟩ = E[f ]2 = E[Dk
ℓ f ]

2 and λ0( qNk−ℓ
k ) = 1.

Applying Equation (4.1) from Corollary 4.5.1 to bound the sum in the error term and

replacing ρ with the relevant regularity parameters by Claim 4.4.4 then gives the result.

As an immediate corollary, we get a level-i inequality for pseudorandom functions.

Corollary 4.5.4. Let (X,Π) be a (δ, γ)-eposet with γ ≤ O
(

maxi{δi(1−δi−1)}
k5R2

max

)
and let f ∈ Ck

be an (ε1, . . . , εℓ)-ℓ2-pseudorandom function. Then for any 1 ≤ i ≤ ℓ:

|⟨f, fi⟩| ≤ R(k, i)εi|E[f ]|+ cγ∥f∥2,

where c ≤ O
(

k5R2
max

maxi{δi(1−δi−1)}

)
.

Proof. By Corollary 4.5.1, for any given 1 ≤ i ≤ k, it holds that −
∑

j ̸=i⟨f, fj⟩ ≤

O
(

k3

ρmin
γ∥f∥2

)
. It follows from Theorem 4.5.3 that for all 0 ≤ i ≤ k, the variance of Dk

i f

is lower bounded by its projection onto fi:

Var(Dk
i f) ≥ λi( qNk−i

k )⟨f, fi⟩ − cγ⟨f, f⟩,

where c ≤ O( k3

ρmin
). Noting that λi( qNk−i

k ) = ρki , if i ≤ ℓ, re-arranging the above and

applying the pseudorandomness assumption gives:

⟨f, fi⟩ ≤
1

ρki
Var(Dk

i f) + c2γ⟨f, f⟩

≤ 1

ρki
εi|E[f ]|+ c2γ⟨f, f⟩,

where c2 ≤ O( k3

ρ2min
). The lower bound on ⟨f, fi⟩ is immediate from Corollary 4.5.1 with

the set I = {i}. Applying Claim 4.4.4 then gives the result.
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As mentioned previously, this also recovers the tight inequality for simplicial

complexes given in [38] where R(k, i) =
(
k
i

)
, as well as providing the natural q-analog for

q-simplicial complexes where R(k, i) =
(
k
i

)
q
.

4.5.2 ℓ∞-pseudorandomness

While ℓ2-pseudorandomness is useful in its own right (e.g. for local-to-global

algorithms for unique games [37, 38]), there is also significant interest in a stronger

ℓ∞-variant in the hardness of approximation literature [252, 255].

Definition 4.5.5 (ℓ∞-Pseudorandom functions). A function f ∈ Ck is (ε1, . . . , εℓ)-ℓ∞-

pseudorandom if for all 1 ≤ i ≤ ℓ its local expectation is close to its global expectation:

∥∥Dk
i f − E[f ]

∥∥
∞ ≤ εi.

In their recent work on ℓ2-structure of expanding simplicial complexes, BHKL

prove a basic reduction from ℓ∞ to ℓ2-pseudorandomness that allows for an analogous

level-i inequality for this notion as well. Here, we’ll show the same result holds for general

eposets. As in their work, we’ll take advantage of a weak local-consistency property called

locally-constant sign.

Definition 4.5.6 (locally-constant sign [38]). Let (X,Π) be a graded poset. We say a

function f ∈ Ck has ℓ-local constant sign if:

1. E[f ] ̸= 0,

2. ∀s ∈ X(ℓ) s.t. E
Xs

[f ] ̸= 0 : sign
(
E
Xs

[f ]

)
= sign (E[f ]).

With this in mind, we now state ℓ∞-variant of Corollary 4.5.4:

Theorem 4.5.7. Let (X,Π) be a (δ, γ)-eposet with γ ≤ O
(

maxi{δi(1−δi−1)}
k5R2

max

)
and let f ∈ Ck

have HD-Level-Set Decomposition f = f0 + . . .+ fk. If f is (ε1, . . . , εℓ)-ℓ∞-pseudorandom,

266



then for all 1 ≤ i ≤ ℓ:

|⟨f, fi⟩| ≤ (R(k, i) + cγ) ε2i + cγ∥f∥2,

and if f has i-local constant sign:

|⟨f, fi⟩| ≤ (R(k, i) + cγ) εi|E[f ]|+ cγ∥f∥2

where in both cases c ≤ O
(

k5R2
max

maxi{δi(1−δi−1)}

)
.

We note that when f is boolean, this bound simplifies to

|⟨f, fi⟩| ≤ (R(k, i)εi + cγ)E[f ],

which we’ll see in the next section is a particularly useful form for analyzing edge expansion.

The proof of Theorem 4.5.7 relies mainly on a reduction to the ℓ2-variant for functions

with locally-constant sign. This reduction is almost exactly the same as in [38], but we

include it for completeness.

Lemma 4.5.8. Let (X,Π) be a graded poset and f ∈ Ck a (ε1, . . . , εℓ)-ℓ∞-pseudorandom

function with i-local constant sign for any i ≤ ℓ. Then f is (ε1, . . . , εℓ)-ℓ2-pseudorandom.

Proof. As in [38], the idea is to notice that locally constant sign allows us to rewrite

∥Dk
i f∥22 as an expectation over some related distribution Pi:

1

E[f ]
⟨Dk

i f,D
k
i f⟩ =

∑
s∈X(i)

πi(s)

(
1

E[f ]
∑
t∈Xs

πk(t)f(t)

πk(Xs)

)
Dk

i f(s)

=
∑

s∈X(i)

(
1

R(k, i)

∑
t∈Xs

πk(t)f(t)

E[f ]

)
Dk

i f(s)

= E
Pi

[Dk
i f ],
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where Pi being a probability distribution follows from the locally-constant sign of f , and

the second step follows from the fact that πk(Xs) =
∑

t∈Xs
πk(t) = R(k, i)πi(s). The result

then follows easily from averaging:

∣∣∣∣ 1

E[f ]
Var(Dk

i f)

∣∣∣∣ = ∣∣∣∣EPi

[Dk
i f ]− E[f ]

∣∣∣∣ ≤ ∥Dk
i f − E[f ]∥∞.

When E[f ] > 0, the ℓ∞-norm here may be replaced with maximum.

The proof of Theorem 4.5.7 now follows from reducing to the case of locally-constant

sign. The argument is exactly as in the proof of [38, Theorem 8.7], but we include it for

completeness.

Proof of Theorem 4.5.7. We focus on the general bound, since the result for functions with

locally constant sign is immediate from Lemma 4.5.8 and Corollary 4.5.4. The argument

for general functions f follows simply from noting that we can always shift f to have

locally constant sign. With this in mind, assume E[f ] ≥ 0 for simplicity (the negative case

is similar). Let f ′ = f + (εi − E[f ])1 be the aforementioned shift. As long as εi > 0, it is

easy to see that f ′ has i-local constant sign and further that

f ′ = f ′
0 + fi + . . .+ fk,

where f ′
0 = f0 + (εi − E[f ])1. Since shifts have no effect on ℓ∞-pseudorandomness, f ′ is

(ε1, . . . , εℓ)-ℓ∞-pseudorandom by assumption, and therefore (ε1, . . . , εℓ)-ℓ2-pseudorandom

by Lemma 4.5.8. We can now apply Corollary 4.5.4 to get:

⟨f + (εi − E[f ])1, fi⟩ ≤
1

ρki
εiE[f + (εi − E[f ])1] + cγ⟨f + (εi − E[f ])1, f + (εi − E[f ])1⟩

≤
(

1

ρki
+ cγ

)
ε2i + cγ⟨f, f⟩,

since ⟨fi,1⟩ = 0 for all i > 0. Finally, as this holds for all εi > 0, a limiting argument
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implies the result for εi = 0. Applying Claim 4.4.4 completes the proof.

4.6 Expansion of HD-walks

It is well known that higher order random walks on simplicial complexes (e.g. the

Johnson graphs) are not small-set expanders. BHKL gave an exact characterization of

this phenomenon for local-spectral expanders: they showed that the expansion of any

i-link with respect to an HD-walk M is almost exactly 1− λi(M). Moreover, using the

level-i inequality from the previous section, BHKL proved a tight converse to this result

in an ℓ2-sense: any non-expanding set must have high variance across links. This gave a

complete ℓ2-characterization of non-expanding sets on local-spectral expanders, and lay

the structural groundwork for new algorithms for unique games over HD-walks.

In this section, we’ll show that these results extend to general expanding posets.

To start, let’s recall the definition of edge expansion.

Definition 4.6.1 (Weighted Edge Expansion). Let (X,Π) be a graded poset and M a

k-dimensional HD-Walk. The weighted edge expansion of a subset S ⊂ X(k) with respect

to M is

Φ(S) = E
v∼πk|S

[M(v,X(k) \ S)] ,

where

M(v,X(k) \ S) =
∑

y∈X(k)\S

M(v, y)

and M(v, y) denotes the transition probability from v to y.

Before we prove the strong connections between links and expansion, we need to

introduce an important property of HD-walks, monotonic eigenvalue decay.

Definition 4.6.2 (Monotonic HD-walk). Let (X,Π) be a (δ, γ)-eposet. We call an HD-

walk M monotonic if its approximate eigenvalues λi(M) (given in Corollary 4.4.5) are

non-increasing.
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Most HD-walks of interest (e.g. pure walks, partial-swap walks on simplicial or

q-simplicial complexes, etc.) are monotonic. This property will be crucial to understanding

expansion. To start, let’s see how it allows us to upper bound the expansion of links.

Theorem 4.6.3 (Local Expansion vs Global Spectra). Let (X,Π) be a (δ, γ)-eposet and

M be a k-dimensional monotonic HD-walk. Then for all 0 ≤ i ≤ k and τ ∈ X(i):

Φ(Xτ ) ∈ 1− λi(M)± cγ,

where c ≤ O
(

k5R2
max(h(M)+k)h(M)w(M)

δkk−i(1−δi−1)

)
.

The key to proving Theorem 4.6.3 is to show that the weight of an i-link lies almost

entirely on level i of the HD-Level-Set Decomposition. To show this, we’ll rely another

connection between regularity and eposet parameters for non-lazy posets.

Claim 4.6.4. Let (X,Π) be a d-dimensional (δ, γ)-eposet. Then for every 1 ≤ k ≤ d

and 0 ≤ i ≤ k, the following approximate relation between the eposet and regularity

parameters holds:

λi(N
1
k ) ∈

R(k, i)

R(k + 1, i)
±
(
γk
k−i +R(k, i)δkk−iγ

)

where we recall λi(N
1
k ) = 1−

k∏
j=i

δj.

We prove this relation in Section 4.8. With this in hand, we can show links project

mostly onto their corresponding level.

Lemma 4.6.5. Let (X,Π) be a d-dimensional (δ, γ)-eposet with γ ≤ O
(

maxi{δi(1−δi−1)}
k5R2

max

)
.

Then for all 0 ≤ i ≤ k < d and τ ∈ X(i), 1Xτ lies almost entirely in V i
k . That is for all

j ̸= i: ∣∣∣∣⟨1Xτ ,i,1Xτ ,j⟩
⟨1Xτ ,1Xτ ⟩

∣∣∣∣ ≤ O

(
k3Rmax

δkk−i(1− δi−1)
γ

)
.
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Proof. We’ll show that the expansion of 1Xτ with respect to the upper walk N1
k is almost

exactly 1 − λi(N
1
k ), which implies most of the weight must lie on V k

i . We’ll start by

analyzing the expansion of 1Xτ through a simple combinatorial argument. First, since D

and U are adjoint we have:

Φ̄(1Xτ ) =
⟨1Xτ , Dk+1Uk1Xτ ⟩
⟨1Xτ ,1Xτ ⟩

=
⟨Uk1Xτ , Uk1Xτ ⟩
⟨1Xτ ,1Xτ ⟩

.

The trick is now to notice ⟨1Xτ ,1Xτ ⟩ = R(k, i)πi(τ), and ⟨Uk1Xτ , Uk1Xτ ⟩ =
R(k,i)2

R(k+1,i)
πi(τ).

As a result, applying Claim 4.6.4 gives:

Φ̄(1Xτ ) ∈ λi(N
1
k )± (cγ +R(k, i)γ),

for c ≤ kγ. To see why this implies that most of the weight lies on V k
i , note that we can

also unfold the expansion of 1Xτ in terms of the HD-Level-Set decomposition:

Φ̄(1Xτ ) =
1

⟨1Xτ ,1Xτ ⟩

i∑
j=0

⟨1Xτ , N
1
k1Xτ ,j⟩

∈ 1

⟨1Xτ ,1Xτ ⟩

i∑
j=0

λi(N
1
k )⟨1Xτ ,1Xτ ,j⟩ ± c2γ

where c2 ≤ k
√
k

ρmin
. Recall from Corollary 4.5.1 that for the set I of indices with negative

inner product, it holds that −
∑

j∈I⟨1Xτ ,1Xτ ,j⟩ ≤ O
(

k3

ρmin
γ⟨1Xτ ,1Xτ ⟩

)
. Moreover, the

positive inner products (i.e. the indices not in I) must sum to at least ⟨1Xτ ,1Xτ ⟩.

Then if there exists some j ≠ i such that ⟨1Xτ ,1Xτ ,j⟩ > c3⟨1Xτ ,1Xτ ⟩ for large enough

c3 ≤ O
(

1
δkk−i(1−δi−1)

·
(

k3

ρmin
γ +R(k, i)γ

))
, the non-expansion would be strictly larger than

λi(N
1
k ) + cγ +R(k, i)γ giving the desired contradiction (note that (1− δi−1)δ

k
k−1 is the gap

between the i− 1st and ith approximate eigenvalue). The form in the theorem statement
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then follows from applying Claim 4.4.4.

We note that the above is the only result in our work that truly relies on non-laziness

(it is used only to replace ρ with regularity in all other results). It is possible to recover

the upper bound in Theorem 4.6.3 for general eposets via arguments used in [38], but the

lower bound remains open for concentrated posets. With that in mind, we now prove

Theorem 4.6.3.

Proof of Theorem 4.6.3. By the previous lemma, we have

∣∣∣∣⟨1Xτ ,1Xτ ,j⟩
⟨1Xτ ,1Xτ ⟩

∣∣∣∣ ≤ O

(
1

δkk−i(1− δi−1)
·
(

k3

ρmin
γ +R(k, i)γ

))
.

Expanding out Φ̄(1Xτ ) then gives:

Φ̄(1Xτ ) =
1

⟨1Xτ ,1Xτ ⟩

i∑
j=0

⟨1Xτ ,M1Xτ ,j⟩

≤ 1

⟨1Xτ ,1Xτ ⟩

i∑
j=0

λi(M)⟨1Xτ ,1Xτ ,j⟩+ c2γ

≤ λi(M)
⟨1Xτ ,1Xτ ,i⟩
⟨1Xτ ,1Xτ ⟩

+ err1

≤ λi(M) + err2.

where c2, err1, err2 ≤ O
(

k
δkk−i(1−δi−1)

(
k2(h(M)+k)h(M)w(M)

ρmin
γ +R(k, i)γ

))
and the last step

follows from the approximate orthogonality. As usual, the form in the theorem statement

then follows from applying Claim 4.4.4.

Altogether, we’ve seen that for sufficiently nice expanding posets, the expansion

of any i-link with respect to an HD-walk is almost exactly 1− λi(M). Since HD-walks

are generally poor expanders (have large λ1(M)), Theorem 4.6.3 implies that links are

examples of small, non-expanding sets. Following BHKL, we’ll now prove a converse to

this result: any non-expanding set must be explained by some structure inside links. To

272



help give a precise statement, we first recall BHKL’s notion of Stripped Threshold Rank

(specialized to eposets for convenience).

Definition 4.6.6 (Stripped Threshold Rank [38]). Let (X,Π) be a (δ, γ)-eposet and M a

k-dimensional HD-walk with γ small enough that Theorem 4.3.2 implies the HD-Level-Set

Decomposition has a corresponding decomposition of disjoint eigenstrips Ck =
⊕

W i
k. The

ST-Rank of M with respect to η is the number of strips containing an eigenvector with

eigenvalue at least η:

Rη(M) = |{W i
k : ∃f ∈ V i,Mf = λf, λ > η}|.

We often write just Rη when M is clear from context.

With this in mind, we’ll show a converse to Theorem 4.6.3 in both ℓ2 and ℓ∞ senses

(respectively that any non-expanding set must have high variance over links, and must

be more concentrated than expected in some particular link). It is convenient to express

these results through their contrapositives: that pseudorandom sets expand. The proof is

the same as in [38] for simplicial complexes, but we include it for completeness.

Theorem 4.6.7. Let (X,Π) (δ, γ)-eposet, M a k-dimensional, monotonic HD-walk, and

γ small enough that the eigenstrip intervals of Theorem 4.3.2 are disjoint. For any η > 0,

let r = Rη(M)− 1. Then the expansion of a set S ⊂ X(k) of density α is at least:

Φ(S) ≥ 1− α− (1− α)η −
r∑

i=1

(λi(M)− η)R(k, i)εi − cγ

where S is (ε1, . . . , εr)-pseudorandom and c ≤ O
(

k5R2
max(h(M)+k)h(M)w(M)
maxi{δi(1−δi−1)}

)
.

Proof. Let 1S = 1S,0 + . . .+ 1S,k be the HD-Level-Set Decomposition of the indicator of
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S. By linearity of the inner product, we may then write:

Φ(S) = 1− 1

E[1S]
⟨1Xτ ,M1Xτ ⟩

= 1− 1

E[1S]

k∑
j=0

⟨1S,M1S,j⟩

= 1− 1

E[1S]

k∑
j=0

λj(M)⟨1S,1S,j⟩ −
1

E[1S]

k∑
j=0

⟨1S,Γj1S,j⟩

where ∥Γj∥ ≤ O
(
(h(M) + k)h(M)w(M)

ρmin

)
. The trick is now to notice we can bound the

righthand error term using Cauchy-Schwarz:

∣∣∣∣∣ 1

E[1S]

k∑
j=0

⟨1S,Γj1S,j⟩

∣∣∣∣∣ ≤ 1

E[1S]

k∑
j=0

|⟨1S,Γj1S,j⟩|

≤ 1

E[1S]

k∑
j=0

∥Γj∥∥1S∥∥1S,j∥

≤ cγ
∥1S∥
E[1S]

k∑
j=0

∥1S,j∥

≤ c1γ,

where c ≤ O
(
(h(M) + k)h(M)w(M)

ρmin

)
and c1 ≤ O(

√
kc) by Equation (4.1). Since M is a

monotonic walk, we can further write:

Φ(S) ≥ 1− 1

E[1S]

r∑
i=0

λi(M)⟨1S,1S,i⟩ −
1

E[1S]

k∑
i=r+1

λi(M)⟨1S,1S,i⟩ − c1γ

≥ 1− 1

E[1S]

r∑
i=0

λi(M)⟨1S,1S,i⟩ −
η

E[1S]

k∑
i=r+1

⟨1S,1S,i⟩ − c2γ

= 1− 1

E[1S]

r∑
i=0

λi(M)⟨1S,1S,i⟩ − η

(
1− 1

E[1S]

r∑
i=0

⟨1S,1S,i⟩

)
− c2γ

= 1− η − 1

E[1S]

r∑
i=0

(λi(M)− η)⟨1S,1S,i⟩ − c2γ
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= 1− η − (1− η)α− 1

E[1S]

r∑
i=1

(λi(M)− η)⟨1S,1S,i⟩ − c2γ,

where c2 ≤ O
(
k2(h(M) + k)h(M)w(M)

ρmin

)
. To justify the second inequality, observe that

for any r < i ≤ k such that ⟨1S,1S,i⟩ ≥ 0, replacing λi(M) with η is valid. For the set I

of r < i ≤ k with negative inner product, Corollary 4.5.1 implies that the sum over I is

O(k3γ/ρmin), so the inequality remains valid by absorbing the small error into c2. Applying

Corollary 4.5.4 to bound ⟨1S,1S,i⟩ then gives the ℓ2-variant result, Theorem 4.5.7 gives

the ℓ∞-variant, and Claim 4.4.4 gives the form given in the theorem statement.

We note that Theorem 4.6.7 recovers the analogous result for simplicial complex in

[38] by plugging in the appropriate value R(k, i) =
(
k
i

)
. BHKL also prove this special case

is tight in two senses. First, they show that if one wants to retain linear dependence on

the pseudorandomness parameter ε, Theorem 4.6.7 is tight in both the ℓ2 and ℓ∞-regimes.

Second, they show that the dependence on k is necessary in the ℓ2-regime, even if we

allow sub-optimal dependence on ε. In the next section, we’ll generalize this result to

q-simplicial complexes as well. In both cases the proofs are highly structural and depend

on the underlying structure of the poset—it remains an interesting open problem whether

this bound is tight for all poset structures.

4.7 The Grassmann and q-eposets

In this section, we examine the specification of our results on eposets to expanding

subsets of the Grassmann poset. We show that our analysis is tight in this regime via a

classic example of a small non-expanding set in the Grassmann graphs called co-links.

4.7.1 Spectra

We’ll start by examining the spectrum of HD-walks on the Grassmann and q-eposets.

We’ll focus our attention in this section on the most widely used walks in the literature,
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the canonical and partial-swap walks. To start, recall that the Grassmann poset itself is

sequentially differential with parameters

δi =
(qi − 1)(qn−i+1 − 1)

(qi+1 − 1)(qn−i − 1)
. (4.2)

Plugging this into Proposition 4.4.2 gives a nice exact form for the spectra of canonical

walks.

Corollary 4.7.1 (Grassmann Poset N j
k Spectra). Let X = Gq(n, d) be the Grassmann

Poset, k + j ≤ d, and fℓ = Uk
ℓ gℓ for some gℓ ∈ Hℓ. Then:

N j
kfℓ = λℓfℓ,

where,

λℓ = qℓj

(
k+j−ℓ

j

)
q(

k+j
j

)
q

(
n−k−ℓ

j

)
q(

n−k
j

)
q

≈ q−ℓj.

Proof. By Proposition 4.4.2 we have that

λℓ(N
j
k) =

j∏
s=1

(
1−

k−s+j∏
i=ℓ

δi

)

=

j∏
s=1

(
1−

k−s+j∏
i=ℓ

(qi − 1)(qn−i+1 − 1)

(qi+1 − 1)(qn−i − 1)

)
.

The result then follows from telescoping the interior product and simplifying:

=

j∏
s=1

(
1− (qℓ − 1)(qn−ℓ+1 − 1)

(qk−s+j+1 − 1)(qn+s−k−j − 1)

)

= qℓj

(
j∏

s=1

(
qk+j−s−ℓ+1 − 1

)
(qk+j−s+1 − 1)

)(
j∏

s=1

(
qn+s−k−j−ℓ − 1

)
(qn+s−k−j − 1)

)

= qℓj

(
k+j−ℓ

j

)
q(

k+j
j

)
q

(
n−k−ℓ

j

)
q(

n−k
j

)
q
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as desired.

This recovers a very simple proof of classical results to this effect (see e.g. [106]). An

analogous computation gives an approximate bound on the spectrum of N j
k on q-eposets

as well.

Corollary 4.7.2 (q-eposets N j
k Spectra). Let (X,Π) be a d-dimensional γ-q-eposet with

γ ≤ q−Ω(k2), k + j ≤ d, and fℓ = Uk−1
ℓ gℓ for some gℓ ∈ Hℓ. Then:

∥N j
kfℓ −

(
k+j−ℓ

j

)
q(

k+j
j

)
q

fℓ∥ ≤ O

(
j(j + k)

(
k

ℓ

)
q

)
γ∥fℓ∥

Note that for small enough γ, Theorem 4.3.2 implies that the true spectra is then

concentrated around these values as well. It is also worth noting that these eigenvalues are,

as one would expect, the natural q-analog of the corresponding eigenvalues on simplicial

complexes.

It turns out that this fact will carry over to the important class of partial-swap

walks as well. Partial-swap walks on simplicial complexes were originally analyzed by AJT

[9], who showed they can be written as a hypergeometric combination of canonical walks.

Their proof is specific to the structure of simplicial complexes, and some work is required

to generalize their ideas to the Grassmann case. Following the overall proof strategy of

AJT, it will be helpful to first show that the canonical walks themselves can be written

as an expectation of swap walks over a q-hypergeometric distribution, and then use the

q-binomial inversion theorem to derive the desired result.

Lemma 4.7.3 (q-analog of [9, Lemma 4.11]). Let (X,Π) be a pure, measured q-simplicial

complex. Then:

N j
k =

j∑
i=0

qi
2

(
j
i

)
q

(
k

k−i

)
q(

k+j
k

)
q

Si
k

Proof. We follow the structure and notation of [9, Lemma 4.11]. Assume that the canonical
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walk starts at a subspace V ∈ X(k), and walks up to W ∈ X(k + j). We wish to analyze

the probability that upon walking back down to level k, a subspace V ′ with intersection

k − i is chosen, that is:

dim(V ∩ V ′) = k − i.

Let such an event be denoted Ei(W ). It follows from elementary q-combinatorics (see e.g.

[82, Lemma 9.3.2]) that

P
V ′⊂W

[Ei(W ) | W ] = qi
2

(
j
i

)
q

(
k

k−i

)
q(

k+j
k

)
q

,

where V ′ ∈ X(k) is drawn uniformly from the k-dimensional subspaces of W . In essence,

we wish to relate this process to the swap walk Si
k. To do so, note that while the swap

walk (as defined) only walks up to X(k + i), walking up to X(k + j) and conditioning

on intersection i, a process called the i-swapping j-walk by [9], is exactly the same due

to symmetry (via the regularity condition, see [9][Proposition 4.9] for a more detailed

explanation). Thus consider the i-swapping j-walk, and let T ′
i denote the variable standing

for the subspace chosen by the walk. Conditioned on picking the same W as the canonical

walk in its ascent, we may relate T ′
i to the canonical walk:

P[T ′
i = T | W ] = P[V ′ = T | W and Ei(W )]

We may now decompose the canonical walk by intersection size:

N j
k(V, T ) =

j∑
i=0

∑
W∈X(k+j)

P[W ]P[Ei(W ) | W ]P[V ′ = T | W and Ei(W )]

=

j∑
i=0

∑
W∈X(k+j)

qi
2

(
j
i

)
q

(
k

k−i

)
q(

k+j
k

)
q

E
W⊃V

[P[V ′ = T | W and Ei(W )]]
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=

j∑
i=0

∑
W∈X(k+j)

qi
2

(
j
i

)
q

(
k

k−i

)
q(

k+j
k

)
q

E
W⊃V

[P[T ′
i = T | W ]]

=

j∑
i=0

∑
W∈X(k+j)

qi
2

(
j
i

)
q

(
k

k−i

)
q(

k+j
k

)
q

P[T ′
i = T ]

=

j∑
i=0

∑
W∈X(k+j)

qi
2

(
j
i

)
q

(
k

k−i

)
q(

k+j
k

)
q

Si
k(V, T )

This results in the q-analog of the analogous result on simplicial complexes [9,

Lemma 4.11]. To recover the analogous statement writing partial-swap walks in terms of

canonical walks, we can now apply a q-Binomial inversion theorem.

Lemma 4.7.4 (q-Binomial Inversion (Theorem 2.1 [365])). Suppose {ai}i≥1, {bi}i≥1 are

two sequences. If:

aj =

j∑
i=1

(−1)i
(
j

i

)
q

bi,

then

bj =

j∑
i=1

(−1)iq(
j−i
2 )
(
j

i

)
q

ai

We note that [365, Theorem 2.1] is stated in slightly more generality in the original

work, but the above lemma is an immediate application. With this in hand, we can finally

prove that swap walks on the Grassmann poset are indeed HD-walks:

Proposition 4.7.5. Let (X,Π) be a weighted pure q-simplicial complex. Then for k+j ≤ d:

Sj
k =

1

qj2
(

k
k−j

)
q

j∑
i=0

(−1)j−iq(
j−i
2 )
(
j

i

)
q

(
k + i

i

)
q

N i
k,

and similarly,

Jq(n, k, t) = Sk−t
k =

1

q(k−t)2
(
k
t

)
q

k−t∑
i=0

(−1)k−t−iq(
k−t−i

2 )
(
k − t

i

)
q

(
k + i

i

)
q

N i
k
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Proof. The proof is an easy application of Lemma 4.7.4 and the q-Binomial theorem. In

particular, for any V, V ′ ∈ X(k), let

ai = (−1)iqi2
(

k

k − i

)
q

Si
k(V, V

′).

Noting that N j
0 = Sj

0 = I, Lemma 4.7.3 gives the following equality:

(
k + j

k

)
q

(
N j

k(V, V
′)− 1(

k+j
k

)
q

I(V, V ′)

)
=

j∑
i=1

(−1)i
(
j

i

)
q

ai.

Setting the second sequence {bi}i≥1 to

bi =

(
k + i

k

)
q

(
N i

k(V, V
′)− 1(

k+i
k

)
q

I(V, V ′)

)
,

Lemma 4.7.4 then implies:

qj
2

(
k

k − j

)
q

Sj
k(V, V

′) =

j∑
i=1

(−1)j−iq(
j−i
2 )
(
k + i

k

)(
N i

k(V, V
′)− 1(

k+i
k

)
q

I(V, V ′)

)

=

j∑
i=1

(−1)j−iq(
j−i
2 )
(
k + i

k

)
N i

k(V, V
′)−

j∑
i=1

(−1)j−iq(
j−i
2 )I(V, V ′)

=

j∑
i=0

(−1)j−iq(
j−i
2 )
(
k + i

k

)
N i

k(V, V
′)

where the last step follows from the q-Binomial theorem.

Once again, we note that this is unsurprisingly the q-analog of the analogous

statement on simplicial complexes (see [9, Corollary 4.13]). Finally, we’ll use this to show

that the eigenvalues of partial-swap walks on q-simplicial complexes are given by the

natural q-analog of the simplicial complex case.

Corollary 4.7.6. Let (X,Π) be a d-dimensional γ-q-eposet with γ sufficiently small,
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k + j ≤ d, and fℓ = Uk
ℓ gℓ for some gℓ ∈ Hℓ. Then:

∥Sj
kfℓ −

(
k−j
ℓ

)
q(

k
ℓ

)
q

fℓ∥ ≤ O

((
q

q − 1

)min(j,k−j)+2

k2

(
k

ℓ

)
q

)
γ∥fℓ∥

Proof. This follows from combining Corollary 4.4.5, Corollary 4.7.1, and Proposition 4.7.5.

Let t = k− j. In particular, it is sufficient to note that (in the notation of Corollary 4.4.5):

∑
Y ∈Y

αY λY,δ,ℓ =
1

q(k−t)2
(
k
t

)
q

k−t∑
i=0

(−1)k−t−iq(
k−t−i

2 )
(
k − t

i

)
q

(
k + i− ℓ

i

)
q

=

(
k−j
ℓ

)
q(

k
ℓ

)
q

.

and further that:

w(Sj
k) =

1

qj2
(

k
k−j

)
q

j∑
i=0

q(
j−i
2 )
(
j

i

)
q

(
k + i

i

)
q

≤ qjk

qj2
(

k
k−j

)
q

j∑
i=0

q−i

≤
(

q

q − 1

)min(j,k−j)+1

Again, since the swap walks are self-adjoint Theorem 4.3.2 implies that for small

enough γ the true spectra is closely concentrated around these values as well. It is worth

noting that if the above analysis is repeated using the exact eposet parameters for the

Grassmann (see Equation (4.2)), this recovers the standard eigenvalues of the Grassmann

graphs (see e.g. [106]).
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4.7.2 Pseudorandom Functions and Small Set Expansion

With an understanding of the spectra of HD-walks on q-simplicial complexes, we

move to studying its combinatorial structure. By direct computation, it is not hard to

show that on q-eposets, ρkℓ = 1

(kℓ)q
(Claim 4.4.4 would only imply this is approximately

true). As a result, we get a level-i inequality for q-simplicial complexes that is the natural

q-analog of BHKL’s inequality for basic simplicial complexes.

Theorem 4.7.7. Let (X,Π) be a γ-q-eposet with γ ≤ q−Ω(k2), and let f : Ck → R be

any function on k-faces with HD-Level-Set Decomposition f = f0 + . . . + fk. If f is

(ε1, . . . , εℓ)-ℓ∞-pseudorandom, then for all 1 ≤ i ≤ ℓ:

|⟨f, fi⟩| ≤

((
k

i

)
q

+ cγ

)
ε2i + cγ∥f∥2.

If f additionally has i-local constant sign or is (ε1, . . . , εℓ)-ℓ2-pseudorandom, then

|⟨f, fi⟩| ≤
(
k

i

)
q

εi|E[f ]|+ cγ∥f∥2

where in both cases c ≤ qO(k2)

For large enough q, γ−1, this result is exactly tight. The key to showing this fact is

to examine a local structure unique to the Grassmann called co-links. The co-link of an

element W ∈ X(k′), is all of the subspaces contained in W :

X̄W = {V ∈ X(k) : V ⊆ W}.

Just like links, co-links of dimension i (that is k′ = d − i) also come through levels 0

through i of the complex, although this is somewhat trickier to see.

Lemma 4.7.8 (HD-level-set decomposition of co-links). Let X = Gq(d, k) and S = XW
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be a co-link of dimension i for W ∈ X(d− i). Then, we have

1S ∈ V 0
k ⊕ · · · ⊕ V i

k .

Proof. Since we know that V 0
k ⊕ · · · ⊕ V i

k = Im(Uk
i Ci) (see e.g. [111]), all we need to do is

to show that there exists an f ∈ Ci such that 1S = Uk
i f . More specifically, we can write

f =
∑

U∈X(i) αU1U . Then, we have

(Uk
i f)(V ) =

∑
U∈X(i)

αU(U
k
i 1U)(V ) =

1

R(k, i)

∑
U∈X(i),U⊂V

αU .

Suppose αU = g(dim(U ∩W )) for some function g : {0, . . . , i} → R. We will prove that

there exists a unique g that satisfies the desired equations.

Consider the dimension of V ∩W . If V ⊂ W , i.e., dim(V ∩W ) = k, then for all

U ∈ X(i) s.t. U ⊂ V , dim(U ∩W ) = i. Then, for all V ⊂ W we must have:

Uk
i 1V =

1

R(k, i)

∑
U∈X(i),U⊂V

g(i) = g(i) = 1.

On the other hand, consider V ̸⊂ W . In this case we must have dim(V ∩W ) = k − j for

some i ≥ j > 0 and further that dim(U ∩W ) ∈ {i− j, . . . , i} for all U ∈ X(i) s.t. U ⊂ V .

This gives the following set of linear equations:

Uk
i 1V =

i−1∑
ℓ=i−j

cj,ℓg(ℓ) + cj,i = 0 ∀1 ≤ j ≤ i,

where cj,ℓ := R(k, i)−1 · |{U ∈ X(i) : U ⊂ V, dim(U ∩W ) = ℓ, dim(V ∩W ) = k − j}| is a

constant for all ℓ ∈ {i−j, . . . , i}. Since this system can be written as a triangular form with

positive diagonal, it is invertible and there exists a unique solution for g(0), . . . , g(i− 1) as

desired. By definition, such a solution must satisfy f =
∑

U∈X(i) g(dim(U ∩W ))1U , so we
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have constructed f ∈ Ci such that Uk
i f = 1S , which completes the proof of the claim.

Using this fact, we can show that our level-i inequality is exactly tight.

Proposition 4.7.9. Let X = Gq(d, k) be the Grassmann poset. For any i ≤ k ∈ N and

c < 1, there exist large enough q, d and a set S ⊂ X(k) such that

⟨1S,1S,i⟩ > c

(
k

i

)
q

εi⟨1S,1S⟩

where S is (i, εi)-pseudorandom.

Proof. The proof goes through examining a “co-link” of dimension i, that is for W ∈

X(d− i):

X̄W = {V ∈ X(k) : V ⊂ W}.

For simplicity, let S := X̄W . The density of the co-link S in any j-link XV is:

αj =
(qd−i−j − 1) . . . (qd−k+1−i − 1)

(qd−j − 1) . . . (qd−k+1 − 1)
= q−i(k−j) + oq,d(1).

The idea is now to examine the (non)-expansion of the co-link with respect to the lower

walk Uk−1Dk. By direct computation, the probability of returning to X̄W after moving to

a (k − 1)-dimensional subspace is exactly:

Φ̄(X̄W ) =
qd−i − qk−1

qd − qk−1
= q−i ± q−Ω(d) (4.3)

On the other hand, by Proposition 4.4.2 the approximate eigenvalues of the lower walk

are given by

λj =
qk−j − 1

qk − 1
= q−j −O(q−k)

Since a dimension-i co-link has no projection onto levels i+1 through k, we can also write
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the non-expansion as:

Φ̄(X̄W ) =
1

⟨1S,1S⟩

i∑
j=0

q−j⟨1S,1S,j⟩ −O(q−k)

for large enough q, d. Combining this with our previous formula for the non-expansion in

Equation (4.3), we get that there exists a universal constant c′ such that for large enough

q and d, 1X̄W
cannot have more than a c′

q
fraction of its mass on levels 1 through i− 1.

Finally, noticing that: (
k

i

)
q

αi = 1 + oq(1)

we have

⟨1S,1S,i⟩
⟨1S,1S⟩

≥ q − c′

q
≥ c

(
k

i

)
q

αi

since the latter is strictly bounded away from 1 for large enough q. This completes the

result since X̄W is (αi, i)-pseudorandom.

We’ll close the section by giving an immediate application of Theorem 4.7.7 to

the expansion of pseudorandom sets, and briefly discuss connections with the proof of

the 2-2 Games Conjecture and algorithms for unique games. Namely, as corollary of

Theorem 4.7.7, we show that for both the canonical and partial-swap walks, sufficiently

pseudorandom functions expand near perfectly.

Corollary 4.7.10 (q-eposets Edge-Expansion). Let (X,Π) be a d-dimensional γ-q-eposet,

S ⊂ X(k) a subset whose indicator function 1S is (ε1, . . . , εℓ)-pseudorandom. Then the

edge expansion of S with respect to the canonical walk N j
k is bounded by:

Φπk
(N j

k , S) ≥ 1− E[1S]−
ℓ∑

i=1

(
k+j−i

j

)
q(

k+j
j

)
q

(
k

i

)
q

εi − q−(ℓ+1)j − qO(k2)γ
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Further, the edge expansion of S with respect to the partial-swap walk Sj
k is bounded by:

Φπk
(Sj

k, S) ≥ 1− E[1S]−
ℓ∑

i=1

(
k − j

i

)
q

εi − q−(ℓ+1)j − qO(k2)γ

Note that Sj
k on q-eposets is a generalization of the Grassmann Graphs (and are

equivalent when X is the Grassmann Poset). While our definition of pseudorandomness is

weaker than that of [255] and therefore necessarily depends on the dimension k, we take the

above as evidence that the framework of expanding posets may be important for making

further progress on the Unique Games Conjecture. In particular, combined with recent

works removing this k-dependence on simplicial complexes [39, 187], it seems plausible

that the framework of expanding posets may lead to a more general understanding of the

structure underlying the unique games conjecture.

4.8 Eposet Parameters and Regularity

In this section we will discuss connections between notions of regularity, the

averaging operators, and eposet parameters. To start, we’ll show that downward and

middle regularity (which are defined only on adjacent levels of the poset) imply extended

regularity between any two levels.

Proposition 4.8.1. Let (X,Π) be a d-dimensional regular measured poset. Then for any

i < k ≤ d, there exist regularity constant R(k, i) such that for any xk ∈ X(k), there are

exactly R(k, i) elements xi ∈ X(i) such that xk > xi.

Proof. Given any element xk ∈ X(k), downward regularity promises there are exactly∏k
j=i+1R(j) unique chains xk < xk−1 < . . . < xi+1 < xi. By middle regularity, any fixed

xi ∈ X(i) which appears in this fashion appears in exactly m(k, i) chains. Noting that

xi < xk if and only if xi appears in such a chain, the total number of xi < xk must be
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exactly:

R(k, i) =

∏k
j=i+1R(j)

m(k, i)
.

A similar argument shows that regularity allows the up operators to compose in

the natural way.

Proposition 4.8.2. Let (X,Π) be a d-dimensional regular measured poset. Then for any

i < k ≤ d we have:

Uk
i f(xk) =

1

R(k, i)

∑
xi<xk

f(xi)

Proof. Expanding out Uk
i f(y) gives:

Uk
i f(xk) =

1
k∏

j=i+1

R(j)

∑
xk−1<xk

. . .
∑

xi<xi+1

f(xi)

The number of times each xi appears in this sum is exactly the number of chains starting

at xk and ending at xi, so by middle regularity:

1
k∏

j=i+1

R(j)

∑
xk−1<xk

. . .
∑

xi+1<xi

f(xi) =
m(k, i)
k∏

j=i+1

R(j)

∑
xi<xk

f(xi)

=
1

R(k, i)

∑
xi<xk

f(xi).

as desired.

We’ll now take a look at the connection between eposet parameters and regularity.

It is convenient to first start with a lemma stating that non-laziness is equivalent to

bounding the maximum transition probability of the lower walk.
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Lemma 4.8.3. Let (X,Π) be a d-dimensional measured poset. Then for any 0 < i ≤ d,

the maximum laziness of the lower walk is also the maximum transition probability:

max
σ∈X(i)

{
1
T
σUi−1Di1σ

}
= max

σ,τ∈X(i)

{
1
T
σUi−1Di1τ

}
.

Proof. Assume that τ ̸= σ. Then the transition probability from τ to σ is exactly

1
T
σUi−1Di1τ =

πτ (σ \ τ)
R(i, i− 1)

≤ 1

R(i, i− 1)

∑
τ⋖σ

πτ (σ \ τ)

= 1
τ
σUi−1Di1σ,

which implies the result.

We now prove our two claims relating the eposet parameters to regularity.

Claim 4.8.4. Let (X,Π) be a d-dimensional (δ, γ)-eposet. Then for every 1 ≤ k ≤ d

and 0 ≤ i ≤ k, the following approximate relation between the eposet and regularity

parameters holds:

λi(N
1
k ) ∈

R(k, i)

R(k + 1, i)
±
(
γk
k−i +R(k, i)δkk−iγ

)

where we recall λi(N
1
k ) = 1−

k∏
j=i

δj.

Proof. One of our main analytical tools so far has been the relation between the upper

and lower walks given in Lemma 4.4.1:

∥Dk+1U
k+1
i − (1− δkk−i)U

k
i − δkk−iU

k
i−1Di∥ ≤ γk

k−i.
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For this result, we’ll actually need a refinement of this result given in [38, Lemma A.1]:15

Dk+1U
k+1
i = (1− δkk−i)U

k
i + δkk−iU

k
i−1Di +

k−i−1∑
j=−1

Uk
k−j−1ΓjU

k−j−1
i (4.4)

where
∑
∥Γj∥ ≤ γk

k−i. The idea is now to examine the “laziness” of the two sides of this

equality. In other words, given a starting k-face τ , what is the probability that the resulting

i-face σ satisfies σ < τ?

To start, we’ll argue that the laziness of the lefthand side is exactly R(k,i)
R(k+1,i)

. This

follows from noting that there are R(k, i) i-faces σ satisfying σ < τ , and R(k+1, i) options

after taking the initial up-step of the walk to τ ′ > τ . After the down-steps, the resulting

i-face is uniformly distributed over these R(k + 1, i) options σ < τ ′, and since every

σ < τ < τ ′, all original R(k, i) lazy options are still viable after the up-step to τ ′.

Analyzing the right-hand side is a bit trickier. The initial term (1 − δkk−i)U
k
i is

completely lazy, so it contributes exactly (1− δkk−i) = λi(N
1
k ). We’ll break the second term

into two steps: walking from X(k) to X(i) via Uk
i , then from X(i) to X(i) via the lower

walk Ui−1Di. Starting at a k-face τ , notice that after applying the down step Uk
i we are

uniformly spread over σ < τ . Computing the laziness then amounts to asking what the

probability of staying in this set is after the application of UD, which one can naively

bound by the maximum transition probability times the set size R(k, i). By non-laziness,

the maximum transition probability is at most γ (see Lemma 4.8.3).

The third term can be handled similarly. The first down step Uk
k−j−1 spreads τ

evenly across σ < τ in X(k − j − 1). The resulting i-face σ′ after applying ΓjU
k−j−1
i is

less than τ if and only if the intermediary (k − j − 1)-face after applying Γj is less than τ ,

which is bounded by the spectral norm ∥Γj∥.16

Putting everything together, since both sides of Equation (4.4) must have equivalent
15Formally the result is only stated for simplicial complexes in [38], but the same proof holds for eposets.
16We note that Γj is not stochastic, but it is self-adjoint and an easy exercise to see that the analogous

reasoning still holds.
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laziness, we get that λi(N
1
k ) must be within

∑
∥Γj∥+ δkk−iR(k, i)γ as desired.

Claim 4.4.4 and Theorem 4.4.7 can both be proving an analogous theorem for the

upper walk.

Claim 4.8.5 (Regularity and Upper Walk Spectrum). Let (X,Π) be a d-dimensional

(δ, γ)-eposet. Then for any j ≤ i ≤ k < d, we have:

λj(N
k−i
i ) ∈ R(i, j)

R(k, i)
± err,

where err ≤ O
(

i4k2Rmax
δi(1−δi−1)

γ
)
.

Proof. This follows almost immediately from the fact that i-links lie almost entirely on

the ith eigenstrip (Lemma 4.6.5). In particular, it is enough to examine the expansion of

i-links with respect to the upper canonical walk Nk−i
i . On the one hand, for any j ≤ i

and τ ∈ X(j) we have:

Φ̄(X i
τ ) =

⟨1Xi
τ
, Nk−i

i 1Xi
τ
⟩

⟨1Xi
τ
,1Xi

τ
⟩

=
⟨Uk

j 1τ , U
k
j 1τ ⟩

⟨U i
j1τ , U i

j1τ ⟩

=
R(i, j)2

R(k, i)2
⟨1Xk

τ
,1Xk

τ
⟩

⟨1Xi
τ
,1Xi

τ
⟩

=
R(i, j)

R(k, i)

⟨1τ ,1τ ⟩
⟨1τ ,1τ ⟩

=
R(i, j)

R(k, i)
.

where we have applied the fact that ⟨Xℓ
τ , X

ℓ
τ ⟩ = R(ℓ, j)⟨1τ ,1τ ⟩. On the other hand, by

Lemma 4.6.5 we also have that:

Φ̄(1Xi
τ
) =

1

⟨1Xi
τ
,1Xi

τ
⟩

i∑
ℓ=0

⟨1Xi
τ
, Nk−i

i 1Xi
τ ,ℓ
⟩
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∈ 1

⟨1τ ,1τ ⟩

i∑
ℓ=0

λj(N
k−i
i )⟨1Xi

τ
,1Xi

τ ,ℓ
⟩+ cγ

∈ λj(N
k−i
i )
⟨1τ ,1τ,j⟩
⟨1τ ,1τ ⟩

+
i∑

j=0

err1

∈ λj(N
k−i
i ) + err2

where as in the proof of Theorem 4.6.3, c, err1, err2 ≤ O
(

i4k2Rmax
δii−j(1−δj−1)

γ
)
.

Claim 4.4.4 follows immediately from observing that ρki = λi(N
k−i
i ) (by Proposi-

tion 4.4.2). Theorem 4.4.7 follows from observing that pNk−i
i and qNk−i

k have the same

approximate eigenvalues (similarly by Proposition 4.4.2).

Finally we close out the section by discussing the connection between non-laziness

and a variant of eposets called local-spectral expanders [243]. To start, let’s recall this

latter definition.

Definition 4.8.6 (Local-Spectral Expander [124, 243]). A d-dimensional measured poset

(X,Π) is a γ-local-spectral expander if the graph underlying every link17 of dimension at

most d− 2 is a γ-spectral expander.18

Under suitable regularity conditions (see [243]), local-spectral expansion is equivalent

to the notion of expanding posets used in this work. A simple argument shows that γ-

local-spectral expanders are γ-non-lazy.

Lemma 4.8.7. Let (X,Π) be a d-dimensional γ-local-spectral expander, and 0 < i < d.

The laziness of the lower walk on level i is at most:

max
σ∈X(i)

{
⟨1σ, Ui−1Di1σ⟩
⟨1σ,1σ⟩

}
≤ γ.

17Here the link of τ is not just its top level faces, but the complex given by taking this set, removing τ
from each face, and downward closing.

18A graph is a γ-spectral expander if its weighted adjacency matrix has no non-trivial eigenvalues
greater than γ in absolute value.
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Proof. Through direct computation, the laziness probability of the lower walk at σ ∈ X(i)

is exactly
⟨1σ, Ui−1Di1σ⟩
⟨1σ,1σ⟩

=
1

R(i, i− 1)

∑
τ⋖σ

πτ (σ \ τ)

It is therefore enough to argue that πτ (σ\τ) ≤ γ. This follows from the fact that the graph

underlying the link Xτ is a γ-spectral expander. In particular, recall that an equivalent

formulation of this definition states that:

∥Aτ − UDτ∥ ≤ γ,

where Aτ is the standard (non-lazy upper) walk and UDτ is the lower walk on the graph

underlying Xτ . This implies that the weight of any vertex v in the graph is at most γ, as:

⟨1v, UDτ1v⟩
⟨1v,1v⟩

=
⟨1v, (UDτ − Aτ )1v⟩

⟨1v,1v⟩
≤ ∥Aτ − UDτ∥ ≤ γ

where we have used the fact that Aτ is non-lazy by definition. Since πτ (σ \ τ) is exactly

the weight of the vertex σ \ τ in Xτ , this completes the proof.

This chapter, in full, is based on the material as it appears in Approximation, Ran-

domization, and Combinatorial Optimization. Algorithms and Techniques 2022. Gaitonde,

Jason; Hopkins, Max; Kaufman, Tali; Lovett, Shachar; Zhang; Ruizhe. “Eigenstripping,

Spectral Decay, and Edge-Expansion on Posets". The dissertation author was a primary

investigator and author of this material.
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Chapter 5

Chernoff Bounds and Reverse Hyper-
contractivity on HDX

5.1 Introduction

Recent years have seen the emergence of high dimensional expanders (HDX) as a

core tool in theoretical computer science, with breakthrough applications in approximate

sampling [25, 24], coding theory [117, 315], and quantum complexity [27], and strong

promise toward longstanding problems in hardness of approximation and probabilistically

checkable proofs [124, 109, 236, 177, 208, 40, 113]. One central force behind the success of

HDX in application is their concentration of measure. Consider (as a warmup) the following

fundamental question: given a k-uniform hypergraph X and a function f : X(1)→ [0, 1]

on its vertices, how concentrated is f to its mean across a random hyperedge?

P
{v1,...,vk}∈X(k)

[∣∣∣∣∣1k
k∑

i=1

f(vi)− µ

∣∣∣∣∣ > ε

]
?

≤ β(ε, k) (5.1)

When X is the complete hypergraph, this was classically resolved by Chernoff and Hoeffding

[97, 197] who showed β(ε, k) ≤ exp(−ε2k). Over the years, near-matching bounds have

been shown for more general hypergraph families (see e.g. [317, 273, 232]), and even for

certain bounded degree systems like walks on expanders [6, 165]. These objects, called

sampler graphs or extractors, are by now a core tool in the field with applications in
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de-randomization, complexity, and cryptography [167, 362].

High dimensional expanders are known to satisfy a ‘Chebyshev-type’ bound

β(ε, k) ≤ 1
kε2

for (5.1) [124], but this is of course not what makes them powerful. Rather,

many modern applications in complexity require concentration of X against broader classes

of functions. Of particular interest is the extension of (5.1) to functions f : X(i)→ [0, 1]

sitting on i-sets of X. Complexes satisfying such a bound are called inclusion samplers;

they arise naturally in the study of agreement and PCPs (forming consistency checks),

and play a critical role in low soundness constructions toward the Sliding Scale Conjecture

[215, 129, 299, 128]. Unfortunately, inclusion samplers are notoriously difficult to construct,

and no bounded degree families were known for many years.

This changed with the advent of spectral HDX [163, 291, 141, 234, 124, 309].

A key motivation behind the modern incarnation of these objects [234, 124, 309] was

the fact that their ‘inclusion graphs’ (the bipartite adjacency matrix between k-sets

and i-sets) are spectral expanders, and therefore satisfy ‘Chebyshev-type’ concentration

β(ε, i, k) ≤ i
ε2k

. This observation played a central role in recent progress in agreement

testing [124, 121, 109, 236, 177, 110, 41], but left an exponential gap from the Chernoff-type

concentration needed for other applications.

In this work we take a major step toward closing this gap, resolving the problem

completely in many regimes of interest. In particular, drawing on ideas from the concentra-

tion of measure [76], PCP [215], and HDX [109, 9] literature, we prove HDX are optimal

samplers between every two levels.

Theorem 5.1.1 (HDX are Optimal Inclusion Samplers (Informal)). Let X be a d-

dimensional HDX. Then for any i ≤ k ≤ d and any f : X(i) → [0, 1] of expectation

µ:

P
s∈X(k)

[∣∣∣ E
t⊂s

[f(t)]− µ
∣∣∣ ≥ ε

]
≤ exp

(
−ε2k

i

)
.

Moreover, this is essentially tight—no inclusion sampler achieves exp
(
−ω

(
ε2 k

i

))
error.
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Theorem 5.1.1 is powerful when i = o(k), but our corresponding lower bounds show

non-trivial inclusion sampling is essentially impossible in the critical regime i = Θ(k). In

fact this exact issue stood as a barrier for many years on the complete complex, where

Impagliazzo, Kabanets, and Wigderson [215] proved Theorem 5.1.1 and used it to construct

sub-optimal testers and PCPs by taking i = Θ(
√
k). In 2017, Dinur and Livni-Navon [128]

resolved this problem by appealing to a somewhat surprising player: an underutilized tool

from boolean function analysis called reverse hypercontractivity (RHC).

Reverse hypercontractivity is a classic functional inequality due to Borell [73] that

lower bounds the correlation between sets on the noisy hypercube. Roughly speaking, it

implies that for any two subsets A,B ⊆ {0, 1}d, the probability a ρ-correlated edge crosses

A and B is at least some power of their measure:

P
(s,s′)∼Tρ

[s ∈ A, s′ ∈ B] ≥ P[A]Oρ(1) P[B]Oρ(1).

Reverse hypercontractivity is an even rarer phenomenon than inclusion sampling—while

there are some moderately de-randomized inclusion graphs (namely the Grassmann [215])

satisfying Chebyshev-type variants of Theorem 5.1.1, none are known to admit reverse

hypercontractivity. At outset this may even seem necessary. The inequality is closely tied

to tensorization and (modified) Log-Sobolev Inequalities [304], which inherently fail on

sparse hypergraphs.

In this work, we circumvent this issue by a new combinatorial argument showing

any hypergraph satisfying Theorem 5.1.1 ‘locally’ is also reverse hypercontractive. This

leads to the following corollary for HDX:

Theorem 5.1.2 (Reverse Hypercontractivity for HDX (Informal)). let X be a d-

dimensional HDX. Then for any ρ ∈ (0, 1), k ≤ d, and A,B ⊂ X(k):

P
(s,s′)∼Tρ(X)

[s ∈ A, s′ ∈ B] ≥ P[A]Oρ(1) P[B]Oρ(1).
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Here Tρ(X) is the natural generalization of the noise operator to hypergraphs which,

roughly speaking, generates s′ by re-sampling each vertex in s with probability 1− ρ. We

also prove a more standard analytical version of reverse hypercontractivity for all functions

by reduction to the above, as well as analog statements for the heavily studied ‘down-up’

walks which play a critical role in almost all HDX applications.

Applications.

The remainder of our work is devoted to proving a variety of applications of

Theorem 5.1.1 and Theorem 5.1.2 including new families of agreement tests, bounded

degree complexes with optimal geometric overlap, double samplers with near-optimal

overhead, new degree lower bounds for HDX, large distance list-decodable and locally-

testable codes, and several extensions of classic combinatorial and analytic results to

HDX. Here we choose to highlight just two of these applications, agreement testing and

geometric overlap. We refer the reader to Section 5.2.5 and Section 5.2.6 for a more

in-depth discussion of our applications.

Agreement testing is a general property testing paradigm that generalizes classical

subroutines in PCP theory like the plane vs. plane test (e.g. [31, 168, 116]). Roughly

speaking, an agreement test consists of a universe U and a family of overlapping subsets

S ⊂ P(U) (think of U as the vertices of X, and S as its hyperedges). Given a family of

local assignments {fs : s→ {0, 1}}s∈S, we’d like to test whether fs actually agrees with

a global function g : U → {0, 1} in the sense that fs = g|s for many s. These systems

occur in PCP reductions to ensure the provers (who answer on subsets) can’t ‘cheat’ by

using answers not corresponding to a real solution of the initial problem (corresponding to

global functions on U).

Agreement testing has two major regimes, the ‘99%-regime’ (where we’d like to

infer global structure only if the test passes with high probability) and the ‘1%-regime’

(where we’d like to infer global structure even when the test only passes with non-trivial
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probability). Leveraging reverse hypercontractivity, we give new tests in both regimes. In

the 99%-regime, we give a new 2-query test where the universe U corresponds to i-sets of

a high dimensional expander, extending a similar result of [118] on the complete complex.

Our test, along with Theorem 5.1.1, has since appeared as an important sub-routine in

the construction of the first bounded-degree 1% agreement testers in [110, 113].

In the 1%-regime, we give a new 3-query tester for a variant of ℓ∞-expanders

(a strengthened notion of HDX [232]) with optimal soundness, meaning that if the test

passes with probability asymptotically better than a random function (2−Θ(k) for a k-

dimensional ℓ∞-expander), we are able to infer global structure. In the context of PCPs,

such a soundness guarantee is critical to ensure the alphabet size stays polynomial in

the soundness. Our result gives rise to the first families of optimal testers beyond the

complete complex and products [128], including (dense) random complexes, skeletons of

many well-studied spin systems, the full linear matroid, and more. We remark that while

all such examples are dense, we prove an optimal ‘local’ agreement theorem only under the

assumption of local spectral expansion. We lift this guarantee to the general result using

ℓ∞-expansion, but it is possible this requirement could be relaxed using recent techniques

based on coboundary expansion [177, 41, 110, 40, 113] to give sparse optimal testers.

The Geometric Overlap Property is one of the earliest notions of high dimensional

expansion [182, 288]. A d-dimensional complex X has c-geometric overlap if for any

embedding of X into Rd, there is a point p ∈ Rd that is covered by a c-fraction of X’s

hyperedges. Geometric overlap was first proven for the complete complex in 2-dimensions

by Boros and Füredi [74], and later extended to all dimensions by Bárány [50]. Gromov

[182] asked whether there are bounded degree complexes satisfying geometric overlap. This

was resolved in [153], who gave both an optimal random construction and several explicit

constructions with bounded but sub-optimal overlap (including one from high dimensional

expanders). Several later works [316, 140, 309] continued to build the connection between
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high dimensional expanders and geometric overlap, but it remained open whether a

construction achieving the best of both worlds (explicit and optimal) could be achieved.

Leveraging a variant of Theorem 5.1.1, we resolve this problem, showing under mild

assumptions that any sufficiently strong high dimensional expander has near-optimal

geometric overlap.

The Trickling-Down Threshold.

High dimensional expanders exhibit a phase transition at a certain expansion

parameter called the ‘Trickling-Down (TD)-Threshold’ [309]. Any complex breaking this

barrier immediately has ‘local-to-global’ structure, meaning properties such as global

expansion and fast-mixing can be inferred just from local structure of the complex [163,

234, 309, 11]. This barrier shows up as a major point in constructions of HDX as

well. It is relatively easy to build complexes at the threshold by tensoring an expander

with the complete complex [287, 170], but breaking the barrier requires complicated

algebraic machinery and is considered the ‘gold standard’ for HDX—indeed only three

such constructions are known [291, 238, 108].

Theorem 5.1.1 and Theorem 5.1.2 hold for
√
d-dimensional skeletons of any complex

breaking the TD-Threshold. In fact, we prove that the top level of such complexes

satisfy exponential concentration for all Lipschitz functions, corresponding to β(ε, i, k) ≤

exp(−ε
√
k
i
) in the inclusion sampling setting. On the other hand, we give examples of

complexes at the TD-threshold that exhibit arbitrarily poor concentration. We view our

results in this sense as a significant strengthening of HDX’s ‘local-to-global’ phase transition,

and a partial explanation to the great difficulty of constructing hypergraphs beyond the TD-

Threshold. Whereas graph expansion and mixing are ‘common’ phenomenon, Theorem 5.1.1

and Theorem 5.1.2 imply as soon as one breaks the TD-Threshold X not only satisfies

exponential concentration of measure, its skeletons satisfy optimal concentration and

reverse hypercontractivity—rare properties not known for any other sparse systems.
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5.2 Main Results and Proof Overview

5.2.1 Background

Before stating our results in somewhat more formality, we cover some basic back-

ground on high dimensional expanders, random walks, and sampling. We refer the reader

to Section 5.4 for formal details and discussion.

Simplicial Complexes.

A d-uniform simplicial complex X consists of a d-uniform hypergraph X(d)

together with its downward closure

X = X(1) ∪ . . . ∪X(d),

where X(i) ⊆
(
[n]
i

)
, called the ‘i-faces’, are all i-size subsets that sit in some hyperedge

in X(d). Given a face t ∈ X(i), the link of t is the sub-complex induced by localizing

to faces that include t, that is Xt := {s : s ∪ t ∈ X}. We say X is connected if the

base graph (Xt(1), Xt(2)) of every link is connected. A d-uniform complex is partite if

its vertices can be partitioned into d ‘parts’ such that each top-level face has one part

from each component. Finally, the inclusion graph (X(k), X(i)) is the bipartite graph

between k-sets and i-sets of X where edges are given by inclusion.

We emphasize that we have changed convention here from dimension, where X(d)

refers to sets of size d+ 1, to uniformity where X(d) consists of sets of size d. We will use

the latter notation throughout the rest of the paper to simplify both the statements and

proofs of our results.

High dimensional expanders.

A simplicial complex X is a λ-one-sided HDX (resp. two-sided) if for every s ∈ X

of co-dimension1 at least 2 (Xt(1), Xt(2)) is a λ-one-sided spectral expander (resp. two
1Here by co-dimension j we mean sets of size d− j.
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sided).

The weakest form of high dimensional expanders are λ-Trickling-Down (TD)

Complexes. We call X λ-TD if it is connected and every co-dimension 2 link is a

λ
d−1

-one-sided expander.

Our results hold for a broad class of HDX we call Nice Complexes. We defer the

formal definition to Section 5.4.8, and here give three basic examples of nice complexes for

which our results hold:

– X is the
√
d-skeleton of a λ-TD complex

– X is the
√
d-skeleton of a partite 2−d-one-sided HDX2

– X is a 2−d-two-sided HDX

High Order Random Walks.

Simplicial complexes admit a variety of ‘high order random walks’ generalizing the

standard random walk on a graph. There are three natural walks critically important to

our results. The first are the classical down-up walks of [234], denoted Uk,dDd,k, which

walk between s, s′ ∈ X(d) through a shared k-face t ⊂ s, s′. The second are the swap

walks of [109, 9], denoted Si,j, which walk between disjoint faces s ∈ X(i) and s′ ∈ X(j)

via s ∪ s′ ∈ X(i+ j). The final walk is the noise operator Tρ, which walks between

s, s′ ∈ X(d) via a random i-subface of s for i ∼ Bin(1− ρ, d).3

Sampler Graphs.

A bipartite graph G = (L,R,E) is an (ε, β)-function additive sampler if ∀f : R→

[0, 1]

P
v∈L

[∣∣∣∣ E
u∈R,u∼v

[f(u)]− E
u∈R

[f(u)]

∣∣∣∣ ≥ ε

]
< β.

2The reader may notice this is subsumed by the above case. In reality, we prove stronger (but somewhat
more involved) bounds for partite complexes, and show under plausible assumptions that optimal sampling
even holds at the top level of such objects.

3We remark that while definition this may seem odd at outset, it is the natural extension of the noise
operator to hypergraphs and recovers the standard notion on products. See [39] or Section 5.4 for further
details.
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G is called an (α, β, δ)-multiplicative sampler if for all f : R → [0, 1] of density at least

Eu∈R [f(u)] ≥ α:

P
v∈L

[∣∣∣∣ E
u∈R,u∼v

[f(u)]− E
u∈R

[f(u)]

∣∣∣∣ ≥ δ E
u∈R

[f(u)]

]
< β.

It is a well-known fact (c.f. [215]) that one can move between additive and multiplicative

samplers without much parameter loss, and moreover that one can ‘flip’ L and R in the

sense that if G = (L,R,E) is an (α, β, δ)-sampler, then Gop = (R,L,E) is roughly a

(β, α, δ)-sampler up to slight decay in parameters. We refer the reader to Section 5.4 for

details.

5.2.2 Sampling and Concentration

We can now state and overview the proof of optimal sampling on HDX in somewhat

more formality.

Theorem 5.2.1 (Sampling on HDX (Informal Theorem 5.5.1)). Let X be a nice, k-uniform

HDX and i ≤ k. The containment graph (X(k), X(i)) is a (ε, β)-function sampler for

β ≤ exp

(
−Ω

(
ε2
k

i

))
.

In other words, for any f : X(i)→ [0, 1] of expectation µ:

P
s∈X(k)

[∣∣∣∣ Et⊆s
[f(t)]− µ

∣∣∣∣ ≥ ε

]
< exp

(
−Ω

(
ε2
k

i

))
.

Since
√
d-skeletons of λ-TD complexes are nice, we get the following immediate

corollary.

Corollary 5.2.2 (Sampling for TD-Complexes (Informal Claim 5.4.28)). Fix λ < 1 and

let X be a d-uniform λ-TD complex. Then for any i < k ≤
√
d, the containment graph of
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(X(k), X(i)) is a (ε, β)-sampler for

β ≤ exp

(
−(1− λ)ε2

k

i

)
.

We remark that this (and all following) results also hold in some variation under

the popular notion of spectral independence, which for our purposes act similar to TD

complexes. We discuss in the main body.

En route to Theorem 5.2.1, we also show the top level of any λ-TD complex satisfies

exponential concentration for Lipschitz functions, which may be of independent interest.

Theorem 5.2.3 (Exponential Concentration of λ-TD Complexes (Informal Corol-

lary 5.7.7)). For any λ < 1, ν > 0, and k ∈ N, let X be a k-uniform λ-TD complex. For

any ν-Lipschitz function f : X(k)→ R:

P
s∈X(d)

[|f(s)− E[f ]| ≥ t] ≤ exp

(
− t
√
cλν

)

for cλ ≤ 1 + e
λ

1−λ .

We refer the reader to Section 5.4.6 for the definition of ν-Lipschitz, and here

just note that specialized to inclusion sampling this implies (X(k), X(i)) is roughly a

(ε, exp(−ε
√
k
i
))-sampler. A similar statement holds under spectral independence, albeit for

a more restricted class than Lipschitz functions (see Corollary 5.7.8).

Proof Overview.

The proof of Theorem 5.2.1 is broken into two main components: the ‘Chernoff’

(i = 1) setting, and a bootstrapping argument lifting Chernoff to general i. Here we focus

just on the simplest version of the proof, the case of two-sided HDX, and refer the reader

to Section 5.7 for the general case.
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Part I: Chernoff-Hoeffding.

Toward Theorem 5.2.1, we first prove a fairly general “k vs 1” concentration theorem

for any HDX X whose strength depends on X’s underlying quantitative expansion. Under

strong assumptions (2−k-HDX), we recover true Chernoff. Perhaps more surprisingly, even

under very weak assumptions ( 1
k
-HDX) we still recover strong concentration of the form

exp(−ε2
√
k). Taking a

√
k-skeleton of the latter recovers Chernoff (see Section 5.4.6). We

give a simplified statement here:

Theorem 5.2.4 (Chernoff-Hoeffding for HDX (Informal Theorem 5.5.2)). Let X be a

k-uniform 1
k
-two-sided HDX. Then for any f : X(k)→ [0, 1]:

P
{v1,...,vk}∈X(k)

[∣∣∣∣∣1k
k∑

i=1

f(vi)− µ

∣∣∣∣∣ > ε

]
≤ exp(−Ω(ε2

√
k))

Moreover, if X is a 2−k-two-sided HDX stronger concentration holds:

P
{v1,...,vk}∈X(k)

[∣∣∣∣∣1k
k∑

i=1

f(vi)− µ

∣∣∣∣∣ > ε

]
≤ exp(−Ω(ε2k))

For simplicity let f = 1A be the indicator of some A ⊂ X(1). The proof of

Theorem 5.2.4 follows the standard Chernoff-style method of bounding the moment

generating function (MGF). Namely for any r > 0:

P
{v1,...,vk}∈X(k)

[
k∑

i=1

1A(vi) ≥ k(µ+ ε)

]
= P

[
exp

(
k∑

i=1

r1A(vi)

)
≥ exp(rk (µ+ ε))

]

≤
E
[

k∏
i=1

er1A(vi)

]
erk(µ+ε)

.

In the classical proof of Chernoff, the variables vi are independent, so one can bound the
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MGF by

E
{v1,...,vk}∈X(k)

[
k∏

i=1

er1A(vi)

]
= E

v∈X(1)

[
er1A(v)

]k
≲ erk(µ+r) (5.2)

and set r = Θ(ε) to get the desired bound.

When X is an HDX, the variables {v1, . . . , vk} may be extremely correlated, so the

above approach breaks down naively. Instead, we take inspiration from Healy’s proof [195]

of the Expander-Chernoff Theorem and recursively bound the MGF by ‘splitting’ it into

components on lower levels of X using the swap walks. Toward this end, for any ℓ ≤ k,

define the partial MGF zℓ : X(ℓ)→ R on a face t = {v1, v2, . . . , vℓ} as

zℓ(v1, v2, . . . , vℓ) =
ℓ∏

i=1

er1A(vi) = er|t∩A|.

Our goal is to bound E[zk] ≈ E[z1]k. To set up a recursion, we appeal to the elementary

observation that a k-set s ∈ X(k) can be sampled by first drawing a k
2
-set t1 ∈ X(k/2),

then t2 ∈ Xt1(k/2) conditionally from its link. We set s = t1 ·∪ t2. This allows us to ‘split’

zk into two correlated copies of zk/2:

E
s∈X(k)

[zk(s)] = E
s∈X(k)

[er|s∩A|]

= E
t1 ·∪t2

[er|t1∩A|er|t2∩A|]

= E
t1 ·∪t2

[zk/2(t1)zk/2(t2)].

The trick is now to observe that (t1, t2) is distributed exactly as an edge in the swap walk

S k
2
, k
2
. Since swap walks on HDX have excellent spectral expansion [9, 109, 187, 12], we

can ‘de-correlate’ the above and write the relation

E[zk] ≤ (1− γ)E[zk/2]2 + γE[z2k/2] (5.3)
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where γ is the expansion of the swap walk.

We could now recurse if not for the error term γE[z2k/2], which could very well be

the dominating factor. The key is show E[z2k/2] actually can’t be too much bigger than

E[zk] itself:

E[z2k/2] ≲ er
2k E[zk]. (5.4)

Setting r such that γer
2k ≪ 1, (5.3) becomes

E[zk] ≲
1− γ

1− er2kγ
E[zk/2]2 ≈ E[zk/2]2,

allowing us to recurse to show an upper bound similar to (5.2). For ‘weak’ HDX, this

strategy requires setting r = Θ(εk−1/2), while for strong HDX we may set r = Θ(ε). This

results in the gap in the stated bounds.

To prove (5.4) we in some sense ‘reverse’ the sampling process above, and draw

a k
2
-set t by first sampling a k-set s ∈ X(k), then take t ⊂ s uniformly at random. This

means we can write the error term as:

E
t∈X(k/2)

[zk/2(t)
2] = E

s∈X(k)

[
E
t⊆s

[
zk/2(t)

2
]]

= E
s∈X(k)

[
E
t⊆s

[
e2r|t∩A|]] .

Crucially, the inner expectation is now over the k
2
-uniform complete complex (whose

vertices are the k-set s), so standard concentration implies the exponent, 2r|t∩A|, is close

to its expectation r|s ∩ A| up to a factor of roughly r2k with high probability. Thus:

E
s∈X(k)

[
E
t⊆s

[
e2r|t∩A|]] ≲ E

s∈X(k)

[
er|s∩A|+r2k

]
= er

2k E
s∈X(k)

[zk].

Part II: Bootstrapping.

We now argue one can lift Chernoff for HDX to optimal sampling for their inclusion

graphs (X(k), X(i)). The idea, based on the method in [215] for the complete complex, is
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to try to reduce to a k
i
-uniform complex Y whose vertices are i-sets in X(i), and whose

k
i
-faces correspond in some way to the k-sets in X. We could then hope to apply Chernoff

to this system to bound the k vs. i sampling behavior in the original complex.

Somewhat more formally, we’ll consider the k
i
-uniform complex generated by the

following process: draw a random k-face {v1, . . . , vk} ∈ X(k), and partition the face

randomly into k
i

subsets of size i denoted {I1, . . . , I k
i
}. The resulting complex, called the

faces complex of X, inherits local-spectral expansion from X’s swap walks so we can apply

Chernoff for HDX to get concentration of the form exp(−ε2 k
i
).

Unfortunately, this does not prove concentration for quite the right object. In

particular, given a function f : X(i) → [0, 1], the above really states that a random

partitioning of a k-face s into k
i

sub i-faces satisfies

P
s∈X(k), ·∪jIj=s

∣∣∣∣∣∣ ik
k/i∑
j=1

f(Ij)− µ

∣∣∣∣∣∣ > ε

 ≤ exp

(
−ε2k

i

)
,

whereas we’d like to bound P
s∈X(k)

[∣∣∣ E
t⊂s

[f(t)]− µ
∣∣∣ > ε

]
. Here we are saved by the fact that

each Ij is marginally distributed as a random i-set t ⊂ s. We prove in such cases it is

possible to inherit sampling from the correlated bound up to a small loss in parameters,

completing the proof.

5.2.3 Reverse Hypercontractivity

Leveraging Theorem 5.2.1 locally in X, we prove reverse hypercontractivity for

high dimensional expanders.

Theorem 5.2.5 (Reverse Hypercontractivity (Informal Theorem 5.6.1)). Fix ρ ∈ (0, 1)

and let X be a k-uniform nice complex for k sufficiently large. Then there exist constants
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C, q (depending only on ρ) such that

⟨f, Tρg⟩ ≥ C∥f∥q∥g∥q.

In other words Tρ is “(C, q, q′)-reverse hypercontractive.4”

The core of Theorem 5.2.5 is really a version of the result for the down-up walk which

simply states any two subsets A,B ⊂ X(k) of non-trivial size must have correspondingly

many edges between them.

Lemma 5.2.6 (Reverse Hypercontractivity of the Down-Up Walk (Informal Theo-

rem 5.6.4)). Fix γ ∈ (0, 1) and let X be a k-uniform nice complex for k sufficiently

large. There exist constants c, q (depending only on γ) such that for any A,B ⊂ X(k) of

measure at most exp(−ck):

P
s,s′∼Uγk,kDk,γk

[s ∈ A, s′ ∈ B] ≥ P[A]q P[B]q.

Note that the assumption on the set size in Lemma 5.2.6 is essentially tight. Even

if one walks from s to s′ while going down to a single vertex it is possible to find sets

A and B of size roughly exp(−k) which are totally disconnected, even on the complete

complex.

Proof Overview.

The proof of Lemma 5.2.6 relies on the following simple observation: since the

down-up walk samples an edge by first sampling t ∈ X(γk) and then independently

sampling s, s′ ∈ X(k) containing t, we can express the γ-correlated mass of A and B as:

P
s,s′∼Uγk,kDk,γk

[s ∈ A, s′ ∈ B] = E
t∈X(γk)

[
P
s
[A | s ⊇ t]P

s
[B | s ⊇ t]

]
.

4Here q′ is the Hölder Conjugate of q. See Section 5.4 for a more detailed background on reverse
hypercontractivity.
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Now the connection with inclusion sampling becomes clear—if even a non-negligible

fraction of t ∈ X(γk) see a reasonable portion of A and B simultaneously, the righthand

side should be large!

Naturally our first thought might be to appeal to Theorem 5.2.1 which bounds this

type of behavior, but when i = γk the resulting bound is far too weak to be useful. In

particular, after swapping from additive to multiplicative sampling and ‘flipping’ the graph,

Theorem 5.2.1 roughly states that (X(i), X(k)) is an (α, β, δ)-sampler for α ≈ exp(−δ2β k
i
).

When i = Θ(k), this only gives a guarantee for sets of constant size.

The key is to realize that because X expands locally, we don’t have to sample

t ∈ X(γk) all at once. Instead, we’ll sample t in ‘steps’ as t = t1 ∪ . . .∪ tm where each tj is

sampled conditionally (i.e. from the link of) its predecessors, and apply Theorem 5.2.1 to

each tj individually. Toward this end, assume P[A] ≤ P[B] and fix the ‘step size’ ℓ = |tj|

roughly such that exp(−c′ k
ℓ
) = P[A] for some sufficiently small c′ > 0.

Drawing our first component t1, observe for small enough c′ we have set our

parameters such that Theorem 5.2.1 promises (X(ℓ), X(k)) is an (α, 1
4
, 1
2
)-sampler for

α ≤ min{P[A],P[B]}, so with probability at least 1
2

the conditional measures of A and

B in t1 are at least 1
2
P[A] and 1

2
P[B] respectively. Moreover, moving into the link of

t1 we can apply exactly the same process to t2 (and so forth), so by the i-th step one

can inductively show that with probability at least 2−i, the conditional mass of A and

B are at least 2−i P[A] and 2−i P[B] respectively. On the other hand, we only take

m = γk
ℓ
= O(log(P[A]−1)) total steps by our choice of ℓ, so at the end of the procedure we

have that with probability at least 2−m = P[A]O(1), the density of A and B in t is at least

P[A]O(1) as well. Putting everything together, we have

P
s,s′∼Uγk,kDk,γk

[s ∈ A, s′ ∈ B] = E
t∈X(γk)

[
P
s
[A | s ⊇ t]P

s
[B | s ⊇ t]

]
≥ 2−m · (2−m P[A]) · (2−m P[B])
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≥ P[A]O(1) P[B]

as desired.

Once one has Lemma 5.2.6, Theorem 5.2.5 follows by passing to discrete approxi-

mations of f and g that carefully balance the quality of approximation (namely regarding

the mass of f and g and pointwise closeness) and coarseness (number of discrete values

in the approximation). Done correctly, one can then divide the functions into boolean

level-sets and apply Lemma 5.2.6 to achieve full reverse hypercontractivity at the cost of a

slight decrease in the corresponding norm and an additional constant factor.

5.2.4 Optimality and the Trickling-Down Threshold

Oppenheim’s Trickling Down Theorem is among the most fundamental results in

the theory of spectral high dimensional expansion [309]. It states that any connected

complex whose top links have expansion strictly better than 1
d−1

exhibits ‘local-to-global’

behavior: one can immediately give quantitative bounds on the spectral expansion of all

links of X (including its ‘global’ 1-skeleton), as well as on the down-up walks [11]. Our

results are in some sense a strengthening of the local-to global behavior of Oppenheim:

essentially as soon as one passes this threshold, not only can one infer ‘Chernoff’-type

concentration on skeletons of X, X itself actually satisfies exponential concentration for

any Lipschitz function. This is in stark contrast to complexes at the TD-Barrier, which

we observe may have no concentration properties whatsoever:

Theorem 5.2.7 (Lower Bounds at the TD-Barrier (Proposition 5.11.7)). For every

β < 1 and k ∈ N, there exists a family of k-uniform 1-TD complexes {Xn} such that

(Xn(k), Xn(1)) is not a (1
2
, β)-additive sampler.

Theorem 5.2.1 also gives essentially the best possible parameters for inclusion

sampling on any complex.
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Theorem 5.2.8 (Inclusion Sampling Lower Bounds (Informal Theorem 5.11.1)). Let

i < k ∈ N, ε ∈ (0, 0.1), and let X be a k-uniform complex, then one of the following holds:

1. (X(k), X(i)) is not an (ε, β)-sampler for β ≤ exp
(
−O

(
ε2 k

i

))
.

2. (X(k), X(i)) is not an ( 1
10i

, ε
6i
)-sampler.

Classical lower bounds on samplers (e.g. [87]) are based on degree and are far from

tight in our setting where inclusion structure is the main barrier. Nevertheless, we are

able to argue our bounds are optimal by reducing to i = 1 where the degree bound is tight.

The idea is to show any set A which is a counter-example to sampling of (X(k), X(1)) can

be ‘lifted’ to a counter example to (X(k), X(i)) by taking A′ to be the family of i-sets

that hit A. This works when the measure of A′ is roughly iµ(A), and therefore when 1) A

is small, and 2) (X(k), X(i)) is a sampler. We show the original technique of [87] can be

used to analyze sets of any density, thereby giving the desired counter-example.

5.2.5 Agreement Testing

Leveraging Theorem 5.2.5, we prove several new agreement theorems in both the

99% and 1%-regimes. In the former we consider a general setup of [118]. Given a complex

X and an ensemble of functions F = {fs :
(
s
i

)
→ F2}s∈X(k), we’d like to test whether F

‘comes from’ a global function g : X(i)→ F2. To be concrete, consider i = 1. Here we are

given F = {fs : s→ F2} and can interpret each fs as the indicator of some subset rs ⊆ s.

We want to test whether there is a ‘global’ subset R ⊆ X(1) that approximately determines

most local subsets in the sense that rs ≈ R ∩ s. For i = 2, a similar interpretation holds

but for subgraphs of X. Namely, think of fs :
(
s
2

)
→ F2 now as a subgraph of s, i.e.

corresponding to the indicator of an edge-set es ⊆
(
s
2

)
. Now ‘coming from’ a global

function means there is a global subgraph E ⊆ X(2) such that for most local graphs,

es ≈ E ∩ s. For i > 2 one interprets this similarly as a question about local vs. global
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sub-complexes of X. Such ‘subcomplex’ tests have proved useful both in boolean analysis

[118] and as a tool for analyzing the more challenging 1%-regime [110, 113].

We study the classical V -test in this context, which draws a pair of k-faces (s, s′) ∼

Uk/2,kDk,k/2 intersecting on k/2 vertices and checks if s and s′ agree on most i-faces in

the intersection. Let AgreeVη (F) denote the probability (s, s′) agree on at least a 1− η

fraction of their shared i-faces. Similarly, for any global function g : X(i) → F2, write

fs
η
≈ g|s if fs agrees with g on a 1− η fraction of its i-faces. Then:

Theorem 5.2.9 (The Subcomplex V-Test, 99%-Regime (Informal Theorem 5.8.1)). Let

X be a k-uniform nice complex. For any η, ε > 0 if AgreeVη (F) ≥ 1− ε:

∃g : X(1)→ F2, P
s∈X(k)

[fs
η′

≈ g|s] ≥ 1− ε′.

where η′ ≤ O(η + ε) and ε′ ≤ εOη(1) + e−Ωη(k).

In the ‘1%’-regime, our goal is to infer global structure of F even when the test

passes with small (but non-negligible) probability. We focus on the i = 1 setting and aim

to construct a test T that infers global structure whenever AgreeT (F) ≥ exp(−Ω(k)), the

best possible bound since a random function passes any such test with this probability.

To this end, we consider a variant of [215]’s Z-test on high dimensional expanders which

samples a triple (σ, σ′, σ′′) ∈ X(k) roughly such that (σ, σ′) is distributed as the V-test, and

σ′′ is drawn from the link of σ′ \ σ. The Z-test passes if (σ, σ′) and (σ′, σ′′) are consistent

on their intersections. We prove that the Z-test is sound under the stronger assumption

that the complex is “λ-global”, meaning the swap walk S k
2
, k
2

is λ-close to its stationary

distribution in ℓ∞-norm (see Definition 5.8.6).

Theorem 5.2.10 (The Z-Test, 1%-Regime (Informal Theorem 5.8.7)). ∀λ, η > 0 and large

enough k, let X be a λ-global k-uniform nice complex. Then for any δ ∈ (8λ+ e−Ω(ηk), 1
8
)
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if AgreeZ0 (F) ≥ δ:

∃g : X(1)→ F2, P
s∈X(k)

[fs
η
≈ g|s] ≥ δ/8.

We will not give a true proof overview of our testing results (though it should be

mentioned that the high level strategy closely follows [215, 128]), but wish to highlight

that the core of Theorem 5.8.7 is really a ‘weak’ local agreement theorem for the V-test

on nice HDX of independent interest. The statement is quite technical, so we give a very

informal version here that captures it in spirit.

Theorem 5.2.11 (The Local Agreement Theorem (Informal Theorem 5.8.12)). Let X

be a nice complex. Then for any δ ≥ exp(−Ω(k)) if AgreeV0 ≥ δ, for an Ω(δ)-fraction of

t ∈ X(k/2) there is a ‘smoothing’ of F which maintains its structure and has (1 − δ2)-

agreement on the link Xt.

In other words, any non-trivial agreement of the V-test must come from the fact

that F is locally consistent with a global function. It is possible Theorem 5.2.11 could be

propogated to a true Z-test under much weaker conditions than λ-globality, e.g. under

the recent topological notions of [177, 110, 41]. We leave this as an open question for the

1%-regime.

5.2.6 Further Applications

Finally, we discuss our applications of Theorem 5.2.1 and Theorem 5.2.5 beyond

agreement testing.

Geometric Overlap.

A complex X has (d, c)-geometric overlap if for every embedding X(1) into Rd−1,

there is a point q ∈ Rd−1 that lies in the convex hulls of at least a c-fraction of X’s

embedded d-faces. [153] proved every d-uniform bounded degree complex has geometric

overlap at best cd, where cd is the overlap of the complete complex. We prove sufficiently

strong high dimensional expanders match this bound.

312



Theorem 5.2.12 (Geometric Overlap (Informal Theorem 5.9.13)). For every d ∈ N and

ε > 0, there exists λ > 0 such that any λ-two-sided HDX with uniform vertex weights has

(d, cd − ε)-geometric overlap.

We remark that while geometric overlap is a classical problem in mathematics

(dating back to [74]), we are not aware of any applications in computer science. Nevertheless

other instances of overlap theorems have proven powerful (see e.g. [92]), so it seems plausible

such results may be of future use.

Double Samplers.

Double samplers are a powerful variant of sampler graphs used in [121] to construct

good list-decodable codes and in [132] for the heavy hitters problem. Roughly speaking,

double samplers are ‘three-wise’ inclusion structures (X(k), X(j), X(1)) such that

1. (X(k), X(j)) is a (1/2, β)-additive sampler

2. For all s ∈ X(k), the restriction of (X(j), X(1)) to vertices in s is a (1/2, β)-additive

sampler

The best known prior construction of double samplers [121] had overhead |X(k)|
|X(1)| =

exp(poly(β−1)), leading to poor rate of their resulting list-decodable codes. One of

the main open questions asked in [121] was to determine the optimal overhead of a double

sampler.

We nearly resolve this problem for ‘typical’ complexes X which are non-contracting

(i.e. |X(j)| > |X(i)| whenever j > i), and satisfy a weak ‘hitting-set’ type guarantee. In

particular, Theorem 5.2.1 gives double samplers with only quasi-polynomial overhead,

while for such typical complexes Theorem 5.2.8 implies a corresponding near-matching

lower bound.

Theorem 5.2.13 (Near-Optimal Double Samplers (Informal Theorem 5.9.3)). For every

β > 0, there exists an infinite family of double samplers with exp(O(log8(β−1))) overhead.
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Moreover, any ‘typical’ double sampler has overhead at least exp(Ω(log2(β−1))).

We refer the reader to Section 5.9.1 for the exact restrictions on X for which the

lower bound holds.

Locally Testable and List-Decodable Codes.

While it is likely applying our double sampler machinery to the arguments of [121]

would give list-decodable codes with substantially improved rate, this was already achieved

subsequent to [121]’s work using walks on expanders [10]. Instead, using a variant of our

machinery we give a closely related application to distance amplification for locally testable

codes with near-optimal distance-alphabet trade-off. The resulting codes are list-decodable

and preserve testability up to a log factor in the alphabet.

Theorem 5.2.14 (Large Distance List-Decodable LTCs (Informal Theorem 5.10.21)). For

all large enough k ∈ N and ε > 0, there exists an explicit family of F2-linear codes with

1. Distance: 1− 2−k − ε

2. Alphabet Size: 2k

3. Rate: εO(k)

Moreover, the codes are efficiently list decodable up to distance 1 − 2−Ω(k) and locally

testable in O(1) queries with soundness Ω( 1
k log(1/ε)

).

Prior distance amplification techniques for LTCs [268] have exponentially worse

distance-alphabet trade-off, but improved rate. To our knowledge the above are the first

large distance list-decodable LTCs. We also give a candidate technique for amplifying

distance while maintaining constant soundness (removing the k factor in the denominator

above) using HDX, and prove the method works on the complete complex. We refer the

reader to Section 5.10 for further details on these notions.
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Degree Lower Bounds for HDX.

One of the formational results in the study of expansion is the Alon-Boppana

theorem [307], roughly stating any family of bounded-degree λ-expanders have degree at

least 2
λ2 . Despite degree being a critical parameter in application (degree controls the

‘blow-up’ induced by using an HDX as a gadget), in high dimensions we understand very

little about optimal degree. The best known constructions of λ-TD complexes have degree

λÕ(d2). Is this optimal? Could λo(d2) be achieved?

We take the first step toward answering this question. Combining our sampling

results with degree lower bounds of [87], we show super-exponential lower bounds for

certain special classes of HDX, including polynomial skeletons of any hyper-regular λ-TD

complex.

Theorem 5.2.15 (Degree Lower Bounds (Informal Theorem 5.9.8)). Fix λ < 1, d ∈ N,

and k ≤
√
d. Let X be the k-skeleton of a d-uniform hyper-regular λ-TD complex. Then

deg(X) ≥ 2Ωλ(k
2)

Theorem 5.2.15 exhibits yet another threshold phenomenon at the TD-barrier, since

there exist 1-TD complexes [170] which have exponential degree at any level. While the

latter are not hyper-regular, they are still reasonably balanced and our techniques extend

to this regime.5

If one could prove a true Chernoff bound for λ-TD complexes (rather than our

concentration of exp(−
√
k)), Theorem 5.2.15 could be improved to showing degree 2Ω(d2)

at the top level of X, albeit still under the assumption of hyper-regularity. While bounded-

degree hyper-regular HDX do exist [159], their degree is substantially worse and removing
5Namely, we only really require that the underlying graph of every link does not have a (roughly)

exp(−
√
d) fraction of vertices making up 1/2 the measure. Unfortunately, constructions such as the

Ramanujan complex have extremely unbalanced links, and actually do fail this property. See Section 5.9.2
for further discussion.
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this constraint from our lower bound remains an important open problem.

Separating MLSI and Reverse Hypercontractivity.

The Modified Log-Sobolev Inequality (MLSI) is a powerful analytic inequality used

to bound the mixing time of Markov chains and previous weakest sufficient condition for

reverse hypercontractivity [304]. To the best of our knowledge, it was open until this work

whether MLSI was necessary. We resolve this question for the setting allowing a leading

constant C > 1.

Corollary 5.2.16 (Separating RHC and MLSI (Informal Corollary 5.9.17)). There ex-

ist constants C, q, q′ such that for infinitely many N ∈ N, there exist (C, q, q′)-reverse

hypercontractive operators on N vertices with vanishing MLSI constant:

ρMLSI ≤ Õ

(
1

log(N)

)

This separation is essentially the strongest possible for operators with constant

expansion, since any such operator has LSI (and therefore MLSI) at least Ω( 1
log(N)

) [107].

A Frankl–Rödl Theorem.

The Frankl–Rödl Theorem [154] is a broadly applied result in extremal combinatorics

bounding the independence number of the graph on {0, 1}n connecting strings of fixed

intersection size. Lemma 5.2.6 implies an analogous result for the γk-step down-up walk

on HDX.

Corollary 5.2.17 (Frankl–Rödl for HDX (Informal Claim 5.9.19)). Fix γ > 0 and let

X be a k-uniform nice complex for k sufficiently large. The γk-step down-up walk has

independence number

α ≤ exp(−Ωγ(k)) · |X(k)|

In comparison to Frankl–Rödl, the above bounds the size of sets avoiding inter-
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sections of size at most instead of exactly (1− γ)k. A similar issue appears when using

reverse hypercontractivity toward this end in the cube and is handled by a separate Fourier

analytic argument in [61]. It would be interesting to extend our results to the exact case

to give a true analog of Frankl–Rödl.

‘It Ain’t Over Till It’s Over’.

Reverse hypercontractivity was used to resolve Friedgut and Kalai’s ‘It Ain’t Over

Till It’s Over’ Conjecture [302], which bounds the tail of random restrictions in the

hypercube. The core of their proof was an analog for the closely related noise operator

previously used in analysis of non-interactive correlation distillation protocols [303]. We

generalize the latter theorem to HDX:

Theorem 5.2.18 (Noise Operator Tail Bounds (Informal Theorem 5.9.18)). Fix ρ ∈ (0, 1)

and k ∈ N sufficiently large. For any k-uniform nice complex X and f : X(k)→ [0, 1] of

density µ:

P [Tρf /∈ [δ, 1− δ]] ≤ δOµ,ρ(1)

5.3 Related Work

High Dimensional Expanders.

Spectral high dimensional expansion was developed over a series of works [141, 234,

309, 124] building on prior notions of high dimensional expansion in topology [163, 291,

283, 182, 233, 230]. Basic higher order random walks were introduced by Kaufman and

Mass [234], with the swap operators later introduced independently in [109, 9]. A great

deal of work has been done at the intersection of high dimensional expanders and analysis,

including determining the optimal spectral gap of the down-up walks [234, 239, 111, 11,

243], developing a general theory of Fourier analysis [236, 111, 162, 39, 187, 176], and

applications thereof to agreement testing [124, 109, 236, 177], mixing of Markov Chains

[25, 24, 96, 94, 286, 66, 146, 23] (among many others), and algorithms [132, 38, 52].
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Two works [242, 232] in the HDX literature also study Chernoff-style bounds,

albeit in very different regimes from our results. Kaufman and Sharakanski [242] study

concentration for global functions over repeated random walks on k-faces, which is incom-

parable to our setting. Kaufman, Kyng, and Song [232] prove scalar and matrix Chernoff

bounds under ℓ∞-independence, a strengthening of spectral HDX that only holds for dense

complexes. While in this work we are primarily interested in proving concentration for

bounded-degree complexes, it is interesting to ask whether their stronger result (Chernoff

for matrix-valued functions) extends to the sparse regime.

In [39, 187], the authors prove a notion called “global” hypercontractivity for high

dimensional expanders. While it is known that reverse hypercontractivity follows from

the standard hypercontractive inequality [304], we are not aware of a reduction from the

weaker global variant. Our work also differs substantially from [39, 187] in its tools and

regime of application.

Samplers and Chernoff-Hoeffding.

Samplers are among the most classical tools in theoretical computer science, see e.g.

[167, 343, 362] for surveys of their many constructions and applications. De-randomized

Chernoff bounds are an important sub-family of sampler graphs that exhibit optimal

tails in the degree of the graph. Sparse examples were constructed in [6, 165] using

walks on expanders, and there is a great deal of literature toward understanding what

general families of hypergraphs admit such concentration, e.g. under limited independence

[337, 338, 339, 318], negative correlation [133], for edge colorings [313], under Dobrushin

uniqueness [317], for strongly Raleigh distributions [273], and most recently under ℓ∞-

independence [232]. Such bounds have many interesting applications beyond those discussed

in this work.

Inclusion samplers were first introduced in Impagliazzo, Kabanets, and Wigderson’s

[215] work on agreement testers and PCPs with strong soundness. Prior to Theorem 5.2.1,
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there were only two known systems of inclusion samplers with optimal tails: the complete

complex [215], and curves [299]. Both examples were used toward the construction of PCPs

with strong soundness, but failed to achieve optimal parameters due to their blow-up in size.

Several sparse variants of inclusion samplers were known to admit weaker ‘Chebyshev’ type

bounds, including high dimensional expanders [124] and the Grassmann [215]. The latter

also lead to PCPs with strong soundness [129], but failed to achieve optimal parameters

due to its polynomial tail. Theorem 5.2.1 is the first to achieve the best of both worlds,

though there remain substantial barriers toward its use for PCPs.

Reverse Hypercontractivity.

Reverse hypercontractivity was first shown by Borell [73] and first utilized in

theoretical computer science by [303] who observed the inequality implies fine-control

of mixing between sets (akin to Lemma 5.2.6). The result has since found great use

in hardness of approximation [302, 145, 344, 61, 229], social choice [305, 249, 301], and

extremal combinatorics [61, 229]. In 2013, [304] extended known bounds on reverse

hypercontractivity to general product spaces and settings with bounded modified Log-

Sobolev Inequalities, a surprising result given the failure of standard hypercontractivity

in these settings. Dinur and Livni-Navon [128] were the first to apply these results to

agreement testing, where they resolved the conjecture of [215] regarding exponential

soundness for the Z-test and built the first ‘combinatorial’ PCPs with optimal soundness.

We note that MLSI bounds (and therefore RHC) are known for many ‘dense’

settings of HDX studied in the sampling literature (see e.g. [96]), with the most general

prior condition being the notions of entropic independence and fractional log-concavity

[22] which are significant strengthenings of spectral HDX. These methods all necessarily

rely on density and cannot capture our theory.
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Agreement Tests.

Agreement testing, also known as direct product testing, is a powerful tool in the

construction of PCPs and locally testable codes [333, 31, 328, 168, 130, 116, 112, 122].

Agreement tests in the 99%-regime were studied by [168] and [115] in the complete

complex, and extended to high dimensional expanders in [124, 109, 236]. [118] gave the

first ‘subcomplex’ agreement theorem in the 99%-regime (the setting of Theorem 5.2.9) in

the complete complex. Agreement testing in the 1%-regime was studied in the complete

complex in [120, 215, 128], with the lattermost work giving optimal bounds. [215] also

gave a de-randomized test over the Grassmann complex, which is polynomial size, but

suffers from exponentially worse soundness. A different 1%-regime test on the Grassmann

was also used to resolve the 2-2 Games Conjecture [254, 125, 47].

Finally, [177, 41, 110, 40, 113] studied the 1% (or closely related list agreement)

regime on high dimensional expanders. These works identified key topological properties

any complex must exhibit to be a good tester, and subsequently constructed complexes

satisfying these notions, giving the first bounded degree 1%-agreement testers. The methods

of [110, 113] in particular rely on Theorem 5.2.1 and Theorem 5.2.9. The soundness

achieved by the above works, however, is inverse logarithmic in the dimension instead

of inverse exponential (or even polynomial). Achieving inverse exponential soundness as

in Theorem 5.2.10 for families of bounded degree complexes remains an important open

question.

Open questions

1. While we are able to show optimal concentration for a fairly broad class of high

dimensional expanders, in the weakest settings (namely under spectral independence

and at the TD-Threshold), we are only able to prove exponential concentration at

the top level. It is unclear whether this is a fundamental or purely technical barrier:
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do such complexes satisfy a true Chernoff bound? As discussed above, a resolution

of this question in the positive leads to better degree lower bounds for HDX, and in

particular a 2Ω(d2) lower bound for the top level of hyper-regular λ-TD complexes.

2. The best known constructions of high dimensional expanders are not hyper-regular.

Is it possible to remove this constraint from our degree lower bound? While our

technique holds even for ‘reasonably balanced’ complexes, it cannot handle objects

like the Ramanujan complexes have extremely unbalanced links. It seems likely this

is a technical rather than inherent barrier, and we conjecture some finer notion of

concentration or application thereof may be able to remove this constraint.

3. Our sampling bounds for partite HDX depend on the concentration of the swap

complex. Using negative correlation, we are only able to show Chernoff on Cℓ,k,n in

the regime where n ≥ Ω(kℓ), which roughly corresponds to (ε, e−ε2k/ℓ2)-sampling at

the top level of partite HDX. If one could prove Chernoff for Cℓ,k,n when n = Θ(k),

it would imply optimal bounds for the top level of partite HDX. Using the local-to-

global entropy contraction framework of [96, 186], the former follows from showing

optimal entropy contraction of the Kneser graphs. Does such a bound hold? Can

one prove optimal inclusion sampling even in the more restrictive setting of product

spaces?

4. We show that ‘standard’ simplicial complexes used in the construction of double

samplers cannot achieve better than quasipolynomial overhead. Are there non-

standard or non-simplicial constructions better served for this purpose?

5. Our 1%-regime test only holds on dense complexes due to the assumption of ℓ∞-

expansion. However, the main argument only requires reverse hypercontractivity

and spectral gap of the down-up walk. Can the argument be completed without

the assumption of ℓ∞-expansion to give new sparse agreement testers in the low
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acceptance regime?

Roadmap

In Section 5.4 we give more detailed and formal preliminaries on high dimensional

expanders, random walks, samplers, and reverse hypercontractivity. In Section 5.5 we

give the formal statement of our optimal sampling theorem and prove the two-sided case,

deferring the remaining cases to Section 5.7. In Section 5.6 we prove reverse hypercontrac-

tivity. In Section 5.8 and Section 5.9 we give applications of reverse hypercontractivity to

agreement testing, and analysis and combinatorics respectively. In Section 5.10 we give

basic sampling lemmas for splitting trees and construct high distance list-decodable LTCs.

Finally in Section 5.11 we show optimality of our sampling results in terms of requirements

on X and strength of sampling.

5.4 Preliminaries and Notation

5.4.1 Graphs and Spectral Expansion

A weighted un-directed graph G = (V,E,P) consists of a finite vertex set V , a set

of edges E ⊆
(
V
2

)
, and a distribution on the edges P : E → (0, 1]. For a vertex v we denote

by P [v] = 1
2

∑
uv∈E P [uv]. In this paper all graphs are assumed to be weighted (the weight

is implicit in notation). We also assume that there are no isolated vertices.

Let ℓ2(V ) = {f : V → R}. The graph G induces an inner product ⟨f, g⟩ =

Ev [f(v)g(v)] on ℓ2(V ), as well as a normalized adjacency operator A : ℓ2(V ) → ℓ2(V )

defined as

Af(v) := E
u∼v

[f(u)] =
∑
uv∈E

P [uv]∑
w∼v

P [wv]
f(u).

It is well known that A is diagonalizable and has eigenvalues

1 = λ1 ≥ λ2 ≥ . . . ≥ λ|V | ≥ −1,
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where the first ‘trivial’ eigenvalue corresponds to the space of constant functions. A graph

is called a spectral expander if all non-trivial eigenvalues are small.

Definition 5.4.1 (Spectral expander). A graph G = (V,E) is called a λ-one-sided spectral

expander if λ2 ≤ λ. We say that G is a λ-two-sided spectral expander if λ2 ≤ λ and

λ|V | ≥ −λ.

We record the following inequality for λ-two-sided spectral expanders, a variant of

the classical expander-mixing lemma. For every f, g ∈ ℓ2(V ),

|⟨f, Ag⟩ − E[f ]E[g]| ≤ λ∥f∥2∥g∥2. (5.5)

Bipartite Graphs and Bipartite Expanders

A bipartite graph is a graph where the vertex set can be partitioned to two

independent sets V = L ·∪ R, called sides. We sometimes denote such graphs by G =

(L,R,E).

The Bipartite Adjacency Operator.

In a bipartite graph, we view each side as a separate probability space, where for

any v ∈ L (resp. R), P [v] =
∑

w∼v P [wv]. We can define the bipartite adjacency operator

as the operator B : ℓ2(L)→ ℓ2(R) by

∀f ∈ ℓ2(L), v ∈ R, Bf(v) = E
w∼v

[f(u)]

where the expectation is taken with respect to the probability space L, conditioned on

being adjacent to v. There is a similar operator B∗ : ℓ2(R) → ℓ2(L) as the bipartite

operator for the opposite side. As the notation suggests, B∗ is adjoint to B with respect

to the inner products of ℓ2(L), ℓ2(R).

We denote by λ(B) the spectral norm of B when restricted to ℓ02(L) = {1}⊥, the

orthogonal complement of the constant functions (according to the inner product the

323



measure induces on L). Namely

λ(B) = sup {⟨Bf, g⟩ | ∥g∥, ∥f∥ = 1, f⊥1L} .

Definition 5.4.2 (Bipartite Expander). Let G be a bipartite graph, let λ < 1. We say G

is a λ-bipartite expander, if λ(B) ≤ λ.

It is easy to show that a bipartite graph is a λ-bipartite expander if and only if it

is a λ-one-sided spectral expander. So we use these terms interchangeably on bipartite

graphs.

We record the following inequality for λ-bipartite expanders similar to (5.5). For

every f ∈ ℓ2(L), g ∈ ℓ2(R),

|⟨f, Ag⟩ − E[f ]E[g]| ≤ λ∥f∥2∥g∥2. (5.6)

5.4.2 Reverse Hypercontractivity

Hypercontractivity and reverse hypercontractivity are powerful analytic inequalities

from boolean function analysis that bound the contraction behavior of operators between

normed spaces. Recall that for p ̸= 0 and a function f on a probability space, we denote by

∥f∥p = E[|f |p]1/p (for p ≤ 0 this is only defined for f that are non-zero almost everywhere).

We note that p 7→ ∥f∥p is monotone increasing.

Let V be a finite probability space and let ℓ2(V ) = {f : V → R}. A monotone

operator is an operator such that for any non-negative function f : V → [0,∞), Af is also

non-negative (i.e. for any x ∈ X, Af(x) ≥ 0). For example, adjacency operators of graphs

are always monotone.

Let A be a monotone operator. Let 1 ≤ p < q and let C > 0. A is typically called
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(p, q, C)-hypercontractive if for every f : V → R,

∥Af∥q ≤ C∥f∥p.

It is well know that this is equivalent to ‘two-function hypercontractivity’, that for every

f, g : V → R

⟨Af, g⟩ ≤ C∥f∥p∥g∥q′

where q′ = q
q−1

is q’s Hölder conjugate [308]. Reverse hypercontractivity ‘flips’ this inequality

in multiple ways: both in the direction of the inequality, and in the relation of p and q.

Definition 5.4.3 (Reverse hypercontractivity). Let q < p < 1 such that p, q ̸= 0. Let

C > 0. Let A be a monotone operator. We say that A is (p, q, C)-reverse hypercontractive

if for every f : V → R≥0,

∥Af∥q ≥ C∥f∥p

or equivalently if for every f, g : V → R≥0 it holds that

|⟨Af, g⟩| ≥ C∥f∥p∥g∥q′

where q′ = q
q−1

is q’s Hölder conjugate (the equivalence is similar to standard hypercon-

tractivity).

It is sometimes convenient to substitute f ′ := fp, g′ = gq
′ and write the two-function

reverse hypercontractivity inequality as

∣∣∣⟨Af ′1/p, g′1/q
′⟩
∣∣∣ ≥ E[f ′]1/p E[g′]1/q′ .

Probably the simplest (and most useful) interpretation of this inequality is when f and

g are indicators of sets M,N ⊆ V respectively, and that A is an adjacency operator of
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a graph (whose vertices are the points in V ). Then this inequality has a combinatorial

interpretation as a type of ‘mixing’ lemma. Namely that the probability a random edge

hits M and N :

P
uv∈E

[u ∈M, v ∈ N ] ≥ P [M ]1/p P [N ]1/q
′
.

This becomes a powerful tool in the regime where the sets are smaller than can be controlled

by the expander-mixing lemma.

5.4.3 Simplicial Complexes

Simplicial complexes.

A pure d-uniform simplicial complex X is a finite set system (hypergraph) consisting

of an arbitrary collection of sets of size d together with all their subsets (individually

called ‘faces’). The sets of size i in X are denoted by X(i), and in particular, the vertices

of X are denoted by X(1) (we do not distinguish between vertices and the singletons of

vertices). We write X≤j to denote faces of X up to size j.

We note that this notation departs somewhat from the typical convention in the

literature which denotes faces of size i+ 1 by X(i), and what we have called a d-uniform

simplicial complex is more typically referred to as a (d−1)-dimensional simplicial complex.

We have chosen to adopt the former notation since most theorems in this work require a

substantial amount of arithmetic on set sizes, and the latter convention quickly becomes

overly cumbersome.

Probability over simplicial complexes.

Let X be a simplicial complex and Pd : X(d) → (0, 1] a density function on

X(d). This density function induces densities on lower level faces Pk : X(k)→ (0, 1] by

Pk(t) =
1

(dk)

∑
s∈X(d),s⊃t Pd(s). Equivalently Pk is the density induced by drawing a d-face

from s ∼ Pd, and a uniformly random k-face t ⊂ s.

When clear from the context, we omit the level of faces and just write P[T ] or
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Pt∈X(k) [T ] for an event T ⊆ X(k).

Links of faces.

Let X be a d-uniform simplicial complex. Let k < d and s ∈ X(k). The

link of s (called a k-link) is a (d − k)-uniform simplicial complex defined by Xs =

{t \ s | t ∈ X, t ⊇ s}. Note the link of the emptyset is X itself X∅ = X.

Let s ∈ X(k) for some k ≤ d. The density function Pd on X induces a density

function Ps
d−k : X(d− k)→ (0, 1] on the link where Ps

d−k[t] =
P[t∪s]
P[s](dk)

. We usually omit s in

the probability, and for T ⊆ Xs(k) write Pt∈Xs(k) [T ].

Connected Complexes.

We call a complex connected if the graph underlying every link is connected.

Partite complexes.

A d-partite simplicial complex is a d-uniform complex whose vertices can be

partitioned into d disjoint sets (typically called “parts” or “colors”)

X(0) = X[1] ·∪X[2] ·∪ . . . ·∪X[d]

such that every s ∈ X(d) has exactly one vertex from each part.

Let X be a d-partite simplicial complex. The color of a face t ∈ X(k) is col(t) =

{i ∈ [d] | t ∩X[i] ̸= ∅}. Let F ⊆ [d]. We denote by X[F ] = {s ∈ X | col(s) = F} the

faces of X with color F . The projection of the complex X onto F is the sub-simplicial

complex XF = {s ∈ X | col(s) ⊆ F}. When X is endowed with a density Pd, XF has

a naturally induced density PF by sampling σ ∼ Pd, and outputting the projection σF .

Quantitatively, the induced distribution can be written as

PF (s) =
∑

t∈X(d),s⊆t

P[t].
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Finally, when F = {i} is a singleton we just write X[i], X i, and xi for brevity.

Given a generic complex X, it will often be useful to consider X’s ‘partitification’

P = P (X), which simply includes every possible ordering of the faces of X as tuples.

Formally, endow the faces of X with an arbitrary order and define

P(k) :=
{
(s, π) :=

{
(sπ(1), 1), (sπ(2), 2), . . . , (sπ(k+1), k)

} ∣∣ s ∈ X(k), π ∈ Sk

}
,

where Sk is the group of permutations on k-letters and the measure of a face (s, π) is

inherited naturally as 1
k!
PX [s]. Note that P (X) does not depend on the choice of ordering,

which is simply a notational convenience.

Degree of Simplicial Complexes.

Degree is a critical parameter of simplicial complexes capturing the (local) ‘blow-up’

incurred by moving to higher uniform faces. We define the (max) degree of a complex

with respect to i-faces as:

degi(X) = max
v∈X(1)

|{s ∈ X(i) : v ∈ s}|

We write just deg(X) := degd(X) to denote degree with respect to top level faces

of X, and deg(i)(v) for the degree of a specific vertex. An infinite family of d-uniform

simplicial complexes {Xn} is called bounded-degree if there exists a (dimension-dependent)

constant C such that degi(X) ≤ C for all i ≤ d.

Hitting Set.

It will occasionally be useful for us to use a common variant of sampling on simplicial

complexes called hitting set. We call a complex (γ, i)-hitting if for any A ⊂ X(1):

P
σ∈X(i)

[σ ⊂ A] ≤ P [A]i + γ
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In other words, if the probability σ ∈ X(i) hits X(1) \ A is at least 1 − µ(A)i − γ. If a

complex is (γ, i)-hitting for all sizes i, we just call it γ-hitting.

5.4.4 Higher Order Random Walks

Simplicial complexes come equipped with several natural families of random walks

generalizing the standard random walk on a graph. Toward this end, let X be a d-uniform

simplicial complex and ℓ < k ≤ d we define the standard ‘averaging’ or ‘random walk’

operators that move up and down the complex:

Down and up operators.

The down operator Dk,ℓ : ℓ2(X(k)) → ℓ2(X(ℓ)) is the bipartite operator of the

containment graph of (X(k), X(ℓ)), that is:

Dk,ℓf(s) = E
t⊇s

[f(t)] .

The adjoint of Dk,ℓ is the up operator, Uℓ,k : ℓ2(X(ℓ))→ ℓ2(X(k)), given by:

Uℓ,kg(t) = E
s⊆t

[g(s)] .

We also write Uk := Uk−1,k and Dk := Dk,k−1 as shorthand throughout.

The composition of the up and down operators Uℓ,kDk,ℓ, called the “down-up” walk,

is the normalized adjacency matrix of the graph whose vertices are X(k) and whose edge

distribution is defined by sampling t ∼ Pℓ, then s, s′ ∼ Pk conditioned on containing t. We

denote the corresponding (bipartite) graph by (X(k), X(ℓ)). For brevity, we sometimes

just write UDk,ℓ instead of Uℓ,kDk,ℓ.

Noise operator.

The noise operator is one the most classical objects of study in Boolean function

analysis. Given ρ ∈ [0, 1], the standard noise operator Tk,ρ operates on the hypercube Fk
2
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by re-sampling each bit uniformly with probability 1− ρ.

The noise operator has a natural extension to simplicial complexes [39, 187]. It is

convenient to define Tk,ρ : ℓ2(X(k))→ ℓ2(X(k)) by its action on a face σ ∈ X(k) by the

following process:

1. Sample ℓ ∼ Bin(k, ρ)

2. Sub-sample τ ⊂ σ of size ℓ

3. sample σ′ ∈ X(k) conditioned on containing τ .

It is easy to check that when X is a product space,6 this exactly recovers the standard noise

operator. We note it is also possible to write the noise operator as a convex combination

of down-up walks:

Tk,ρ =
k∑

ℓ=0

(
k

ℓ

)
ρℓ(1− ρ)k−ℓUDk,ℓ.

Swap walks.

Let X be a d-uniform simplicial complex. Let i, j be so that i + j ≤ d. The

swap walk Si,j = Si,j(X) is the bipartite adjacency operator of the graph (X(i), X(j), E).

An edge {si, sj} is chosen in this graph by first selecting a face t ∈ X(i+ j), and then

partitioning it to t = si ·∪ sj where si ∈ X(i) and sj ∈ X(j) uniformly at random. This

walk was defined and studied independently by [9] and by [109].

Colored swap walks.

The standard swap walks are not well behaved on partite complexes, but there is

a useful analog for this setting defined in [109]. Let X be a d-uniform partite simplicial

complex, and F1, F2 ⊆ [d] be two disjoint subsets. The colored swap walk SF1,F2 = SF1,F2(X)

is the bipartite adjacency operator of the graph (X[F1], X[F2], E). An edge {s1, s2} is
6One can always express a product space ⊗iΩi as a partite simplicial complex by defining each

coordinate as a part, see [39] for further details.
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chosen in this graph by first selecting a face t ∈ X[F1 ·∪ F2], and then partitioning it to

t = s1 ·∪ s2 according to its colors.

A useful observation is that the spectral expansion of swap walks (and color swap

walks) is monotone in the following sense.

Observation 5.4.4. Let X be a d-uniform simplicial complex. Then for every i and j′ < j,

λ(Si,j′) ≤ λ(Si,j). The same holds for partite complexes. For every disjoint F1, F2 and

F ′
2 ⊆ F2, λ(SF1,F ′

2
) ≤ λ(SF1,F2).

Proof. The proof follows from the fact that one can factor

Si,j′(X) = Dj,j′Si,j(X)

and the observation that Dj,j′ contracts 2-norms. A similar argument is true for colored

swap walks in the partite case, replacing Dj,j′ with the corresponding bipartite graph

between the F2-colored faces and the F ′
2-colored faces they contain.

5.4.5 Sampler Graphs

Sampler graphs are bipartite graphs G = (L,R,E) where a random vertex v ∈ L

“sees” any large enough set in R with approximately the correct probability. Here we

discuss a few classical variants of samplers and their relations, and refer the reader to [167]

for further discussion.

Definition 5.4.5 (Multiplicative sampler). Let G = (L,R,E) be a bipartite graph and

α, β, δ > 0. G is an (α, β, δ)-multiplicative sampler if for every set A ⊆ R of size P [A] ≥ α

it holds that

P
v∈L

[∣∣∣ P
u∼v

[u ∈ A]− P [A]
∣∣∣ > δ P [A]

]
≤ β.

Note that the definition of a sampler is not a priori symmetric, L and R have

different roles. We will also study a related additive notion of samplers.
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Definition 5.4.6 (Additive sampler). Let G = (L,R,E) be a bipartite graph and β, ε > 0.

G is an (ε, β)-additive sampler if for every set A ⊆ R it holds that

P
v∈L

[∣∣∣ P
u∼v

[u ∈ A]− P [A]
∣∣∣ > ε

]
≤ β.

Finally, sometimes it is also useful to sample functions instead of sets. toward this

we introduce the following definition in additive notation.

Definition 5.4.7. Let G = (L,R,E) be a bipartite graph and ε, β > 0. G is a (ε, β)-

function additive sampler if for every f : R→ [0, 1] with expectation Ev∈R [f(v)] = µ, it

holds that

P
v∈L

[∣∣∣ E
u∼v

[f(v)]− µ
∣∣∣ > ε

]
< β,

and similarly for a (α, β, δ)-function multiplicative sampler.

Basic Sampler Properties

While the definition of samplers are not symmetric with respect to L and R, a

near-tight correspondence (L,R,E) and (R,L,E) is given in [215, Lemma 2.5]. We repeat

their proof in Section 5.14 in a more general setup.

Claim 5.4.8. Let β, δ > 0, let δ′ > δ and α < min{δ,0.5}
1+δ

. Then for every (α, β, δ)-sampler

G = (L,R,E), it holds that Gop := (R,L,E) is a (1−α(1+δ)
α(δ′−δ)

β, 2α, δ′)-sampler.

We also note that additive samplers and multiplicative are equivalent, at least in

the weak sense as below. We prove this claim in Section 5.14.

Claim 5.4.9. Let G = (L,R,E) be a bipartite graph.

1. If G is a (β, δ)-additive sampler then G is a (Cδ, β, 1
C
)-multiplicative sampler for any

C > 1.

2. If G is a (α, β, δ)-multiplicative sampler for α ≤ 1
2
. Then G is a (β, δ)-additive

sampler, where δ = max{δ, (1 + δ)(α + p)} and p = maxv∈R P [v].
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Under a slightly stronger assumption one can also remove the dependence on δ in

the second item.

Claim 5.4.10. Let β, α0 > 0. If for every α > α0 it holds that G is an (α, β, α0√
α
)-

multiplicative sampler, then G is a(β, 2(α + p))-additive sampler where p = maxv∈R P [v].

Below we show that every additive sampler is also a function additive sampler

(albeit with worse parameters). We did not try to optimize parameters and it could be

the case that a better reduction exists.

Claim 5.4.11. Let G = (L,R,E) be an (ε, β)-additive sampler such that every r ∈ R has

degree at least k and every v ∈ L has probability at most 1
k
. Assume that exp(−0.01ε2k)) <

1
4
. Then G is also a (4β, 2ε)-function additive sampler.

We prove the claim in Section 5.14. We note that [167] also presents a reduction

from an additive sampler to a function additive sampler is presented. The reduction there

changes the underlying graph, which is why we prove a reduction more suitable to our

needs.

5.4.6 Concentration of Measure

Sampler graphs are a special case of the powerful concept of concentration of

measure, a viewpoint we will also take throughout this work. We follow the standard

notation of [76] adapted in the natural way from product measures to simplicial complexes.

Given a simplicial complex X and a function f : X(k) → R, let Z = f(x1, . . . , xk)

denote the random variable distributed as f(x) where x ∈ X(k). We are interested in

understanding the concentration of Z around its mean. Z is said to satisfy subexponential

concentration if there exists a constant c > 0 such that

P[|Z − E[Z]| > t] ≤ exp(−ct),
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and subgaussian concentration if

P[|Z − E[Z]| > t] ≤ exp(−ct2).

Classical concentration bounds (e.g. on the cube, products) typically hold for functions

f satisfying certain Lipschitz-type conditions. Toward this end, define the Z-dependent

variable Z ′
(i) = f(x1, . . . zi, . . . , xk) where zi is sampled conditional on x−i.7 Abusing

notation slightly, we will call a function ν-Lipschitz if its squared difference with respect

to the down-up walk is bounded:

Definition 5.4.12 (ν-Lipschitz function). Let X be a simplicial complex and ν > 0. We

call a function f : X(d)→ R ν-Lipschitz if with probability 1:

d∑
i=1

(Z − Z ′
(i))

2
+ ≤ ν,

where (z)+ = max{z, 0}.

We will occasionally rely on a stricter variant that requires the difference of f on

any two neighboring k-faces be bounded.

Definition 5.4.13 (ν-bounded difference). We say a function f : X(d)→ R has ν-bounded

difference if for every s ∈ X(d) and neighboring s′ of the down-up walk:

(f(s)− f(s′))2 ≤ ν

d
.

Most of our work focuses on a special case of functions with ν-bounded difference

we call lifted functions.

7Recall that even in the non-partite setting, we assign each k-face an arbitrary order, making Z ′
(i) well

defined.
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Definition 5.4.14 (Lifted functions). Let X be a d-uniform simplicial complex and

f : X(k)→ R any function. For any k < k′ ≤ d, the k′-lift of f is the function:

Uk,k′f(s) = Es′⊂s[f(s
′)]

We remark that lifted functions (sometimes called ‘degree’ or ‘level’-k functions)

are fundamental objects in boolean analysis and heavily studied in the HDX literature

[111, 38, 162]. As discussed in the introduction, inclusion sampling is in one-to-one

correspondence with concentration bounds for lifted functions. More generally, bipartite

sampling guarantees on G = (L,R,E) correspond to concentration for functions of the

form AGf , where f : R→ [0, 1] and AG : RR → RL is the normalized bipartite adjacency

matrix of G.

On simplicial complexes, we will typically be interested in understanding concentra-

tion at various levels of the complex. One frequently useful fact is that once concentration

has been established for k-faces, it can typically be ‘raised’ or ‘lowered’ to functions on

other levels via simple reductions to concentration of the complete complex. In cases,

this can even be used to improve bounds on lower levels by bootstrapping from stronger

bounds from larger set sizes. We record the following basic results to this effect here and

use them throughout. Their proofs are given in Section 5.14.

Given integers k ≤ d, a d-uniform simplicial complex X, and a function f : X(k)→

R, denote

πd,k,f
up (t) = max

s∈X(d)

{
P
r⊂s

[
f(r)− E

r⊂s
[f ] > t

]}
and similarly

πd,k,f
low (t) = max

s∈X(d)

{
P
r⊂s

[
f(r)− E

r⊂s
[f ] < −t

]}
to be the worst-case concentration of f restricted to the induced complete complex on

d-faces of X.
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Lemma 5.4.15 (Raising Concentration). Let X be a d-uniform simplicial complex, k ≤ d,

and f : X(k)→ [0, 1] a function satisfying

1. Upper Tail: P
X(k)

[f − E[f ] > t] ≤ up(t)

2. Lower Tail: P
X(k)

[f − E[f ] < −t] ≤ low(t).

for some functions up, low : R+ → [0, 1]. Then the d-lift Uk,df : X(d)→ R satisfies:

1. Upper Tail: P
X(d)

[Uk,df − E[f ] > t] ≤ up( t
2
)(1− πd,k,f

low ( t
2
))−1

2. Lower Tail: P
X(d)

[Uk,df − E[f ] < −t] ≤ low( t
2
)(1− πd,k,f

up ( t
2
))−1.

We remark that since concentration in the complete complex is typically quite

good, for most function classes of interest the latter term is close to 1 and very little is lost

lifting the concentration to level d. We will also use a variant of this result for ‘lowering’

concentration bounds specified to Lipschitz functions.

Lemma 5.4.16 (Lowering Concentration). Let X be a d-uniform simplicial complex and

k ≤ d. Assume there exist functions up(t, ν) and low(t, ν) such that any ν-Lipschitz

f : X(d)→ R satisfies:

1. Upper Tail: P[f − E[f ] > t] ≤ up(t, ν)

2. Lower Tail: P[f − E[f ] < −t] ≤ low(t, ν).

Then any function f ′ : X(k)→ R with ν-bounded difference satisfies:

1. Upper Tail: P[f ′ − E[f ′] > t] ≤ up( t
2
, k
d
ν) + e−

t2

4ν

2. Lower Tail: P[f ′ − E[f ′] < −t] ≤ low( t
2
, k
d
ν) + e−

t2

4ν .

5.4.7 High Dimensional Expanders

In this section we define the notions of high dimensional expansion used throughout

this work and dicsuss their relation with high order random walks.

336



Local Spectral Expanders.

The most standard notion of spectral high dimensional expansion is ‘local-spectral

expansion’, due to [124, 309].

Definition 5.4.17 (Local-spectral expander). Let X be a d-uniform simplicial complex.

We say that X is a λ-one-sided (two sided) high dimensional expander if for every i ≤ d−2

and s ∈ X(i), the graph underlying Xs is a λ-one-sided (two sided) spectral expander.

A key property of local-spectral expanders is that they imply the expansion of

associated high order random walks [234, 124, 239, 111, 11]. We first state such a bound for

the single and multi-step down-up walks (or more accurately their corresponding bipartite

operator).

Theorem 5.4.18 ([11]). Let X be a λ-one-sided d-uniform high dimensional expander.

Then for every ℓ < k ≤ d it holds that λ(Dk,ℓ) ≤
√

ℓ
k
· (1 + λ)

k−ℓ
2 .

In the special case of the single step operator, we will occasionally use the following

refined bound.

Theorem 5.4.19 ([11]). Let X be a λi-one-sided d-uniform high dimensional expander.

Then for every ℓ < k ≤ d it holds that λ(Dk) ≤

√
1
k

k−2∏
i=0

(1− λi)

A critical observation of [9, 109] is that by removing the laziness inherent in the

down-up walk, one can substantially improve expansion. We state an improvement of

their bounds for these swap walks by Gur, Lifshitz, and Liu [187]:8

Theorem 5.4.20 ([187]). Let X be a λ-two-sided high dimensional expander. Then

λ(Sℓ1,ℓ2) ≤
√

ℓ1ℓ2λ

8Formally this result is stated in [187] for λ-products (defined below), but follows for λ-two-sided HDX
since their partifications are λ-products.
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Recently, [12] proved tighter quantitative bounds that are non-trivial for any

underlying local-spectral expansion. We will not need such fine-grain control in this work.

In the partite case, the colored swap walks also have known expansion bounds

assuming partite local-spectral expansion [109, 187].

Theorem 5.4.21 ([109]). Let X be a partite λ-one-sided high dimensional expander. Then

λ(SF1,F2) ≤ |F1| |F2|λ.

We will also need a bound on the spectrum of the averaging operators based on

local-spectral expansion. This has been the subject of intense study [234, 124, 111, 239, 11],

with the best known bounds given by Alev and Lau [11].

λ-Products.

Another useful notion of partite high dimensional expansion is to look directly at

the expansion of the bipartite graphs between different components. We say that X is a

λ-product (a term coined in [187]), if for every face s ∈ X and every two sides Xs[i], Xs[j],

the bipartite graph between the two sides is a λ-one-sided spectral expander. Dikstein

and Dinur showed any partite local-spectral expander is a λ-product.

Claim 5.4.22 ([109]). Let X be a k-partite λ
1+λ

-one-sided local-spectral expander. Then X

is also a λ-product.

λ-Trickling-Down Complexes.

Oppenheim’s trickling-down theorem [309] shows that in any connected complex,

expansion in the top links ‘trickles down’ to expansion at lower levels.

Theorem 5.4.23 (The Trickling-Down Theorem [309]). Let X be a connected d-uniform

simplicial complex. Assume that for every s ∈ X(d− 2), it holds that all non-trivial

eigenvalues of Xs are in [−τ, λ] for some τ, λ ≥ 0. Then all non-trivial eigenvalues of X
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are in [
− τ

1 + (d− 2)τ
,

λ

1− (d− 2)λ

]
.

As discussed in the introduction, the Trickling-Down Theorem introduces a ‘phase

transition’ in the local-to-global behavior of HDX when co-dimension 2 links have expansion

1
d−1

. Past this point, expansion of the 1-skeleton of X can be inferred from expansion

of the links. Before it, no guarantee is possible. This threshold-type behavior naturally

suggests studying following definition of complexes ‘approaching’ the TD-barrier.

Definition 5.4.24 (λ-Trickling-Down Complex). We call a d-uniform simplicial complex

λ-Trickling-Down (λ-TD) if it is connected, and all co-dimension 2 links have (one-sided)

expansion λ
d−1

.

Spectral Independence.

Spectral independence is a closely related notion to local-spectral expansion intro-

duced in the sampling literature [24]. Here we give an equivalent version of the definition

in terms of link expansion, and refer the reader to [24] for the original definition and their

equivalence.

Definition 5.4.25 (Spectral independence). For η > 0, a d-uniform complex X is called

η-spectrally independent (η-SI) if the graph underlying every co-dimension j link is a

(one-sided) η
j
-expander.

5.4.8 Nice Complexes

In the following sections of the paper we prove results for various standard notions of

high dimensional expansion including two sided high dimensional expanders, and skeletons

of sufficiently low-dimensional skeltons of partite and one-sided HDX. To compactify our

statements, we bundle these notions into one definition henceforth dubbed ‘nice complexes’.

We first give a simplified version of the definition.
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Definition 5.4.26 (Nice complex (Simplified)). Let c > 0. A k-uniform complex X is

c-nice if it meets one of the following conditions:

1. X is a 2−cd-two-sided HDX.

2. X is the k-skeleton of a 2−cd-one-sided d-partite HDX for d ≥ 2k2.

3. X is the k-skeleton of a d-uniform complex Y with λ(Ud−1Dd) = 1− c
d

and d ≥ 2k2.

We call X c-locally nice if every link of the complex is also c-nice.

In the above, the reader may notice that the second case is subsumed by the third

by Theorem 5.4.18. In fact, we prove more general results for both two-sided and partite

HDX in which this is not the case. The partite setting requires an object we call the

swap complex, Cℓ,k,d, which is the k
ℓ
-uniform complex whose vertices are all ℓ-sets

(
[d]
ℓ

)
and whose k

ℓ
-faces are all possible families of fully disjoint ℓ-sets. We define the function

swap(k) ∈ [k,∞] to be the smallest d ≥ k such that for all ℓ dividing k/2, the swap

complex Cℓ,k/2,d satisfies a Chernoff bound, i.e. such that (Cℓ,k/2,d(
k
2ℓ
), Cℓ,k/2,d(1)) is an

(ε, exp(−Ω(ε2 k
ℓ
))-additive function sampler for any ε > 0.

Definition 5.4.27 (Nice complex). Let c > 0. A k-uniform complex X is c-nice if it

meets one of the following conditions:

1. X is a 2−cd-two-sided HDX.

2. X is the k-skeleton of a 2−cd-one-sided d-partite HDX for d ≥ swap(k).

3. X is the k-skeleton of a 1
d
2−cdα-two-sided d-uniform HDX for d ≥ k

2
1+α for α ∈ [0, 1]

We call X c-locally nice if every link of the complex is also c-nice.

It is immediate from negative correlation that swap(k) ≤ O(k2), but we conjecture

in fact swap(k) = k. If this holds, all our results apply to the top level of sufficiently

strong partite HDX (including, e.g., to product spaces).
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Note that skeletons of nice complexes are nice (see [276, Theorem 3.5] for the third

case), and that if X is c-nice for one of the first two items, it is also c-locally nice. It is

simple computation to verify that skeletons of λ-TD and η-SI complexes are locally nice.

Claim 5.4.28. Let λ < 1 and η > 0. For any d-uniform complex Y :

1. If Y is λ-TD, then its
√
(1− λ)d-skeleton is e−1-locally nice.

2. If Y is η-SI, then its
√

d
max{2,η} -skeleton is e−2-locally nice.

Proof. We first prove niceness. The first item follows from observing by Theorem 5.4.23

and Theorem 5.4.19 that the down-up walk on the k = (1−λ)d skeleton of a λ-TD complex

has λ(Uk−1Dk) = 1− e−1

d
.

For the second item, let k′ = d
max{2,η} . By definition one can check the k′-skeleton

of Y is a min{3
d
, η
(1−1/η)d

}-one-sided local-spectral expander and Theorem 5.4.19 implies

λ(Uk′−1Dk′) ≤ 1− e−2

k′
.

For local niceness, note that η-SI and λ-TD complexes have η-SI and λ-TD links

respectively. Further, one can check directly that if X is a k-skeleton of d-uniform Y , then

Xs is a (k − |s|)-skeleton of Ys, which is (d− |s|)-uniform. The rate d−|s|
k−|s| ≥

d
k

thus we can

apply the same proof of niceness to every link as well.

5.5 Concentration on (Two Sided) HDX

We first give the formal statement of our optimal inclusion sampling theorem in

the general case.

Theorem 5.5.1 (Sampling on HDX). Fix c > 0. There are constants c1, c2 > 0 such that

for any k ∈ N, i < k, and k-uniform c-nice complex X, the containment graph (X(k), X(i))

is an (ε, β)-function sampler for

β =
c1
ε
exp

(
−c2ε2

k

i

)
.
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Moreover, if X is a k-skeleton of a d-uniform complex Y , then for every k < k′ ≤ d, the

graph (Y(k′), Y(i)) is also an (ε,O(β))-function sampler.

We refer the reader to Section 5.7.3 for the exact λ dependence in the λ-TD case. In

this section we will only prove the two-sided case of Theorem 5.5.1. We start by analyzing

the more typical ‘Chernoff-Hoeffding’-type setting, then show how to bootstrap this bound

to prove the two-sided case of Theorem 5.5.1.

5.5.1 Chernoff-Hoeffding

In this section we introduce a new technique to prove ‘k vs. 1’ concentration on

simplicial complexes X whose underlying strength depends on the expansion of the swap

walks of X. The general form is fairly cumbersome (we refer the reader to Proposition 5.5.4,

which bounds the moment generating function in terms of swap walk expansion), and

for readability only state the result here for 1
k
2−kα-two-sided HDX, interpolating between

1
2k

-HDX at α = 0, and 2−Ω(k)-HDX at α = 1.

Theorem 5.5.2. Let α ∈ [0, 1] and X be a k-uniform 1
k
2−kα-two-sided local-spectral

expander. Then for any f : X(1)→ [0, 1] and ε > 0:

1. Upper tail:

P
{v1,...,vk}∈X(k)

[
1

k

k∑
i=1

f(vi)− µ > ε

]
≤ 2min {k, cα} exp

(
− 1

12
ε2k

1+α
2

)

2. Lower tail:

P
{v1,...,vk}∈X(k)

[
1

k

k∑
i=0

f(vi)− µ < −ε

]
≤ 2min {k, cα} exp

(
− 1

12
ε2k

1+α
2

)

where cα ≤ e
( 3
α )

1
α

eα .
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We remark it is possible to use this approach to prove similar concentration for any λ-

TD complex, but in Section 5.7.2 we will see a stronger bound for this specific regime based

on a variant of the Herbst argument. As such we allow ourselves the additional constant

factor here in expansion for convenience. Second, note that by setting α appropriately,

Theorem 5.5.2 shows for any c > 0 that the containment graph (X(k), X(1)) of any

2−ck-two-sided local spectral expanders is a (ε, β)-sampler for β = exp(−Ωc(−ε2k)).

The core of Theorem 5.5.2 centers around the notion of splittability [9], which will

allow us to de-correlate the variables in our complex to bound the moment generating

function of U1,kf . We introduce a slight variant of the standard definition convenient for

our purposes.

Definition 5.5.3 (Balanced Splittability). We call a d-uniform complex X {γi}i∈[⌊log(d)⌋−1]-

balanced-splittable if for every i the 2i-th swap walk expands:

λ(S2i,2i) ≤ γi

All applications of splittability in the literature lose additive factors in the γi.

We introduce a new approach combining splittability with an ‘internal’ reduction to

the complete complex that allows finer control over this error and instead incurs more

manageable multiplicative loss.

Proposition 5.5.4. For any j ∈ N and r ∈ [0, 1], let k = 2j, and X be a k-uniform

{γi}-balanced-splittable complex with e
5
4
2−ir2kγj−1−i < 1. Then for any f : X(1)→ [0, 1]:

E
{v1,...,vk}∈X(k)

[
k∏

i=0

erf(vi)

]
≤ cr,γ E

X(1)
[erf ]k

where cr,γ ≤

(
j−1∏
i=0

(
1−γj−1−i

1−e
5
4 2−ir2kγj−1−i

)2i
)

.

While the definition of cr,γ may be somewhat hard to parse, note at least that for
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any fixed r, cr,γ goes to 1 as γ tends to 0.

Proof. For any even ℓ, denote by zℓ : X(ℓ)→ R the ‘partial’ moment generating function:

zℓ({v1, . . . , vℓ}) =
ℓ∏

i=1

erf(vi).

Our goal is to bound E[zk] = E[exp(r
∑k

i=1 f(vi))] by induction on zℓ. Denote by z0ℓ = E[zℓ]1

the projection of zℓ to the space of constant functions and by z⊥ℓ = zℓ − z0ℓ its orthogonal

part. The first key observation is that we may split zℓ into two ‘copies’ of zℓ/2 using the

swap operator:

E
X(ℓ)

[zℓ] = E
X(ℓ/2)

[
zℓ/2Sℓ/2zℓ/2

]
.

Now splitting zℓ/2 itself into parallel and perpendicular components, we can bound this as

E
X(ℓ/2)

[
zℓ/2Sℓ/2zℓ/2

]
= E[zℓ/2Sℓ/2(z

0
ℓ/2 + z⊥ℓ/2)]

= E[zℓ/2]2 + ⟨z⊥ℓ/2, Sℓ/2z
⊥
ℓ/2⟩

≤ E[zℓ/2]2 + γlog(ℓ)−1∥z⊥ℓ/2∥22

= (1− γlog(ℓ)−1)E[zℓ/2]2 + γlog(ℓ)−1∥zℓ/2∥22. (5.7)

The first of these two terms can clearly be bounded by induction. The difficulty lies in the

error term, as the 2-norm of the partial MGF may be much larger than its expectation.

To handle this, we argue via reduction to the complete complex the second moment of

zℓ/2 is actually quite close to the original expectation of zℓ.

Claim 5.5.5. For any even ℓ and r ∈ [0, 1]:

∥zℓ/2∥22 ≤ e
5
4
r2ℓE[zℓ]

Let’s first complete the proof given this fact. Plugging the claim back into Equa-
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tion (5.7) and applying induction we get the following bound:

E[zk] ≤
1− γj−1

1− e
5
4
r2ℓγj−1

E[zk/2]2

≤ 1− γj−1

1− e
5
4
r2kγj−1

j−2∏
i=0

(
1− γj−2−i

1− e2
−i 5

4
r2 k

2 γj−2−i

)2i+1
E[z1]k

=

j−1∏
i=0

(
1− γj−1−i

1− e2
−i 5

4
r2(k+1)γj−1−i

)2i
E[erf ]k

as desired.

It is left to prove the claim relating ∥zℓ/2∥22 to E[zℓ].

Proof of Claim 5.5.5. Recall our goal is to show

E[z2ℓ/2] = E
t∈X(ℓ/2)

[∏
v∈t

e2rf(v)

]
≤ e

5
4
r2ℓE[zℓ]

The key is to observe that we can draw t ∈ X(ℓ/2) by first drawing s ∈ X(ℓ), and then

drawing t ⊂ s uniformly at random:

E
t∈X(ℓ/2)

[∏
v∈t

e2rf(v)

]
= E

s∈X(ℓ)

[
E
t⊂s

[∏
v∈t

e2rf(v)

]]

The inner expectation is now within the complete complex which is negatively correlated,

so may therefore ‘pull out’ the product (e.g. by [197, Theorem 4]) and write:

E
t⊂s

[∏
v∈t

e2rf(v)

]
≤ E

v∈s
[e2rf(v)]ℓ/2.

Let µs = Ev∈s[f(v)] and observe ℓµs =
∑

v∈s f(v). Combining the above, we have

E[z2ℓ/2] ≤ E
s∈X(ℓ)

[
E
v∈s

[e2rf(v)]ℓ/2
]
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≤ E
s∈X(ℓ)

[
E
v∈s

[1 + 2rf(v) +
5

2
r2f(v)]ℓ/2

]
= E

s∈X(ℓ)

[
(1 + 2rµs +

5

2
r2µs)

ℓ/2

]
≤ E

s∈X(ℓ)

[
e(r+

5
4
r2)ℓµs

]
= E

s∈X(ℓ)

[∏
v∈s

e(r+
5
4
r2)f(v)

]

≤ e
5
4
r2ℓE [zℓ]

where in the second inequality we’ve used that ex < 1 + x + 5
4
x2 for x ∈ [0, 2] and that

f 2(v) ≤ f(v).

The proof of Theorem 5.5.2 is now essentially immediate from Chernoff’s method.

Proof of Theorem 5.5.2. We prove the upper tail. The lower tail follows from applying

the upper tail to 1− f . Let k′ be the largest power of 2 such that k′ ≤ k. Fix r = 1
2
εk′α−1

2 ,

and recall by Theorem 5.4.20 that γi ≤ 2i

k′
2−(k′)α . By Proposition 5.5.4, we therefore have:

P
{v1,...,vk′}∈X(k′)

[
k′∑
i=1

f(vi) ≥ µk′ + εk′

]

= P
{v1,...,vk′}∈X(k′)

[
exp

(
r

k∑
i=1

f(vi)

)
≥ exp (rk′µ+ rk′ε)

]
Markov

≤
E
[∏k′

i=0 e
rf(vi)

]
exp(rk′µ+ rk′ε)

≤

(
j−1∏
i=0

(
1

1− 2−i−1e−
1
3
(k′)α

)2i
)
exp

(
−ε2

3
(k′)

1+α
2

)

where in the final inequality we have applied Proposition 5.5.4 and bounded E[erf ]k′ by

standard manipulations. To bound the leading coefficient first note that for any α ≥ 0 we

have
j−1∏
i=0

(
1

1− 2−i−1e−
1
3
(k′)α

)2i

=

j−1∏
i=0

(
1

1− 2−i−1

)2i

≤ k′
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since each individual term in the product is at most 1
2

and j = log2(k
′). For α > 0 we may

also write

j−1∏
i=0

(
1

1− 2−i−1e−
1
3
(k′)α

)2i

≤
j−1∏
i=0

 1

1− e−
1
3 (k′)α

2

2i

≤
(
1 + e−

1
3
(k′+1)α

)k′
≤ e

k′

e
1
3 (k′)α

≤ e
( 3
α )

1
α

eα

where the last inequality follows from observing e
k′

e
1
3 (k′)α is maximized at k′ = ( 3

α
)−α.

Finally we apply Lemma 5.4.15 to lift this guarantee to X(k):

P
X(k)

[U1,kf − µ > ε] ≤ min{k′, cα} exp
(
− ε2

12
(k′ + 1)

1+α
2

)(
1− π

k,k′,Uk′
0 f

low (ε/2)

)−1

≤ min{k, cα} exp
(
− ε2

12
(k + 1)

1+α
2

)(
1− e−

ε2(k+1)
6

)−1

≤ 2min{k, cα} exp
(
− ε2

12
k

1+α
2

)

where in the final inequality we have assumed ε2 ≥ 6
k

(else the stated bound is trivial).

5.5.2 From Chernoff to Inclusion Sampling

We now show how to bootstrap Chernoff-type concentration to optimal sampling

for the general inclusion graph (X(k), X(i)). We focus on the case of two-sided HDX, and

give the substantially more involved argument for the full theorem in Section 5.7. We

restate the theorem in the two-sided case here for convenience.9

Theorem 5.5.6 (Sampling on two-sided HDX). For any c > 0 there exists c′ > 0 such that

for any k ∈ N, i < k, and k-uniform 2−ck-two-sided local spectral expander X, (X(k), X(i))

9We prove only the α = 1 setting, the general version follows the same argument.
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is an (ε, β) sampler for

β =
c′

ε
exp

(
−Ωc

(
ε2
k

i

))
.

Moreover, if X is a k-skeleton of a d-uniform complex Y , then for every k < k′ ≤ d, the

graph (Y(k′), Y(i)) is also an (ε,O(β))-function sampler.

The proof of Theorem 5.5.6 is based on a refinement of an idea of [215], who

observed on the complete complex one can prove an analogous bound by partitioning

k-sets into i disjoint k
i
-sets, and treating these as independent variables. In the world of

general simplicial complexes, this type of subdivision is called the faces complex of X [110].

Definition 5.5.7 (Faces Complex [110]). Let X be a d-uniform simplicial complex. For

any i ≤ d, the faces complex F
(i)
X is the ⌊d

i
⌋-uniform complex with vertices X(i) and top

level faces:

F
(i)
X

(⌊
d

i

⌋)
=

{s1, . . . , s⌊ d
i
⌋}

∣∣∣∣∣
⌊ d
i
⌋⋃

j=1

sj ∈ X,
⋃
j ̸=ℓ

sj ∩ sℓ = ∅


The weight of a face is proportional to the weight of its union in X. We drop X from the

notation when clear from context.

In our setting, subdivided faces have extreme dependencies so [215]’s analysis for

the complete complex fails. Nevertheless, it is in fact possible to generalize this approach

to any simplicial complex through somewhat more careful analysis.

Proposition 5.5.8. Let X be a d-uniform complex and i ≤ k ≤ d be such that(
F (i)

(
⌊k
i
⌋
)
, F (i)(1)

)
is an (ε, β)-function additive sampler. Then (X(k), X(i)) is a (2ε, 2

ε
β)-

function additive sampler.

The proof of Proposition 5.5.8 itself centers around a lemma for general bipartite

samplers stating that sampling over correlated sub-divisions is sufficient to imply sampling
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for the general graph as long as the components are appropriately marginally distributed.

Lemma 5.5.9. Given a graph G = (L,R,E), parameters ε, β > 0 and k ∈ N, and

f : L→ [0, 1], suppose there is a distribution (v1, v2, . . . , vk, u) ∼ D over Lk ×R satisfying

1. For every i ∈ [k], the marginal (vi, u) is distributed according to the edges of G.

2. P(v1,v2,...,vk,u)∼D

[
1
k

k∑
i=1

f(vi) > E[f ] + ε

]
≤ β.

Then

P
u∼R

[
E

v∈L,v∼u
[f(v)] > E[f ] + 2ε

]
≤ β

ε
. (5.8)

The same statement applies replacing > with < and ε with −ε inside the probabilities.

We defer the proof to the end of the subsection and first prove Proposition 5.5.8.

Proof of Proposition 5.5.8. Let m = ⌊k
i
⌋ and fix a function f : X(i)→ [0, 1] with expec-

tation µ = Es∈X(i) [f(v)]. Consider the distribution D which samples (s1, s2, . . . , sm, t) ⊂

X(i)m ×X(k) by drawing {si}mi=1 from the faces complex, and draws t ⊃
⋃
si from X(k).

We claim D satisfies the requirements of Lemma 5.5.9, namely:

1. ∀i ∈ [m], (si, t) is marginally distributed according to the inclusion graph edges

(X(k), X(i))

2. P{s1,s2,...,sm,t}∼D

[∣∣∣∣ 1k k∑
i=1

f(si)− µ

∣∣∣∣ > ε

]
≤ β.

The first fact follows from the definition of the faces complex, namely that marginally

each si is distributed as X(i), and t is drawn from X(k) conditional on containing si. The

second fact is immediate from our assumption that the faces complex is an (ε, β)-sampler.

We are now ready to prove the two-sided case of Theorem 5.5.1.
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Proof of Theorem 5.5.6 (Theorem 5.5.1 two sided case). By Theorem 5.5.2 if the faces

complex of X is a 2−ck-two-sided HDX, then it is an (ε, β)-sampler for β ≤ c1e
Ωc(ε2⌊ k

i
⌋)

and c1 > 0 some constant dependent only on c. Then by Proposition 5.5.8, X would be

a (2ε, β
ε
)-sampler. The proof is completed by observing 2−Ω(k)-local-spectral expansion

of the faces complex is immediate from Theorem 5.4.20, since the graph underlying any

link of the faces complex is a swap walk within (a link of) X. The ‘moreover’ statement

follows directly from Lemma 5.4.15.

It remains to prove Lemma 5.5.9.

Proof of Lemma 5.5.9. Let Z : R→ [0, 1] record the probability u0 ∈ R ε-mis-samples f

under D:

Z(u0) := P
(v1,v2,...,vk,u)∼D

[
1

k

k∑
i=1

f(vi) > µ+ ε

∣∣∣∣∣ u = u0

]
.

By assumption, the expected mis-sampling probability is small

E
u0

[Z(u0)] = P
(v1,v2,...,vk,u)∼D

[
1

k

k∑
i=1

f(vi) > µ+ ε

]
≤ β,

so Markov’s inequality implies the following tail bound on Z(u0):

P
u0∈R

[Z(u0) > ε] ≤ β

ε
.

We argue if u0 is such that Ev∈L,v∼u0 [f(vi)] > µ+2ε then Z(u0) > ε, thus concluding that

(5.8) holds.

The key is the simple observation that the (conditional) expectation A under D

and G are equivalent:

E
(v1,v2,...,vk,u)∼D

[f(vi) | u = u0] =
1

k

k∑
i=1

E
(vi,u)

[f(vi)|u = u0]

= E
v∈L

[f(v) | v ∼ u0] (5.9)
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where the first equality is by linearity of expectation, and the second is by our

assumption that (vi, u) is distributed as G. The result now follows roughly from arguing

the random variable 1
k

∑k
i=1 f(vi) restricted to u0, is non-trivially concentrated around its

expectation Ev∈L [f(v) | v ∼ u0], which is at least 2ε-far from µ.

In particular, fix u0 such that E(v1,v2,...,vk,u)∼D [f(vi) | u = u0] = µu0 > µ+2ε. Then,

we bound Z(u0) by its upper tail:

Z(u0) ≥ P
(v1,v2,...,vk,u)∼D

[
1

k

k∑
i=1

f(vi) > µu0 − ε

∣∣∣∣∣ u = u0

]
.

Denote the right-hand side by p, and as f(v) ∈ [0, 1] we have

µu0 ≤ p+ (1− p)(µu0 − ε).

Re-arranging gives

Z(u0) ≥ p ≥ ε

1− µu0 − ε
≥ ε.

The last inequality follows from the the denominator being in (0, 1) (0 < µu0 − ε < 1

because µu0 − ε ≥ µ+ ε > 0 and µu0 − ε < µu0 ≤ 1).

Finally, we note the usual trick (changing f in the proof to 1− f) gives the bounds

for

P
u∈R

[
E

v∼u,v∈L
[f(v)] < µ− 2ε

]
.

Multiplicative Sampling

In the following sections, it will sometimes be more convenient to work with

multiplicative sampling instead of the additive bounds of Theorem 5.5.1, and with the

‘flipped’ inclusion graph (X(i), X(k)). By the generic translations in Claim 5.4.9 and

Claim 5.4.8 we get the following corollary for this setting.
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Corollary 5.5.10. Let X be a k-maximal c-nice complex. Then for every δ, β ∈ (0, 1),

(X(i), X(k)) is a (α, β, δ)-sampler for

α ≤ c′

βδ
e−Ωc(β2δ2 k

i
).

We remark that we have not attempted to optimize dependence on β and δ above.

In the following sections we will only be interested in the setting where both are constant.

5.6 Reverse Hypercontractivity

In this section we recursively leverage optimal inclusion sampling to prove reverse

hypercontractivity for high dimensional expanders.

Theorem 5.6.1 (Reverse Hypercontractivity). Fix c > 0, ρ ∈ (0, 1), and let X be a

k-uniform c-locally nice complex for k sufficiently large. Then there exist constants C, q

(dependent only on c, ρ) such that

⟨f, Tρg⟩ ≥ C∥f∥q∥g∥q.

At its core, the proof of Theorem 5.6.1 really only relies on X and its links satisfying

optimal i vs k sampling. With this in mind, we will instead work with the following notion

of a Link up-sampler that captures this core property:

Definition 5.6.2 (Link up-sampler (LUS)). Let τ ∈ (0, 1) and let X be a k-uniform

simplicial complex. We say that X is a τ -LUS if for every i ≤ k − 2, every j ≤ k − i, and

every s ∈ X(i), it holds that (Xs(j), Xs(k − i)) is a ( 1
τ
exp(−τ k−i

j
), 0.1, 0.2)-multiplicative

sampler.

We note the constants 0.1, 0.2 are essentially arbitrary and fixed for convenience.

The notion can also be further relaxed in a number of ways such as asking for sampling
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for j only up to a linear number of levels or only within links up to a certain level and the

main results of this section would still hold.

We prove link-up samplers are reverse hypercontractive. Theorem 5.6.1 is an

immediate corollary.

Theorem 5.6.3. For every ρ ∈ (0, 1) and τ > 0, there is some ℓ > 1 and C > 0 such that

the following holds for all sufficiently large k ∈ N. Let X be k-uniform and τ -LUS. Then

Tρ is (1
ℓ
, ℓ
1−ℓ

, C)-reverse hypercontractive.

We split the proof of Theorem 5.6.3 below into two parts, roughly corresponding

to reverse hypercontractivity for boolean functions, and a reduction from the general to

boolean case.

5.6.1 The Boolean Case

The main workhorse behind Theorem 5.6.3 is to show that any linear-step down-up

walk on an LUS is reverse hypercontractive for sets of size up to exp(−Ω(k)).

Theorem 5.6.4. Let τ > 0 and γ ∈ (0, 1). There exist constants c, q > 0 such that the

following holds for any sufficiently large k. Let X be a k-uniform τ -LUS. Then for any

sets A,B ⊆ X(k) of relative size at least exp (−ck) and γ′ ≤ γ it holds that

P
t,t′∼UDk,⌊γ′k⌋

[t ∈ A, t′ ∈ B] ≥ P [A]q P [B]q .

It will be convenient for us to assume at least one of the sets A and B is not too

large. To this end, we first handle the case that both are large separately.

Claim 5.6.5. For every p > 0.5 there exists q ≥ 1 so that the following holds. Let X be

a simplicial complex and A,B ⊆ X(k) subsets such that P [A] ,P [B] ≥ p. Then for any

γ′ ≤ γ:

P
t,t′∼UDk,⌊γ′k⌋

[t ∈ A, t′ ∈ B] ≥ P [A]q P [B]q .
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The proof is largely un-enlightening computation, so we postpone it to the end of

the subsection. Henceforth, assume without loss of generality that P [A] ≤ P [B] and has

P [A] ≤ 0.8.

With this out of the way, we overview the main proof strategy. Assume for the

moment that γ′k is integral. As discussed in the introduction, Theorem 5.6.4 relies on

the following elementary observation: since the down-up walk samples an edge by first

sampling s ∈ X(γk) and then independently sampling t, t′ ∈ X(k) containing s, we can

express the γ′-correlated mass of A and B as:

P
t,t′∼UDk,γ′k

[t ∈ A, t′ ∈ B] = E
s∈X(γ′k)

[
P
t
[A | t ⊇ s] · P

t
[B | t ⊇ s]

]
.

This motivates us to consider the set of s ∈ X(γk) that simultaneously see a large enough

fraction of A,B. Toward this end, for any integer ℓ0 ≤ k and real number δ > 0, let

GX(ℓ0, δ) =
{
s ∈ X(ℓ0)

∣∣∣ P
t
[A | t ⊇ s] ≥ δ P [A] and P

t
[B | t ⊇ s] ≥ δ P [B]

}

denote the set of elements in X(ℓ0) that see a noticeable fraction of both A and B.

Recalling P [B] ≥ P [A], to prove Theorem 5.6.4 it suffices to show for any γ′ ≤ γ

P
[
GX(γ′k,P [A]O(1))

]
≥ P [A]O(1) , (5.10)

since (writing G := GX(γ′k,P [A]O(1))) we then have

P
t,t′∼UDk,γ′k

[t ∈ A, t′ ∈ B] ≥ P
s∈X(γ′k)

[G] · P
s∈X(γ′k)

[
P
t
[t ∈ A|s ∈ G]P

t
[t ∈ B|s ∈ G]

]
≥ P[A]O(1) P[B] (5.11)

As such, our main goal is to prove (5.10). A key observation toward this end is that
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G satisfies certain useful ‘composition’ behavior: we can bound G(γ′k, ·) by iteratively

bounding G(i, ·) for smaller i within repeatedly deeper links of the complex. In particular,

for sets A and B and any r ∈ X, define the restrictions of A and B to the link of r as

Ar := {t ∈ Xr : r ∪ t ∈ A} and Br := {t ∈ Xr : r ∪ t ∈ B}

and define the local subset GXr(ℓ0, δ) as the set of s ∈ Xr(ℓ0) that see a sufficiently fraction

of Ar and Br:

GXr(ℓ0, δ) =

{
s ∈ Xr(ℓ0)

∣∣∣∣∣ P
t∈Xr(k−r)

[Ar | t ⊇ s] ≥ δ P [Ar]

and P
t∈Xr(k−r)

[Br | t ⊇ s] ≥ δ P [Br]

}
.

G and GXr compose in the following fashion:

Observation 5.6.6 (Composition of GX). Let A,B ⊂ X(k), ℓ1, ℓ2 ∈ N, and let δ1, δ2, η1, η2 >

0. If

1. P
[
GX(ℓ1, δ1)

]
≥ η1.

2. ∀r ∈ GX(ℓ1, δ1): PXr(ℓ2)

[
GXr(ℓ2, δ2)

]
≥ η2

Then

P
[
GX(ℓ1 + ℓ2, δ1δ2)

]
≥ η1η2.

Proof. Sample s ∈ X(ℓ1 + ℓ2) by sampling r1 ∈ X(ℓ1) and then r2 ∈ Xr(ℓ0) setting

s = r1 ·∪ r2. Fix r1 ∈ GX(ℓ1, δ1). Observe that if r2 ∈ GXr1 (ℓ2, δ2) then

P
t
[A | r1 ·∪ r2 ⊆ t] ≥ δ2 P

t
[A | r1 ⊆ t]

≥ δ1δ2 P [A] ,
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and similarly for B. Therefore in this case s ∈ GX(ℓ1 + ℓ2, δ1δ2). Hence

P
s

[
GX(ℓ1 + ℓ2, δ1δ2)

]
≥ P

r1

[
GX(ℓ1, δ1)

]
· P
s=r1 ·∪r2

[
r2 ∈ GXr1 (ℓ2, δ2)

∣∣ r1 ∈ GX(ℓ1, δ1)
]

≥ η1η2.

The proof strategy (modulo details), is then simple. To bound G(γ′k,P[A]q0), we

divide t ∈ X(k) into pieces as r1 ∪ r2 ∪ r3 . . ., where each ri is viewed as being drawn

from the link of r1 ∪ . . . ∪ ri−1. The local G-set for each ri can be lower bounded by the

sampling properties of X∪j<irj , and by carefully choosing the size of the ri, we can ensure

that composition gives the desired bound on G.

In practice, this approach hits some complications due to the fact that the localized

restrictions of A and B shrink throughout the process. To handle this, we’ll instead use

a ‘two-phase’ version of the above. First, we show that there exists some small absolute

constant γ0, potentially much smaller than the desired γ, for which the above approach

does work. We call complexes satisfying such a bound lovely:

Definition 5.6.7 (Lovely complex). We say that X is (c, 1 − γ0, k, q)-lovely, if for all

A,B ⊂ X(k) with E[B] ≥ E[A] ≥ exp(−ck)

P
[
GX(γ0k,P [A]q)

]
≥ P [A]q .

We first argue any LUS complex is γ′-lovely for some γ′ depending only on τ and γ.

Lemma 5.6.8. For every τ > 0 and γ < 1 there exist c, q and γ0 > 0 so that following holds

for large enough k. Let X be τ -LUS, then for every t ∈ X≤γk, Xt is (c, 1−γ′, k−|t|, q)-lovely

for any γ′ ≤ γ0.
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Second, we give a similar argument showing that loveliness itself can be bootstrapped

to higher levels.

Claim 5.6.9. Let X be a k-uniform simplicial complex. Let q′, q′′ ≥ 1, and c′, c′′, γ1, γ2 ≥ 0.

Assume that:

1. X is (c′, 1− γ1, k, q
′)-lovely.

2. For every r ∈ X(γ1k), Xr is (c′′, 1− γ2, (1− γ1)k, q
′′)-lovely.

Then X is (c, (1−γ1)(1−γ2), k, q)-lovely for q = q′′q′+ q′′+ q′ and c = min{ c′′

(q′+1)(1−γ1)
, c′}.

Combined with some definition chasing, Lemma 5.6.8 and Claim 5.6.9 immediately

imply Theorem 5.6.4.

Proof of Theorem 5.6.4. Recall that by (5.11) it suffices to show X is (c, 1− γ, k, q)-lovely

for some constants c, q depending only on γ and τ . We first prove a slightly different

statement by induction:

∀ℓ ∈
[⌈

log(1− γ)

log(1− γ0)

⌉]
: X is (cℓ, (1− γ0)

ℓ, k, qℓ)-lovely.

for constants cℓ, qℓ dependent only on τ, γ. Note this implicitly assumes (1− γ0)
ℓ is integer.

This is unecessary and we discuss removing this assumption at the end of the subsection.

Finally, observe that for ℓ =
⌈

log(1−γ)
log(1−γ0)

⌉
we have (1− γ0)

ℓ ≤ 1− γ. We will argue a slight

modification gives exactly 1− γ′′ for any γ′′ ≤ γ after showing the above.

The base case ℓ = 1 is immediate from Lemma 5.6.8. Assume the statement

is true for some ℓ <
⌈

log(1−γ)
log(1−γ0)

⌉
, then X is (c(ℓ), (1 − γ0)

ℓ, k, q(ℓ))-lovely. Moreover, for

j = 1−(1−γ0)
ℓ ≤ γk, Lemma 5.6.8 implies every j-link Xt is (c′′, 1−γ′, k−j, q′′)-lovely for

any γ′ ≤ γ0. Thus by Claim 5.6.9, we have that X is (cℓ+1, 1−(1−γ0)ℓ+1, k−|t|, qℓ+1)-lovely

where cℓ+1 and qℓ+1 are functions of γ0, c(ℓ), q(ℓ), c′′, and q′′ as described in Claim 5.6.9.

Since γ0, c′′, and q′′ are themselves functions only of τ and γ, this gives the desired bound.
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In order to prove X is (c, 1− γ, k, q)-lovely, simply observe that in the final step of

this induction we may choose γ′
0 ≤ γ0 such that (1 − γ0)

ℓ(1 − γ′
0) = 1 − γ. Exactly the

same argument as above then gives X is at least (cℓ, 1− γ, k, qℓ)-lovely for ℓ =
⌈

log(1−γ)
log(1−γ0)

⌉
.

The same strategy can be used to achieve the same (or better) constants for any γ′ < γ as

well.

It remains to prove Lemma 5.6.8 and Claim 5.6.9. While Lemma 5.6.8 is the central

component, it is instructive to first prove the simpler Claim 5.6.9 which is in some sense a

‘one-step’ variant of the former.

Proof of Claim 5.6.9. Let A,B be sets of size at least exp(−ck). Our goal can be rephrased

as showing

GX((γ1 + γ2(1− γ1))k,P [A]q
′′q′+q′′+q′) ≥ P [A]q

′′q′+q′′+q′

since 1 − (γ1 + γ2(1 − γ1)) = (1 − γ1)(1 − γ2). We prove this via Observation 5.6.6. In

particular since c′ < c, (c′, 1− γ1, k, q
′)-loveliness of X implies

GX(γ1k,P [A]q
′
) ≥ P [A]q

′
.

Moreover, for every r ∈ GX(γ1k,P [A]q
′
) we have that PXr [A],PXr [B] ≥ P [A]q

′+1 ≥

exp(−c′′(1− γ1)k). Therefore by (c′′, 1− γ2, (1− γ1)k, q
′′)-loveliness of Xr it holds that

GXt1 (γ2(1− γ1)k, P
Xr

[A]q
′′
) ≥ P

Xr

[A]q
′′
≥ P [A](q

′+1)q′′ .

Combining the two bounds and applying Observation 5.6.6 we then have

GX(γ1k + γ2(1− γ1)k,P [A]q
′′q′+q′′+q′) ≥ P [A]q

′′q′+q′′+q′

as desired.
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Finally, we end with the proof of Lemma 5.6.8. Here, instead of decomposing

s = r ∪ r′, we will need to more carefully decompose s = r1 ∪ r2 ∪ r3 . . . and control in

every step how much A and B shrink using the link-up-sampling property.

Proof of Lemma 5.6.8. We start with a few simplifying assumptions. First, recall that by

Claim 5.6.5 we may assume that P [A] ≤ 0.8. Second, note it is sufficient to prove the

theorem just for X. The result then follows for all γk-links Xt since the link of a τ -LUS

complex is itself τ -LUS, and the ambient dimension of each link is at least (1− γ)k which

we take to be still sufficiently large. Finally we introduce one notational simplification.

Recall in the definition of a τ -LUS that for any i-face s the graph (Xs(j), Xs(k − i))

is a ( 1
τ
exp(−τ k−i

j
), 0.1, 0.2)-multiplicative sampler. In the proof of this lemma we will

only consider links of faces s with size i ≤ γ0k for some sufficiently small γ0, so these

are always ( 1
τ
exp(−τ(1− γ0)

k
j
), 0.1, 0.2)-multiplicative samplers. Moreover, we will also

always ensure j ≤ γ0k, allowing us to subsume the constant 1
τ

into the exponent. In

particular, as long as γ0 ≤ τ
3 ln 1

τ

, we may assume all (examined) links in the proof are

(exp(−τ ′ k
j
), 0.1, 0.2)-multiplicative samplers where τ ′ = τ

3
.

Fix γ0 = min{ τ
3 ln 1

τ

, γ}, let c = γ0
τ ′

3
, and assume P [B] ≥ P [A] ≥ exp(−ck). Fix

m = − log P[A]
c

, and define the ‘step size’ ℓ = k
m

. Observe that 1 ≤ ℓ ≤ γ0k. Assume for the

moment that ℓ is also integer (see Remark 5.6.11). We record the following immediate

observations:

Observation 5.6.10.

1. P [A] = exp(−cm).

2. 0.8m = P [A]q0 where q0 = −c−1 log 0.8 is a constant.

3. For every i ≤ γ0m:

0.8i P [A] ≥ exp(−τ ′m) = exp(−τ ′k
ℓ
).
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The first two items are by definition. The third is satisfied for any γ0, c such that

c(1 + γ0q0) ≤ τ ′. One can check that taking γ0 ≤ min{γ, τ
3 ln 1

τ

} suffices. Finally, assume

for simplicity k is such that γ0k ∈ N.

We now move to the main argument. Let j ∈ {1, 2, . . . , jfin = ⌈γ0m⌉} and for every

j ≤ ⌊γ0m⌋ define

Gj := GX(jℓ, (0.8)j)

as above. If jfin > γ0m, additionally define

Gjfin := GX(γ0k, 0.8
jfin) ⊆ GX(γ0k,P [A]γ0q0+1).

where in the last step we’ve used the assumption that P[A] ≤ 0.8. We will show

P
[
Gjfin

]
≥ (0.8)jfin ≥ P [A]γ0q0+1 . (5.12)

Setting q = γ0q0 + 1 proves the lemma. We prove (5.12) by inductively showing that for

every j = 1, 2, . . . , jfin,

P [Gj] ≥ (0.8)j .

We start with the base case j = 1, which already contains the main idea. Given S ⊂ X(k),

define

T (S) :=
{
r ∈ X(ℓ) : P [S | r] < 0.8P [S]

}
to be the set of ‘terrible’ ℓ-sets which see too little of S. Observe that by construction

G1 = X(ℓ) \ (T (A) ∪ T (B)).

Since ℓ ≤ γ0k, we have (X(k), X(ℓ)) is a (exp(−τ ′ k
ℓ
), 0.1, 0.2)-sampler by our earlier

discussion. On the other hand, by Observation 5.6.10, we can bound the sizes of A and B
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as:

P[B] ≥ P[A] = exp(−cm) ≥ exp(−τ ′k
ℓ
).

Thus applying sampling we can bound P [G1] by

P [G1] ≥ 1− P [T (A)]− P [T (B)] ≥ 1− 2 · 0.1 = 0.8

as desired.

The inductive step is similar to the base case, only performed locally within the

links of X together with Observation 5.6.6. By induction hypothesis P [Gi] ≥ 0.8i. For

every s ∈ Gi, by Observation 5.6.10

P
Xs

[B] , P
Xs

[A] ≥ (0.8)i P [A] ≥ exp(−τ ′m) ≥ exp(−τ ′k
ℓ
).

Thus by the same argument above for Xs and As = {t \ s | s ⊆ t ∈ A} , Bs =

{t \ s | s ⊆ t ∈ B}, we have

P

[
GXs(ℓ, 0.8)

∣∣∣∣∣ s ∈ Gi

]
≥ 1− P [T (A)]− P [T (B)] ≥ 1− 2 · 0.1 = 0.8.

The inequality P [Gi+1] ≥ 0.8i+1 then follows by Observation 5.6.6.

Finally, we note that for the last step, going between jfin − 1 to jfin (in the case

that jfin > γm), we follow the same procedure except that we may need to sample less

than ℓ new vertices. This only improves the sampling so the same analysis as above

holds.

Remark 5.6.11. Throughout the proof we have ‘cheated’ in the typical way assuming a

priori that various parameters (ℓ, γk, γ0k, and (1− γ0)
i(1− γ′)k) are integer. Note that

we did not assume above γ0m was integer because of the careful interplay between m and

P[A]. In all other cases, however, these assumptions are benign and taking the appropriate
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integer floor does not substantially change the proof. The only modification is that every

‘step’ in the process (e.g., drawing an ⌊ℓ⌋-size set) potentially moves one fewer level up the

complex. In the worst case, this results in taking a constant multiplicative factor more

steps than under integer assumptions, resulting in additional constant factors in c and q0.

We omit the details.

Proof of Claim 5.6.5. Denote by E(X, Y ) the set of directed edges (t, t′) such that t ∈

X, t′ ∈ Y . It is easy to see that P [E(A,B)] +P [E(A,Bc)] = P [A]. Similarly we have that

P [E(A,Bc)] + P [E(Ac, Bc)] = P [Bc] so P [Bc] ≥ P [E(Ac, Bc)]. combining these together

gives that P [E(A,B)] ≥ P [A] − P [Bc]. Assume that P [A] ≤ P [B], this implies that

P [E(A,B)] ≥ P [A]− P [Ac] = 2P [A]− 1. Hence it is sufficient to show that given A such

that P [A] > p, there exists a constant q > 0 such that 2P [A]− 1 ≥ P [A]q (which in turn

is at least P [A]q P [B]q). Indeed let us consider f(x) = 2x− 1− xq and show this function

is non-negative in the range [p, 1] for large enough q.

Assume without loss of generality that q is an integer. In this case f(x) =

(1− x)(
∑q−1

j=1 x
j − 1). This function is greater than 0 in [p, 1] if and only if

∑q−1
j=1 x

j ≥ 1 in

this range. In the range [p, 0.9] the series
∑q−1

j=1 x
j converges uniformly to x

1−x
which is

always greater or equal p
1−p

> 1. In the range x ∈ [0.9, 1] we can take any q ≥ 3 and one

can verify that
∑q−1

j=1 x
j > 0.9 + 0.92 > 1.

5.6.2 The General Case

We now prove Theorem 5.6.3 using our restricted reverse hypercontractive inequality

for indicators. This is done via the following reduction from reverse hypercontractivity for

sets to the general case.

Theorem 5.6.12. For every ℓ ≥ 1 and ε > 0 there exists κ′ ≥
(
1
5

)2ℓ(1+ε)
(

1
18+ 12

ε

)2(ℓ−1)

such that the following holds. Let V be a finite probability space and D a monotone linear
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operator such that for every A,B ⊆ V ,

⟨1A, D1B⟩ ≥ κP [A]ℓ P [B]ℓ . (5.13)

Then for every two arbitrary functions f1, f2 : V → R≥0 it holds that

⟨f1, Df2⟩ ≥ κκ′∥f1∥ 1
ℓ(1+ε)
∥f2∥ 1

ℓ(1+ε)
. (5.14)

That is, D is ( 1
ℓ(1+ε)

, 1
1−ℓ(1+ε)

, κκ′)-reverse hypercontractive.

The proof involves careful discretization and thresholding of f1 and f2 into level

sets in a way that largely maintains the functions’ moments. We defer the details to

Section 5.16 and prove the main Theorem assuming this result.

Proof of Theorem 5.6.3. By Theorem 5.6.12 it is enough that we show that there exist

ℓ > 1, κ > 0 such that for every A,B ⊆ X(k)

⟨1A, Tρ1B⟩ ≥ κP [A]ℓ P [B]ℓ .

Since γ > ρ, observe we can always take k sufficiently large so that PY∼Bin(ρ,k) [Y ≤ ⌊γk⌋] ≥
1
2
. Let q, c be the constants promised by Theorem 5.6.4 with respect to the UD⌊γk⌋,k. By

monotonicity of q and c, these apply to all walks of intersection at most ⌊γk⌋). Thus if

both P [A] ,P [B] ≥ exp(−ck) then by Theorem 5.6.4:

P
t1,t2∼Tρ

[t1 ∈ A, t2 ∈ B] ≥ P
Y∼Bin(ρ,k)

[Y ≤ γk]P [A]q P [B]q ≥ 1

2
P [A]q P [B]q .

Otherwise, it holds that P [A]P [B] ≤ exp(−ck). On the other hand, the probability of

resampling all vertices in the noise operation is (1− ρ)k = exp(−ck)ℓ′′ for some constant
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ℓ′′ > 1 that depends on c and on ρ. In particular,

P
t1,t2∼Tρ

[t1 ∈ A, t2 ∈ B] ≥ (1− ρ)k P [A]P [B] ≥ P [A]ℓ
′′+1 P [B]ℓ

′′+1 .

Taking ℓ = max{q, ℓ′′ + 1} completes the proof.

5.6.3 Proof of Theorem 5.6.1

Finally, we briefly give the formal proof for reverse hypercontractivity on high

dimensional expanders. This follows from the fact that any c-locally nice complex is

τ(c)-LUS for some appropriate setting of constants.

Corollary 5.6.13. For every c < 1 there exists a constant τ > 0 such that any c-locally

nice complex is τ -LUS.

Proof. By definition every i-link Xs is a c-nice complex, so by Corollary 5.5.10 every

(Xs(j), Xs(k − i)) is a ( 1
c1
exp(−c2 k−i

j
)), 0.1, 0.2)-sampler for some constants c1, c2 depen-

dent only on c. Taking τ = min{c1, c2} then suffices.

Proof of Theorem 5.6.1. The proof is immediate from Corollary 5.6.13 and Theorem 5.6.3.

5.7 Concentration for All Nice HDX

In this section we study concentration of measure for partite complexes and com-

plexes whose down-up walk have an Ω(1
d
)-spectral gap, completing the proof of Theo-

rem 5.5.1. Along the way, we’ll show that complexes near the TD barrier satisfy exponential

concentration for Lipschitz functions.
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5.7.1 Chernoff-Hoeffding for Partite HDX

We’ll start with the setting of partite HDX. As in the two-sided case, we first study

the special case of (X(k), X(1)). In the partite case different components may behave

differently, making the splittability argument for two-sided HDX fail. Instead, we will

rely on a localization approach, leveraging the local sampling properties between bipartite

components of the complex. The resulting quantitative bounds via this technique are

largely incomparable with our prior two-sided analysis. While they are weaker for large

λ, they approach the error of true independent sampling for small enough λ and remove

the restrictive condition of two-sided expansion. The latter in particular actually leads to

sparser complexes with subgaussian concentration due to better known degree bounds for

partite constructions.

Before stating the result formally, we briefly introduce some relevant notation.

Given a complex X, let X ind denote the complete complex whose vertices are X(1), that

is:

X ind(k) = {{v1, v2, . . . , vk} : vi ∈ X(1)}

where each vi is drawn independently from X(1) with repetition.10 Similarly for X partite,

let X ind,p be the complete k-partite complex whose sides are X[1], X[2], . . . , X[k]:

X ind,p(k) = {{v1, v2, . . . , vk} : v1 ∈ X[1], v2 ∈ X[2], . . . , vk ∈ X[k]}

where each vi is drawn independently from the marginal over X[i].

Finally, let σ(X, k, ε) denote the worst case ‘k vs 1’ ε-sampling error of X.

σ(X, k, ε) = max

{
P

s∈X(k)

[∣∣∣∣ P
v∈X(1)

[A | v ∈ s]− P
v∈X(1)

[A]

∣∣∣∣ > ε

] ∣∣∣∣ A ⊆ X(1)

}
10We remark we have abused notation somewhat as this is not formally a simplicial complex and the

faces are multi -sets, but this is irrelevant for our purposes.
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We prove that sampling in two-sided and one-sided partite HDX match the bounds

in their respective independent complex up to poly(k)λ-error.

Theorem 5.7.1. Let η > 0, ε ∈ (0, 1
2
), and λ ≤ η2.5

16k4
. Then

1. If X is k-uniform λ-two-sided local-spectral expander:

σ(X, k, ε) ≤ σ(X ind, k, ε) + η

2. If X is a k-partite λ-one-sided local-spectral expander:

σ(X, k, ε) ≤ σ(X ind,p, k, ε) + η

In particular, in both cases X is then a (ε, β)-sampler for β = η + exp(−Ω(ε2k)) by

Chernoff-Hoeffding.

In the two-sided case, note that Theorem 5.5.2 is tighter when λ > exp(−Ω(k)),

while for small enough λ Theorem 5.5.2 wins out achieving parameters arbitrarily close to

independent sampling. We note that here we only give a bound on sampling sets, but this

can be converted to concentration for lifts of bounded functions with essentially no loss by

Claim 5.4.11.

The core of Theorem 5.7.1 is a lower bound on the k-wise correlation across

coordinates of a λ-product.

Proposition 5.7.2. Let X be a k-uniform λ-product. For every η < 1 and functions

fi : X[i]→ [0, 1]:

E
{v1,v2,...,vk}∈X(k)

[
k∏

i=1

fi(vi)

]
≥ (1− η)k

k∏
i=1

E[fi]

whenever λ ≤ η1.5 mini{E[fi]2}√
8k3

.
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Proof. The proof relies on the following adaptation of an elementary connection between

bipartite expansion and sampling observed in [124]:

Claim 5.7.3. Let G = (L,R,E) be a λ-bipartite expander and let A be its bipartite

adjacency operator. Let f : L → [0, 1] be a function with E[f ] ≥ µ and let 0 < ε < µ.

Then

P
u∈R

[Af(u) < µ− ε] <
λ2µ

ε2
.

We prove this in Section 5.14 for completeness. Using this fact, we prove the

following more general claim. Write µi = E[fi] and fix ε1, ε2, . . . , εk > 0 such that

µi − (i− 1)εi > 0. For ε = mini{εi} we show

E
{v1,v2,...,vk}∈X(k)

[
k∏

i=1

fi(vi)

]
≥

k∏
i=1

µi − (i− 1)εi − λ2 k − i

ε2 ·min
j>i

(µj − (i− 1)εj)

 . (5.15)

Setting εi =
µiη
2i

and applying our assumed bound on λ then gives the desired result.

We prove (5.15) by induction on k, the uniformity of the complex. For k = 1 the

bound is trivial since E[f1] = µ1. Assume the statement holds for any (k − 1)-uniform

λ-product, and for each i = 2, . . . , k let Ti denote the vertices in X[1] that under-sample

fi:

Ti =

{
v1 ∈ X[1]

∣∣∣∣ E
vi∈Xv1 [i]

[f(vi)] < µi − εi

}
.

Since each (X[1], X[i]) is a λ-bipartite expander, Claim 5.7.3 implies

P

[
k⋃

i=2

Ti

]
≤

k∑
i=2

λ2

µiε2i
≤ λ2 k − 1

ε2 ·minj>1{µj}
.

We de-correlate our expected product along the first coordinate by conditioning on
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G = X[1] \ {
⋃k

i=2 Ti}:

E

[
k∏

i=1

fi(vi)

]
≥ E

[
1G(v0)

k∏
i=1

fi(vi)

]

≥ E[1G(v0)f0(v0)] · min
v1∈G

(
E

{v2,v3,...,vk}∈Xv1

[
k∏

i=2

fi(vi)

])
.

We bound the two terms separately. For the first:

E[1G(v0)f0(v0)] ≥ E[f0(v0)]− P

[
k⋃

i=2

Ti

]
(5.16)

≥ µ0 − λ2 k − 1

ε2 ·minj>1{µj}
. (5.17)

To bound the minimum term, we apply the inductive hypothesis on every link Xv1 .

Toward this end, for notational simplicity re-index the sides of Xv1 to be from 1 to k − 1

and set:

1. f ′
i = fi+1,

2. ε′i = εi+1,

3. µ′
i = µi+1 − εi+1 and µ′ = minj>1 µ

′
i.

Since EXv1 [i]
[f ′

i ] ≥ µ′
i by assumption on the links, applying the inductive hypothesis to

Xv1 and {f ′} bounds the minimum by

k−1∏
i=1

µ′
i − (i− 1)ε′i − λ2 k − i

ε2 ·min
j>i

(µ′
j − (i− 1)ε′j)


Combining this with the prior term (corresponding to i = 0) gives the desired bound

k∏
i=1

µi − (i− 1)εi − λ2 k − i

ε2 ·min
j>i

(µj − (i− 1)εj)

 .
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We note a more involved variant of the above applying different bounds in each

level of induction implies the following finer-grained bound:

Claim 5.7.4. Let X be a k-partite λ-product. Let fi : X[i] → [0, 1] be such that

Evi∈X[i] [f(vi)] ≥ µi. Let {εi,ℓ > 0}1≤i<ℓ≤k and let s
(m)
i,ℓ =

∑m
j=ℓ εj,i (and for brevity

s
(m)
m+1,ℓ = 0). Then

E
{v0,v1,...,vk}∈X(k)

[
k∏

i=1

fi(vi)

]
≥

k∏
i=1

(
µi − s

(k−1)
i,i − λ2

i−1∑
j=0

µj − s
(k−1)
i,j

ε2i,j

)
. (5.18)

We omit the proof which is an unenlightening technical extension of the above.

Using our lower bound on negative correlation, we show that for any function tuple

f = (f1, f2, . . . , fk), the random variables f(X) and f(X ind) are actually distributionally

close. This will allow us to immediately recover any concentration bound on X ind up to

the distributional error. More formally, given a k-partite simplicial complex X, let Dind

denote the distribution supported by of X ind,p, i.e. PDind
[{v1, v2, . . . , vk}] =

∏k
i=1 PX[i] [vi].

Moreover, for any distribution D over Ω = X[1] × X[2] × · · · × X[k], and a function

f̄ : Ω→ Rk define the push forward distribution f̄∗D : Rk → [0, 1] as

f̄∗D(x̄) = P
ω∼D

[
f̄(ω) = x̄

]
.

Let DX = πk denote the distribution over k-sets of X. We show the pushforward

distributions f̄∗DX and f̄∗Dind are close in TV-distance.

Lemma 5.7.5. Let ε, η > 0 and let X be a k-partite λ-product for λ ≤ η2.5

8k4
. Then for any

fi : X[i]→ {0, 1} and f̄ = (f1, f2, . . . , fk):

dTV (f̄∗DX , f̄∗Dind) ≤ η.
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Proof. Note that both distributions are supported in {0, 1}k by our assumption on the

domain of f̄ . Thus we need to show for every B ⊆ {0, 1}k:

∣∣∣∣ P
f̄∗DX

[B]− P
f̄∗Dind

[B]

∣∣∣∣ ≤ η.

Indeed since Pf̄∗DX
[B]− Pf̄∗Dind

[B] = Pf̄∗Dind

[
B̄
]
− Pf̄∗DX

[
B̄
]

for B̄ = {0, 1}k \ B, it is

enough to just show the one-sided bound

P
f̄∗DX

[B] ≥ P
f̄∗Dind

[B]− η.

Fix any event B ⊆ {0, 1}k. We’ll decompose B into two parts. First, we’ll look at the

subset B1 on which f takes many ‘unlikely’ values, and argue the difference is small

just because DX and Dind have the same marginals over each coordinate of {0, 1}k. In

particular, let I =
{
i ∈ [k]

∣∣ E[fi] ≤ η
2k

}
and J =

{
i ∈ [k]

∣∣ E[fi] ≥ 1− η
2k

}
be the sets of

coordinates with extreme expectations and let

B1 = B ∩

{
x

∣∣∣∣∣
(∨

i∈I

{fi(x) = 1}

)
∨

(∨
j∈J

{fj(x) = 0}

)}
.

Set B2 = B \B1.

We first show that Pf̄∗DX
[B1]− Pf̄∗Dind

[B1] ≤ η
2
. Since both distributions have the

same marginals, we can write for either DX or Dind by a union bound:

P [B1] ≤
∑
i∈I

P [fi = 1] +
∑
j∈J

P [fj = 0] ≤ (|I|+ |J |) η
2k
≤ η

2
.

In particular the difference is no more than η
2
.
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Moving on to B2, we decompose the probability as a sum over k-wise products:

P
f̄∗DX

[B2] =
∑
b̄∈B2

P
DX

[
k∧

i=1

fi = bi

]
=
∑
b̄∈B2

E
{v1,v2,...,vk}∼DX

[
k∏

i=1

|bi − fi(vi)|

]
.

We note that the functions |bi − fi(vi)| have values in [0, 1] and by assumption have

expectation ≥ η
2

(since otherwise b̄ ∈ B1). Then by Proposition 5.7.2 setting ε = η
2

we

have

P
DX

[B2] ≥ (1− η

2k
)k
∑
b̄∈B2

k∏
i=1

E
vi∈X[i]

[|bi − fi(vi)|]

= (1− η

2k
)k
∑
b̄∈B2

k∏
i=1

P
Dind

[1fi=bi ]

= (1− η

2k
)k
∑
b̄∈B2

k∏
i=1

P
Dind

[1fi=bi ]

≥ P
Dind

[B2]−
η

2

where we’ve used the marginal equivalence of DX and Dind and independence of Dind in

the second and third steps respectively. Combining our bounds on B1 and B2 gives the

result.

We can now easily prove Theorem 5.7.1.

Proof of Theorem 5.7.1. Let f : X(1) → [0, 1]. For the partite case, set fi = f |X[i].

Consider the set of ‘bad’ k-tuples that mis-sample f :

B =

{∣∣∣∣∣
k∑

j=1

f(vj)− µ

∣∣∣∣∣ > ε

}
.

By Lemma 5.7.5, the TV-distance between the distribution over values of f̄(x) =
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f(x1, x2, . . . , xk) over X and X ind,p is at most η so we have:

σ(X, k, ε) = max
f̄

P
f̄∗DX

[B]

≤ max
f̄

P
f̄∗Dind

[B] + η

≤ S(X ind,p, k, ε) + η

as desired. The two-sided case follows the same argument after taking the partitification

P (X) of X and setting fi(v, i) = f(v).

5.7.2 Lipschitz Concentration for ‘Weak’ HDX

In this section we study concentration of measure under weaker quantitative

assumptions on the underlying complex, requiring only that the down-up walk of X has a

good spectral gap. Our results in this special case are incomparable to our prior strategies.

While we cannot show Chernoff (subgaussian) strength bounds directly in this setting, we

are able to give exponential concentration for the substantially broader class of Lipschitz

functions. To achieve the subgaussian bounds needed for Theorem 5.5.1, we pass to lower

level skeletons. Before stating the formal results we briefly recall some notation from

Section 5.4.6.

Given a function f : X(k)→ R, let Z = f(x1, . . . , xk) and Z ′
(i) = f(x1, . . . zi, . . . , xk)

where zi is sampled conditional on x−i. We call a f ν-Lipschitz if with probability 1 over

Z,Z ′

k∑
i=1

(Z − Z ′
(i))

2
+ ≤ ν

and say it has ν-bounded difference if for all adjacent (s, s′) in the down-up walk:

(f(s)− f(s′))2 ≤ ν

k
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We prove that ν-Lipschitz functions on HDX satisfy exponential concentration of measure.

Theorem 5.7.6. Let X be a d-uniform simplicial complex such that Ud−1Dd has spectral

gap at least 1
Cd

for some C > 0. Then for any 0 ≤ k ≤ d and ν-Lipschitz function

f : X(k)→ R:

1. Upper Tail: P[f − E[f ] ≥ t] ≤ 2e−t/
√

(C+1)ν

2. Lower Tail: P[f − E[f ] ≤ −t] ≤ 2e−t/
√

(C+1)ν

As (almost) immediate corollaries, we get exponential concentration for TD and SI

complexes.

Corollary 5.7.7 (Concentration up to the TD Barrier). Let X be a d-uniform λ-TD

complex for λ < 1. Then for any 0 ≤ k ≤ d and ν-Lipschitz function f : X(k)→ R

1. Upper tail: P[f − E[f ] ≥ t] ≤ 2e
− t√

cλν

2. Lower tail: P[f − E[f ] ≤ −t] ≤ 2e
− t√

cλν

where cλ ≤ 1 + e
λ

(1−λ) .

Corollary 5.7.8 (Concentration under Spectral Independence). Fix η > 0 and let X be a

d-uniform η-spectrally independent complex. Then for any 0 ≤ k ≤ d, g : X(1)→ [0, 1],

and f = U1,kg:

1. Upper tail: P[f − E[f ] ≥ ε] ≤ 4e−cηε
√
k

2. Lower tail: P[f − E[f ] ≤ −ε] ≤ 4ecηε
√
k

where cη ≤ 1
12max{1,√η} .
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We note it is possible to extend the latter to lifted Lipschitz functions from an

appropriate skeleton.

The proof of Theorem 5.7.6 is via a variant of the Herbst Argument, a classical

strategy for proving concentration of random variables based on applying functional

inequalities like MLSI and LSI to the moment generating function. While sparse simplicial

complexes cannot have bounded (modified) log-sobolev constants, a somewhat lesser known

variant of the Herbst argument using spectral gap was developed by Aida and Stroock

[5], Bobkov and Ledoux [68], and Boucheron, Lugosi, and Massart [76]. We will give an

elementary adaption of their method to HDX achieving the above bounds.

The key to Theorem 5.7.6 is really the following approximate variant of the Efron-

Stein inequality, sometimes called ‘approximate tensorization of variance’. We remark that

similar inequalities for local-spectral expanders appear in the literature [236, 94].

Lemma 5.7.9 (Approximate Efron-Stein Inequality). Let X be a d-uniform simplicial

complex such that λ2(Ud−1Dd) ≤ 1 − 1
Cd

for some C > 0. Then for any 0 ≤ k ≤ d,

f : X(k)→ R, and Z = f(X) we have:

V ar(f) ≤ (C + 1)
k∑

i=1

E
[
(Z − Z ′

(i))
2
+

]
Proof. It is sufficient to instead prove that any k-uniform complex whose down-up walk

Uk−1Dk has gap 1
C′k

satisfies

V ar(f) ≤ C ′
k∑

i=1

E
[
(Z − Z ′

(i))
2
+

]
.

The result then follows from [276, Theorem 3.5], who shows that λ2(Ud−1Dd) ≤ 1 − 1
Cd

implies λ2(Uk−1Dk) ≤ 1− 1
(C+1)k

for any 0 ≤ k ≤ d.
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With this in mind, let Ei be the ith averaging operator:

Eif(s) = E
si∼Xs−i

[f(s−i ∪ si)],

where we recall s−i is s without the ith vertex in its ordering. Define the ith Laplacian

Li = I − Ei, and the total laplacian operator as L = I − UD = 1
k+1

∑
Li. By assumption

on the spectral gap of UD, we have:

V ar(f) ≤ Ck⟨f, Lf⟩

On the other hand expanding out the Laplacian gives:

Ck⟨f, Lf⟩ = C
k∑

i=1

⟨f, Lif⟩

= C
k∑

i=1

⟨Lif, Lif⟩

= C
k∑

i=1

E
s∼X(k)

[V ar(i)s (f)]

where V ar
(i)
s (f) is the variance of f over the link Xs−i

. Finally examining this expected

variance, we have:

E
s∼X(k)

[V ar(i)s (f)] =
1

2
E[(Z − Z ′

(i))
2] = E[(Z − Z ′

(i))
2
+]

where both equalities follow from the fact that Z and Z ′
(i) are i.i.d conditioned on s−i.

Combining with the above completes the proof.

We can now prove Theorem 5.7.6 closely following the approach of [76].

Proof of Theorem 5.7.6. We prove only the upper tail. The lower tail follows similarly.

It is sufficient to prove the following exponential integrability of the moment generating
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function:

E
[
e

1√
Cν

(f−E[f ])
]
≤ 2, (5.19)

since we then have:

P[f − E[f ] > t] = P
[
exp

(
1√
Cν

(f − E[f ])
)

> exp

(
1√
Cν

t

)]
≤ 2 exp

(
− 1√

Cν
t

)

by Markov.

For notational simplicity, let g = f −E[f ] and let Z = g(X). Following [76], we use

Efron-Stein to set up a recurrence relating eλZ to eλZ/2 for small enough λ > 0. Applying

Efron-Stein to the latter gives:

E[eλZ ]− E[eλZ/2]2 ≤ C
k∑

i=1

E
[
(eλZ/2 − eλZ

′
(i)

/2)2+

]
≤ C

k∑
i=1

E
[
e−λZ(1− eλ(Z

′
(i)

−Z)/2)2+

]
≤ Cλ2

4
E

[
e−λZ

k∑
i=1

(Z − Z ′
(i))

2

]

≤ Cλ2ν

4
E
[
e−λZ

]
since f (and therefore g) are ν-bounded. Re-arranging we have the recurrence:

E[eλZ ] ≤ 1

1− λ2Cν
4

E[eλZ/2]2.

It is then an elementary exercise to solve when λ ≤ 1√
Cν

and derive Equation (5.19) (see

[76, Section 3.6] for the full derivation).

We now prove the corollaries for SI/TD-complexes
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Proof of Corollary 5.7.7. By Theorem 5.4.23, X is a λ
(d−1)(1−λ)

-one-sided local-spectral ex-

pander, so Theorem 5.4.19 gives λ2(Ud−1Dd) ≤ 1− 1
d
e

λ
1−λ . Plugging this into Theorem 5.7.6

gives the result.

In the spectral independence regime, one must be slightly more careful since an

η-spectrally independent system has C ≈ kη. We recover concentration by looking only at

lifted functions and analyzing concentration on some lower skeleton.

Proof of Corollary 5.7.8. We prove the upper tail. The lower tail follows similarly. We

break the proof into two cases. First, assume that η ≤ 2 and let k′ = ⌊d
3
⌋. The k′-skeleton of

X is a one-sided 1
k′

-local-spectral expander. Thus by Theorem 5.4.19 λ(Uk′−1Dk′) ≤ 1− 1
ek′

and Theorem 5.7.6 implies every k ≤ k′ has concentration:

P[f − E[f ] > ε] ≤ 2e
− 1√

e+1
ε
√
k
.

Further, by Lemma 5.4.15 every k > k′ has concentration:

P[f − E[f ] > ε] ≤ 2e
− 1

2
√
e+1

ε
√
k′
(1− e−

ε2

12
k)

≤ 4e
− 1

2
√

6(e+1)
ε
√
d

≤ 4e−
1
12

ε
√
d

assuming k ≥ 6 and ε2 ≥ 12
k

(else the bound is trivial).

Otherwise, assume η > 2 and let k′ = ⌊d
η
⌋. The k′-skeleton of X is a η

(1− 1
η
)d

-

one-sided local-spectral expander. Then by Theorem 5.4.19 λ(Uk′−1Dk′) ≤ 1− 1
e2k′

and

Theorem 5.7.6 implies for every k ≤ k′:

P[f − E[f ] > ε] ≤ 2e
− 1√

e2+1
ε
√
k
.
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Further, by Lemma 5.4.15 every k > k′ has concentration:

P[f − E[f ] > ε] ≤ 2e
− 1

2
√

e2+1
ε
√
k′

(1− e−
ε2

12
k)

≤ 4e
− 1

2
√

4η(e2+1)
ε
√
d

≤ 4e
− 1

12
√
η
ε
√
d

assuming η ≤ d
2

and ε2 ≥ 12
k+1

(again, otherwise the stated bound is trivial).

Subgaussian Concentration on Skeletons

We now show that it is possible to recover subgaussian concentration from the

above analysis by passing to skeletons of size roughly Θ(
√
d).

Corollary 5.7.10 (Subgaussian concentration for skeletons). Let X be a d-uniform

simplicial complex with λ2(Ud−1Dd) ≤ 1− 1
Cd

. Then for any k ≤ d, ν > 0, and function

f : X(k)→ R with ν-bounded difference:

1. Upper Tail: P[f − E[f ] ≥ t] ≤ 2e
− t√

4(C+1)ν
·
√

d
k + e−

t2

4ν

2. Lower Tail: P[f − E[f ] ≤ −t] ≤ 2e
− t√

4(C+1)ν
·
√

d
k + e−

t2

4ν

Proof. The proof is immediate from Theorem 5.7.6 and Lemma 5.4.16, setting fup(t, ν) =

flow(t, ν) = 2e
−t√

(C+1)ν .

Corollary 5.7.10 does not imply full subgaussian concentration for all functions

with bounded difference, but does for certain critical sub-classes such as bounded 1-lifts:

Corollary 5.7.11. Let X be a d-uniform simplicial complex with λ2(Ud−1Dd) ≤ 1− 1
Cd

.

Then for any k ≤ d and f : X(1)→ [0, 1] of expectation µ:

1. Upper Tail: P
s∼X(k)

[U1,kf(s)− µ ≥ ε] ≤ 3e
− 1

4
√
C+1

ε2k
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2. Lower Tail: P
s∼X(k)

[U1,kf(s)− µ ≤ −ε] ≤ 3e
− 1

4
√
C+1

ε2k

Proof. The proof is immediate from Lemma 5.4.16 and the observation that U1,kf has

1
k
-bounded difference.

Note that by similar arguments as above, this implies subgaussian concentration

for the skeletons of λ-TD and η-SI complexes. This is already implicit in the statement of

Theorem 5.5.1, since TD/SI-complexes are c-nice since an appropriate skeleton of these

complexes are nice (Claim 5.4.28). Finally, we remark it is likely possible to generalize

the above strategy from bounded difference to Lipschitz functions on sufficiently strong

local-spectral expanders by more carefully analyzing the eigenspaces of the Laplacian and

higher order random walks associated with the d-lift (e.g. as in [239, 111, 162]).

5.7.3 Inclusion Sampling and the Proof of Theorem 5.5.1

We are finally ready to prove Theorem 5.5.1 in full. We again restate the theorem

in the final two cases for convenience.

Theorem 5.7.12 (Sampling on HDX). Let X be a k-uniform complex which is either

1. The skeleton of a d-uniform partite 2−cd-one-sided HDX Y for d ≥ swap(k)

2. The skeleton of a d-uniform complex Y with λ(Ud−1Dd) ≤ 1− 1
cd

for d ≥ 2k2

Then for any i < k the containment graph (X(k), X(i)) is a (ε, β) sampler for

β =
64

ε
exp(−Ωc(ε

2k

i
)).

Moreover, if X is a k-skeleton of a d-uniform complex Y , then for every k < k′ ≤ d, the

graph (Y(k′), Y(i)) is also (ε,O(β))-function samplers.

Note that, combined with Claim 5.4.28, Theorem 5.2.3 is an immediate corollary.
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Proof of Theorem 5.7.12 (partite and spectral gap case). In both cases the ‘moreover’ part

follows directly from Lemma 5.4.15.

Spectral Gap.

Let Y be the promised d-uniform complex such that X is an (at most)
√

d
2
-uniform

skeleton of Y such that Y ’s down-up walk has spectral gap λ(Ud−1Dd) ≤ 1− 1
cd

. For any

g : X(i)→ [0, 1] Theorem 5.7.6 implies Ui,dg has the following exponential tail:

P[Ui,dg(s)− E[g] ≥ ε] ≤ 2e−Ω(ε
√

d
i
) ≤ 2e−Ω(ε k

i
)

since Ui,dg has i2

d
-bounded difference. By Lemma 5.4.16, Ui,kg therefore has tail:

P[Ui,kg(s)− E[g] ≥ ε] ≤ 2e−Ω(ε k
i
) +

2

ε
e−Ω(ε2 k

i
),

where the latter term is from the following concentration bound on the complete complex:

Claim 5.7.13. For any i ≤ k ≤ n and g : ∆n(i)→ [0, 1]:

P
∆n(k)

[Ui,kg − E[g] > ε] ≤ 2

ε
e−Ω(ε2 k

i
)

and likewise for the lower tail.

We prove this claim in Section 5.12 via a simple application of Lemma 5.5.9. The

lower tail follows similarly.

Partite HDX.

The partite case of Theorem 5.5.1 introduces a new challenge. We cannot directly

reduce to the complete complex since we are not on a sufficiently low dimensional skeleton,

and the faces complex of X isn’t a (sufficiently strong) HDX to blackbox apply Theo-

rem 5.5.2. Nevertheless, lacking expansion does not necessarily mean the faces complex is

a poor sampler. We will argue FX satisfies Chernoff by splitting its analysing into two
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components 1) sampling a good partition of colors 2) sampling a good subset conditioned

on this partition. We show the first step may be reduced to concentration on the faces

complex of the complete complex (the so-called swap complex ), while the second reduces

to concentration for partite HDX (Theorem 5.7.1).

Let k′ = k/2. By Lemma 5.4.15, it is enough to show for any f : X(ℓ)→ [0, 1]:

P
X(k)

[|Uℓ,kf − E[f ]| > ε] ≤ 8 exp

(
−c′k

ℓ

)
(5.20)

for some universal constants c′ > 0. The stated result is then an immediate consequence

of Lemma 5.4.15.

To prove this, let’s recall the notion of the swap complex.

Definition 5.7.14 (The Swap Complex). Let n ≥ k ≥ ℓ ∈ N. The (ℓ, k, n)-swap complex

is the ⌊k
ℓ
⌋-uniform simplicial complex C = Cℓ,k,n whose vertices are all size-ℓ subsets [n]:

C(1) =

(
[n]

ℓ

)
,

and whose top-level faces are all possible pair-wise disjoint ℓ-sets:

C

(⌊
k

ℓ

⌋)
=

{
{s1, s2, . . . , s⌊ k

ℓ
⌋} :

⋃
i ̸=j

si ∩ sj = ∅

}

endowed with the uniform distribution.

In other words, Cℓ,k,n is exactly F ℓ
∆n(k)

, the faces complex of the k-uniform complete

complex on n vertices. Recall that swap(k) is the smallest d such that Cℓ,k/2,d satisfies a

Chernoff bound. We first prove swap(k) ≤ O(k2).

Theorem 5.7.15. Let C = Cℓ,k,n for n ≥ (k+1)ℓ. For any f : C(0)→ [0, 1] and ε ∈ (0, 1)

1. Upper tail: P[U1, k
ℓ
f − E[f ] > ε] ≤ exp(−c1ε2 kℓ )
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2. Lower tail: P[U1, k
ℓ
f − E[f ] < −ε] ≤ exp(−c2ε2 kℓ )

for some universal constants c1, c2 > 0.

The proof simply follows from the fact that Cℓ,k,n(k/ℓ) is negatively correlated

under these parameters. We conjecture that the swap complex should exhibit optimal

concentration even when n = Θ(k). We discuss this (and prove the above) in Section 5.13.

With this in mind it is enough to prove the theorem assuming d = swap(k) (namely this

subsumes the partite case of the simplified niceness definition).

Let X be a k-uniform skeleton of a d-partite 2−Ω(d)-HDX for d ≥ swap(k) and let

k′ = k/2. By Proposition 5.5.8 and Lemma 5.4.15, it is enough to prove the F
(ℓ)
X (k′/ℓ) is

an (ε, 8e−Ω(ε2 k′
ℓ
))-additive function sampler for any ε > 0.

Fix f : X(ℓ) → [0, 1] of expectation µ viewed as a function on the ver-

tices of the faces complex, and let m = ⌊k′
ℓ
⌋. Consider the random variable

J := (col(s1), col(s2), . . . , col(sm)) corresponding to the partition generated by draw-

ing (s1, . . . , sm) from the faces complex of X. For a fixed J = {I1, I2, . . . , Im}, denote the

conditional expectation of f under J as

µJ := E
s∼X(ℓ)

[f | col(s) ∈ J ].

Further let CJ denote the complex generated by restricting to top-level faces of C with

partition J . We define two ‘bad’ events based on J outside which our sampling is

ε-accurate:

1. (Bad Colors): E1 the event that µJ deviates significantly from µ

|µJ − µ| ≥ ε/2.

382



2. (Bad Sampling): E2 the event that (s1, . . . , sm) ∼ CJ samples µJ poorly

∣∣∣∣∣∣ 1m
∑
i∈[m]

f(si)− µJ

∣∣∣∣∣∣ ≥ ε/2.

It is then sufficient to prove the following three claims:

1. P(s1,s2,...,sm)∼C

[∣∣∣∣∣ 1m ∑
i∈[m]

f(si)− µ

∣∣∣∣∣ > ε

]
≤ P [E1] + P [E2 ∧ ¬E1] .

2. P [E1] ≤ 2 exp (−c′ε2m).

3. P [E2 ∧ ¬E1] ≤ 4 exp(−c′ε2m).

The first claim is immediate from definition, as the event |
∑

f − µ| > ε only occurs if

E1 ∨ E2 holds, the probability of which is bounded by P[E1] + P[E2 ∧ ¬E1] as desired.

Bounding P [E1].

Observe J is equidistributed with the complex Cℓ,k/2,d and define g : C(1)→ [0, 1]

by g(Ij) = EC [f | Ij ∈ col(s)]. For J = {I1, . . . , Im} we then have:

1. E[g] = E
I∼C(1)

[E[f | col(s) ∈ I]] = µ

2. 1
m

m∑
j=1

g(Ij) = µJ .

Since d ≥ swap(k) by assumption, Cℓ,k′,d satisfies Chernoff and we can write

P [E1] = P
J

[
|µJ − µ| > ε

2

]
= P

{I1,...,Im}∼C(m)

[∣∣∣∣∣ 1m
m∑
j=1

g(Ij)− E[g]

∣∣∣∣∣ > ε

2

]

≤ 2 exp
(
−c′ε2m

)
.

since 1
m

∑
i g(si) is 1

m
-bounded.
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Bounding P [E2 ∧ ¬E1].

It is left to argue that for any fixed J = {I1, I2, . . . , Im}, CJ is a partite 2−Ω(k)-HDX.

The result is then immediate from applying Theorem 5.7.1 with η = exp(−1
4
ε2m):

P[E2 ∧ ¬E1] ≤ P
{s1,...,sm}∼D

[E2| J ∈ ¬E1]

= E
J∈¬E1

 P
s∼CJ

∣∣∣∣∣∣ 1m
∑
i∈[m]

f(si)− µJ

∣∣∣∣∣∣ ≥ ε

2


≤ 3 exp

(
−1

4
ε2m

)
.

By construction it is easily checked CJ is a partite complex whose links are isomorphic

to swap walks SIi,Ij within a link of the original complex X. By Theorem 5.4.21, CJ is

therefore a partite λ-one-sided HDX for λ ≤ 2−Ω(d) as well.

5.8 Agreement Testing

In this section we use our reverse hypercontractive inequality to prove several

new agreement testing theorems on HDX. In the first subsection, we give new agreement

tests in the 99%-regime between any two levels of an HDX. In the second subsection,

we explore the role of reverse hypercontractivity in the 1%-regime, and prove that HDX

admit agreemment tests with optimal local soundness (a weaker notion of soundness only

requiring globalness on links), and show under the stronger assumption of ℓ∞-expansion

that this guarantee can be propagated to a true tester with optimal soundness.

5.8.1 Background

Suppose U is some finite set of vertices and S ⊆ P(U) are subsets of U . An agreement

test is a procedure that inputs a family of assignments to the subsets {fs : s→ {0, 1}}s∈S,

and aims to check whether the assignments are consistent with a global assignment to

the ground set G : U → {0, 1}. This is a classical setup in hardness of approximation (in
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particular in the construction of PCPs), where one repeats a problem in parallel and needs

to check that answers across repetitions are consistent.

Let us give the simplest setup first, slightly generalizing it later on. Let (U, S,Σ, D)

be such that

1. U is a finite set (“Universe”).

2. S ⊆ P(U) (“Sets”).

3. Σ is another finite set (“Alphabet”).

4. A distribution s1, s2 ∼ D such that s1, s2 ∈ S (“Distribution”).

An ensemble of functions in this context is a family F = {fs : s → Σ}s∈S. An

ensemble is called global if there exists a function G : U → Σ such that for every s ∈ S it

holds that fs = G|s.

We wish to relate the following two quantities. The first quantity is the “agreement”

of an ensemble. For η ∈ [0, 1) we denote by

Agreeη(F) := P
s1,s2,t∼D

[
fs1|s1∩s2

η
≈ fs2|s1∩s2

]
, (5.21)

where the notation inside the probability means that there is a set t′ ⊆ s1 ∩ s2 of size

|t′| ≥ (1− η)|s1 ∩ s2| such that fs1|t′ = fs1|t′ . We will also use
η

̸≈ to denote the negation of

this.

The second quantity is the distance from global functions. For η, ε > 0 we say that

F is (η, ε)-close to a global function if the exists some G : U → Σ such that

P
s

[
fs

η
≈ G|s

]
≥ 1− ε.

The probability distribution in which we take s ∈ S above is the marginal distribution of
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D.11

We denote by

distη(F , Glob) = min {ε ≥ 0 | there exists G : U → Σ such that F is (η, ε)-close to G} .

A high acceptance agreement theorem (also known as a “99% agreement theorem”)

is a theorem that states that if a set of local functions pass the test with almost perfect

probability (“99%”), then the functions are close to being global. In other words, this is a

theorem that states for a specific (U, S,Σ, D) that for every ensemble F ,

Agreeη(F) = 1− ε =⇒ distη′(F , Glob) ≤ ε′.

where ε, ε′, η, η′ > 0. Ideally, one wants such a statement for every ε, η small enough, with

ε′ = O(ε) and η′ = O(η). But other parameter regimes are interesting in applications as

well.

Agreement tests originated in low-degree testing results such as [333] and were

later abstracted by [168] to roughly the setup above. They are an important component of

Dinur’s proof of the PCP Theorem [116]. An optimal high acceptance agreement theorem

was proven by [115] on the complete complex. This was extended by [118] to another

setup related to the complete complex we discuss below. Agreement theorems on sparse

complexes such as high dimensional expanders are also known, pioneered by [124].

A low acceptance agreement theorem (also known as a “1% agreement theorem”)

deals with the regime where it is only assumed that the functions pass the agreement test

with small (sometimes even sub-constant) probability (“1%”). This is a theorem of the

form

Agreeη(F) = δ ≥ ε =⇒ distη′(F , Glob) ≤ 1− poly(δ).

11Formally, draw (s, s′) ∼ D, then s or s′ with probability 1/2 independently.
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for some (ε, η, η′) (and some explicit polynomial in δ). We note here that in this test even

when η = 0, an η′ > 0 is sometimes unavoidable (see discussions in [120, 128]).

Agreement theorems in the low acceptance regime are typically harder to prove than

in the high acceptance regime, since the promised structure on the family of functions is

mild. However, in applications such that a parallel repetition theorem [215] and low-degree

testing [31], they are often crucial. Dinur and Goldenberg [120] proved a low acceptance

agreement theorem on the complete complex. Their proof was simplified by [215], who

also derived a more sophisticated Z-test (see below) and gave the first sparse structure

supporting such agreement tests using subspaces. Work by [128] gave an improved analysis

of [215], asymptotically matching the lower bound of a random set of local functions. Their

work heavily relied on reverse hypercontractivity, a strategy we follow below. Recently,

[110] and [41] gave characterizations of high dimensional expanders that support agreement

theorems, and [113, 40] constructed such complexes.

There are also other kinds of theorems about agreement tests that don’t strictly

fall into any of these categories. One example such as [177] list agreement theorem, that

inspired the former line [110, 41, 113, 40].

Varying the Test

We present two simple extensions to the agreement test above. The first comes

from sampling more than two sets. For example, in the Z-test by [215], three sets s1, s2, s3

are sampled, and the test passes if fs1 = fs2 and fs2 = fs3 (equality is with respect to the

respective intersections). See the formal definition of this test below.

Another extension to the definition of a test, mainly for technical reasons, is a test

that checks fs1|t = fs2|t only on some t ⊂ s1 ∩ s2 which is also sampled by the tester.

This is sometimes more convenient to analyze than the test checking agreement on the

whole intersection. To summarize this discussion more formally, the distribution D in our

setup samples ({si}ki=1, {ti,j}1≤i<j≤k) such that {si}ki=1 ⊆ S are sets, and for every i < j,
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ti,j ⊆ si ∩ sj. The agreement test passes if for all i < j, fsi |ti,j
η
≈ fsj |ti,j .

5.8.2 Agreement Testing for Subsets

We now move to the first setting of interest, agreement tests on simplicial complexes

in the 99% regime. In particular we study the following setup due to [118]. Let j < k < d

and let X be a d-uniform simplicial complex. Let us denote by SS(X,Σ, j, k, d) :=

(U, S,Σ, D) where:

1. U = X(j).

2. S =
{(

s
j

) ∣∣∣ s ∈ X(d)
}

.

3. The distribution D = Dd,k samples s1, s2 according to the down-up walk. The ‘test’

set t ⊆ s1 ∩ s2 is a randomly chosen k-face.

For simplicity of notation we sometimes refer to the sets as s instead of
(
s
j

)
, and also index

functions by fs for s ∈ X(d) (and not f(sj)). However, in this context when writing v ∈ s,

we mean a j-set instead of a vertex.

In other words, we study the following variant of the classical ‘V-test’ in this setting:

The V-test on X(k):

1. Draw t ∈ X(k), and s1, s2 ∈ Xt(d) independently

2. Accept if:

ft∪s1|t
η
≈ ft∪s2|t

When j = 1, this reduces to the heavily studied setting of (de-randomized) ‘direct product

testing’.

We are now ready state the main result of the subsection, our generalized 99%-tester:
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Theorem 5.8.1. Let j, d be integers, let γ, η, c, ν < 1. Denote by k = γd. Suppose that

j < k, η⌊k
j
⌋ ≥ 192 log 16

η
and ν < 1. Let X be a d-uniform c-locally nice complex such that

for every link of a set v ∈ X(j), λ(UDd−j,k−j(Xv)) ≤ ν. Then the following holds for the

set system SS(X,Σ, j, k, d); for every alphabet Σ, family F , and ε > 0

Agreeη(F) ≥ 1− ε =⇒ dist8 η+ε
1−ν

(F , gmaj) ≤ εOγ,c(1) + 2−Ωγ,c(d) (5.22)

where gmaj := plurality
s∈X(d):s⊃v

{fs(v)} is the plurality decoding.12

We note that every c-nice complex has λ(UDd−j,k−j) ≤ k−j
d−j

(1 + 1
c′(d−j)

)(1−γ)(d−j), so

this is not an extra requirement in most cases (see [276, Theorem 3.5]).

We remark that for the setup of j = 1 there exist agreement theorems that achieve

(exact) closeness 1−O(ε) for high dimensional expanders [124, 109, 236]. Theorem 5.8.1 is

incomparable to these results. On the one hand, in Theorem 5.8.1 the resulting ‘globalness’

is weaker than [124, 109, 236] where one gets a guarantee of dist0(F , gmaj) ≤ O(ε). On

the other hand, the initial assumption on the sets of local functions in the aforementioned

results is Agree0(F) ≥ 1 − ε, wheras this result assumes Agreeη(F) ≥ 1 − ε for η > 0.

This relaxed assumption is crucial in the low-soundness regime theorem we give in the

next section.

For j > 1, to our knowledge Theorem 5.8.1 is the first agreement theorem beyond

the complete complex, where Dinur, Filmus, and Harsha [118] showed

Agree0(F) ≥ 1− ε⇒ dist0(F , Glob) ≥ 1−Oj(ε). (5.23)

It is plausible that, with more effort, Equation (5.23) could be proven directly on HDX.

The advantage of our method in this sense lies in its generality and (relative) simplicity.
12Note that ties may be broken arbitrarily and the weighting is according to the (normalized) complex

weights πd.
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Proof of Theorem 5.8.1. Given a family F = {fs} with high agreement, we show it can be

(approximately) decoded to the majority function G = gmaj. We argue this can be inferred

directly from reverse hypercontractivity and the following claim bounding the average

probability of disagreement with G for a random pair v ⊆ s drawn from (X(j), X(d)):

Claim 5.8.2. Pv⊂s [fs(v) ̸= G(v)] ≤ ε+η
1−ν

.

We first show this implies the result. Define the set of ‘bad’ d-faces which noticeably

disagree with G as

B :=

{
s ∈ S

∣∣∣∣ P
v∈s

[fs(v) ̸= G(v)] >
8(ε+ η)

1− ν

}
.

It is enough to show P [B] ≤ max{εOγ,c(1), exp(−Ωγ,c(d))}}.

Toward bounding B, define an intermediary set A of ‘good’ faces:

A :=

{
s ∈ S

∣∣∣∣ P
v∈s

[fs(v) ̸= G(v)] ≤ 4(ε+ η)

1− ν

}

and note that P[A] ≥ 1
2

by Claim 5.8.2 and Markov’s Inequality. The idea is to argue that,

on the one hand, reverse hypercontractivity implies the number of edges (s1, s2) between

A and B is at least some power of P[B], while, on the other hand, agreement implies the

number of such edges is at most O(ε) because they (typically) contain many v ∈ s1 ∩ s2

that disagree and therefore fail the test.

More formally, denote the event that (s1, s2) ∈ (A × B) as EA,B. Assuming

P[B] ≥ exp(−c′d) (for c′ depending on c, γ as in Theorem 5.6.4), reverse hypercontractivity

lower bounds the measure of this event by

P[EA,B] ≥
(
P[B]

2

)q

for some constant q depending only on c, γ. On the other hand, since the test rejects with
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probability ε, we can upper bound the measure of EA,B by O(P [Test rejects]) = O(ε) we

will obtain a bound of the form P [B] ≤ O(ε1/q). To this end, note

P[EA,B] ≤
ε

P[Test rejects| EA,B]
.

It is therefore enough to argue the conditional rejection probability is at least some constant

(say 1
2
). Toward this end, for a face s ∈ X(d), define

Ts := {v ∈ s : fs(v) ̸= G(v)}

to be the j-faces on which fs disagrees with majority, and recall that an edge in our test is

sampled by first picking s1 ∈ X(d), then t ⊂ s1 in X(γd), then s2 ⊃ t conditionally. Given

t, denote by t(j) =
(
t
j

)
the set of sub j-faces in t, for shortness. We define two bad events

outside of which the test rejects and prove they occur with vanishing probability.

1. Mis-sampling A: E1 the event that t sees ‘too many’ v ⊂ s1 that disagree with

majority:

E1 :=

{
|t(j) ∩ Ts1 |(

k
j

) ≥ 5
ε+ η

1 + γ

}

2. Mis-sampling B: E2 the event that t sees ‘too few’ v ⊂ s2 that disagree with

majority:

E2 :=

{
|t(j) ∩ Ts2 |(

k
j

) ≤ 7
ε+ η

1 + γ

}

Conditioning on ¬E1 and ¬E2 the test rejects since s1 and s2 disagree on a 2 ε+η
1−ν

-fraction

of t. Thus by a union bound:

P[Test Rejects| EA,B] ≥ 1− P[E1| EA,B]− P[E2| EA,B]

and it is enough to show that each P[Ei| EA,B] ≤ 1
4
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Bounding E1 and E2.

Events E1 and E2 occur with vanishing probability due to the sampling properties

of the complete complex ∆ (Claim 5.12.1), namely that for any α, δ > 0 and j ≤ k, the

inclusion graph (∆(k),∆(j)) is an (α, 4
αδ

exp( δ
2

12
α
⌊
k
j

⌋
), δ)-sampler.

With this in mind, recall t ∈ X(γd) is drawn uniformly at random from s1, so we

may equivalently view t as being drawn from a γd-uniform complete complex ∆ on the

d vertices of s1. By assumption, s1 ∈ A, so Ts1 ⊂ ∆(j) is of measure at most 4 ε+η
γ

, and

sampling then implies

P

[
|t(j) ∩ Ts1|(

k
j

) > 5
ε+ η

1 + γ

]
≤ 4(1 + γ)

ε+ η
exp

(
− η

96

⌊
k

j

⌋)
≤ 1

4
.

Since we can equivalently sample an edge (s1, s2) by first picking s2, then t ⊂ s2, then

s1 ⊃ t, E2 can be bounded using the lower tail of ∆ in exactly the same fashion to get

P

[
|t(j) ∩ Ts2|(

k
j

) < 7
ε+ η

1 + γ

]
≤ 4(1 + γ)

ε+ η
exp

(
− η

192

⌊
k

j

⌋)
≤ 1

4
.

Proof of Claim 5.8.2. Fix v ∈ X(j) and let D
(v)
d,k denote the conditional distribution over

(s1, t, s2) ∼ Dd,k such that v ⊂ t. Note that by construction, D
(v)
d,k (after removing v

from each face) is distributed exactly as the down-up walk Dd−j,k−j within the link of v.

Partition the vertices of this graph into sets S(v)
σ := {s| fs(v) = σ}σ∈Σ by the alphabet value

they assign v, and observe that since the marginals of D(v)
d,k are distributed as Xv(d− j)

we have

1− P
v⊂s

[fs(v) ̸= G(v)] = P
v⊂s

[fs(v) = G(v)] = E
v∼X(j)

[
max
σ∈Σ

{
P
[
S(v)
σ

]}]
,

where the inner probability is over the v-conditioned marginal.
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The idea, which is fairly standard (see e.g. [124, Claim 5.2]), is now to relate this

maximum partition size to the local disagreement of F using expansion. In particular, for

each v ∈ X(j) define the v-local disagreement of F as:

εv := P
(s1,s2)∼D

(v)
d,k

[fs1(v) ̸= fs2(v)].

It is easy to see that Ev [εv] ≤ ε+ η. This follows from observing that sampling a random

v ∈ X(j), then (s1, t, s2) ∼ D
(v)
d,k is equivalent to first sampling (s1, t, s2) ∼ Dd,k, then

sampling v uniformly from t. The bound is clear from the latter interpretation since the

tester rejects with probability at most ε, and otherwise agrees on all but an η fraction of

the j-sets in t. It is therefore enough to prove

max
σ∈Σ

{
P
[
S(v)
σ

]}
≥ 1− εv

1− ν
,

as taking expectation on both sides gives the result.

Toward this end, define E = E(v) to be the set of edges (s1, s2) ∼ D
(v)
d,k that cross

the alphabet partition. Since the marginal is distributed as the down-up walk in v’s link,

this graph is a ν-spectral expander by assumption. Writing Sσ = S
(v)
σ for simplicity of

notation, we have

εv = P [E] =
∑
σ∈Σ

P
(s1,s2)

[s1 ∈ Sσ, s2 /∈ Sσ]

=
∑
σ∈Σ

⟨1Sσ , D
(v)
d,k(1− 1Sσ)⟩

= 1−
∑
σ∈Σ

⟨1Sσ , D
(v)
d,k1Sσ⟩ (5.24)

where 1Sσ is the indicator of Sσ and 1 is the all-ones function and the final equality is
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from by stochasticity of D(v)
d,k. Let fσ = 1Sσ − P [Sσ]1 be the projection of 1Sσ onto 1⊥.

By orthogonality it holds that ∥fσ∥2 = ∥1Sσ∥2 − P [Sσ]
2 ∥1∥2 = P [Sσ]− P [Sσ]

2. Therefore

exploiting the expansion of D(v)
d,k we have

⟨1Sσ , D
(v)
d,k1Sσ⟩ = P [Sσ]

2 ⟨1,1⟩+ ⟨fσ, D(v)
d,kfσ⟩

≤ P [Sσ]
2 + ν∥fσ∥2

= ν P [Sσ] + (1− ν)P [Sσ]
2 .

Inserting this back to (5.24) we have that

εv ≥ 1−
∑
σ∈Σ

(
ν P [Sσ] + (1− ν)P [Sσ]

2)
= (1− ν)

(
1−

∑
σ∈Σ

P [Sσ]
2

)

≥ (1− ν)

(
1−max

σ∈Σ
{P[Sσ]}

)
.

Re-arranging gives the desired result.

Testing all the intersection

We note that one could also consider the standard V-test where s and s′ are still

drawn from the down-up walk, but we test agreement over t = s1 ∩ s2 (whereas in the

definition of the test s1 and s2 may have some elements in their intersection not in t). The

success in these tests are related by the following claim.

Claim 5.8.3. Let η > 0. Let D1 be the test above. Let D2 be the test with a similar

distribution to D1, with the distinction that t = s1 ∩ s2. Then for any F , Agreeη,D2(F) ≥

1− ε implies that Agree2η,D1(F) ≥ 1− ε− 2−Ωγ(η2k/j).

Proof of Claim 5.8.3. Let s1, s2 be a pair supported by D2 such that F passes the D2-test

on the pair. Let A be the set of j-faces contained in s1 ∩ s2 on which fs1 , fs2 disagree
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on. By assumption |A| ≤ η|s1 ∩ s2|. By the sampling properties of the complete complex

Claim 5.12.1 the fraction of t ⊆ s1 ∩ s2 such that |A ∩ t| ≥ 2η|t| is 2−Ωγ(η2k/j). Thus the

probability of failing the D1 test is at most the probability of failing the D2 test plus

2−Ωγ(η2k/j).

Remark 5.8.4. When η ≲ ε, the ‘additive’ error exp(−Ω(d)) can be removed from Theo-

rem 5.8.1 by interpolating the result with a standard averaging argument over Claim 5.8.2.

This technique stops working as soon as η is much larger than ε. While the additional

exp(−Ω(d)) error is not harmful in most applications, it is nevertheless interesting to ask

whether the term can be removed for general η.

Agreement Testing for the non-Lazy Down-Up Walk

Using a similar technique, we can also prove an agreement test for the following

distribution based on the swap walks. Define the test distribution (s1, s2, t) ∼ Ad,k by the

following procedure:

1. Sample t ∈ X(k).

2. Sample r1, r2 ∈ X(d− k) in the swap-walk inside Xt.

3. Output si = t ·∪ ri and t.

The resulting edge distribution over (s1, s2) is sometimes called the ‘partial’ swap walk [9].

Note this walk has the property that the intersection is fixed. The following claim shows

that when the local swap walks expand, an agreement theorem for this walk follows as

well.

Claim 5.8.5. Let j, d be integers, let γ, η, c, λ, ν < 1. Let k = γd and suppose j < k,

η⌊k
j
⌋ ≥ 192 log 16

η
and ν < 1. Let X be a (2d− k)-uniform c-locally nice complex such that

for every v ∈ X(j), λ(Ad−j,k−j(Xv)) ≤ ν. Suppose additionally that for every t ∈ X(k),
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Sd−k,d−k(Xt) ≤ λ. Then the following holds for the set system SS(X,Σ, j, k, d); for every

alphabet Σ, family F , and ε > 0

Agreeη(F) ≥ 1− ε =⇒ dist8 η+ε
1−ν

(F , gmaj) ≤ εOγ,C(1) + λOγ,C(1). (5.25)

where gmaj := plurality
s∈X(d):s⊃v

{fs(v)} is the plurality decoding.

Proof of Claim 5.8.5. As in the proof of Theorem 5.8.1, we define

B :=

{
s ∈ S

∣∣∣∣ P
v∈s

[fs(v) ̸= G(v)] >
8(ε+ η)

1− ν

}
.

and

A :=

{
s ∈ S

∣∣∣∣ P
v∈s

[fs(v) ̸= G(v)] ≤ 4(ε+ η)

1− ν

}
.

As in the proof of Theorem 5.8.1, P[A] ≥ 1
2

by an argument similar to Claim 5.8.2 and

Markov’s inequality. More precisely, we need to repeat the proof of Claim 5.8.2, only

instead of using the down-up walk conditioned on v, we use Ad,k conditioned on v ∈ t.

This is just Ad−j,k−j inside Xv.

In addition, as in the proof of Theorem 5.8.1, it also holds that the relative fraction

of edges crossing between A and B is small, i.e. P [EA,B] ≤ 2ε.

Our goal is to show that P [B] ≤ max{εΩγ,c(1), exp(−Ωγ,c(d)), λ
Ωγ,c(1)}.

Assume otherwise, and that in particular reverse hypercontractivity for indicators

applies for sets of size P [B]. By Theorem 5.6.4

P
t∈X(k)

[
P
s⊇t

[A] · P
s⊇t

[B] ≥ (P [A]P [B])Oγ,c(1)

]
≥ P [A]P [B]Oγ,c(1) .

Let us denote by G the set of t satisfying the above condition. Suppose we sampled t ∈ G

in the first step of our agreement distribution. Recall that now we sample and edge by

going in the swap walk in the link of t. The probability we sampled an edge between A
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and B is therefore

P
r1,r2∼S(Xt)

[t ∪ r1 ∈ A, t ∪ r2 ∈ B] ≥ (P [A]P [B])Oγ,c(1) − λ = p · P [B]Oγ,c(1) − λ

by the expansion of the swap walk and the expander mixing lemma (for some constant p).

Thus if pP [B]Oγ,c(1) ≥ 2λ then we have that

Ω(P [B]Oc,γ(1)) ≤ P [G]P [s1 ∈ A, s2 ∈ B | G] ≤ P [EA,B] ≤ 4ε

and the claim follows.

5.8.3 Low Soundness and the Z-Test

In this section we will apply Theorem 5.8.1 and reverse hypercontractivity to prove

soundness of [215]’s Z-test in the 1%-regime under certain stronger assumptions on the

complex. Before moving on, we briefly comment on the notation in this subsection. Unlike

before, we will use the convention that s, t are k
2
-sets (and not k-sets as in the previous

subsections). We will typically denote k-sets by a capital letter instead. We first recall

their test:

The Z-test on X(k):

1. Draw t ∈ X
(
k
2

)
, and s, s′ ∈ Xt

(
k
2

)
independently

2. Draw s′′ ∼ Xs′
(
k
2

)
3. Accept if:

ft∪s = ft∪s′ and fs′∪t = fs′∪s′′

We prove soundness for complexes which are ‘λ-global’, a slight strengthening of ℓ∞-

independence [232]:
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Definition 5.8.6 (Global Complex). A k-uniform complex X is called λ-global if ∀t ∈

X
(
k
2

)
:

∥St − π k
2
∥TV ≤ λ

where St is the distribution over neighbors of t in S k
2
, k
2

and π k
2

is the induced distribution

on X
(
k
2

)
.

Globality of X essentially promises that every k
2
-set in X ‘sees’ most other k

2
-sets

in X, and is equivalent to bounding the matrix infinity norm of the swap walk from its

stationary operator 1
2
∥S k

2
, k
2
− Π k

2
∥∞ ≤ λ. In fact, we note we really only need the former

weaker condition, which is an average instead of worst-case bound on the ℓ1-norm of rows

of S k
2
, k
2
− Π k

2
. However since bounding the infinity norm is somewhat more standard (and

we do not have any examples of complexes satisfying an average but not worst-case bound),

we stick with this stricter definition in what follows.

Theorem 5.8.7. ∀λ, η > 0 and large enough k, let X be a k-uniform, λ-global, c-locally

nice complex. Then for any δ ∈ (8λ+ e−Ωc(ηk), 1
8
) if AgreeZ0 (F) ≥ δ:

∃g : X(0)→ Σ, P
s∈X(k)

[fs
η
≈ g(s)] ≥ δ/8.

A couple of remarks are in order. First, we mention that it is well known that no

tester can do better than exp(−Ω(k)) soundness [120, 128], so our bound is essentially

optimal for small λ. Second, we remark that many (dense) complexes of interest are indeed

λ-global HDX, including basic examples such as the complete complex and random com-

plexes, and more involved examples such as skeletons of various Ising models, independent

sets, list-colorings, or more generally essentially any of the myriad complexes studied in

the approximate sampling literature (see e.g. [24, 286, 96, 146, 66] among many others).

Theorem 5.8.7 shows the Z-test is sound on these families in a blackbox fashion, even up

to exp(−ηk) for the appropriate parameters. We elaborate on these examples further in
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the end of this section.

The proof of Theorem 5.8.7 largely follows the strategy of [215, 128]. The main

difference lies in replacing certain ad-hoc arguments for the complete complex with more

general methods based on reverse hypercontractivity and globality.

A Local Agreement Theorem

The core of Theorem 5.8.7 is a local structure theorem for the V-test on high

dimensional expanders. Stating this requires a few definitions. We remark that these are

standard notions in the literature, and we follow the notation of [128]. We first define

restrictions.

Definition 5.8.8 (Restriction). A restriction is a pair τ = (t, σ) such that t ∈ X
(
k
2

)
and

σ : t→ Σ is an assignment to t.

Given a family of functions as above, there is a natural distribution over restrictions

that comes from sampling a random function and a random restriction of it. More formally:

1. Sample t ∈ X
(
k
2

)
and s ∈ Xt

(
k
2

)
.

2. Output τ = (t, fs∪t|t).

Whenever we mention a distribution over restrictions τ we always mean τ = (t, fs∪t|t)

sampled as above. Given such a restriction τ , it will also be useful to have notation for

the faces in X that are consistent with τ .

Definition 5.8.9 (Consistent Strings). Given a restriction τ = (t, σ), denote by Vτ the

set of faces s ∈ Xt

(
k
2

)
consistent with τ :

Vτ :=

{
s ∈ Xt

(
k

2

)
: fs∪t|t = σ

}

A restriction is called good if it has many consistent faces.
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Definition 5.8.10 (Good Restriction). A restriction τ = (t, σ) is called δ-good if

Ps∈Xt [Vτ ] ≥ δ
2
.

When δ is clear from context, we just call such restrictions good. Finally, a

restriction is called ‘DP’ if its consistent strings agree with a global function (‘DP’ is for

‘direct product’).

Definition 5.8.11 (DP-Restriction). A restriction τ = (t, σ) is called (η, δ)-DP if there

exists gτ : Xt(1)→ Σ such that:

P
s∼Xt

[
ft∪s

η/4

̸≈ gτ

∣∣∣∣ s ∈ Vτ] ≤ δ2

As before, when η, δ are clear from context we just write ‘DP’. We can now state

the local agreement theorem for high dimensional expanders.

Theorem 5.8.12 (The Local Agreement Theorem). For any η > 0 and k sufficiently large,

let X be a k-uniform c-locally nice complex. Then for all δ > e−Ω(ηk), if AgreeV0 (F) ≥ δ:

1. Many restrictions are good:

P
τ
[τ is good] ≥ δ

2

2. Almost all ‘good’ restrictions are DP:

P
τ
[τ is DP | τ is good] ≥ 1− δ2

We remark that while Theorem 5.8.12 does not give a true agreement tester in its

own right, it is a powerful tool independent of Theorem 5.8.7. It roughly states that good

agreement implies a non-negligible fraction of good restrictions, and that if fs agrees with

a restriction of a face t it is almost certainly a restriction of a global assignment on the

link Xt. This tool is a critical part of many of the previous works on agreement testing

[120, 115, 215, 128].
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We prove Theorem 5.8.12 in the next section. We first show it implies the main

theorem under the additional assumption of λ-globality. The argument is a simple

adaptation of [215].

Proof of Theorem 5.8.7. As in [215], we replace the standard Z-test in Section 5.8.3 with a

related proxy test where we first sample (t, s) as before, but then draw (s′, s′′) independent

of (t, s). If s′ ∈ Xt we continue as in the Z-test, and if s′ /∈ Xt we accept. The probability

of passing the new test is only greater or equal to the probability of passing the original test,

but by λ-globalness, the swap walk starting at t is λ-close to the stationary distribution

hence the probability that s′ misses the link of t is at most λ.

With this in mind, let τ denote the restriction (t, fs∪t|t) and observe that if τ is

not good, the new Z-test accepts with probability at most δ/2 + λ ≤ δ. Thus it must be

the case that conditioned on τ being good, the test still accepts with probability at least δ.

Condition on this event, and observe that by Theorem 5.8.12, τ is also a DP-restriction

except with probability at most δ2 ≤ δ/8 (recall that δ < 1
8
).

Fix such a DP restriction τ , and denote by B the set of faces in Vτ on which F is

η/4-close to the DP function gτ promised by Theorem 5.8.12 (if there is more than one,

take any such function). Assume toward contradiction that F is not (η, δ/8)-close to gτ .

Let S = s′ ∪ s′′ and let H denote the event that fS
η
≈ gτ .13 By assumption P [H] ≤ δ

8
,

because S is drawn as in the distribution of X(k). We define four events, outside which

the test rejects:

1. E1: The event that s′ /∈ Xt,

2. E2: The event that s′ ∈ Vτ \B,

3. E3: The event that S ∈ H,
13Formally here we extend gτ to a function on X(1) by arbitrarily assigning values to any vertex in

X(1) \Xt(1).
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4. E4: The event that S /∈ H, and fS|s′
η/2
≈ gτ |s′ .

We first argue the test rejects if none of the Ei occurs. In particular, note by E1 ∩ E2, s′

must either be in B, or in Xt \ Vτ . In the latter case, the first query of the proxy Z-test

rejects since s′ ∈ Xt but ft∪s′ ≠ ft∪s. On the other hand, in the former case s′ ∈ B and

therefore ft∪s′ |s′
η/4
≈ gτ |s′ . However, by E3 ∩ E4, we have S /∈ H and, moreover, that the

restriction to s′ has disagreement at least fS|s′
η
2

̸≈ gτ |s′ . Thus there must be a vertex on

which ft∪s′ and fS disagree and the second query rejects.

Finally by a union bound it is enough to prove
∑

P[Ei] ≤ δ/2. The first event

occurs with probability at most δ/8 by λ-globality where λ < δ
8
. The second event occurs

with probability at most δ2 ≤ δ/8 by Theorem 5.8.12. The third event occurs with

probability at most δ/8 by assumption. The final event occurs with probability at most

e−Ω(ηk) ≤ δ/8 by Chernoff, since fS η-disagrees with gτ and s′ is a random subset, which

completes the proof.

Proof of the Local Agreement Theorem

Let us begin by proving the first property in Theorem 5.8.12.

Claim 5.8.13. Under the assumptions of Theorem 5.8.12, Pτ [τ is good] ≥ δ
2
.

Proof. Let p = Pτ [τ is good]. Since AgreeV0 (F) ≥ δ and we have

δ ≤ AgreeV0 (F)

= p P
s,t,s′

[ft∪s = ft∪s′ | (t, f |s∪t) is good]

+ (1− p) P
s,t,s′

[ft∪s = ft∪s′ | (t, f |s∪t) is not good] .

By definition Ps,t,s′ [ft∪s = ft∪s′ | (t, f |s∪t) is not good] ≤ δ
2

so δ ≤ p+ δ
2

which implies the

claim.
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The rest of this section is dedicated to proving the second property in Theorem 5.8.12,

which is more complicated. The proof has two main steps. First, we will need a variant

of the notion of an excellent restriction, that appeared in [120, 215, 128]. Roughly, an

excellent restriction is a restriction (t, σ) so that if s1, s2 ∈ Vt, the probability that

ft∪s1|s1∩s2 ≈ ft∪s2 |s1∩s2 is 1 − poly(δ). The probability in which we choose s1, s2 ∈ Xt is

stated below. We show most good restrictions are in fact excellent.

Second, we show that excellent restrictions are DP . Here we use a variant of the

“smoothing” technique introduced by [128] in order to get an ensemble of local functions{
f̃s : s→ Σ

∣∣∣ s ∈ Xt

(
k
2

)}
that agree with high probability 1− poly(δ) and use our 99%-

tester (Theorem 5.8.1) to show the restriction is DP .

Formally we require some additional notation to properly define these notions.

First, denote the k
4
-step down-up walk in the link of t as Nt and denote by (s, t′, s′) ∼ Nt

the distribution where s, s′ are chosen according to Nt and t′ is the intermediate set chosen

in the first down step (we note that t′ ⊆ s ∩ s′ but equality doesn’t necessarily hold).

Second, let N3
t denote three steps of Nt. Let (s1, t1, s2, t2, s3, t3, s4) ∼ N3

t be the full walk

sampled. Finally, let (s1, t2, t
′, s4) ∼ N3

t be such that s1, t2, s4 are the marginals as before,

and t′ = t1 ∩ t2 ∩ t3 the vertices that are in all sets in the sampled walk.

Fix some sufficiently small constant c1 > 0. We can now define excellence.

Definition 5.8.14 (Excellent Restriction). A good restriction τ = (t, σ) is called excellent

if:

1. P(s,t′,s′)∼Nt

[
(s, s′ ∈ Vτ ) ∧

(
fs|t′

η/1500

̸≈ fs′ |t′
)]
≤ e−c1ηk and,

2. P(s1,t2,t′,s4)∼N3
t

[
(s, s′ ∈ Vτ ) ∧

(
fs1|t′

η/1500

̸≈ fs4|t′
)]
≤ e−c1ηk.

where we’ve abused notation and written fs as shorthand for fs∪t.

We note that this definition is slightly cumbersome due to the fact that we don’t

measure the agreement of fs, fs′ (respectively fs1 , fs4) on the intersection of s ∩ s′ (re-
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spectively s1 ∩ s4), but instead on a fixed subset. This is for technical reasons and we

encourage the readers to think of the case of Nt where t′ = s∩ s′ (and analogously for N3
t ).

For notational convenience, let µ := e−c1ηk and η′ = η/1500. The following lemma

(or variants thereof) is fairly standard [213, 215, 128]:

Lemma 5.8.15 (Good restrictions are excellent). There exists c2 > 0 such that

P
τ=(t,fs∪t|t)

[τ is good but not excellent] ≤ e−c2ηk.

Proof. We only prove that N3
t case, which is somewhat less standard. The Nt proof is

analogous. It is sufficient to show that over a random restriction τ = (t, fs0 ·∪t|t):

P
τ=(t,fs0∪t|t)

[
P

(s1,t2,t′,s4)∼N3
t

[
s1, s4 ∈ Vt ∧ fs1|t′

η′

̸≈ fs4|t′
]
> e−cηk

]
≤ e−Ω(ηk) (5.26)

where s1, t2, t
′, s4 is chosen independently of s0. In particular if this holds then, by claim

Claim 5.8.13, conditioning on being good can increase the probability of this event to hold

to at most 2e−Ω(ηk)

δ
≤ e−c2ηk for the right choice of constants.

The key to Equation (5.26) is to observe that this process can be sampled by

the following equivalent method: sample T ∈ X
(
k
2
+ k

4

)
, and randomly partition it into

T = t ·∪ t2 so that |t| = k
2

and |t2| = k
4
. The faces s1, t2, t3, and s4 are now drawn

independently from the "up-down-up" walk U k
4
, k
2
D k

2
, k
4
U k

4
, k
2

within Xt starting from t2.

Observe that |t′| ≥ k
32

with probability e−Ω(k) by a standard Chernoff bound.

Conditioning on this event, observe that if s1, s4 ∈ Vτ and fs1|t′
η′

̸≈ fs4|t′ , then it must be

the case that

1. t2 has at least η′k
32

elements on which fs1 ̸= fs4

2. t has no elements on which fs1|t ̸= fs4|t.

However, t and t2 are a uniformly random partition of T , so such a split occurs with
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probability at most e−Ω(ηk) by Chernoff as desired.

To proving excellent restrictions are DP, we’ll use a variant of Dinur and Livni-

Navon’s ‘smoothing’ operation that spreads the consistent strings Vτ over the entire link.

Instead of using the noise operator as in their work, we use the down-up walk which avoids

a number of technical complications.

Definition 5.8.16 (Smoothed Assignment). For every τ = (t, ft∪s0|t), define the smoothed

assignment F̃τ = {f̃s}s∈Xt as

f̃s(v) = Plurality
(t′,s′)∼Nt(s):s′∈Vτ ,t′∋v

{fs′(v)}.

We break ties arbitrarily. If the plurality is not well defined (i.e. there are no such s′ ∈ Vτ

that contain v) we define it to be f̃s(v) = ⊥.

The main idea is to show that on excellent restrictions, F̃τ is 1) highly consistent

with the original family F on Vτ , and 2) has very high agreement on the entire link. This

reduces the problem to an (approximate) 99%-regime test within the link of t, which we

can solve via our tester from the previous section. More formally, the following lemmata

suffice to prove Theorem 5.8.12.

Lemma 5.8.17. Every excellent τ = (t, σ) satisfies:

P
s∼Xt

[
fs

10η′

̸≈ f̃s

∣∣∣∣∣ s ∈ Vτ
]
≤ δ2

2
,

that is, F and F̃ are close on Vτ (note fs
10η′

̸≈ f̃s is over just the vertices of s, not s ∪ t)

Lemma 5.8.18. There exists c3 > 0 such that every excellent τ = (t, σ) satisfies

P
(s,t′,s′)∼Nt

[
f̃s|t′

10η′

̸≈ f̃s′ |t′
]
≤ e−c3ηk,
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that is, F̃ is highly agreeing on Xt.

Proof of Theorem 5.8.12. The first property is proved in Claim 5.8.13. Toward the second,

we will prove that every excellent τ is a DP -restriction. Then by Lemma 5.8.15 we have

that

P
τ
[τ is DP | τ is good] ≥ P

τ
[τ is excellent | τ is good] ≥ 1− δ2

where we’ve used the assumption that δ ≥ e−Ω(ηk). Fix any excellent τ = (t, σ). One

can check these satisfy the conditions of Theorem 5.8.1 with ν = 1/2. Together with

Lemma 5.8.18 and Claim 5.8.3 that translates between the agreement guarantee in

Lemma 5.8.18 to that of Theorem 5.8.1, we have that there exists a global function

g : Xt(0)→ Σ such that

P
s∼Xt

[f̃s
320η′

̸≈ g|s] ≤ e−c4ηk

where c4 is some constant depending on c3, η and the c-local niceness of X. We note that

after conditioning over s ∈ Vτ , we still have that this is at most 2e−c4ηk

δ
≤ δ2

2
, where this

holds by assumption that δ is large enough.

Combining this with Lemma 5.8.17, we then have

P
s∼Xt

[
fs

η/4

̸≈ g(s)

∣∣∣∣ s ∈ Vt
]
≤ P

s∼Xt

[
fs

10η′

̸≈ f̃s

∣∣∣∣∣ s ∈ Vτ
]
+ P

s∼Xt

[
f̃s

320η′

̸≈ g(s)

∣∣∣∣ s ∈ Vt
]

≤ δ2

as desired.

It is left to prove the key lemmata. This is the main place we use reverse hypercon-

tractivity (other than the application of Theorem 5.8.1 in the proof of Theorem 5.8.12).

The proofs for both properties follow the strategy of [128] adapted to our setting.

Proof of Lemma 5.8.17. We define two families of ‘bad’ sets outside of which f and f̃

approximately agree. First, we look at the set of ‘lonely’ strings that don’t sufficiently see
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Vτ .

L :=

{
s ∈ Xt : P

s′∼Nt(s)
[s′ ∈ Vτ ] ≤ δ′

}
for δ′ = e−c5ηk for some c5 > 0 sufficiently small. We will assume below that δ′ ≤ δ4 (which

is possible due to the assumptions on δ). We record the following properties of L that we

prove at the end of the subsection.

Claim 5.8.19. There exists a sufficiently small constant c5 > 0 such that the following

holds for δ′ = e−c5ηk.

1. Ps∈Xt [L] ≤ δ′2

2
.

2. For any s /∈ L, the fraction of vertices v ∈ s s.t. P(t′,s′)∼Nt(s) [s
′ ∈ Vτ | t′ ∋ v] ≤ δ′/3

is at most η′.

Second, we look at the family of sets within Vτ with strong disagreement:

B :=

{
s ∈ Vτ : P

(t′,s′)∼Nt(s)

[
s′ ∈ Vτ ∧ fs|t′

η′

̸≈ fs′ |t′
]
≥ δ′

30

}
.

We claim that both L and B have measure at most δ2/2 within Vτ . The former follows

from the first item of Claim 5.8.19 since P[L|Vτ ] ≤ δ′2

δ
≤ δ2

2
. For the latter we have

P[B] ≤ 30µ
δ′
≤ δ2

2
from Markov’s inequality and excellence of τ (here we also need that the

c5 in the definition of δ′ is sufficiently smaller than the c1 in the definition of µ).

It is left to observe that fs
10η′

≈ f̃s for any face s ∈ Vτ \ (L ∪B). Fix such an s, and

define D0 to be the set of vertices on which f and f̃ disagree:

D0 :=
{
v ∈ s : fs(v) ̸= f̃s(v)

}
.

We need to argue |D0| ≤ 10η′|s|. Assume toward contradiction otherwise. Let D′ denote

the vertices in s such that P(t′,s′)∼Nt(s) [s
′ ∈ Vτ | t′ ∋ v] ≤ δ′/3 and write D = D0 \D′. By

Claim 5.8.19, we have |D| ≥ 9η′|s|.
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Consider now the following probabilistic experiment. Sample v ∈ D uniformly, then

some t′, s′ ∼ Nt(s) conditioned on v ∈ t′ and s′ ∈ Vτ . We denote this distribution by D.

Note that for every fixed v ∈ D, this is exactly the distribution over which the plurality in

the definition of f̃s(v) was defined.

With this in mind consider the event P = {fs(v) ̸= fs′(v)} and observe that

PD [P ] ≥ 1
2

because for every fixed v ∈ D, by construction fs(v) disagrees with the

plurality vote on v. On the other hand, we show toward contradiction that P is contained

in events whose total probability is strictly less than 1
2
. Namely:

1. E1: the event {fs|t′
η′

̸≈ fs′|t′}

2. E2: the event |t′ ∩D| < 6η′|t′|

3. E3: the event P \ (E1 ∪ E2).

Obviously P ⊆ E1 ∪ E2 ∪ E3 so it is enough to bound the probability of the three events,

starting with E3. In this case we have that fs, fs′ disagree on at most an η′-fraction of

t′, but |t′ ∩ D| ≥ 6η′|t′|. Conditioned on t′, v is drawn uniformly from |D ∩ t′|, so the

probability that fs(v) ̸= fs′(v) is at most 1
6
.

Moving on to E2, notice that if D is an 9η′-fraction of s, a random t′ ⊂ s contains

less than a 6η′-fraction of D with probability exp(−Ω(η′2k)) by Chernoff. While the

distribution D doesn’t sample t′ uniformly (since it conditions on v ∈ t′ and s′ ∈ Vτ ), we

do know for any fixed v ∈ D, v ∈ t′ with probability at least 1
2
, and because s /∈ L and

v /∈ D′ the probability that s′ ∈ Vτ is at least δ′

3
even after conditioning on v. Hence, even

after conditioning on these events the probability that |t′ ∩D| < 6η′|t′|-fraction of D is at

most 2δ−1 exp(−Ω(η′2k)) < 1
10

for large enough k.

Finally, we bound the probability of E1 by similar reasoning.

P
D
[E1] = P

v∼D,(t′,s′)∼Nt(s)

[
fs|t′

η′

̸≈ fs′|t′
∣∣∣∣ s′ ∈ Vτ , v ∈ t′

]
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≤ 3

δ′
P

v∼D,s′∼Nt(s)

[
s′ ∈ Vτ ∧ fs|t′

η′

̸≈ fs′|t′
∣∣∣∣ v ∈ t′

]
s/∈B
≤ 3

δ′
· δ

′

30
· P [v ∈ t′]

−1 ≤ 1

5
.

Thus 1
2
≤ P [P ] ≤ P [E1] + P [E2] + P [E3] <

1
2

and a contradiction is reached.

Proof of Lemma 5.8.18. The proof is similar to the first property. Let L be as in

Lemma 5.8.17. This time we define a set of bad triples as follows. For a set (s, t′, s′) ∼ Nt

we consider the following quantity

F (s, t′, s′) := P
(s1,t1,s2,t2,s3,t3,s4)∼N3

t

[
s1, s4 ∈ Vτ ∧ fs1|t′′

η′

̸≈ fs4|t′′
∣∣∣∣ s2 = s, t2 = t′, s3 = s′

]

where t′′ = t2 ∩ t3 ∩ t4. We define B to be the set of triples with large F -value:

B :=

{
(s, t′, s′) : F (s, t′, s′) ≥ δ′2

80

}
,

and keep L as in the proof of Lemma 5.8.17. By excellence of τ and Markov’s inequality

P(s,t′,s′)∼Nt [B] ≤ 80µ
δ′2
≤ exp(−Ω(ηk)). Since s and s′ are both marginally distributed as

Xt

(
k
2

)
, we also have by Claim 5.8.19 and a union bound that either one of s ∈ L or s′ ∈ L

with probability at most δ′2 = e−2c5ηk. It is therefore enough to show f̃s|t′
10η′

≈ f̃s′|t′ under

the assumption that (s, t′, s′) /∈ B and s, s′ /∈ L.

Toward this end, fix (s, t′, s′) and consider the set of disagreeing vertices on the

smoothings at s and s′:

D0 :=
{
v ∈ t′ : f̃s(v) ̸= f̃s′(v)

}
.

Assume for the sake of contradiction that |D0| ≥ 10η′|t′|. Similar to before, we actually

consider D = D0 \ D′ where D′ is the set of vertices in t′ such that P(t3,s4)∼Nt(s′)[s4 ∈

Vτ |t3 ∋ v] (likewise for s1, t1 ∼ Nt(s)). By Claim 5.8.19, both s and s′ have at most η′|s|

such vertices so |D| ≥ 6η′|t′|.
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We now consider the following probabilistic experiment. Sample v ∈ D uniformly

and (s1, t1, s2, t2, s3, t3, s4) conditioned on s2 = s, t2 = t′, s3 = s′. We then condition this

experiment on:

1. v ∈ t′′ = t1 ∩ t2 ∩ t3.

2. s1, s4 ∈ Vτ .

Note that for a fixed v ∈ D, the marginals (s1, t1, s2 = s) and (s3 = s′, t3, s4) are precisely

the distributions that were used in the definition of f̃s(v), f̃s′(v) respectively. As before,

define the event P = {fs1(v) ̸= fs4(v)} and observe that PD [P ] ≥ 1
2

because for every

v ∈ D the plurality labeling for v over Nt under our conditioned process is different at s

and s′.

We now define events whose union contains P which occur with total probability

less than 1
2
. These are

1. E1: the event {fs1|t′′
η′

̸≈ fs4|t′′}

2. E2: the event |t′′ ∩D| ≤ 5η′|t′′|.

3. E3: the event P \ (E1 ∪ E2).

By the same analysis as Lemma 5.8.17 we have P [E3] <
1
5

and P [E2] ≤ 1
10

(we omit the

repeated details). As for E1 we have

P
D
[E1] = P

v∈D,s1,t1,t3,s4

[
fs1|t′′

η′

̸≈ fs4|t′′
∣∣∣∣ s1, s4 ∈ Vτ , v ∈ t′′

]
≤ 9

δ′2
P

v∼D,s′∼Nt(s)

[
s1, s4 ∈ Vτ ∧ fs1|t′′

η′

̸≈ fs4 |t′′
∣∣∣∣ v ∈ t′′

]
(s,t′,s′)/∈B
≤ 9

δ′2
· δ

′2

80
· P [v ∈ t′]

−1 ≤ 1

5
.

We reach a similar contradiction as before.
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Proof of Claim 5.8.19. Let us begin with the first item. Recall under the assumptions of

Theorem 5.8.7 Nt is reverse hypercontractive for indicators. Namely let c6 be the constant

promised by Theorem 5.6.4, and observe that by assumption PXt [Vτ ] ≥ δ/2 ≥ e−c6ηk.

If PXt [L] ≤ 2e−2c5ηk we are done, so assume otherwise. Then by definition of L and

Theorem 5.6.4 we have the chain of inequalities:

P[L]δ′ ≥ P
(s,s′)∼Nt

[s ∈ L, s′ ∈ Vτ ] ≥ 2−q−1 P[L]qδq.

where q is the constant given in Theorem 5.6.4. Re-arranging gives P[L] ≤ (2q+1δ′δ−q)
1

q−1 ≤

exp(−c7ηk) ≤ δ2

2
for the appropriate choice of constant c7 > 0. Thus if c5 is sufficiently

small we get the first item.

For the second item, let D′ denote the set of v ∈ s such that P(t′,s′)∼Nt(s)[s
′ ∈

Vτ | t′ ∋ v] ≤ δ′

3
. Define g :

(
s
|t′|

)
→ [0, 1] to be g(t0) = P(t′,s′)∼Nt(s) [s

′ ∈ Vτ | t′ = t0].

Observe that E[g] ≥ δ′ since by assumption s /∈ L. Moreover by construction we have

v ∈ D′ if and only if Et0∋v [g(t0)] ≤ 1
3
E[g(t0)].

The problem is now reduced to sampling on the complete complex. In other words

let L =
(

s
|t′|

)
, R = s and v ∼ t if v ∈ t. By Chernoff for every α, this graph is an

(α, β, 1
2
)-multiplicative sampler for β = exp(−Ω(αk)). By Claim 5.4.8, this implies that

the opposite graph is a (6β
α
, 2α, 2

3
)-multiplicative sampler. We take α = η′/2, and the

constant c5 > 0 defined above small enough so that 6β
α
≤ δ′. As such we have for every

function g : L → [0, 1] of expectation at least δ′ the fraction of vertices v ∈ s such that

Et′⊆s,v∈t′ [g] <
1
3
Et′⊆s [g(t

′)] is at most η′ as desired.

5.8.4 Examples of Global Complexes

We conclude the section with several examples of ‘global HDX’ to which Theo-

rem 5.8.7 applies in a blackbox manner. We start with a few basic direct examples and
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then argue a vast array of complexes studied in the approximate sampling literature give

rise to global HDX. These are:

1. The complete complex.

2. Erdos-Renyi Hypergraphs.

3. Skeletons of the full linear matroid over Fd
q .

4. Skeletons of ℓ∞-independent complexes, including many classic spin systems.

5. Faces complexes of any of the above.

The first and simplest example of global complexes (other than the complete

complex) come from the classical random model of Linial and Meshulam [283].

Definition 5.8.20 (Erdos-Renyi Hypergraphs). The Erdos-Renyi hypergraph X ∼

Gk(n, p) is a random k-uniform simplicial complex whose (k− 1)-skeleton is complete, and

such that every k-face is sampled into X with probability p independently.

The second direct example we’ll give is based on the full linear matroid over Fd
q ,

whose faces consist of linearly independent vectors over Fd
q :

X(i) = {{v1, v2, . . . , vi} | v1, v2, . . . , vi are independent} ,

endowed with the uniform distribution.

Claim 5.8.21 (Global complexes). The following families are global and HDX:

1. The k-uniform complete complex on n vertices for large enough n is:

– (one-sided) 0-local-spectral HDX

– n−Ω(k)-global

2. The Erdos-Renyi hypergraph Gk(n, p) for large enough n is w.h.p:
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– on(1)-local-spectral HDX

– (1− p+ on(1))-global

3. The k-skeleton of the full linear matroid over Fd
q for large enough q, d is :

– (one-sided) 0-local-spectral HDX

– q−Ω(d)-global

Proof. We cover each case individually:

Complete Complex.

All links of the complete complex are complete and therefore 0-one-sided local

spectral expanders. For globalness, observe that the only k
2
-sets which do not appear in

the link of some t are those that intersect it, which are an 1− (n−k
k )
(nk)
≤ n−Ω(k) fraction.

Random Hypergraphs.

It is well known for fixed p that this complex is an on(1)-local-spectral expander

with high probability so long as p ≫ k log(n)
n

(the top links are simply random G(n, p)

graphs). Since all other links are at least connected with high probability, Theorem 5.4.23

implies the local-spectral bound. Toward globality, fix any k
2
-set t ⊂

(
[n]
k/2

)
. By Chernoff

the probability that more than (1 − p + on(1))-fraction of k
2
-sets disjoint from t fail to

appear in X is much less than n−Ω(k) for large enough n. Thus union bounding over t, the

worst-case total variation of St from uniform over
(
n
k
2

)
is at most 1− p+ on(1) as desired.14

Linear Matroid.

All matroids (and therefore their skeletons) are 0-local spectral expanders [25] (for

this matroid specifically, it is folklore). Toward globality, fix k
2

linearly independent vectors

B1 = {v1, . . . , vk/2}. The set B2 = {w1, . . . , wk/2} only fails to appear in the link of B1 if B1

14Formally, distance here should be measured from π k
2
, but this is within on(1) of uniform in TV with

high probability.
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and B2 are linearly dependent, which happens with probability roughly qk+(k−1)d

qdk
≤ q−Ω(d)

(ignoring low-order terms). Since Πk/2 is uniform over linearly independent sets this gives

the result.

The sampling literature is rife with examples of “ℓ∞-independent” complexes (a

term formally coined in [232]), which are closely related to global complexes. We’ll consider

the variant implicit in [96]. Let µ be a distribution over [q]d, and observe µ induces a

natural d-partite simplicial complex Xµ with

Xµ(d) := {(1, a1), . . . , (d, ad) : (a1, . . . , ad) ∈ Supp(µ)}

and πX((1, a1), . . . , (d, ad)) = µ(a1, . . . , ad). Let S ⊂ [d] and z ∈ [q]S be such that

Px∼µ[xS = z] > 0 (we call such configurations ‘feasible’). The (S, z)-influence matrix Ψz→S

has entries

Ψz→S((u, i), (v, j)) =


Px∼µ[xi = u|xj = v, xS = z]− Px∼µ[xi = u|xS = z] if j ̸= i

0 if j = i.

A complex is called ℓ∞-independent if ∥Ψ∥∞ is bounded for all feasible configurations.

Definition 5.8.22 (ℓ∞-independence). Fix q, d ∈ N and let µ be a distribution over [q]d.

µ is called D-ℓ∞-independent if for all feasible S ⊂ [d] and z ∈ {0, 1}S:

∥ΨS→z∥∞ ≤ D.

We remark that in this regime, one typically thinks of q as fixed or small and the

uniformity d as going to infinity. We show any sufficiently low-dimensional skeleton of an

ℓ∞-independent complex is a global HDX:
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Proposition 5.8.23. Let µ be a D-ℓ∞-independent distribution over [q]d and 3 ≤ k ≤ d.

Then the k-skeleton X≤k
µ satisfies:

1. X≤k
µ is a D+q

d+3−k
-two-sided local-spectral expander

2. X≤k
µ is k2

8
· D+q
d+3−k

-global.

We remark that (tighter) spectral variants of both items above are well known (see

e.g. [24, 12]). Proposition 5.8.23 implies essentially every spin-system studied in the recent

breakthrough line of work on approximate sampling through spectral independence admits

optimal 1% agreement testers (taking k ≤
√

log(d) skeletons).15 See [232, Section 3] for

an overview including distributions with the stochastic covering property, independent

sets, various Ising/Potts models, list colorings, and more.

The proof of Proposition 5.8.23 relies on an intermediate notion of [200] called

local-ℓ∞-expansion.

Definition 5.8.24 ((λ,∞)-expansion). A simplicial complex X is called a (λ,∞)-local

expander if for every τ ∈ X with |τ | ≤ d− 2:

∥Aτ − Πτ∥∞ ≤ λ

where Aτ is the weighted adjacency matrix of Xτ ’s 1-skeleton, and Πτ is its corresponding

stationary operator.

We require two lemmas regarding this notion. First, we note that up to dependence

on the alphabet q (typically thought of as constant in this regime) ℓ∞-expansion is

essentially equivalent to ℓ∞-independence.

15Note while spectral independence is weaker than what we require, almost all known methods for spin
systems actually bound ℓ∞-independence.
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Lemma 5.8.25. Let µ be a D-ℓ∞-independent distribution over [q]d. Then for every

feasible S ⊂ [d] and xS ∈ {0, 1}S:

∥AxS
− ΠxS

∥∞ ≤
D + q

d− |S|
.

Proof. We prove the case where S = ∅. The general statement follows from applying this

argument to the links of Xµ. With this in mind, observe that by definition:

∥A∅ − Π∥∞

=max
(u,i)

∑
(v,j)∈X(u,i)

∣∣∣∣ 1

d− 1
P[xi = u|xv = j]− 1

d
P[xi = u]

∣∣∣∣
≤1

d
max
(u,i)

 ∑
(v,j)∈X(u,i)

|P[xi = u|xj = v]− P[xi = u]|+ 1

d− 1
P[xi = u|xj = v]


≤q

d
+

1

d
max
(u,i)

∑
(v,j)∈X(u,i)

|P[xi = u|xj = v]− P[xi = u]|

=
q

d
+

1

d
max
(u,i)

∑
(v,j)∈X(u,i)

|P[xi = u|xj = v]− P[xi = u]|

≤D + q

d

Second, we’ll need the slightly more involved fact from [200] that any ℓ∞-local

expander is global. We reproduce the proof here for completeness.

Lemma 5.8.26. Let X be a d-uniform λ-ℓ∞-local expander. Then X is d2

8
λ-global.

Proof. Recall that it is sufficient to bound the infinity norm:

∥S d
2
, d
2
− Π d

2
, d
2
∥∞ ≤

d2

4
λ.

We prove a slightly stronger statement by induction. For any τ ∈ X and feasible i, j both
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the ∞-norm and 1-norm are bounded by:

∥Sτ
i,j − Πτ

i,j∥1, ∥Si,j − Πi,j∥∞ ≤ ijλ.

We induct on i+ j. For the base case i = j = 1, first observe the ∞-norm is exactly the

λ-ℓ∞-expansion of the 1-skeleton. A classical consequence of Hölder duality states that for

any Hölder conjugates (p, q) and operator M

∥M∥p = ∥M∗∥q,

where M∗ is M ’s adjoint. Since S1,1 − Π1,1 is self-adjoint we therefore have

∥Sτ
0,0 − Πτ

0,0∥1 = ∥Sτ
0,0 − Πτ

0,0∥∞ ≤ λ

as desired.

Assume now by induction that, for some fixed i + j > 0, all i′ + j′ < i + j and

τ ∈ X satisfy

∥Sτ
i′,j′ − Πτ

i′,j′∥∞ ≤ i′j′λ.

Let p ∈ {1,∞} and let p̄ denote the complement of p. We first argue we may assume

without loss of generality that i > 1. This is again by Hölder duality since

∥Si,j − Πi,j∥p = ∥Sj,i − Πj,i∥p̄.

Thus we are done if we show the result for both p ∈ {1,∞} just for the case i ≥ j (and

thus i > 1).

Toward this end, fix any f : X(j) → R. As is typically the case, the idea is to
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localize the input by first drawing an (i− 1)-face, then a vertex from its link:

∥Si,jf − Πi,jf∥p =

∣∣∣∣∣
∣∣∣∣∣∥(Si,jf)|s − (Πi,jf)|s∥p,v∈Xs(1)

∣∣∣∣∣
∣∣∣∣∣
p,s∈X(i−1)

where for any g ∈ X(i) → R, g|s(v) = g(s ∪ v) denotes the localization of g to the link

of s. For concreteness, we write out the above explicitly for the p = 1 case in slightly

less compact notation. The p =∞ case is the same replacing expectations with absolute

maxima:

∥Si,jf − Πi,jf∥p = E
t∈X(i)

[|Si,jf(t)− Πi,jf(t)|]

= E
s∈X(i−1)

[
E

v∈Xs(1)
[|Si,jf(s ∪ v)− Πi,jf(s ∪ v)|]

]

= E
s∈X(i−1)

[
E

v∈Xs(1)
[|Si,jf |s(v)− Πi,jf |s(v)|]

]

= Es∈X(i−1)

[
Ev∈Xs(1)[|Si,jf |s(v)− Πi,jf |s(v)|]

]

= Es∈X(i−1)

[∣∣∣∣∣Ev∈Xs(1)[|Si,jf |s(v)− Πi,jf |s(v)|]

∣∣∣∣∣
]

=

∣∣∣∣∣
∣∣∣∣∣∥(Si,jf)|s − (Πi,jf)|s∥p,v∈Xs(1)

∣∣∣∣∣
∣∣∣∣∣
p,s∈X(i−1)

.

We stick to the more compact norm notation for the remainder of the proof. The trick is

now to observe that as a function of Xs(1), Si,jf |s is exactly Ss
1,jf

s, where f s : Xs(j)→ R

is the restriction f s(τ) = f(τ). Then by adding and subtracting the corresponding local

stationary operator we have:

∥Si,jf − Πi,jf∥p =

∣∣∣∣∣
∣∣∣∣∣∥Ss

1,jf
s − Πs

1,jf
s +Πs

1,jf
s − (Πi,jf)|s∥p,v∈Xs(1)

∣∣∣∣∣
∣∣∣∣∣
p,s∈X(i−1)

≤

∣∣∣∣∣
∣∣∣∣∣∥Ss

1,jf
s − Πs

1,jf
s∥p,v∈Xs(1)

∣∣∣∣∣
∣∣∣∣∣
p,s∈X(i−1)
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+

∣∣∣∣∣
∣∣∣∣∣∥Πs

1,jf
s − (Πi,jf)|s∥p,v∈Xs(1)

∣∣∣∣∣
∣∣∣∣∣
p,s∈X(i−1)

by the triangle inequality. The first term is now bounded by the inductive hypothesis

applied in the link of s:

∣∣∣∣∣
∣∣∣∣∣∥Ss

1,jf
s − Πs

1,jf
s∥p,v∈Xs(1)

∣∣∣∣∣
∣∣∣∣∣
p,s∈X(i−1)

≤

∣∣∣∣∣
∣∣∣∣∣jλ∥f s∥p,Xs(j)

∣∣∣∣∣
∣∣∣∣∣
p,s∈X(i−1)

= j∥f∥p,X(j)

Toward analyzing the second term, observe that Πs
1,jf

s = Si−1,jf(s) and (Πi,jf)|s(v) =

Πi−1,jf(s) so:

∣∣∣∣∣
∣∣∣∣∣∥Πs

1,jf
s−(Πi,jf)|s∥p,v∈Xs(0)

∣∣∣∣∣
∣∣∣∣∣
p,s∈X(i−1)

= ∥Si−1,jf−Πi−1,jf∥p,s∈X(i−1) ≤ (i−1)jλ∥f∥p,X(j)

by the inductive hypothesis. Altogether this gives

∥Si,jf − Πi,jf∥p ≤ λj + λ(i− 1)j = ijλ

as desired.

The proof of Proposition 5.8.23 is now essentially immediate.

Proof of Proposition 5.8.23. The first fact is immediate from Lemma 5.8.25 and the fact

that ∥Aτ−Πτ∥2 ≤ ∥Aτ−Πτ∥∞. The second fact is an immediate consequence of combining

Lemma 5.8.25 and Lemma 5.8.26.

We conclude the subsection by the observation that if a complex X is global,

then so is its faces complex (Definition 5.5.7). Since the faces complex also inherits the

two-sided expansion of the original complex up to factors in uniformity (c.f. the proof of

Theorem 5.5.1), this shows that one can also take as examples faces complexes of any of

the examples above.
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Claim 5.8.27. Let X be a k-uniform and λ-global complex. Let ℓ be such that ℓ divides k,

then the ℓ-faces complex F ℓ
X is λ-global.

Proof. Let m = k
ℓ

for notational convenience. Fix t = {s1, s2, . . . , sm
2
} ∈ F ℓ

X(
m
2
). Observe

that the set of neighbors of t with respect to the swap walk in F ℓX are exactly those t′

such that ∪t and ∪t′ are neighbors in the swap walk on X
(
k
2

)
(here ∪t = s1 ∪ s2 ∪ · · · ∪ sm

2

and similarly for t′). Moreover, one samples a neighbor of t by sampling a random neighbor

τ of ∪t, and then sampling a uniform at random partition of τ to t′ = {s′1, s′2, . . . , sm
2
}

(the partition is chosen independent of t).

Thus one observes that the TV -distance between St and Π can be written as

1

2

∑
t′∈F ℓX(m

2 )

| P
St(F ℓX)

[t′]− P
Π
[t′] | = 1

2

∑
τ∈X( k

2 )

∑
t′:∪t′=τ

| P
St(F ℓX)

[t′]− P
Π
[t′] |

=
1

2

∑
τ∈X( k

2 )

∑
t′:∪t′=τ

p| P
S∪t(X)

[τ ]− P
Π(X)

[τ ] |

where p is one over the number of partitions of τ to t′. Obviously this is equal to

1

2

∑
τ∈X( k

2 )

P
S∪t(X)

[τ ]− P
Π(X)

[τ ] = dTV (S∪t(X),Π(X)) ≤ λ

as desired.

5.9 Analytic, Geometric, and Combinatorial Applica-
tions

In this section, we cover several brief applications of sampling and reverse hyper-

contractivity in well-studied combinatorial and analytic settings.
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5.9.1 New Double Samplers

Double samplers are a strengthened notion of sampling introduced in [124, 121] that

consist of two “stacked” samplers with additional local sampling properties under ‘closure’

of the top layer. These interesting objects have powerful applications in agreement testing

[124] and list-decoding [121], and have even seen algorithmic use in the construction of

space-efficient data structures for the heavy hitter problem [132].

Definition 5.9.1 (Double sampler, [121]). A double sampler consists of a triple (V2, V1, V0),

where V0 is the ground set, V1 is a collection of i-subsets of V0 and V2 is a collection of

k-subsets of V0, where k > i ∈ N. We say that (V2, V1, V0) is an (ε, β, ε0, β0)-double sampler

if

– The inclusion graphs on (V2, V1) and (V2, V0) are (ε, β)-additive samplers and the

inclusion graph on (V1, V0) is an (ε+ε0, β+β0)-additive sampler16 (recall the inclusion

graph is defined by connecting two subsets by an edge if one contains the other).

– For every T ∈ V2, let V1(T ) = {S ∈ V1 : S ⊂ T} be the sets in V1 that are contained

in T . Let G|T be the bipartite inclusion graph connecting elements in T (viewed as

elements in the ground set V0) to subsets in V1(T ). We require that for every T ∈ V2,

the graph G|T is an (β0, ε0)-additive sampler.

Double samplers are only known to arise from high dimensional expanders. In their

original work, [124, 121] use the Ramanujan complexes [290] to construct explicit double

samplers for all (ε, β, ε0, β0):

Theorem 5.9.2 ([121, Theorem 2.11]). For every (ε, β, ε0, β0) > 0, there exists an explicit
16The weights over edges in (Vi, Vj) are the marginals of the probabilistic experiment where we first

choose T ∈ V2 (according to some given weight distribution Π), and then choose v ∈ V0 and S ∈ V1 such
that v ∈ S ⊆ T , uniformly at random over all such pairs S, v.
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infinite family of double samplers {(V (n)
0 , V

(n)
1 , V

(n)
2 )} such that for all n:

|V (n)
1 |
|V (n)

0 |
,
|V (n)

2 |
|V (n)

0 |
= exp

(
poly

(
1

β
,
1

β0

,
1

ε
,
1

ε0

))
.

One of the main open questions posed in [121] is to settle the overhead of double

samplers. In particular, while it is known that exponential dependence on εi is necessary

(even for standard samplers), it is plausible the dependence on the ‘failure probability’

βi could be improved, perhaps even to match the corresponding polynomial dependence

of optimal standard samplers. Since typical related applications (e.g. for low soundness

agreement tests and PCPs [215, 128]) take ε to be constant (or at most some polylog in

β), this latter dependence is where the crux of the problem lies.

To the best of our knowledge, there have been no lower bounds or improvements

over Theorem 5.9.2 since [121]’s original work. Leveraging our concentration bounds

and their corresponding optimality (see Section 5.11.1) we take a significant step toward

resolving this problem: quasi-polynomial size double samplers exist and, under reasonable

assumptions on the underlying complex, are the best possible.

Theorem 5.9.3 (Quasi-Polynomial Double Samplers). for every (ε, β, ε0, β0) > 0, there

exists an explicit family of (β, ε),(β0, ε0) double samplers {(V (n)
2 , V

(n)
1 , V

(n)
0 )} of size at

most:
|V (n)

1 |
|V (n)

0 |
,
|V (n)

2 |
|V (n)

0 |
≤ exp

(
Õ

(
log3 1

β
log3 1

β0

ε6ε60

))
.

Moreover, for ε ∈ (0, 0.01), if the underlying complex family {Xn} is ε
3
-hitting, vertex-

uniform, and non-contracting,17 this is optimal up to polynomial factors in the exponent:

|V (n)
2 |
|V (n)

0 |
≥ exp

(
Ω

(
log( 1

β
) log( 1

β0
)

ε2ε20

))

Note the above does not fully rule out the existence of simplicial poly-size double
17Here we mean 1) π0(v) = |X(1)|−1 for all v ∈ X(1), and 2) |X(i)| ≥ |X(i− 1)| for all 2 ≤ i ≤ d.
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samplers. While the assumption on regularity in the lower bound can be easily relaxed, it

is unclear to what extent the assumption on hitting-set is an artifact of our proof technique

(see Section 5.11.1 for details), though it is certainly a natural property for such objects

to satisfy. Moreover, our bound strongly relies on the assumption that |V2| ≥ exp(d)|V0|

(implied by X being non-contracting), which is not generically true. Nevertheless, high

dimensional expanders exhibit both good hitting set behavior (see Proposition 5.10.12)

and at least exponential degree (see Proposition 5.9.6), so it is at least accurate to say

double samplers arising from HDX are at best quasi-polynomial in β−1.

The proof of Theorem 5.9.3 relies on two further results. The first, toward our

upper bound, is Lubotzky, Samuels, and Vishne’s [291] classical construction of Ramanujan

complexes.

Theorem 5.9.4 (LSV-Complexes [291]). For any λ > 0 and d ∈ N, there exists an explicit

infinite family of d-partite one-sided λ-local-spectral expanders {X(n),Π(n)} with degree

deg(X) ≤ λ−O(d2). Moreover, for every d ≥ k > ℓ ≥ 0, max{πk} ≤ on(1).

The second, toward the lower bound, is the following optimality result we prove in

Section 5.11.1.

Corollary 5.9.5 (Corollary of Theorem 5.11.1). For any ε ∈ (0, 0.01), let X be a d-

uniform, ε
3
-hitting vertex-uniform complex and i ≤ k ≤ d. Then there exists a set A ⊂ X(i)

such that:

P
s∈X(k)

[|Ui,k1A(s)− µA| > ε] ≥ exp

(
O

(
ε2
k

i

))
.

We are now ready to prove Theorem 5.9.3.

Proof of Theorem 5.9.3. We split into the upper and lower bounds.

Upper Bound.

Let k = O
(

log(1/β) log(1/β0)

ε2ε20

)
, d = k log(k), and {Xn} be an explicit infinite family of

d-uniform LSV-complexes with local-spectral expansion λ = 2−Ω(d), and take V2 = X(k),
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V1 = X(i), and V0 = X(1) for i = Θ( log(1/β0)

ε20
). By Theorem 5.5.1, (V2, V1) is an (ε, β)-

sampler for the right choice of constants. Moreover, every closure graph is simply the

( log(1/β0)

ε20
)-uniform complex on k vertices, which is negatively correlated and therefore also

a (ε0, β0)-sampler by standard Chernoff-Hoeffding for negatively correlated variables. The

overhead bound is then immediate from the degree of LSV complexes in Theorem 5.9.4.

Lower Bound.

Recall that by definition V
(n)
0 = Xn(1) = [n], V (n)

1 = Xn(i), and V
(n)
2 = Xn(k) for

some family of simplicial complexes {Xn} and set sizes 1 < i < k. By Corollary 5.9.5, for

any ε ∈ (0, 0.01), (X(k), X(i)) is at best an (ε, eO(ε2 k
i
))-sampler, therefore any such double

sampler requires:
k

i
≥ Ω

(
log(1/β)

ε2

)
.

On the other hand, it is also required for every T ∈ X(k) that the induced graphs

G|T = (V2|T , V1|T ) are (ε0, β0)-samplers. By standard sampling lower bounds [87], this

graph is at best a (ε0, e
O(ε20i))-sampler, forcing

i ≥ Ω

(
log(1/β0)

ε20

)
.

Combining these bounds we have that for any valid choice of i the top uniformity k of an

(ε, β, ε0, β0)-double sampler is at least

k ≥ Ω

(
log( 1

β
) log( 1

β0
)

ε2ε20

)
.

It is therefore enough to argue that the overhead is at least exponential in the uniformity

k:
|V2|
|V0|
≥ 2Ω(k).
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This is true for any non-contracting complex. In particular, since |X(k)| ≥ |X(k/2)|, the

average degree of every (k/2)-face (and hence every vertex) is at least 2Ω(k).

We remark that it may also be possible to construct double samplers with smaller

overhead by removing the simplicial requirement from the definition (see e.g. the relaxed

notion in [132]). It is likely, for instance, that ‘Grassmannian HDX’ [243, 171, 127] based on

subspace structure lead to double-samplers with different parameters-overhead trade-offs.

5.9.2 A Degree Lower Bound for HDX

One of the most classical results in the study of expander graphs is the Alon-

Boppana Theorem [307], roughly stating that any family of bounded-degree λ-expanders

must have degree at least 2
λ2 . In higher dimensions, the situation is less understood. Not

only should degree scale in some way with the local expansion λ, but dependence on

dimension becomes a critical parameter in application. In this section, we give (to our

knowledge) the first systematic study of the degree of high dimensional expanders. In

particular, we prove that various families of hyper-regular HDX require super-exponential

degree and prove a threshold-phenomenon exists at the TD-barrier: there exist (reasonably

balanced) constructions of 1-TD complexes achieving exponential degree at every level,

while any (reasonably balanced) λ-TD complex must have degree 2−Ω(k2) for any level

k ≤
√
d.

Before applying our stronger concentration bounds, we first look at what one can

infer about the degree of HDX directly from spectral methods. The following proposition,

though not to our knowledge appearing anywhere in the literature, is the result of applying

elementary spectral methods to the problem:

Proposition 5.9.6 (Spectral Lower Bound). Let X be a d-uniform {λi}-two-sided local-
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spectral expander. Then for every k < d, the degree of X’s k-skeleton is at least:

deg(k)(X) ≥ 1

(k − 1)!

k−1∏
i=1

1

λi

Proof. Observe the k-th degree of a vertex v ∈ X(1) can be bounded by

1

(k − 1)!

k−1∏
i=1

min
t∈X(i)

{|Xt(1)|}

simply by counting the number of ways a face {v2, . . . , vk−1} ∈ Xv1(k) can be sampled by

choosing v2 ∼ Xv1(1), v2 ∈ X{v1,v2}(1) and correcting for the 1
(k−1)!

possible orderings of

the face. The result now follows from the elementary fact (see e.g. [162, Lemma A.7]) that

any two-sided λ-expander has at least 1
λ

vertices.

We remark that one might reasonably think to use Alon-Boppana [307] (the classic

‘optimal’ trade-off between expansion and degree) to prove a version of the above for

one-sided expansion. This does not work for high dimensional expanders, since their links

may have low diameter.

Proposition 5.9.6 implies that any (hyper-regular) o(1
d
)-two-sided HDX must have

super-exponential degree but is essentially trivial for complexes near the TD-barrier, under

spectral independence, or even for arbitrarily strong partite one-sided HDX. In these cases,

even if one is willing to look e.g. at polynomial size cutoffs (as is quite common in the

literature) Proposition 5.9.6 only gives a slightly super-exponential lower bound:

deg(k)(X) ≥ exp(Ω(k log(k))).

Using concentration, we improve this bound to strongly super-exponential. We start with

the partite case.

Theorem 5.9.7. Fix c ∈ [0, 1] and let X be a d-uniform hyper-regular partite 2−Ω(dc)-HDX.
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Then either:

1. X’s 1-skeleton is dense:18

deg1(X) ≥ |X(1)|
2

2. X has super-exponential degree:

deg(d)(X) ≥ exp(Ω(max{d2c, d}))

Second we prove an analogous bound for skeletons of TD and SI-complexes.

Theorem 5.9.8. Let λ, c ∈ [0, 1), η > 0, and d ∈ N. If X is a d-uniform hyper-regular

λ-TD or η-SI complex then for any k ≤ dc:

1. X’s 1-skeleton is dense:

deg1(X) ≥ |X(1)|
2

2. X’s k-skeleton has super-exponential degree:

deg(k)(X) ≥ exp(Ωλ,η(min{k2, k1/c}))

The latter setting above is tight in the sense that when λ = 1, that is at the

TD-barrier, there exist (reasonably balanced) complexes where deg(k)(X) = exp(O(k))

for all k ≤ d. On the other hand, beyond the TD barrier the best known degree upper

bound for a hyper-regular (or even reasonably balanced) HDX is exp(exp(d)) [159], leaving

a substantial gap with the above. Nevertheless, Theorem 5.9.8 is the first to exhibit

quantitative threshold behavior for degree at the TD-barrier.

Theorem 5.9.7 and Theorem 5.9.8 leave open two critical questions:
18While this condition may seem strange, note it is necessary to handle dense settings. Take, e.g.,
{0, 1}n, which is a hyper-regular 0-local-spectral expander whose

√
n-skeleton has degree exp(

√
n log(n)).
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1. Can we prove super-exponential bounds for the top level of a λ-TD/η-SI complex?

2. Can the assumption of hyper-regularity be dropped?

As we will see in the proof of Theorem 5.9.8, the first question would be resolved if one

could give any asymptotic improvement over exponential concentration for weak HDX. In

other words, any bound of the form:

P
s∈X(d)

[
1

d
|s ∩ A| − µ >

1

2

]
≤ exp(ω(

√
d))

for X and its links would imply a super-exponential degree lower bound. If, for instance,

we have a bound of exp(−Ω(d)) holds, this would imply a degree lower bound of exp(Ω(d2))

on the top level of X.

Regarding the second question, our proof technique extends to any complex whose

links are reasonably ‘balanced’ in the sense that there should not be a 2−Ω(
√
d) fraction

of vertices making up an Ω(1) fraction of the mass. Unfortunately, many classical HDX

constructions, e.g. the Ramanujan complexes of [291], actually are highly unbalanced

in this sense. The links of these constructions essentially approximate an ‘unbalanced

product’: they are partite complexes which are regular on each individual part, but many

of the parts are vanishingly small and therefore make up a significant portion of the mass.

While known constructions of this type all have minimum part size at least exponential

in d (and therefore result in degree exp(d2)), it is unclear how to rule out a construction

whose links look, e.g., like {0, 1}d × [2d]. Such a complex could potentially satisfy optimal

inclusion sampling while maintaining exponential degree.

We leave the possible extension of our lower bounds to the top level of unbalanced

complexes (or conversely the construction of highly locally unbalanced exponential-size

HDX) as one of the main open problems suggested by this work:

Question 5.9.9 (Lower Bounds for Locally Unbalanced HDX). Let {Xn} be an infinite
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family of bounded-degree HDX that are either λ-TD or η-SI. Is the degree of every

(sufficiently large) Xn super-exponential:

deg(Xn) ≥ exp(ω(d))?

Question 5.9.9 is critical from the standpoint of applying HDX in other areas

of theoretical computer science where degree dependence corresponds to the ‘overhead’

incurred by using the complex as a gadget. For instance, the lower bound in Theorem 5.9.3

can be achieved by HDX essentially if and only if Question 5.9.9 is false. Similarly, a

variant of Question 5.9.9 where d may depend on n is critical to the study of agreement

testers whose soundness scale with the number of vertices of the system. Constructing

polynomial size testers with inverse polynomial soundness is the combinatorial core of the

so-called sliding scale conjecture in PCP theory. If the above lower bound holds, HDX

cannot give such objects: d must be taken to be o(log(n)) to maintain polynomial size,

and the resulting soundness of any HDX-based poly-size agreement tester would be at

best 2−o(log(n)), missing the inverse polynomial mark.

We now move to the proofs of Theorem 5.9.7 and Theorem 5.9.8 which are inspired

by our localization technique for proving concentration that samples s = {v1, v1, . . . , vd}

by iteratively sampling v0 ∈ X, then v2 ∈ Xv1 , v3 ∈ X{v1,v2}... and analyzing the local

concentration at each step. Upon further inspection, this technique yields the fact that

the 1-skeleton of a complex with good sampling in 0 and 1-links must itself be an excellent

sampler graph.

Lemma 5.9.10. Fix ε, δ1, δ2 > 0. Let X be a d-uniform simplicial complex such that:

1. (X(d), X(1)) is a ( ε
2
, δ1)-additive sampler.

2. For every v ∈ X(1), (Xv(d), Xv(1)) is an ( ε
2
, δ2)-additive sampler.

Then the partite double cover of X’s 1-skeleton is a (ε, 2δ1
1−δ2

)-sampler.
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Proof. Fix A ⊆ X(1). At a high level, the proof follows from observing that if the base

graph is a poor sampler, then after drawing the first vertex v1 of our d-set t = {v1, . . . , vd},

there is a non-trivial chance that the neighborhood of v1 (i.e. Xv1(1)) ‘sees’ A in the

wrong proportion. However, since the remainder of the face {v2, . . . , vd} ∈ Xv1(d), if

(Xv1(d), Xv1(1)) is indeed a good sampler it will maintain this incorrect proportion from

the first step and violate sampling of A in (X(d), X(1)).

We now formalize this argument. Given our assumptions we’d like to show:

P
v∈X(1)

[
P

u∈Xv(1)
[A] > P [A] + ε

]
≤ δ1

1− δ2
.

The lower tail follows from applying this on the complement set. Toward this end, denote

by B the set of ‘bad’ vertices in A that over-sample the base graph:

B =

{
v ∈ X(1)

∣∣∣∣ P
u∈Xv(1)

[A] > P [A] + ε

}
.

We need to show P[B] ≤ δ1
1−δ2

. We bound P[B] by relating it to the set of bad d-faces:

C =
{
t ∈ X(d)

∣∣∣ ∣∣∣ P
u∈t

[A]− P [A]
∣∣∣ > ε

2

}
,

which has measure at most P[C] ≤ δ1 by Condition (2). The key to relate B and C is

to observe we can sample a random d-face t by first sampling a vertex v ∈ X(1), then

sampling t from its link:

P [C] = E
t∈X(d)

[1C(t)] = E
v∈X(1)

[
E

t∈Xv(d)
[1C(t)]

]
≥ P [B] E

v∈X(1)

[
E

t∈Xv(d)
[1C(t)]

∣∣∣∣∣ v ∈ B

]
.

When v ∈ B, we have Pu∈Xv(1) [A] ≥ P [A] + ε by assumption, but then by Condition (1)

E
v∈X(1)

[
E

t∈Xv(d)
[1C(t)]

∣∣∣∣∣ v ∈ B

]
≥ P

t∈Xv(d)

[
P [A | t] > P

u∈Xv(1)
[A]− ε

2

]
≥ 1− δ2.
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Putting everything together we have

(1− δ2)P [C] ≤ P [B] ≤ δ1.

and P [C] ≤ δ1
1−δ2

as desired.

Combining this fact with standard degree lower bounds for sampler graphs [87]

gives the following degree lower bound for the 1-skeletons of such complexes:

Corollary 5.9.11. Let X be a d-uniform simplicial complex satisfying:

1. (X(d), X(1)) is a ( 1
10
, δ1)-sampler

2. For all v ∈ X(1), (Xv(d), Xv(1)) is a ( 1
10
, δ2)-sampler.

Then X’s 1-skeleton has high max-degree:

∃v ∈ X(1) : deg(1)(v) ≥ min

{
|X(1)|

2
,
2(1− δ2)

5δ1

}

Proof. By Lemma 5.9.10 the underlying graph of X is a (1
5
, δ = 2δ1

1−δ2
)-sampler. [87,

Theorem 2] states the following relation on a graph G = (L,R,E) that is an (ε, δ)-sampler

of max degree t ≤ |X(1)|
2

.

t|R| ≥ |L|(1− 2ε)

2δ
.

Here L = R = X(1) and this inequality gives t ≥ 0.8
2δ

= 2(1−δ2)
5δ1

.

Notice this bound is substantially stronger than what can be inferred from spectral

expansion alone. For instance, when X is a λ = poly(d−1)-HDX, Alon-Boppana only

implies a degree lower bound of Ω(λ−2) = poly(d−1), whereas combining the above with

Corollary 5.7.7 gives degree at least exp(−
√
d). Given this fact, Theorem 5.9.7 and

Theorem 5.9.8 follows by recursive application of Corollary 5.9.11 on each link of the HDX.
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Proof of Theorem 5.9.7 and Theorem 5.9.8. Similar to the spectral argument, since X is

hyper-regular the kth degree of any vertex v0 ∈ X(1) can be bounded by:

deg(k)(v0) ≥
1

(k − 1)!

k−1∏
i=1

min
t∈X(i)

{
deg(1)(Xt)

}
.

It is therefore sufficient to bound the degree of the 1-skeleton of the links of X. We split

the analysis into the partite and TD/SI cases.

Partite Case.

Let k′ = max{
√
d, dc}. By Theorem 5.7.1, there exists a universal constant c′ > 0

such that for every t ∈ X≤ d
2 , the link Xt satisfies:

1. (Xt(d− |t|), Xt(1)) is a ( 1
10
, exp(−c′k′))-sampler

2. For all v ∈ Xt(1), (Xt∪{v}(d− |t| − 1), Xt∪{v}(1)) is a ( 1
10
, exp(−c′k′))-sampler.

Setting t ∈ X(1), Corollary 5.9.11 implies

deg(1)(X) ≥ min

{
|X(1)|

2
, exp(−c′k′)

}
.

Assume exp(−c′k′) ≤ |X(1)|
2

(else Condition (1) is satisfied and we are done). Under this

assumption, we argue by induction that the max degree of any i-link is at least:

∀i ≤ d

2
: min

t∈X(i)
{deg(1)(Xt)} ≥

1

2i
exp(c′k′). (5.27)

We remark the restriction on i is to enforce that links of this level are still ( 1
10
, exp(−c′k′))-

samplers. Plugging this back into our bound on degree gives exp(−Ω(k′2)) ≥

exp(−Ω(max{d, d2c})) as desired.

To prove Equation (5.27), observe the base case i = 1 is given by assumption. The

inductive step simply follows from observing that the minimum number of vertices in any
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i-link is exactly the minimum degree of the 1-skeleton of any (i− 1)-link. Thus applying

Corollary 5.9.11, we have:

∀t ∈ X(i) : deg(1)(Xt) ≥ min

{
|Xt(1)|

2
, exp(−c′k′)

}
≥ 1

2i
exp(c′k′).

as desired.

TD/SI Case.

When X is λ-TD or η-SI, we’d like to run the same argument as above but run

into a slight problem. We can still bound the kth degree of a vertex v by:

deg(k)(v) ≥ 1

(k − 1)!

k−1∏
i=1

min
t∈X(i)

{
deg(1)(Xt)

}
,

but because X satisfies only exponential concentration, Equation (5.27) becomes

∀i ≤ d

2
: min
t∈X(i)

{deg(1)(Xt)} ≥
1

2i
exp(c′

√
d).

This bound is now only non-trivial up to i ≤ O(
√
d) levels of X, stopping us from proving

super-exponential concentration for X’s top level. Nevertheless, when k = dc, plugging

the above into the degree calculation gives exp(d) = exp(k1/c) whenever c ≥ 1/2, and

exp(k
√
d) ≥ exp(k2) whenever c < 1/2.

5.9.3 Geometric Overlap

The geometric overlap property is a classical notion of high dimensional expansion

(see e.g. [288]) which promises every embedding of the complex has a point in space hit by

at least a constant fraction of the faces.

Definition 5.9.12. Let X be a d-uniform simplicial complex and let k ≤ d− 1. Let c > 0.

We say that X has (k, c)-geometric overlap if for every ρ : X(1)→ Rk, there exists a point

433



q0 ∈ Rk such that

P
s∈X(d)

[q0 ∈ conv(ρ(s))] ≥ c.

Here conv(ρ(s)) is the convex hull of the points of ρ(s) = {ρ(v) | v ∈ s}. While

we are not aware of any applications of geometric overlap in computer science, it is a

popular topic in geometry and topology and related ideas (e.g. an overlap variant of the

Borsuk-Ulam theorem) have seen recent use in the study of algorithmic stability [92].

Boros and Füredi [74] showed that the 2-dimensional complete complex has geo-

metric overlap, a result which was later generalized to all dimensions by Bárány [50]. The

notion was extended to general simplicial complexes by Gromov [182], who asked whether

there are bounded degree complexes that have this property. Followup work by Fox,

Gromov, Lafforgue, Naor, and Pach [153] gave an affirmative answer to this question both

via random construction and through [290]’s Ramanujan complexes. Finally, a series of

works [316, 140, 309] extended their ideas to general spectral high dimensional expanders

by leveraging high dimensional expander-mixing properties. We note that Gromov also

defined a closely related (but stricter) notion of topological overlap [182], which was later

studied by [230, 141] among others. We focus only on the geometric setting here.

While prior works have succeeded in showing optimal geometric overlap for random

bounded-degree complexes [153, Theorem 1.7], it has been open since Gromov’s work to

construct such a family explicitly. In this subsection, building on the approach of these

prior works, we show sufficiently strong high dimensional expanders have optimal overlap,

resolving this problem.

To state our result, it is useful to first understand the overlap properties of the

complete complex. Let ck,n be the largest constant so that ∆n(k + 1) has (k, ck,n)-geometric

overlap, and let c(k) = limn→∞ ck,n. By [50] this limit exists and is positive. Similarly,

let cpd,k,n be the largest constant so that the complete d-partite complex with n-vertices

on every side has (k, cpd,k,n)-geometric overlap, and let cpd,k = limn→∞ cpd,k,n. Existence and
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positivity of this limit follows from [312]. The former constant, c(k), is known to be the

best possible for bounded degree simplicial complexes [153, Theorem 1.6].

We show that every sufficiently strong (partite) high dimensional expanders has

geometric overlap nearly matching the (partite) complete complex:

Theorem 5.9.13. For every ε > 0 and k < d ∈ N, there exist λ, λp > 0, and n0, n0,p ∈ N

such that

1. Two-sided case: If X is d-uniform λ-two-sided high dimensional expander on

at least n0 vertices so that the measure on the vertices is uniform, then X has

(k, ck − ε)-geometric overlap.

2. Partite case: If X is d-partite λp-one-sided HDX on at least n0,p vertices so that

the measure on the vertices is uniform, then X has (k, cpd,k − ε)-geometric overlap.

We comment that this theorem applies to many of the complexes constructed in

[290] (for the non-partite setting we need to take lower uniform skeletons).

The proof of Theorem 5.9.13 combines our concentration bounds with tools devel-

oped in [153]. We have not tried to find the optimal dependence on λ or on the degree of

the complex. Finally before moving to the proof, we remark that the result really only relies

on the weaker ‘high-dimensional expander-mixing’ type inequality which actually holds

for the more general family of splitting-trees such as expander walks (see Section 5.10.1).

Thus it is possible to obtain explicit complexes with geometric overlap approaching that

of the complete (partite) complex through this more general family as well, though we

omit the details.

Homogeneous tuples.

The core of [153]’s proof of geometric overlap is the following partitioning theorem.

We follow their definitions and presentation precisely. A tuple of subsets S1, . . . , Sk+1 ⊆ Rk

is said to be homogeneous with respect to a point q ∈ Rk if either:
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1. All simplices with one vertex in each of the sets S1, . . . , Sk+1 contain q.

2. None of these simplices contain q.

An equipartition of a finite set is a partition of the set into subsets whose sizes

differ by at most one.

Theorem 5.9.14 ([153, Corollary 1.9]). Let k be a positive integer and ϵ > 0. There exists

a positive integer K = K(ϵ, k) ≥ k + 1 such that for any K ′ ≥ K the following statement

holds. For any finite set P ⊆ Rk and for any point q ∈ Rk, there is an equipartition

P = P1 ·∪ · · · ·∪PK′ such that all but at most an ϵ-fraction of the (k+1)-tuples Pi1 , . . . , Pik+1

are homogeneous with respect to q.

Our proof adapts the idea in [153, Theorem 1.7].

Proof of Theorem 5.9.13. We split the proof into the two-sided and partite cases.

Two-sided Case.

Let K = K(ε/16, k) be the constant promised in Theorem 5.9.14 and K ′ ≥ K

be the smallest constant so that for any equipartition of the n-vertices to K ′ parts, the

fraction of faces in the complete complex (over the same vertex set) that touch every part

at most once is at least 1− ε
16

.19 Let z0 = 1
2K′ and let n0 be such that for any n ≥ n0 and

sets A1, A2, . . . , Ak+1 ⊂ [n] of measure at least 1
K′ − z0 it holds that

P
{v1,v2,...,vk+1}∈∆n(k+1)

[∀j = 0, 1, . . . , d : vj ∈ Aj] ≥
k+1∏
j=1

P [Aj]−
ε

16
.

Let X be as in the statement and ρ : X(1)→ Rk an embedding. There is a point

q0 ∈ Rk so that q0 is contained in ck − ε
16

of the faces of ∆n(k + 1) embedded via ρ.

19One can verify as in [153, Theorem 1.7] that K ′ = max{K, 16(d+ 1)/ε} for large enough n.
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Let P1, P2, . . . , PK′ be the partition we obtain from Theorem 5.9.14 with respect to

ρ and the complete complex. Let

H :=
{
{Pi1 , Pi2 , . . . , Pik+1

}
∣∣ ∀s ∈ E(Pi1 , Pi2 , . . . , Pik+1

), q0 ∈ conv(ρ(s))
}
.

Here E(Pi1 , Pi2 , . . . , Pik+1
) are the faces s ∈ X(k + 1) such that for every j = 1, . . . , k + 1,∣∣s ∩ Pij

∣∣ = 1. Recall that at most an ε
16

-fraction of the tuples are not homogeneous and

that at most ε
16

of the faces in ∆n(k + 1) touch a part in this partition more than once.

Thus, ∑
(Pij

)k+1
j=1∈H

k+1∏
j=1

P
[
Pij

]
≥ ck −

3ε

16
. (5.28)

On the other hand,

P
s∈X(k+1)

[q0 ∈ conv(ρ(s))] ≥
∑

{Pi1
,Pi1

,...,Pik+1
}∈H

P
s∈X(k+1)

[
E(Pi1 , Pi2 , . . . , Pik+1

)
]
. (5.29)

By Proposition 5.7.2 (applied for indicators of the corresponding functions) for small

enough λ = λ(K ′, ε, z0), for every k + 1 parts Pi1 , Pi2 , . . . , Pik+1
of size at least 1

K′ − z0,

P
{v1,v2,...,vk+1}∈X(k+1)

[
∀j = 1, . . . , k + 1 vj ∈ Pij

]
≥ (1− ε

2
)
k+1∏
j=1

P
[
Pij

]
.

Combining (5.28) and (5.29) gives Ps∈X(k+1) [q0 ∈ ρ(s)] ≥ (1 − ε
2
)(ck − ε

4
) ≥ ck − ε as

desired.

Partite Case.

The argument is similar. Let K = K(ε/16, k) be the constant promised in Theo-

rem 5.9.14. Let K ′ ≥ K be the smallest constant so that for any equipartition over K ′

parts, the fraction of faces in the complete partite complex that touch every part at most

once is at least 1− ε
16

.
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Let z = 1
2K′ be as before. As before we first identify the points of X with the

complete partite complex with the same number of vertices in every side. Then we find a

point q0 such that cpd,k − ε
16

of the faces of the complete partite complex contain q0. We

find an equipartition P1, P2, . . . , PK′ of ρ(X(1)) to K ′ parts such that 1− ε
16

of the parts

are homogeneous with respect to q0.

We partition further every Pi according to the colors of the vertices to P j
i for

j = 1, 2, . . . , d. Then we remove from the partition every subset P j
i whose relative size is

smaller than ε
16K′·d2 . We note that by taking only the remaining sets in the partition the

fraction of vertices we removed from every color is no more than ε
8

vertices in any side.

This is because for every Pi, colors j that have that P
[
P j
i

]
≤ ε

16K′·d2 can account for no

more than ε
16K′·d out of at least 1

K′ − z = 1
2K′ . Thus we have not removed more than ε

8d

vertices in total, or ε
8
-fraction out of each color.

We now have subsets P j
i that such that ε

16K′d2
≤ P

[
P j
i

]
≤ 3

2K′ . The proof now

follows as in the two-sided case.

5.9.4 Separating MLSI from Reverse Hypercontractivity

As discussed in Section 5.1, prior techniques for establishing reverse hypercontrac-

tivity relied on tensorization or bounded (Modified) Log-Sobolev constant (MLSI). To

our knowledge, all known reverse-hypercontractive objects prior to this work also have

bounded MLSI. In this section, we give the first separation between these analytic notions

in the case where the leading hypercontractive constant C may be greater than 1 (or,

alternatively, for the indicator variant). To start, recall the definition of MLSI.

Definition 5.9.15 (Modified Log-Sobolev Inequality). Let M be a reversible markov

chain with stationary distribution πs. The modified log-sobolev constant of M is:

ρMLSI = inf
f>0

⟨f, (I −M) log f⟩
2Entπ(f 2)
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MLSI is classically used to bound the mixing time of its associated Markov chain,

Tmix(M, ε) = min
t

max
πinit

∥πT
initM

t − πs∥TV ≤ ε,

due to the following upper bound:

Fact 5.9.16. The mixing time of a reversible Markov chain M with stationary distribution

π is at most:

Tmix(M, ε) ≤ 1

ρMLSI

log

(
log π−1

∗
ε

)
,

where π∗ is the minimum stationary probability

High dimensional expanders (at least in the bounded degree setting), are slow-

mixing, so they cannot have small MLSI constant. In particular, applying this fact to the

Ramanujan complexes gives an infinite family of reverse-hypercontractive operators with

at least inverse logarithmic dependence on the domain size.

Corollary 5.9.17. There exist constants ℓ > 1 and C > 0 and an infinite family {T (n)
ρ }

of (1
ℓ
, ℓ
1−ℓ

, C)-reverse hypercontractive operators with at most inverse logarithmic MLSI:

ρMLSI ≤ C2
log3 log(π∗)

log π∗

Proof. Set ρ = 1
2
, let c be as in Theorem 5.6.3, and let {X(n)} be the family of k = k(n)-

uniform cut-off coset complexes promised in Theorem 5.9.4 for k = log log n and λ = 2−k,

and recall that

1. The degree of every vertex is at most 2C2k3 for some universal constant C2 > 0

2. The stationary distribution of T1/2 on X is uniform

By Theorem 5.6.3, there exist (universal) constants C, ℓ such that the noise operator T1/2

is (1
ℓ
, ℓ
1−ℓ

, C)-reverse hypercontractive for every complex in the family. On the other hand,
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we will argue that:

Tmix

(
Tρ,

1

2

)
≥ min

{
2k

4
,
C ′

2 log(n)

k3

}
,

which combined with Fact 5.9.16 completes the result.

Define the ε-support of a distribution

supp≥
ε (π) := {x : π(x) ≥ ε}.

Setting ε = 1
4n

, observe that any distribution π with |supp≥
ε (π)| < n

4
has ∥π − πs∥TV ≥ 1

2
.

We will argue this holds for πinitT
t
1
2

whenever πinit is any indicator and t is sufficiently

small.

To see this, we separate out the bounded-degree and stationary components of T 1
2

as:

T+
1
2

:= T 1
2
− 2−kΠ

where Π is the stationary operator, and note that T 1
2
= T+

1
2

+ 2−kΠ. Observe that after t

steps, we can write any initial distribution π as:

πTT t
1
2
= πT (T+

1
2

+ 2−kΠ)t = πT (T+
1
2

)t + (1− (1− 2−k)t)πs

For large enough k, as long as t ≤ 2−k/4, the latter term contributes strictly less than 1
4

to

each coordinate. On the other hand for π an indicator, the first term contributes positive

weight to at most deg(T 1
2

+)t coordinates, so setting t such that deg(T 1
2

+)t ≤ n
4

completes

the result.

5.9.5 It Ain’t Over Till It’s Over

Friedgut and Kalai’s ‘It Ain’t Over Till It’s Over’ Theorem is a classical result

in social choice which states that even after taking a significant random restriction, any

balanced function still has some uncertainty with high probability (in other words, it is
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a tail bound on the random restriction operator). The precursor to this Theorem was a

version for the noise operator proved in [302, Appendix C]. We prove the result holds for

any LUS, which implies the same for any c-nice complex.

Theorem 5.9.18. For any ρ ∈ (0, 1) and τ > 0, let X be a d-uniform τ -LUS for d

sufficiently large. Then there exists a constant q = q(ρ, τ) such that for any δ > 0 and

f : X(d)→ [0, 1] with density µ = E[f ]:

P[Tρf > 1− δ] ≤ cµ,1δ
q

where cµ,1 =
(

8(1+µ)q+1

(1−µ)q+2

) 1
q , and

P[Tρf < δ] ≤ cµ,2δ
q

where cµ,2 =
(

8(2−µ)q+1

µq+2

) 1
q .

Proof. We prove the former. The latter follows from considering 1− f . Let T of the set of

elements whose neighborhoods are dense in f :

T := {x : Tρf(x) ≥ 1− δ},

and consider the indicator cut-off h = 1f≤ 1+µ
2

. We will argue that on the one hand the

correlation of T and h cannot be large, since when x ∈ T , y ∼ρ x must be mostly above

the cutoff. On the other hand, the correlation is at least some power of µ(T ) by reverse

hypercontractivity, so µ(T ) must be small.

Formally, observe that for any x ∈ T , Markov’s inequality gives that Tρh(x) ≤ 2δ
1−µ

so

E[1TTρh] ≤ µ(T )δ
2

1− µ
.

On the other hand, we also have by Markov that E[h] ≥ 1−µ
1+µ

, so reverse hypercontractivity
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for indicators (Theorem 5.6.4) implies there exists some ℓ such that:

E[1TTρh] ≥
1

4

(
µ(T )

1− µ

1 + µ

)ℓ

Combining the equations and setting q = ℓ− 1 gives the desired result.

We note we have made no attempt to optimize the constants, and it may be possible

to improve dependence on µ. [302] combine a variant of Theorem 5.9.18 with the invariance

principle to prove the classical form of the conjecture with respect to random restrictions.

It is not clear what the correct form of this conjecture should be for HDX, or even for

product spaces.20 We leave this as an open question.

5.9.6 A Frankl–Rödl Theorem

The Frankl–Rödl Theorem [154] is a powerful result from extremal combinatorics

that states that the independence number of the graph whose vertices are {0, 1}n and

whose edges are given by fixed weight intersection k (typically for some k = Θ(n)) is at

most exp(−Ω(k))|V |. Benabbas, Hatami, and Magen [61] proved a variant of this Theorem

via reverse hypercontractivity on the cube, later leading to several applications in hardness

of approximation [229]. Their method, which also bounds classical properties such as the

chromatic and dominating set numbers, is based on the following claim:

Claim 5.9.19. Let p0, q0 > 0 and let G = (V,E) be a weighted graph with minimum vertex

weight q0 such that for every A,B ⊂ V of relative size at least p0:

P
(s1,s2)∼E

[s1 ∈ A, s2 ∈ B] > 0.

Then the maximal independent set in G has size at most 2p0 + q0, the minimal dominating

set has relative size at least 1− (2p0 + q0), and the chromatic number is at least 1
2p0+q0

.

20We remark it should be possible to give a version of the result for suitably ‘global’ functions via tools
of [246, 187, 39], but it is not clear such a notion would have significant qualitative meaning
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As a corollary we have that the down-up walks in any of the discussed LUS-complexes

in Section 5.6.3 have maximal independent sets of relative size at most exp(−Ω(k)), a

chromatic number of at least exp(Ω(k)) and minimal dominating sets of size at least

1− exp(−Ω(k)). As discussed in the introduction, we remark that these graphs are not

quite the correct analog of Frankl–Rödl, since they have edges with intersection up to

some fixed γk instead of γk exactly. Benabbas, Hatami and Magen [61] handle this by

analyzing the closeness of the exact intersection versus noise operator on the cube, using

tools from Fourier analysis. It would be interesting to see if a variant of this result holds

on HDX. If this could be shown generally, then our reverse hypercontractivity theorem

would recover Frankl–Rödl up to constants in the exponent.

Proof of Claim 5.9.19. We prove the statement for independent sets. The chromatic

number statement follows since every coloring is a partition to independent sets, and the

statement for dominating sets follows since the complement of any dominating set is an

independent set. Let I ⊆ G be an independent set and assume toward contradiction that

P [I] ≥ 2p0 + q0. We partition I into I1, I2 such that P [I1] ,P [I2] ≥ p0 (we can do so by

greedily adding vertices to I1 until its probability is between p0 and p0 + q0). Then by

assumption P(s1,s2)∼E [s1 ∈ I1, s2 ∈ I2] > 0, which gives the desired contradiction.

Remark 5.9.20. Although the graphs we discussed in this paper have self loops. The claim

above continues to hold after removing these self loops, as is evident from the proof.

5.10 Codes and Splitting Trees

Error correcting codes, and in particular the powerful notions of list-decoding

and local-testability, are among the earliest successful applications of inclusion samplers

[213, 212, 215] and HDX [121, 10, 221, 315, 117]. In this section we explore the implications

of our tools and related ideas over the weaker family of ‘splitting trees’ in this classical

setting. Our main application is the first construction of constant rate codes over large

443



alphabets which simultaneously have 1) near-optimal distance 2) list-decodability and

3) local-testability. At the end of the section we introduce a (conjectural) HDX-based

approach toward ‘lossless’ distance-amplification of LTCs that experiences no decay in

soundness.

5.10.1 Splitting Trees

We start with a fairly substantial detour into the world of splitting trees, which are

a weakening of high dimensional expanders introduced in [9] which only requires certain

patterns of swap walks to expand. We will prove a high-dimensional expander mixing

lemma and some basic sampling properties for general splitting trees that will be useful

for our applications to coding theory.

Splitting Preliminaries

Given a binary tree T , let L(T ) denote T ’s leaves and I(T ) its internal nodes. We

drop T from the notation when clear from context. For every internal node v ∈ I, denote

the left and right children of v by ℓu and ru respectively.

Definition 5.10.1 (Ordered Binary Tree). A d-uniform ordered binary tree is a pair (T, ρ)

where T is a rooted binary tree with d leaves, and ρ : T → [d] is a labeling such that:

1. The label of every leaf u ∈ L is ρ(u) = 1.

2. For every interior u ∈ I, it holds that ρ(u) = ρ(ℓu) + ρ(ru).

We call such a ρ well-ordered with respect to T .

A complex is called splittable if it can be decomposed by an ordered tree where

every non-leaf node corresponds to an expanding swap walk.

Definition 5.10.2 (Splitting tree). Let γ > 0. A d-uniform γ-splitting tree is a triple

(X,T, ρ) where X is a d-uniform simplicial complex and (T, ρ) is an ordered binary tree
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such that for every u ∈ I(T ):

λ(Sρ(ℓu),ρ(ru)) ≤ γ,

We will also work with the corresponding partite notion of splitting trees.

Definition 5.10.3 (Partite Ordered Binary Tree). A d-uniform partite ordered binary

tree is a pair (T, ρ) where T is a rooted binary tree with d leaves, and ρ : T → P{[d]} \ {∅}

is a labeling such that:

1. ρ|L is a bijection to the singletons of [d].

2. For every interior u ∈ I, it holds that ρ(u) = ρ(ℓu) ·∪ ρ(ru).

We remark that when convenient, we may use a general set S of size d+1 as the domain of

ρ (generally corresponding to a labeling of the "parts" of an associated d-uniform partite

complex).

Definition 5.10.4 (Tuple splitting tree). Let γ > 0. A d-uniform γ-tuple splitting tree

is a triple (X,T, ρ) where X is a d-uniform simplicial complex and (T, ρ) is an ordered

partite binary tree such that for every non-leaf vertex u ∈ T :

λ(Sρ(ℓu),ρ(ru)) ≤ γ

Since all swap walks on two-sided HDX expand, these give rise to a basic family of

splitting trees.

Example 5.10.5 ([9, 109, 187]). Let λ ≥ 0 and let X be a d-uniform two-sided λ-high

dimensional expander. Then for any binary tree T and labeling ρ that satisfies the first

and second item in Definition 5.10.2, (X,T, ρ) is a dλ-splitting tree.

An easy consequence of [109] is that partite one-sided HDX also give rise to

tuple-splitting trees.
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Example 5.10.6. Let λ ≥ 0 and let X be a d-uniform two-sided λ-high dimensional

expander. Then for any binary tree T and labeling ρ that satisfy the first and second item

in Definition 5.10.4, (X,T, ρ) is a d2λ-tuple splitting tree.

Finally, [10, Corollary 9.18] also prove that walks on expander graphs are splittable.

Let us define the complex formally. Let G = (V,E) be a graph and k ∈ N. Let WG be the

following k-partite simplicial complex

WG(1) = V × [k],

WG(k) = {{(v1, 1), (v2, 2), . . . , (vk, k)} | (v1, v2, . . . , vk) is a walk in G} .

We choose a face in WG(k) by choosing a vertex v1 ∈ V according to the stationary

distribution over vertices in G and then taking a (k − 1)-length random walk on that

vertex.

Example 5.10.7. Let G be a λ-expander and T, ρ an ordered partite tree. If every u ∈ I

satisfies:

max ρ(ℓu) < min ρ(ru),

then (WG, T, ρ) is a λ-splittable tree.

Operations on splitting trees

We will need several further operations on splitting trees for our analysis: a pruning

method that allow us to analyze higher dimensionalT faces, and a partitification technique

that allows us to reduce standard splitting trees to the tuple setting.

We start with the latter. Recall X’s partitification is the complex

P(k) :=
{
(s, π) :=

{
(sπ(1), 1), (sπ(2), 2), . . . , (sπ(k), k)

} ∣∣ s ∈ X(k), π ∈ Sk

}
,

This notion extends naturally to splitting trees.
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Definition 5.10.8. Let (X,T, ρ) be a d-uniform λ-splitting tree, and ρ′ : T → [d] a

well-ordered labeling such that |ρ′(u)| = ρ(u) for every u ∈ T . The ρ′-partitification of

(X,T, ρ) is defined to be the tuple splitting tree (P, T, ρ′).

Any un-ordered splitting tree can be embed into a tuple splitting tree by taking

any partitification.

Claim 5.10.9. Let (X,T, ρ) be a λ-splitting tree. Every ρ′-partitification of (X,T, ρ) is a

λ-tuple splitting tree.

Proof. It suffices to show for every internal node u ∈ I with ρ′(ℓ(u)) = A and ρ′(r(u)) = B

that SA,B(P ) is a λ-bipartite expander. This follows from the observation that SA,B(P )

is isomorphic to the bipartite graph with left vertices L = X(|A|)× [|A|!], right vertices

R = X(|B|) × [|B|!], and edges (s, i) → (t, j) for all i ∈ A, j ∈ B, and (s, t) such that

s ∼ t in Sρ(ℓu),ρ(ru).21 It is a standard fact that such a bipartite construction inherits its

expansion from Sρ(ℓu),ρ(ru), and is therefore a λ-bipartite expander.

Finally, we note that tuple splitting trees can be pruned to create new splitting

trees. Let (X,T, ρ) be a tuple splitting tree with k leaves. Let u ∈ I be an internal

node whose label is F = ρ(u). Let P = P (X,F ) be the partite complex with vertices

P(1) = X [k]\F (1) ·∪X[F ] and top level faces t ·∪ {s} such that t ·∪ s ∈ X(k), inheriting the

corresponding densities. In other words, we replace the vertices of X in XF (1) with the

set of faces X[F ].

Let T (u) be the sub-tree of T rooted by u. Let T ′ = (T \ T (u)) ∪ {u}. Let

ρ′ : T ′ → ([k] \ F ) ∪ {F} be the labeling that replaces the subset F with a single

replacement index f :

ρ′(v) =


(ρ(v) \ F ) ∪ {f} F ⊆ ρ(v)

ρ(v) otherwise

.

21Formally, the edge (s, i)→ (t, j) also inherits the weight P(st)
|A||B| from Sρ(ℓu),ρ(ru).
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Definition 5.10.10 (Pruning Trees). Let (X,T, ρ) be a λ-tuple splitting tree with k

leaves. Let u ∈ T be a non-leaf node whose label is F = ρ(u). The u-pruning of the tree

is the triple (P (X,F ), T ′, ρ′).

Claim 5.10.11. Let (X,T, ρ) be a λ-tuple splitting tree. Let u ∈ T be a non-leaf node.

Then the u-pruning is also a λ-splitting tree.

The proof follows directly from the definitions and we therefore omit it.

Finally, it will be convenient to introduce notation for sequential pruning, that is

given a collection of disjoint color sets F = {F1, . . . , Fm}, we denote the sequential pruning

of X by F as P (X,F) := P (...P (X,F1), F2), Fm). Note that the resulting complex is

independent of the order of F , so P (X,F) is well-defined. One can similarly define a

sequentially pruned splitting tree as above. It is immediate from Claim 5.10.11 that these

are also λ-tuple splitting.

Hitting set and Bias amplification

In this section, we prove two basic ‘sampling-type’ properties for splitting trees:

hitting set and bias amplification. We start with the former. Recall a complex is (γ, i)-

hitting if for any A ⊂ X(0):

P
σ∈X(i)

[σ ⊂ A] ≤ µ(A)i + γ

Proposition 5.10.12 (Hitting Set). Any depth D λ-(tuple) splitting tree with k leaves is

(3Dλ, k)-hitting.

Splitting trees also exhibit strong bias amplification, used to build balanced error

correcting codes.
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Proposition 5.10.13 (Bias-Amplification). Let (X,T, ρ) be a λ-tuple splitting tree for

λ < 1
16

. For any 0 < ε < 1
4

and family of mean ε functions {fi : X[i]→ {±1}}i∈[k],
∏

fi

is a {±1}-valued function with bias at most:

∣∣∣∣∣ E
a∈X(k)

[
k∏

i=1

fi(ai)

]∣∣∣∣∣ ≤ εk + 2λ (5.30)

While Proposition 5.10.12 and Proposition 5.10.13 are elementary, to the authors’

knowledge they do not appear in the literature. Prior works on HDX (e.g. [124, 10])

use weaker variants of these lemmas which require super-exponential overhead to achieve

a given distance or bias, while the above only requires quasi-polynomial overhead. We

discuss this in greater detail in Section 5.10.

These results are immediate corollaries of a functional variant of [109]’s “high

dimensional expander-mixing lemma” (HD-EML) extended to splitting trees. We give the

statement here and include a proof in the appendix for completeness along with the proofs

of Proposition 5.10.12 and Proposition 5.10.13.

Theorem 5.10.14 (high dimensional expander Mixing Lemma). Let (X,T, ρ) be a depth

D λ-tuple splitting tree with k leaves. Denote by di the depth of the leaf labeled i. Then

for any family of functions {fi : X[i]→ R}i∈[k]:

∣∣∣∣∣ E
a∈X(k)

[
k∏

i=1

fi(ai)

]
−

k∏
i=1

E
ai∈X[i]

[fi(ai)]

∣∣∣∣∣ ≤ 3Dλ
k∏

i=1

∥fi∥2di . (5.31)

If (X,T, ρ) is instead a depth D standard λ-splitting tree, we take {fi : X(1) → R}i∈[k]

and have:

∣∣∣∣∣ E
a∈X(k),π∈Sk

[
k∏

i=1

fi(aπ(i))

]
−

k∏
i=1

E
ai∈X(1)

[fi(ai)]

∣∣∣∣∣ ≤ 3Dλ
k∏

i=1

∥fi∥2di . (5.32)

In the future, we state our results only for the partite setting unless there is a
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substantial difference in proof or parameters for the results. Otherwise, we collect analog

statements for the unordered case at the end of Section 5.15 for completeness.

We close the subsection with a few remarks. First it should be noted that for

the special case of expander walks, better hitting set and bias amplification methods are

known (indeed one can achieve polynomial overhead vs our quasipolynomial bound above).

Nevertheless, it is useful to have these lemmas on structures like HDX that admit stronger

properties like agreement tests. We remark it is also actually possible to use the high

dimensional expander mixing lemma for splitting trees directly to prove a different variant

of Chernoff-Hoeffding by reduction to the complete complex. However, this results in

exponentially worse parameters than our arguments in Section 5.5, and we will not need

the result in the following.

5.10.2 Coding Preliminaries

A q-ary error correcting code C over a finite size-q alphabet Σ is a subset C ⊂ Σn,

where n ∈ N is called the block length. We say a code is linear if Σ = Fp for prime power p

and C is a subspace, and Fp-linear if Σ = Fk
p for some k ∈ N and C is a subspace of (Fk

p)
n.

The rate of a code C, which measures its overhead, is r =
log|Σ|(|C|)

n
, and its distance,

which captures the codes error correction capability, is the minimum normalized hamming

distance between any two codewords

d := min
c1,c2∈C

{
|{i ∈ [n] : c1(i) ̸= c2(i)}|

n

}
.

We remark that for any Fp-linear code, the distance is the minimum weight of a non-zero

codeword. For ease of notation, we will call a q-ary code with rate r and distance d an

(r, d)q-code.

We will be interested in so-called “good” families of codes, which are infinite families

with growing block length and constant rate and distance. We will focus in particular in
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this section on building large distance F2-linear codes over Σ = Fk
2. In this regime there

is a classical upper bound due to McEliece, Rodemich, Rumsey, and Welch [295] stating

that good q-ary codes have distance at most 1− 1
q
, or more exactly:

Theorem 5.10.15 (MRRW Bound [295]). For all ε > 0 and q ∈ N, any family of q-ary

codes with distance 1− 1
q
− ε has rate at most:

r ≤ O
(
ε2 log(1/ε)

)
.

Given a code C, a unique decoding algorithm with radius γ ∈ [0, 1/2] is a (possibly

randomized) algorithm Dec : Σn → C which given any w ∈ Σn such that dist(w,C) ≤ γ

outputs the uniquely closest y ∈ C to w. Note that unique decoding is only possible up to

radius ⌊nd−1
2n
⌋ ≤ 1/2, even with large alphabet, as there may be no unique closest codeword

beyond this point.

List-decoding is the natural extension of unique decoding beyond the 1
2

barrier. A

code is said to be list-decodable with radius t if there is an algorithm which outputs a

list of all codewords within radius t of the given word. We first give the combinatorial

definition, which simply bounds the number of codewords around any fixed point.

Definition 5.10.16 (Combinatorial List-decoding). For γ ∈ (0, 1) and L ∈ N, a code C

is said to be (γ, L) list-decodable if for every z ∈ Y , there are at most L codewords x ∈ C

such that dist(x, z) < γ.

In this section, we will be interested in efficient algorithms for list-decoding, typically

a much more challening task than the existential definition.

Definition 5.10.17 (Efficient List-decoding). For δ > 0, γ ∈ (0, 1) and L ∈ N, a family

of codes {Cn} is said to be efficiently (γ, L) list-decodable with confidence δ if it is

combinatorially (γ, L) list-decodable and there exists a (randomized) polynomial time22

22Here we mean polynomial in the block length.
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algorithm Dec: Σn → P (C) such that for every word w ∈ Σn:

Dec(w) = {c ∈ C : dist(c, w) < γ}

except with probability δ.

Another classical approach to handling the high error regime is local testability. A

code C is said to be locally testable if there is a (randomized, non-adaptive) algorithm

TC which on input of a word w ∈ Σn, queries constantly many symbols of w and rejects

with high probability if it is far from the code. In practice, if one receives such a word,

instead of trying to list decode they could simply request re-transmission. More formally,

we consider the following standard notion of ‘strong’ local testability:

Definition 5.10.18 (Locally Testable Code). For any s > 0 and q ∈ N, a code C of

blocklength n is said to be (q, s)-locally testable if there exists a function TC : [n]q ×Σq →

{0, 1} and a distribution D over [n]q such that on any word w ∈ Σn, the pair (TC ,D)

(called the tester) satisfies:

1. Completeness: If w ∈ C, then PJ∼D[TC(J, wJ) = 1] = 1

2. Soundness: PJ∼D[TC(J, wJ) = 0] ≥ s · dist(w,C)

We call q the locality, and s the soundness.

Typically we will simply think of TC as a randomized algorithm and write TC(w)

to denote its application on the word w, dropping the distribution of the tester when clear

from context. We will work with testers that have one additional constraint: their queries

should be marginally uniform.

Definition 5.10.19 (Uniform LTC). (T ,D) is called uniform if every marginal of D is

uniform over [n].
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We remark that focusing on uniform LTCs is not particularly restrictive—since

codes do not typically have ‘preferred’ coordinates, most natural constructions are uniform.

Finally, though not strictly necessary, we will assume throughout that all complexes

in this section are “homogenous” subsets X ⊂ [n]k, meaning that their marginal distribu-

tion over each part is uniform over [n]. We remark that in the context of high dimensional

expanders, any partite ‘type-regular’ complex can be homogenized in this fashion while

maintaining expansion and bounded degree (see [159] for details). As most known con-

structions of HDX are type-regular, this is not a particularly restrictive assumption, and

it is also known to hold for other classical splitting trees such as expander walks [10].

5.10.3 The ABNNR Construction

In the previous section, we proved several ‘agreement theorems’ on simplicial

complexes. These well-studied tests are actually very closely related to both local testability

and list decoding of a particular family of codes called direct product codes, corresponding

exactly to the set of ‘global functions’ discussed in Section 5.8. At a broader level, these

are themselves a special case of a well-studied family of codes introduced in the seminal

work Alon, Bruck, Naor, Naor and Roth [16] called the ‘ABNNR’-construction. We focus

on the case of F2 for simplicity, though our results extend naturally to larger fields.

Definition 5.10.20 (the ABNNR Construction). Given a right k-regular bipartite graph

G = (L,R,E) and a base code C ⊆ FL
2 , the “ABNNR-Encoding” of C with respect to

G is the code Im(EG(C)) where EG is an “encoding” map EG : F|L|
2 → (Fk

2)
|R| defined by

setting for each c ∈ C and v ∈ R:

EG(c)v = c|N(v).

In other words, each right vertex concatenates the symbols of its neighbors to

create a new code over R. One can check that in Section 5.8, the set of global functions
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is exactly the ABNNR encoding over the inclusion graph (X(j), X(k)). For a general

k-uniform complex X and j ≤ i ≤ k, we write E
(j,i)
X to mean the ABNNR-encoding on

the vertex inclusion graph (X(i), X(j)). In the special case where i = k and j = 1, we

write just EX to denote the ABNNR-encoding over the inclusion graph ([n], X(k)), where

inclusion is viewed taking X(k) ⊆ [n]k as ‘ordered tuples’ of [n], rather than as faces of a

simplicial complex. This is a minor difference, but is a bit more convenient in the setting

of amplifying base codes.

Recent years have seen a great deal of work on instantiating the ABNNR con-

struction on high dimensional expanders and splitting trees [124, 121, 10, 221, 65, 222],

in particular in the context of efficient list-decoding. Building on tools from these works,

we give the first family of large alphabet codes with near-optimal distance that are

simultaneously locally testable and list-decodable.

Theorem 5.10.21. For all large enough k ∈ N and all ε > 0, there exists an explicit

family of F2-linear ABNNR-Codes that are simultaneously:

1. (εO(k), 1− 2−k − ε)2k-codes

2. (O(1), O(1)
k log(1/ε)

)-locally testable.

3. (1 − 2−Ω(k), 2O(k))-efficiently list-decodable with confidence 2−Ω(n−k) whenever ε ≤

2−Ω(k).

We remark that very recently, Jeronimo, Srivastava, and Tulsiani [222] gave a

direct list-decoding algorithm for the LTCs of [117] (which have some small constant

distance d≪ 1
2
). To our knowledge, these are the only other examples of codes that are

simultaneously c3-LTC and efficiently list-decodable.

The remainder if this section is split into three parts focused respectively on

distance amplification, local-testability, and list-decoding of the ABNNR construction,

and a short fourth section devoted to a conjectural approach to removing the soundness
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decay in Theorem 5.10.21. Each section is independent, containing both the corresponding

component of Theorem 5.10.21 as well as more general results within the framework. To

facilitate this structure we first give a brief proof overview of Theorem 5.10.21 that doubles

as a roadmap for the section.

Proof Overview.

The high level idea behind Theorem 5.10.21 is simple: starting with a binary locally

testable ‘base code’ C with distance near 1
2
, we will argue that the ABNNR-encoding

of C on any k-partite splitting tree23 has distance near 1 − 2−k (Corollary 5.10.24),

is list-decodable (Theorem 5.10.32), and maintains local testability (Theorem 5.10.25).

Instantiating this framework on expander walks (the sparsest known family of splitting

trees) gives codes with the claimed parameters. We give a brief description of each step.

Distance amplification on splitting trees is fairly elementary, and follows from the

hitting-set lemma. This is a standard argument: one observes that the two encoded

symbols E(x), E(x′) differ in any face which hits the vertex set 1x ̸=x′ . Since by assumption

the base code has distance roughly 1/2, the hitting set lemma promises this set is hit

except with roughly 2−d probability (see Corollary 5.10.24). Theorem 5.10.21 actually

uses a slightly stronger distance amplification lemma for expander-walks and is given in

Corollary 5.10.30. The weaker amplification lemma (in particular its bias variant) appears

later in the proof as a sub-component of the list-decoding algorithm.

List-Decoding the ABNNR construction, despite being heavily studied on HDX and

splitting trees, is surprisingly tricky. Roughly speaking there are two main issues. First,

known list-decoding algorithms for this setting are actually either for an F2-valued variant

of ABNNR called the direct sum construction [10, 221, 65], or only hold on two-sided

HDX [10, 121] (which have exponentially worse rate). To handle this, we build a reduction

from list-decoding the ABNNR-encoding on X to list-decoding the direct sum encodings
23Formally for list-decoding actually require a slightly stronger notion called ‘complete’ splittability, c.f.

Definition 5.10.31.
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of its projected sub-complexes XF . The second issue with this strategy is that known

list-decoding algorithms for direct sum [221, 65] actually requires the base code to be

ε-biased, a stronger condition than simply having distance near 1
2
. We will discuss how to

construct such base codes shortly. We instantiate this framework in Corollary 5.10.35 to

prove the list-decoding component of Theorem 5.10.21.

Local Testability of the ABNNR construction, to our knowledge, has not been

studied outside the special case of agreement testing. Our test follows a very simple

strategy. We first check whether the given word f is a direct product (in the sense of

Section 5.8) via a simple 2-query agreement test: pick a random vertex v ∈ [n], and

independently s, s′ ⊃ v, and check whether fs and fs′ match on v. If this test passes,

we then simulate the tester on the ‘direct product decoding’ of f . That is, for every

location the base tester queries, we pick a random face including that vertex and feed the

tester its value in the word f . We prove this procedure is sound in Theorem 5.10.25, and

instantiate the process in Corollary 5.10.30 to prove the local testability component of

Theorem 5.10.21.

The Base Code for our construction, as discussed above, must be an ε-biased

c3-LTC. c3-LTCs with distance near 1
2

are now known due to the breakthrough works of

[117, 315] combined with LTC distance-amplification techniques of [268], but the latter

amplification causes several core issues that make the tecnique largely useless for our

setting: 1) the resulting codes make poly(1/ε) queries, 2) may not be ε-biased, and 3)

are heavily randomized. We remedy these issues via the ABNNR-construction itself. In

particular, starting with the base LTC of [117], we encode it into log(1/ε)-uniform walks

on an expander graph using ABNNR, and then concatenate with the Hadamard code. This

code is ε-biased roughly because concatenating with the perfectly balanced Hadamard

code converts the good distance of the ABNNR-encoding into good bias, and the resulting

code is locally testable using the Hadamard’s classical local decoding and local testing

algorithms. We formalize this step in Proposition 5.10.29
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Finally we summarize the construction and proof below:

Code underlying Theorem 5.10.21:

1. Start with the base c3-LTC C of [117]

2. Amplify C’s distance via expander walks

3. Reduce alphabet and bias by concatenating with Hadamard

4. Re-amplify the resulting code via a second set of expander walks.

Proof of Theorem 5.10.21. Bias, rate, and local-testability are proven in Corollary 5.10.30.

List-decodability is proved in Corollary 5.10.35.

5.10.4 Distance Amplification

The ABNNR construction is one of the most classical distance amplification methods

in coding theory. The standard result to this effect is that instantiating the framework on

a (bounded degree) additive sampler amplifies distance while maintaining rate up to a

constant factor.

Lemma 5.10.22 ([16]). Let G = (L,R,E) be a right k-regular bipartite graph such that

(R,L,E) is an (α, β)-sampler. If C ⊂ F|L|
2 is a code of distance α and rate r, then EG(C)

is a (r |L|
|R| , 1− β)2k-code.

This observation was used in [124, 121] to give distance amplification for codes

defined on HDX. Our sampling lemmas imply an exponential improvement in the rate-

distance trade-off of such codes. We choose a fairly arbitrary setting of our parameters for

simplicity, but any setup with good sampling works:

Corollary 5.10.23 (Distance Amplification on HDX). For any α, r, c > 0, let C be a

base code of distance α and rate r. Let X be a d-uniform c-nice complex. Then for any
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i < j ≤ d and G = (X(i), X(j)) the ABNNR code Ei,j
X (C) is an (r′, d′)|Σ|-code for

r′ = r
|X(i)|
|X(j)|

, d′ = 1− 1

α
exp

(
Ωc

(
α2 j

i

))
, |Σ| = 2(

j
i).

Note that when i = 1, Corollary 5.10.23 has alphabet size |Σ| = 2j and distance

1− poly(|Σ|−1), optimal up to polynomial factors by Theorem 5.10.15. However, in this

special case, it is actually possible achieve optimal amplification directly via the hitting

set lemma (Proposition 5.10.12).

Corollary 5.10.24 (Distance Amplification for Splitting Trees). For any α, r > 0, let

C be a base code of distance α and rate r. If X is a k-uniform λ-(tuple)-splitting tree of

depth D, then EX(C) is an (r′, d′)|Σ|-code for

r′ = r
n

|X(k)|
, d′ = 1− (1− α)k − 3Dλ, |Σ| = 2k

Moreover when α = 1
2
(1− ε), then d′ ≥ 1− 1

2k
(1 + ε)k − 3Dλ.

Proof. Rate and alphabet size are immediate from construction. Let x, x′ ∈ C be any

two distinct non-zero codewords. We wish to bound the distance between their encodings

EX(x) and EX(x
′), which is exactly the hitting probability of 1x ̸=x′ in the inclusion

graph ([n], X(k)). By the distance of C we are promised that µ(1x=x′) ≤ 1 − α, so

Proposition 5.10.12 gives the desired result.24 Plugging α = 1
2
(1 − ε) into the resulting

bound gives the final line.

5.10.5 Local Testability of ABNNR

In this section, we prove the ABNNR encoding of a locally testable code is locally

testable.
24Proposition 5.10.12 is formally for (X(1), X(k)), but because X is homogenous the bound carries over

by simply setting each partite component of A to be Ai = 1x=x′ .
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Theorem 5.10.25 (Local Testability of ABNNR). For any uniform (q, s)-LTC of block-

length n and (kL, kR)-regular bipartite graph G = (L,R,E) on |L| = n vertices, EG(C) has

a uniform (q + 2, cs
qkR

)-local tester.

Our proof relies on the following elementary agreement test. Given a word f ,

denote by TG(f) the following process:

1. Pick a uniformly random vertex v ∈ L

2. Pick two uniformly random neighbors w,w′ ∈ N(v)

3. Accept if and only if fw(v) = fw′(v)

In the agreement notation of the previous section, we’d write the word f as an ensemble

F = {fw : N(w)→ F2}w∈R and denote the acceptance probability of this test as Agree0(F).

We will move between these two viewpoints interchangeably. TG is clearly complete. Its

soundness follows from a general result of [166]:

Lemma 5.10.26 ([166, Lemma 5.2]). There exists a universal constant c ≥ 1 such that

for all ε > 0 and any ensemble F :

Agree0(F) ≥ 1− ε =⇒ dist(F, gmaj) ≤ ckRε

where for v ∈ L we define gmaj(v) := pluralityw∈N(v){fw(v)}.25

With this in mind, we prove Theorem 5.10.25 via the following natural tester: given

a word f ∈ (FkR
2 )R, run the DP-tester on w, and the base code tester on the plurality

decoding of f if it passes:

1. Run TG on f

2. For every v ∈ L that TC would query:
25Ties can be broken arbitrarily.
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– Sample a random neighbor of v: w ∼ N(v)

– Denote the ‘decoded’ plurality as gdec(v) = fw(v)

3. Run TC on gdec

Proof of Theorem 5.10.25. Query complexity and completeness are immediate from con-

struction. The tester is uniform since the base code is uniform, and picking a uniformly

random vertex v ∈ L and random w ∈ N(v) is uniformly distributed over R.

Toward analyzing soundness, fix any δ ∈ [0, 1] and f some word at distance

dist(f, EX(C)) = δ. We need to show the test rejects on f with probability at least δc′ s
qkR

for some c′ ≥ 0. Observe that we may assume TG(f) passes with probability at least

1 − δ 1
4c

s
qkR

, since otherwise Step (1) rejects with probability at least δ 1
4c

s
qkR

and we are

done. We claim that conditioned on this event, the following two properties hold:

1. gdec matches gmaj with high probability:

P
S∼TC

[∃v ∈ S : gdec(v) ̸= gmaj(v)] ≤
s

4ckR
δ

2. gmaj is far from the base code:

dist(gmaj, C) ≥ 1

2kR
δ.

Soundness is then immediate: as long as the base tester TC receives the ‘correct’ symbols

from gmaj, it rejects with probability s · dist(gmaj) ≥ s
2kR

δ by Item 2. Since the former

occurs with probability at least s
4kR

δ by Item 1, the total rejection probability is at least

s
2kR

δ − s
4kR

δ = s
4kR

δ as desired.

It is left to prove the claimed properties.

460



Proof of Item 1.

Observe that since the queries are marginally uniform, by a union bound it is

enough to show that the decoding of a uniformly random vertex succeeds except with

probability s
4cqkR

δ. The proof is essentially a simpler variant of Claim 5.8.2. For a fixed

v ∈ L define the set of ‘bad’ neighbors as those whose labeling disagrees with the plurality

decoding as:

Bv := {w ∈ N(v) : fw(v) ̸= gmaj(v)}.

The failure probability of our single-query decoding procedure is exactly E
v∈L

[Bv], so it is

enough to show

E[Bv] ≤
s

4cqkR
δ.

This follows from the fact that the test TG can be written as an expectation over complete

local distributions. In particular, observe that we can decompose TG as:

Agree0(f) = P
v∼L,w,w′∼N(v)

[fw(v) = fw′(v)] ≥ 1− s

4cqkR
δ.

This implies that the expected probability that fw(v) ̸= fw′(v) in the local distribution is

at most:

E
v∼L

[
P

w,w′∼N(v)
[fw(v) ̸= fw′(v)]

]
≤ s

4cqkR
δ.

Since w and w′ are independent neighbors of v, the inner term is at least

P
w,w′∼N(v)

[fw(v) ̸= fw′(v)] = 2E[Bx]E[Bv] ≥ E[Bv]

since E[Bv] ≥ 1
2

by construction, which completes the proof.

Proof of Item 2.

The proof follows from the fact that conditioned on Step (1) (the agreement test)

passing, EX(gmaj) is close to a DP-codeword. Thus if gmaj itself is too close to C, it’s
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encoding will be close to EG(C) violating our original assumption on the distance. Formally,

assume for the sake of contradiction that gmaj is not δ
2kR

-far from C. Then there exists

x ∈ C such that dist(gmaj, x) <
δ

2kR
. Since G is bi-regular, this further implies a bound on

the distance of the encodings of gmaj and x:

dist(Ek
G(gmaj), E

k
G(x)) = P

w∼R
[EG(gmaj)(w) ̸= EG(x)(w)]

≤ kR P
w∼R,v∼N(w)

[EG(gmaj)(w)v ̸= EG(x)(w)v]

= kRdist(gmaj, x)

<
δ

2
.

where the second equality follows from the fact that since G is bi-regular, sampling a

uniformly random vertex v ∈ R and a random s ∈ N(v) is equidistributed with sampling

a random w ∈ L. Finally closeness of the encoded words contradicts the fact that f is

δ-far from EG(C), since EG(x) is a codeword and by the triangle inequality:

dist(f, EG(x)) ≤ dist(f, EG(gmaj)) + dist(EG(gmaj), EG(x)) < δ,

where we have used the fact that since Agree0(f) ≥ 1− s
4cqkR

by assumption, f is s
4q
δ-close

to EG(gmaj) by Lemma 5.10.26.

We remark that it is likely possible to reduce the query complexity of the above argument

to just q+1 by re-using the first query of TC for the agreement test and performing a more

careful conditioned analysis on the latter passing. Since q for us is some small constant,

the difference between q+1 and q+2 is negligible so we only give the simpler independent

version above.

To prove Theorem 5.10.21, we need a good explicit family of binary linear LTCs
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with near optimal distance to amplify via Theorem 5.10.25. In fact, as discussed in the

proof overview we will need base codes with the stronger property of having small bias :

bias(C) := max
c∈C\{0}

{∣∣Ei∈[n][(−1)ci ]
∣∣} .

Note that an ε-biased linear code always has distance at least 1−ε
2

since for every c ∈ C,∣∣Ei∈[n] [(−1)ci ]
∣∣ = 1− 2 dist(c, 0). Our base codes start with the breakthrough construction

of c3-LTCs by Dinur, Evra, Livne, Lubotzky, and Moses [117]:

Theorem 5.10.27 ([117]). There exists an explicit infinite family of binary, linear, uniform

LTCs with constant rate, distance, locality, and soundness, and a linear time unique decoder

up to constant radius.

We remark that while [117] do not argue their testers are uniform, it is easy to

check from their construction that this is the case. As discussed in the overview, it is

possible to use the distance amplification techniques of [268] to achieve c3-LTCs with

distance near 1/2 (even hitting the GV bound), but these codes may not be ε-biased and

incur a heavy poly(ε−1) cost in the query complexity. We will take a different amplification

strategy that avoids these issues almost entirely at the cost of a small polynomial blowup

in rate. The idea is to concatenate our amplification procedure in Theorem 5.10.25 with

the Hadamard code:

Had : Fk
2 → F2k

2 , α
Had7→ ⟨α, ·⟩

We denote the resulting code (the image of this map), by CHad.

The Hadamard code comes with three properties critical to our construction. First,

it is easy to check that the code is binary, linear, and perfectly balanced (0-biased). Second,

it is a classical result that the Hadamard code is an excellent LTC:

Theorem 5.10.28 ([67]). The Hadamard code is a uniform (3, 1)-LTC.
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Finally, it is well-known folklore (and an easy exercise) to show the Hadamard code

is locally decodable. We will not go into the formal details of locally decodable codes, but

it suffices to say there is a randomized algorithm Dec : F2k

2 × [k]→ F2 which given a word

y such that d(y, CHad) <
1
4

and a coordinate i, queries only 2 bits of y and outputs the

correct decoding with probability proportional to its distance from the code:

P[Dec(y, i) ̸= xi] ≤ 2d(y, CHad) (5.33)

where x = Had−1(y) is the pre-image of the unique closest codeword to y.

Note that this is essentially the same property we used in Theorem 5.10.25 in

decoding the ABNNR-encoding. We will show that concatenating with the Hadamard

code similarly allows us to amplify the bias and distance of the base code while only

incurring constant blow-up in query complexity and logarithmic loss in soundness.

Proposition 5.10.29 (The Base Code). For every ε > 0 there is an explicit infinite

family of uniform, ε-biased, linear (poly(ε), 1
2
− ε)2-codes that are (O(1), log−1(1/ε)))-

locally testable. Moreover, there exists t < 1 such that these codes are uniquely decodable

up to radius t in time n exp(poly(ε−1)).

Proof. We apply Theorem 5.10.25 to [117]’s LTCs using the complex X = WG generated by

length k = O(log(1/ε)) random walks on any constant degree, regular 1
2
-spectral expander

G (such expanders are known to exist for any n, see e.g. [15]). This results in a poly(ε)-rate

code with distance at least 1− ε
2

by the classical expander hitting set lemma [198] which

states that for any set T ⊂ X(1) of measure ρ

P
(s1,...,sk)∈X(k)

[|{s1, . . . , sk} ∩ T | = 0] ≤ ρ

(
1 + ρ

2

)k−1

. (5.34)

The argument is then as in Corollary 5.10.24. Finally by Theorem 5.10.25 this encoding

has a uniform (c, c′

log(1/ε)
)-local tester for some universal constants c, c′ > 0.
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The key step is now to concatenate this resulting family with the Hadamard code:

C := Had(EX(C)),

where the Hadamard encoding is applied pointwise to each symbol in EX(C). This

encoding maintains linearity and decreases the rate by a factor of at most 2k = poly(ε).

To compute the bias, observe that since the Hadamard code is perfectly balanced, every

non-zero symbol of a word w ∈ EX(C) contributes 0 to the bias so in the worst case we

have

bias(C) ≤ max
c∈EX(C)\{0}

{wt(c) · 0 + (1− wt(c)) · 1} ≤ 1− d(EX(C)) ≤ ε,

where wt(c) denotes the normalized hamming weight (fraction of non-zero elements in c).

We now argue that this concatenation has a uniform local tester. Write q = c and

s = c′

log(1/ε)
and recall EX(C) has a uniform (q, s)-local tester (which we’ll refer to as the

“base tester”) which requests only a single bit of each queried symbol. We’ll denote these

requests as pairs (x, i) ∈ X(k − 1)× [k]. Our testing procedure follows a similar form as

in Theorem 5.10.25. Namely given a potential word y:

1. Draw a uniformly random x ∈ X, and run the Hadamard test on y(x).

2. For each (x, i) requested by the base tester, run the Hadamard decoder on y(x) at

coordinate i.

3. Run the base tester on the output

The test is complete by construction, and makes at most 2q + 3 queries (two for each run

of the local decoder, and three for the initial Hadamard test). Soundness follows along

the same lines as Theorem 5.10.25. We first argue that the word y must be close to a

cartesian product of Hadamard codewords (else Step 1 rejects). We then argue that the

465



decoding succeeds with high probability, and the decoded word must be far from the base

code (else y itself would be close to C), so the base tester rejects with good probability.

Formally, let y ∈ (F2k

2 )X satisfy dist(y, C) = τ . We argue that the above procedure

rejects with probability at least sτ
4q

. To see this, first observe we can assume the word y is

1− sτ
4q

close from being a product of Hadamard codewords. Otherwise Step 1 rejects with

probability at least sτ
4q

since

P[Step 1 Rejects] ≥ Ex[dist(y(x), CHad)] = dist

(
y,
∏
X

CHad

)
.

Fix some yhad ∈
∏

X CHad which minimizes the distance from y and denote the set of

‘corrupted’ coordinates of y to be

B :=

{
x ∈ X : dist (y(x), CHad) ≥

1

4

}
.

Note that the measure of B is at most sτ
q
, since the closeness of y to

∏
CHad is violated

otherwise.

Define set of ‘valid’ decodings of y to be strings in (Fk
2)

X whose encodings match

yhad on all uncorrupted coordinates:

Ydec :=
{
ydec ∈ (Fk

2)
X : ∀x ∈ B̄,Had(ydec(x)) = yhad

}
.

Note that when we re-encode any ydec ∈ Ydec, it will be at distance at most sτ
q

from y

since:

dist(Had(ydec), y) ≤ dist(Had(ydec), yhad) + dist(Had(yhad), y)

≤ (P[B] · 1
2
+ P[B̄] · 0) + sτ

4q

≤ sτ

q
.

466



We now argue that Step 2 correctly decodes to some ydec ∈ Ydec with high probability.

Since decoding always ‘succeeds’ on coordinates in B (since any decoded value is accepted),

the worst case is when B = ∅ and ydec is the pre-image of the unique closest word in

every coordinate. In this case, local decodability of the Hadamard code Equation (5.33)

promises the probability any fixed query (x, i) fails to decode to ydec(x)i is at most

Ex[2dist(y(x), CHad)] ≤ 2dist

(
y,
∏
X

CHad

)
≤ sτ

2q
.

Union bounding over all q queries, we decode to ydec except with probability sτ
2
.

Finally, we argue any ydec ∈ Ydec must be 3
4
τ -far from EX(C), in which case the

base tester rejects with probability at least 3
4
sτ − sτ

2
= sτ

4
by a union bound. This simply

follows from the fact that if ydec were 3
4
τ -close to EX(C), then there exists w ∈ EX(C)

such that

dist(Had(w), y) ≤ dist(Had(w), Had(ydec)) + dist(Had(ydec), y)

≤ dist(w, y) +
sτ

q

≤ τ

where the second inequality comes from observing that the encodings of w and ydec are

the same on any symbol on which they agree, and can only improve in distance when they

differ.26

It is left to show our concatenated family has an efficient unique decoder. It is a

classical fact that concatenating codes with efficient unique decoding at radii tinner and

touter gives a code with an efficient unique decoder at radius tinnertouter simply by running

the inner decoder on every inner symbol, then running the outer decoder on the result [152].

In particular decoding at this distance is successful since if a true word m is corrupted
26Technically we’ve also used that q ≥ 4 and s ≤ 1 here, which follow from the parameters of [117].
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in at most a tinnertouter fraction of its coordinates, no more than a touter fraction of inner

codewords can have a tinner fraction of corruptions. Thus running the inner decoder results

in the correct word except in at most a touter fraction of outer coordinates, which is then

successfully decoded by the outer decoder.

We can decode over each Hadamard symbol up to radius t′ < 1
4

by brute force in

exp(poly(ε−1)) time (and otherwise output some fixed word, say 0, beyond this radius).

EX(C) can be efficiently decoded up to some constant radius t by taking the majority vote

over each coordinate, then running the base decoder on C (see e.g. [121]). This process

takes time n exp(poly(ε−1)) +O(n), for a total time of n exp(poly(ε−1)) as desired.

Finally, we argue these base codes can be amplified to large alphabet LTCs with

near optimal distance.

Corollary 5.10.30 (Large Distance c3-LTCs). For all large enough k ∈ N and all ε > 0,

there exists an infinite family of F2-linear (r, d)|Σ|-codes that are (q, s)-locally testable for:

r = εO(k), d = 1− 2−k − ε, |Σ| = 2k, q = O(1), s = O

(
1

k log(1
ε
)

)

Proof. We start with the explicit family of base codes given in Proposition 5.10.29 with

q = O(1) queries, distance 1
2
− ε

4
, and rate poly(ε). For a given code C in the family of

blocklength n, let X be the collection of length-k walks on any explicit degree ε
2
-expander

of degree O(ε−2) on n vertices (such graphs exist for any large enough n [15]). The size

of X(k − 1) is O( n
ε2k

), and the expander hitting-set lemma (Equation Equation (5.34))

ensures the distance of EX(C) is at least

1−
(
1

2
+

ε

2

)k

≥ 1− 2−k − ε.

Finally, since the base code’s tester is uniform, local testability follows from Theorem 5.10.25.
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It is worth comparing Theorem 5.10.25 to the distance amplification for LTCs of

Kopparty, Meir, Ron-Zewi, and Saraf [268], who also analyzes local testability of distance-

amplified codes via a related construction of Alon and Luby [19]. Their work largely

focuses on achieving near-optimal rate-distance trade-off: they achieve the singleton bound

over large alphabet codes and the GV-bound over F2. In comparison Theorem 5.10.25

has worse rate than their construction, but makes up for this with exponentially better

alphabet size and local testability. Quantitatively, to achieve distance 1− β, [268]’s codes

require alphabet size 2poly(1/β) and lose poly(1/β) factors in the testing parameters, while

ours have the optimal β−1-dependence in the former and lose only logarithmically in the

latter.

5.10.6 List-Decoding ABNNR

In this section, we show that the codes in Corollary 5.10.30 are efficiently list-

decodable, completing the proof of Theorem 5.10.21. Efficient list-decoding of the ABNNR

construction was first considered by Dinur, Harsha, Kaufman, Livni-Navon, and TaShma

[121], who gave an algorithm for the construction instantiated on HDX. After [121]’s work,

Alev, Jeronimo, Quintana, Srivastava, and Tulsiani [10] showed it possible to efficiently list

decode a closely related construction called a direct sum code over some relaxed families

of splitting trees (including HDX and expander walks). Using a reduction to direct sum,

they also recover the parameters of [121]’s ABBNR-codes on HDX as well.

In this section, we give an efficient list-decoding algorithm for the ABNNR-

construction on complexes satisfying a slightly strengthened variant of splittability that

ensures the complex can be “split” at any coordinate. We refer to this notion as complete

splittability.

Definition 5.10.31 (Complete Splittability). A d-uniform partite complex X is called
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completely λ-splittable if for all i ∈ [d]:

λ2(S[1,i],[i+1,d]) ≤ λ

where we recall S[1,i],[i+1,d] is the ‘swap walk’ adjacency operator between X[[1, i]] and

X[[i+ 1, d]].

Complete splittability sits in-between tuple-splitting trees and partite HDX, and

is closely related to notions of splittability defined in more recent works on direct-sum

decoding [221, 65] (in particular it is equivalent to the definition introduced in the former,

see Section 5.17 for details). We can now state the main result of the subsection:

Theorem 5.10.32 (List Decoding on Completely Splittable Complexes). For any t < 1/2,

let C0 be a binary code with blocklength n, bias(C0) ≤ 1− 2t, and which is unique-decodable

to radius t in time T0. Let X ⊂ [n]k be a homogenous, completely λ-splittable complex, and

C = EX(C0) its ABNNR encoding. Let d(C) = 1− ε and τ > 0 be any value satisfying

τ ≥ max
{√

ε, 4
√

(1− 2t)i + 2λ,
√
221λk3, 8 (1− t)i/2

}

for i = k
2
−
√

k log( 2
τ
). There exists a randomized algorithm, which given ỹ ∈ (Fk

2)
X

recovers the list

Lτ (ỹ) = {y ∈ C : d(ỹ, y) ≤ 1− τ}

with probability 1− τ−ε
ε(τ2−ε2)

2−Ω(n/t2) in time Õ( τ−ε
τ2−ε2

exp(log(1/t) exp(k3/τ 2))(|X|+ T0)).

Moreover, the number of such codewords is at most:

|Lτ (ỹ)| ≤
τ − ε

τ 2 − ε2
.

The proof of Theorem 5.10.32 goes via reduction to direct sum decoding. The direct

sum encoding of a code C on a complex X simply concatenates the ABNNR-encoding
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with XOR : Fk
2 → F2, that is dsumX(C) := XOR(EX(C)) (where XOR applied pointwise,

similar to in the Hadamard concatenation in the prior section). Most of the work in

proving Theorem 5.10.32 is already done via [221, 65]’s direct sum decoder for completely

splittable complexes:

Theorem 5.10.33 (List Decoding Direct Sum [221, 65]). For any t < 1/2, let C0 be

a binary code with blocklength n, bias(C0) ≤ 1 − 2t, and which is unique-decodable to

radius t in time T0. Let X ⊂ [n]k be a homogenous, completely λ-splittable complex, and

C = dsumX(C0) be its direct sum encoding. Let ε = bias(C) and β > 0 be such that

β ≥ max
{√

ε,
√
220λk3, 2 (1− t)k/2

}
.

There exists a randomized algorithm which given ỹ ∈ FX
2 recovers the list

LX,(sum)
β (ỹ) =

{
x ∈ C0 : d(ỹ, dsumX(x)) ≤

1

2
− β

}

with probability 1− 1
ε
2−Ω(n/t2) in time Õ(exp(log(t) exp( k

3

β2 ))|X|+ T0). Moreover, the list

has at most

|LX,(sum)
β (ỹ)| ≤ 1

ε

codewords.

We remark that the requirement on the unique decoder radius in [221, 65] is slightly

more strict as stated, but one can easily modify parameters in their proof to achieve the

above. We now prove Theorem 5.10.32 by reduction to Theorem 5.10.33.

Proof of Theorem 5.10.32. We appeal to a simple variant of the reduction of [10]. Given

a potential word ỹ ∈ (Fk
2)

X at distance d(ỹ, C) = 1− τ , we claim the following process is

an efficient list-decoder.
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1. For every F ⊆ [d], apply Theorem 5.10.33 to XOR(ỹ|F ) on dsumXF (C) with β = τ/4

to get:

Lpot
β (ỹ) :=

⋃
F⊆[d+1]

LXF ,(sum)
β (ỹ)

2. Prune any decodings that are far from ỹ:

Lτ (ỹ) :=
{
EX(x) : x ∈ Lpot

β (ỹ), d(EX(x), ỹ) ≤ 1− τ
}
.

To prove this procedure indeed gives a valid list-decoding we will use the fact that any

projection of a splittable complex, in particular each XF above, is also splittable.

Claim 5.10.34. Let X ⊂ [n]d be a homogeneous, completely λ-splittable complex. Then

for any F ⊆ [d], XF is homogeneous and completely λ-splittable.

The proof follows from the inheritance of expansion under projection, and is defered

to Section 5.17.

We now prove the output list Lτ is exactly the set of codewords at distance at most

1− τ from C. Recall that our base code is assumed to be at most (1− 2t)-biased. By bias

amplification lemma for splitting trees (Proposition 5.10.13) and Claim 5.10.34, we have

that for any XF , the bias of dsumXF (C) is at most (1− 2t)|F | + 2λ. As such, our choice

of β = τ/4 satisfies the conditions of Theorem 5.10.33 whenever i ≤ |F | ≤ k (for i as in

the Theorem statement). Let y ∈ EX(C) be a codeword at distance at most 1− τ from ỹ,

then we have

P[ỹs = ys] = Es

[
EF∈Fk

2
[χF (ỹs + ys)]

]
≥ τ,

where χF (y) = (−1)⟨F,y⟩ are the standard characters. By averaging and Chernoff, there

must exist |F | ≥ k
2
−
√

k log(2/τ)) such that

Es [χF (ỹs)χF (ys)] ≥ τ/2,
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which is equivalent to the statement that the distance of ỹ|F from y|F is at most 1
2
− τ

4
= 1

2
−β

in the direct sum encoding on XF . Since XF is homogeneous and completely λ-splittable,

by Theorem 5.10.33 we have that the decoding of y appears in Lpot(ỹ) except with

probability 1
ε
exp(n/t2). By the Johnson bound (see e.g. [121][Theorem 2.15]), there can

be at most τ−ε
τ2−ε2

such codewords y close to ỹ, so union bounding over these gives that

all valid codewords are in the list with the desired probability. Finally, all extraneous

decodings are removed in the second step, which completes correctness of the procedure.

Running time follows immediately from the fact that we have run the direct sum

decoder at most 2k times, and the resulting potential list has at most exp(k) potential

codewords by the Johnson bound and our choice of β = τ/4, each of which can be pruned

in O(k|X|) time.

Finally, we instantiate this result on expander walks to complete the proof of

Theorem 5.10.21.

Corollary 5.10.35. The family of codes in Corollary 5.10.30 is (1−2−Ω(k), 1
2O(k) ) efficiently

list-decodable with confidence 2−Ω(n−k).

Proof. Since [221] prove that walks on an λ-expander are homogeneous and completely

λ-splittable, it is enough to ensure the parameter τ in Theorem 5.10.32 can be set to 2−Ω(k).

Recalling that the base code of this construction is ε-biased and uniquely decodable in

linear time up to constant radius, and that the encoding has distance at least 1− 2−k − ε,

as long as ε ≤ exp(−Ω(k)) one can easily check it is possible to take τ = exp(−Ω(k)) and

τ−ε
τ2−ε2

= 2−O(k) satisfies all conditions of Theorem 5.10.32.

5.10.7 Toward Lossless Amplification from HDX?

Our expander-based construction experiences polylogarithmic decay in soundness

with the alphabet size. This is exponentially better than prior methods, but it is plausible
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the decay could be avoided entirely. In this section, we propose an approach toward such

‘lossless’ amplification via the ABNNR-Encoding on an HDX.

Instantiating Theorem 5.10.25 directly on an HDX does actually slightly improve

soundness over Theorem 5.10.21, but the loss of 1
k

in the dimension of the complex is

inherent to our approach, no matter the instantiation. The reason is that our method only

simulates the base tester a single time. As a result, the rejection probability will only scale

with the distance of the decoded word from the base code. On the other hand, because X

amplifies this distance by a factor of k, this results in an unavoidable loss in soundness.

There is a natural approach to fixing this issue: simulate the base tester “k times

in parallel,” analogous to Raz’s parallel repetition theorem [327] and its de-randomized

variants in agreement testing [215, 129, 110, 41]. Indeed on the complete complex, this

approach can actually be carried out successfully:

Theorem 5.10.36 (Parallel LTC Amplification). Let C be a uniformly (q, s)-locally testable

(r, 1−ε
2
)2-code of blocklength n and X =

(
[n]
k

)
. Then EX(C) is a uniformly (q′, s′)-locally

testable (r′, d′)|Σ|-code for:

r′ =
r

nk−1
, d′ = 1− 1

2k
(1 + ε)k − on(1), |Σ| = 2k, q′ = q + 2, s′ = cs

where c > 1 is some universal constant (independent of k).

Proof. Rate and alphabet are immediate from construction, and distance follows from

(near)-independence of
(
[n]
k

)
. For local testability, we rely on the following agreement

theorem of Dinur and Steurer:

Claim 5.10.37 ([115]). There exists a two query agreement test on
(
[n]
k

)
and a constant
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c ≥ 1 such that27

Agree0(F) ≥ 1− ε =⇒ dist(F , gmaj) ≤ cε

With this in hand the proof is similar to Theorem 5.10.25. For k independent

runs of the base tester TC , denote the requested symbols by {x(i)
j }j∈[q],i∈[k] and write

sj := {x(1)
j , . . . , x

(k)
j } ∈

(
[n]
k

)
. Given a word f , our tester performs the following two-step

procedure:

1. Run the Dinur-Steurer test on f

2. For every i ∈ [q]:

– For each j ∈ [k], denote the ‘decoded’ plurality function at x
(i)
j as gdec(x

(i)
j ) =

fsj(x
(i)
j )

– Run TC on gdec(x
(i)
1 ), . . . , gdec(x

(i)
q )

The tester is complete and makes q + 2 queries by construction. The proof of soundness

is very similar to Theorem 5.10.25, so we give a shortened explanation here. Assuming

dist(f, EX(C)) = δ, we need to show our test rejects with probability Ω(δ). Assume

Step (1) passes with probability at least 1− sδ
8cq

(else we are done). Since the base tester

is marginally uniform and the k runs are independent, each face sj ∈ X is marginally

uniform, and therefore by Claim 5.10.37 exactly matches plurality except with probability

sδ
8q

. Union bounding over the q faces gives that gdec matches gmaj on all queried points

except with probability s
8
δ. By the same argument as in Theorem 5.10.25, gmaj must be

at least δ
2k

-far from C, so conditioned on receiving the correct values, at least one of the

base testers rejects with probability 1− (1− sδ
2k
)k ≥ sδ

4
for a total rejection probability of

sδ
4
− sδ

8
= sδ

8
as desired.

27We remark that formally Dinur and Steurer consider [n]k, but their techniques transfer to this setting
(formally, see e.g. [109] for the quoted result).
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The issue with Theorem 5.10.36 is that the resulting code has very poor rate. It is

natural to conjecture that, as in the single query variant, this can be resolved by replacing(
[n]
k

)
with a high dimensional expander. Indeed it is known that the agreement testing

step (the analog of Claim 5.10.37) works in this setting [124, 109, 236]. Note that this is

not the case for other splitting trees such as expander walks, which would lose a factor of

k. The challenge then mainly lies in extending the parallel simulation. Below, we discuss

the current challenges toward porting this second half of the proof to HDX.

The first difficulty in parallel simulation is that the HDX and base code must ‘match’

in the sense that there is a natural distribution over q-tuples of faces that corresponds to

k valid q-query tests for the base code. Recently, Golowich [171] showed how to construct

HDX from certain (modified) locally testable codes, and Dinur, Liu, and Zhang [127] built

LTCs (of sub-constant rate) that sit on the triangles of an HDX. It is not clear a priori

how to fit either of these constructions into our framework, but it is plausible they or

modifications thereof do.

The second difficulty in simulating the parallel tester is that the k runs of the base

test will be inherently correlated. There is a long history in the HDX literature of handling

this type of behavior (e.g. [124, 109, 236, 177, 110, 41]), including the agreement tests we

discuss in Section 5.8. Very recently, building upon tools in this work, [110, 41] prove

that certain strong families of high dimensional expanders admit 1%-regime agreement

tests, which are closely related to parallel repetition [215, 129]. As a start, it would be

interesting to extend Theorem 5.10.36 even to dense complexes known to admit such

tests, such as the Grassmann [215] or spherical buildings [110]. To summarize, we give the

following informal conjecture:

Conjecture 5.10.38 (Parallel LTC Amplification). There exists a family of high di-

mensional expanders and locally testable codes which admit a “parallel” variant of Theo-

rem 5.10.25, that is:
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1. There is a q-step random walk or distribution on X generating k valid ‘parallel’ tests

2. The resulting parallel tester has no (asymptotic) decay in soundness.

5.11 Concentration Lower Bounds

In this section we prove our results are essentially optimal with respect to their

dependence on the sampling parameters and quantitative expansion of the complex. We

further show one cannot hope to achieve our more involved applications such as reverse

hypercontractivity using classical samplers such as expander walks.

5.11.1 Optimality for Inclusion Samplers

In Section 5.5.2, we proved that the if X is a high dimensional expander, then the

inclusion graphs (X(k), X(i)) are roughly (ε, exp(−ε2 k
i
))-additive samplers. Inspecting

the proof of Theorem 5.5.1, it is easy to show that for any set A of density µ and strong

enough local-spectral expansion λ≪ µ, one can give the following improved bound:28

P
s∈X(k)

[
P

r∈X(i)
[A | r ⊆ s] ≥ P [A] + ε

]
≤ exp

(
−Ω

(
ε2

P [A]

k

i

))
.

In this section we prove that for most i ≤ k, this is essentially optimal. Recall that

a complex X is called (γ, i)-hitting if for any A ⊆ X(1), Pσ∈X(i) [σ ⊆ A] ≤ P [A]i + γ. We

say that X is (γ, i)-hitting for sets of size µ if Pσ∈X(i) [σ ⊆ A] ≤ P [A]i + γ holds for any

A ⊆ X(1) of size P [A] = µ.

Theorem 5.11.1. Let ε ∈ (0, 0.1). Let i < k be two integers satisfying k
i
≥ 3ε−2 and

let n ≥ kek. Let X be a k-uniform simplicial complex such that every vertex in X has

the same probability 1
n
. If X is (i, ε

3
)-hitting, then (X(k), X(i)) is not an (ε, β)-additive

sampler for β < exp(−O(ε2 k
i
)).

28Though formally when i = Ω( k
log k ) one needs to assume ε is a large enough to subsume the 1

ε factor
in front of the exponent.
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In particular, for any µ ∈ (0, 0.2), if X is (i, min(ε,µ)
3

)-hitting for sets of size µ
i

there

exists E ⊆ X(i) with 1
2
µ ≤ P [E] ≤ µ such that Ps∈X(k)

[
Pr∈X(i) [E | r ⊆ s] > P [E] + ε

]
≥

exp(−O( ε
2

µ
k
i
)).

While the assumption that X is (i, ε
3
)-hitting is not completely general, it follows

from (X(k), X(i)) being a modest sampler. We prove this at the end of the subsection.

Claim 5.11.2. Let (X(k), X(i)) be an ( 1
10i

, ε
6i
)-additive sampler. Then X is a (i, ε

3
)-hitting

for all sets of size at least 0.2
i

.

This results in the variant of the bound stated in the introduction.

Corollary 5.11.3. Let ε ∈ (0, 0.1). Let k and n be large enough (as a function of ε). Let

X be a k-uniform simplicial complex such that every vertex in X has the same probability

1
n
. If (X(k), X(i)) is a ( 1

10i
, ε
6i
)-additive sampler, then (X(k), X(i)) is not a (ε, β)-additive

sampler for any β < exp(−O(ε2 k
i
)).

The assumption that the vertices all have the same probability is also not general,

see the discussion in the end of this subsection.

Proof of Theorem 5.11.1

For the rest of the section we restrict our attention to “one-sided” additive sampling,

that is:

P
s

[
P
v∼s

[A | s] > P [A] + ε
]
.

This is no larger than the probability that |Pv∼s [A | s]− P [A]| < ε and is more convenient

to handle.

Let us introduce some notation, similar to the notation in Section 5.7.1 (but for

one-sided sampling in different levels of the complex). For a k-uniform simplicial complex,

i ≤ k and constants µ, ε > 0 let

π(X, k, i, µ, ε) = max

{
P

s∈X(k)

[
P

r∈X(i)
[A | r ⊆ s] > P [A] + ε

] ∣∣∣∣ A ⊆ X(i),P [A] = µ

}
.
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That is the best one-sided sampling bound for when restricting to sets of relative size µ.29

For general sampler graphs G = (L,R,E) we use similar notation:

π(G, ε, µ) = max

{
P

v∈R

[
P

u∈L
[A | v ∼ u] > P [A] + ε

] ∣∣∣∣ A ⊆ L,P [A] = µ

}
.

We also denote by ∆n the complete complex on n vertices.

Proof of Theorem 5.11.1. We start by stating a general bound on all samplers (not just

inclusion samplers), via reduction to the sampling properties of the complete complex.

Claim 5.11.4. Let k, n > 0. Let G be a bipartite graph such that |L| = n and such that it

is k-right regular. Then

π(G, ε, µ) ≥ π(∆n, k, 1, ε, µ).

We defer the proof, and first argue this implies Theorem 5.11.1.

Fix µ as in the theorem statement. By Claim 5.11.4 there exists A ⊆ X(1) of

measure P [A] = µ
i

such that

P
s∈X(k)

[
P [A | s] > P [A] +

10ε

i

]
≥ π(∆n, k, 1,

µ

i
,
10ε

i
).

Let E = Ni(A) be the set of all i-faces that hit A and let µ′ = P [E]. We claim that

µ = iP[A] ≥ P[E] ≥ i

2
P[A] =

µ

2

The lower bound follows from the hitting property, namely:

P [E] ≥ 1− (1− µ

i
)i − µ

3
≥ µ

2
=

i

2
P[A]

29Here let us assume for simplicity that there exists sets of this probability. We note that this assumption
is justified because as n grows larger the possible sizes of sets, { kn}

n
k=0, becomes dense in [0, 1]. The use of

this claim later on is to find a set of size ≈ µ anyway, so we neglect dealing with this minor point.
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since µ < 0.2.

The upper bound follows because the only way to sample a vertex in A is to sample

an i-face in E, then subsample a vertex in A in that i-face. The probability of doing so

(conditioned on landing in E) is at least 1
i
.

The proof will follow if we can show that

P
s∈X(k)

[
P

r∈X(i)
[E | r ⊆ s] > P [E] + ε

]
≥ π(∆n, k, 1,

µ

i
,
10ε

i
) (5.35)

since Chernoff’s bound is tight on the complete complex.

Lemma 5.11.5 (Reverse Chernoff, e.g. [261, Lemma 5.2]). Let ε, µ and k be such that

ε′2

µ′ k ≥ 3, and let n ≥ kek, then π(∆n, k, 1, µ
′, ε′) ≥ exp(−10 ε′2

µ′ k).30

Applying this lemma with µ′ := µ
i

and ε′ := 10ε
i

and using the fact that ε′2

µ′ k ≥ 3 by

assumption, implies

P
s∈X(k)

[
P

r∈X(i)
[E | r ⊆ s] > P [E] + ε

]
≥ π(∆n, k, 1,

µ

i
,
10ε

i
) ≥ exp(−O(

ε2

µ

k

i
)).

Toward proving (5.35) observe that for a fixed s ∈ X(k), the probability of E inside

s depends only on the probability of A inside s.

Assume that P[A|s]− P[A] > 10ε
i

. Then

P
r∈X(i)

[E | r ⊆ s] > 1− (1− P [A | s])i

≥ 1− (1− P[A]− 10ε

i
)i

≥ 1− (1− P[A])i + 2ε

≥ P[E] + ε

30Technically the lemma in [261] is for sampling with replacement, instead of sampling without replace-
ment (which is the complete complex case), but for n ≥ kek the two are close enough in TV -distance so
we get essentially the same theorem.
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where the first inequality is by observing the choice of r ⊆ s subsamples i random

vertices (without replacement). The probability of hitting A in the latter is then at least

1− (1− P [A | s])i, the hitting probability with replacement. The third inequality is true

when i ≥ 1 and ε < 0.1.

Combining this with our original guarantee on sampling A itself we have

π(X, k, i, µ′, ε) ≥ P
s∈X(k)

[
P

r∈X(i)
[E | r ⊆ s] > P [E] + ε

]
≥ P

s∈X(k)

[
P [A | v ∈ S] ≥ P [A] +

10ε

i

]
≥ π(∆n, k, 1,

µ

i
,
10ε

i
)

as desired.

It remains to prove Claim 5.11.4. The proof is basically repeating the lower bound

in [87]. The latter show any degree-k (ε, δ)-additive sampler satisfies δ ≥ exp(−Ω(ε2k)).

Similar to our strategy above, their proof can be interpreted as showing (∆n(k),∆n(1))

containment graph is the optimal sampler in terms of right-degree, then reducing the

general case to ∆n. We give a refinement of their argument for sets of specific size, though

our definition of samplers is less general than theirs.

Proof of Claim 5.11.4. Let Dµ be the uniform distribution over all sets A ⊆ L of proba-

bility µ. Then

π(G, ε, µ) ≥ P
r∈R,A∼Dµ

[
P

v∈L
[A | v ∼ r] > µ+ ε

]
.

Observe that since we randomize over A and G is right regular, the choice of r ∈ R doesn’t

affect the inner probability. As such, we may fix any r0 ∈ R and instead consider

P
A∼Dµ

[
P

v∈L
[A | v ∼ r0] > µ+ ε

]
,
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that is the probability (over A) that A ∩ r0 contains ≥ (µ+ ε)k elements.

We claim this is equal to π(∆n, k, 1, ε, µ). To see this, assume without loss of

generality that L = {1, 2, . . . , n} and r0 = {1, 2, . . . , k}. Since we have assumed the vertex

weights are uniform, A is a uniform sample of µn points out of L. It is convenient to think

of A as being sampled via the following procedure:

1. Draw a random permutation σ ∈ Sn

2. Set A = σ(A0), where A0 = {1, 2, . . . , µn}

Observe |r0 ∩ A| ≥ (µ+ ε)k if and only if |σ−1(r0) ∩ A0| ≥ (µ+ ε)k. But note that the

random variable σ−1(r0) is exactly a random choice of a set ∆n(k). Therefore, this is equal

to

P
s∈∆n(k)

[
P

v∈[n]
[A0 | v ∈ s] > µ+ ε

]
.

Since every set of vertices of equal measure has the same sampling in ∆n by symmetry,

this is exactly π(∆n, k, 1, ε, µ) as desired.

Sampling implies hitting

We briefly prove Claim 5.11.2.

Proof of Claim 5.11.2. Let A ⊂ X(1) be a set of size µ
i

and E ⊆ X(i) its set of neighbors.

We need to show

P [E] ≥ 1− (1− P [A])i − ε

3
.

Let f : X(i)→ [0, 1] be f(s) = |s∩A|
i

and observe that Es∈X(i) [f(s)] =
µ
i
. Let B be the set

of bad k-faces that over-samples f :

B =

{
t ∈ X(k)

∣∣∣∣ E
s⊆t

[f(s)] ≥ µ

i
+

1

10i

}
,

then by our sampling guarantee P [B] < ε
6i

.
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Fix t /∈ B. Then it holds that Pv∈X(1) [A | v ∈ t] ≤ µ+1
i
≤ 1.1

i
because

Pv∈X(1) [A | v ∈ t] = Es⊆t [f(s)]. Moreover, by the hitting properties of the complete

complex, we have that P [E | t] ≥ 1 − (1 − P [A | t])i (using the fact that inside the

complete complex, the sampling is negatively correlated). Thus

P [E] = E
t

[
P [E | t]

]
≥ P [¬B] E

t/∈B

[
P [E | t]

]
≥ (1− ε

6
)(1− E

t/∈B

[
(1− P [A | t])i

]
)

≥ (1− ε

6
)(1− E

t/∈B

[
(1− P [A | t]− ε

6i
)i
]
)

≥ (1− ε

6
)(1− (1− P [A])i − ε

6
)

= 1− (1− P [A])i − ε

3
.

Discussion

We conclude the section with a few remarks.

Remark 5.11.6.

1. Theorem 5.11.1 doesn’t follow from the tight bounds depending on degree or on
|X(k)|
|X(i)| [87]. The degree of a k-face in (X(k), X(i)) is

(
k
i

)
, and the degree of a set in

X(i) can be arbitrarily large, as in the complete complex case. The lower bounds in

[87], imply a lower of exp(−O(
(
k
i

)
)) instead of exp(−O(k

i
)). In addition, the ratio

|X(k)|
|X(i)| , which is another source for lower bounds in [87], can be arbitrarily large. That

being said, we will reduce to the bound in [87] (only for small sets).

2. While most high dimensional expanders can be symmetrized to satisfy the assumed

vertex uniformity [159], it is worth noting the condition can likely be relaxed to
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a bound on maxs∈X(k) Pv∈X(1) [v ∈ s] with some additional effort. Further, some

assumption of this sort is necessary. To see this, take the complete k-partite complex

X where X[i] = {xi} are singletons for all i < k, and X[k] = {y1, y2, . . . , yn}.

That is X(k) = {{x0, x1, . . . , xk−1} ∪ {yj} | j = 1, 2, . . . , n} are all possible faces

between the different parts. For any f : X(1) → [0, 1] we note that E[f ] =∑k−1
i=1 f(x0)

k
+ 1

k
Eyi∈X(k) [f(yi)]. Thus for every s, |Ev⊆s [f(v)]− E[f ]| ≤ 1

k
. In particular,

for every ε > 1
k
, the inclusion graph is an (ε, 0)-sampler.

3. We note that a similar bound can be achieved by essentially the same proof as-

suming only µ
3
-hitting, albeit at the cost of worse dependence on ε. In particular,

assuming only that X is Θ(1)-hitting, one can still prove a lower bound against

(ε, exp(−O(εk
i
)))-sampling.

5.11.2 High Dimensional Expansion

Having shown that the concentration bounds of Theorem 5.5.1 cannot be quan-

titatively improved, we turn to understanding the extent to which our requirements on

the expansion of the underlying complex are necessary for strong concentration. We give

two lower bounds to this effect. First, we argue that concentration is not implied by

local-spectral expansion at or below the TD-barrier.

Proposition 5.11.7 (Lower Bounds at the TD-Barrier). For every β < 1 and d ∈ N, there

exists a family of 1-TD complexes {Xn} such that (Xn(d), Xn(1)) is not a (1
2
, β)-additive

sampler.

Thus in this sense our results giving concentration bounds for λ-TD complexes for

any λ < 1 are tight. Note that by Lemma 5.4.15, the above also implies failure of sampling

for these complexes for any (large enough) k ≤ d (this can also be shown directly by the

same method).

484



The proof of Proposition 5.11.7 is based on the ‘product’ complexes of Golowich

[170], whose construction we quickly describe. Given a weighted graph G defines the

product-complex XG as

XG(d) =

{
{(v1, s1), . . . , (vd, sd)} : {vi}i∈[d] ∈ E, {si}i∈[d] ∈

(
[n]

d

)}
.

The measure of each face σ = {(v1, s1), . . . , (vd, sd)} corresponding to an edge {s, t} is

proportional to w(s, t) · f(j), where f is some weighting function dependent only on the

number vi = s.

Proof of Proposition 5.11.7. Let G = K
(1)
n/2 ⨿ K

(1)
n/2 ⨿ {e}, that is two disjoint copies of

Kn/2 with an additional edge e passing between them, and take the weights of every

edge to be uniform. [170] shows that there exists a weighting function f such that XG is

connected and has expansion 1
d

in every (d− 2)-link. By construction, the 1-skeleton of

X is a (d+ 1)-cover of G with edges ({v0, s0}, {v1, s1}) whenever {v0, v1} is an edge in E,

and s0 ̸= s1. With this in mind, define the set A to be the indicator of the first clique in

each part:

A := {(v, s) : v ∈ K
(1)
n/2}

A clearly has measure 1
2

by construction, while on the other hand any σ ∈ X(d) corre-

sponding to an edge e′ ̸= {e} is either entirely contained in or entirely misses A. Since

all edges are evenly weighted, the probability that a d-face corresponds to {e} is at most

O(n−2), which gives the desired bound for large enough n.

The above proof extends immediately to a lower bound on sampling of XG under

any weight function and any graph G simply by taking A to be any (nearly) balanced

subset in G with expansion (near) 1
2
. It is an easy exercise to show that choosing A

randomly suffices (and namely that such a set always exists).

Our second lower bound studies a slightly different regime. 1-TD complexes typically
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have only constant local-spectral expansion at low level links, so Proposition 5.11.7 does

not, for instance, rule out showing od(1)-local-spectral HDX satisfy strong concentration.

Using similar ideas to our degree lower bounds, we show at least some inverse polynomial

local-spectral expansion is required to have strong concentration.

Proposition 5.11.8. For any c < 1
2

and large enough d ∈ N, there exists a family {Xn}

of d−c-two-sided local spectral expanders such that for any β < 1, (Xn(d), Xn(1)) is not a

(d−c, β)-additive sampler.

The proof of Proposition 5.11.8 relies on another construction of Golowich [171]

building inverse polynomial HDX from Cayley complexes.

Theorem 5.11.9 ([171]). For every c < 1
2

and large enough d ∈ N, there exists a family of

d-uniform, 2Ωd(
√

log(n))-degree, 1
dc

-two-sided local spectral expanders {Xn} whose 1-skeletons

are Cayley graphs over Fn
2 with two-sided expansion λ = Θ( 1

dc
).

We can now use Lemma 5.9.10 and the Cayley structure of X’s 1-skeleton to prove

Proposition 5.11.8.

Proof of Proposition 5.11.8. Since the 1-skeleton of X is a Cayley graph over Fn
2 , there is

an eigenvector g0 : Fn
2 → {±1} whose eigenvalue is λ. Let us consider the indicator g of

the set A = {v ∈ Fn
2 | g0(v) = 1} whose measure is P [A] = 1

2
. This indicator is equal to

g = 1
2
+ 1

2
g0. We note that for every v,

P
u∼v

[A] = E
u∼v

[g(u)] =
1

2
+

1

2
E
u∼v

[g0(u)] .

The function g0 is an eigenvalue so 1
2
Eu∼v [g0(u)] =

λ
2
g0(v) = ±λ

2
. Thus, Pu∼v [A]−P [A] =

±λ
2

so for every ε ≤ λ
2

and any β < 1, the underlying graph is not a (ε, β)-sampler. By

Lemma 5.9.10, this implies that either the containment graph is not a (2ε, β)-sampler, or

the containment graph of some link of a vertex is not a (2ε, 1
2
)-sampler. Since the vertex
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links of {Xn} also give an infinite family of 1
dc

-two-sided local spectral expanders this

implies the result.

This counterexample poses the following question: For ε ∈ [d−c, d−c/2] what is the

worst λ which still promises that the containment graph is a (ε, exp(−dc))-sampler for

some c > 0?

5.11.3 Expander-Walks

Finally we take a step back from concentration itself and look at necessity of

local concentration for our applications (that is concentration of the links of X and in

particular the locally nice property). We argue this is at least in some sense necessary:

classical samplers such as expander walks which behave poorly under restriction fail reverse

hypercontractivity. Recall the expander walk complexes WG defined in Section 5.10.1.

Proposition 5.11.10. For any 0 < γ < 1 and λ > 0, there are infinitely many pairs

k, n ∈ N with a corresponding λ-expanders G = ([n], E) and balanced subset A ⊂ WG(k)

satisfying:

P
t,t′∼UDk,γk

[t′ ∈ X(1) \ A and t ∈ A] ≤ 2−Ωγ(k)

Proof. Take k odd and n even. It suffices to take any regular graph G with girth(G) > k.

Define A to be the set of walks whose center vertex is in {1, 2, . . . , n
2
}. Notice that A is

indeed a balanced function, as every element is the center of the same number of random

walks in a regular graph (see e.g. [10] for details).

On the other hand, it is easy to see A has very poor expansion due to the girth of

G. In particular, the only way to leave A (resp. X(1) \ A) is if the walk re-samples all of

[k/2 + 1], or all of [k] \ [k/2]. If neither event occurs, there exist indices i < ⌈k
2
⌉ < j which

were not re-sampled, and the girth of the graph ensures there is only one option for the

⌈k
2
⌉th element (namely its starting position). One can compute directly the probability

either event occurs is at most 2−Ωγ(k).
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To complete the proof, we need an infinite family of regular λ-expanders for any

λ > 0 with super-constant girth. Many such constructions exist in the literature, including

the classical Ramanujan graphs of [289].

Note that for any fixed γ, C, ℓ > 0, taking k in Proposition 5.11.10 sufficiently large

means we can always find subsets A,B ⊂ X(k) such that

P
t,t′∼UDk,γk

[t ∈ A ∧ t′ ∈ B] ≤ C P[A]ℓ P[B]ℓ,

violating reverse hypercontractivity for all parameter settings. We remark that the failure

of expander walks in agreement testing is well known, and can be derived e.g. from [166].
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5.12 Concentration for the Complete Complex

In this section we show near-optimal concentration bounds for the complete complex.

Claim 5.12.1. Let X be the complete complex on n vertices, that is X(k) =
(
[n]
k

)
.

Let α, δ > 0. Then for any ℓ ≤ k, the containment graph G = (X(k), X(ℓ)) is an

(α, 4
αδ

exp(− δ2

12
α⌊k

ℓ
⌋), δ)-multiplicative sampler and (ε, 2

ε
exp(− ε2

8
⌊k
ℓ
⌋))-additive sampler for

any ε > 0.

Proof. Fix and A ⊆ X(ℓ) such that P [A] ≥ α. We apply Lemma 5.5.9 in the following dis-

tribution. The distribution we use samples (s1, s2, . . . , sm, t) ∼ D such that (s1, s2, . . . , sm)

are independent and t ∈ X(k) is a uniform face conditioned on containing all si. Obviously,

(si, t) is a uniform pair of ℓ and k faces where si ⊆ t. Moreover, by Chernoff’s bound for

independent sampling

P
(s1,s2,...,sm,t)∼D

[∣∣∣∣ |si ∈ A|
m

− P [A]

∣∣∣∣ > δ

2
P [A]

]
≤ 2 exp(

δ2

12
αm).

The claim follows from Lemma 5.5.9. The additive bound follows by the same argument

applying Hoeffding’s inequality.

Note that we do not restrict the number of vertices n in this claim. Since the

k-skeleton of the complete complex is only an 1
n−k

-two sided spectral expander, this claim

does not follow from Theorem 5.5.1.

5.13 Concentration for the Swap Complex

In this appendix we prove concentration of measure for the swap complex. Recall the

swap complex C = Cℓ,k,n is the d = ⌊k
ℓ
⌋-uniform complex whose vertices are C(0) =

(
[n]
ℓ

)
and whose top level faces are C(d) = {{s1, s2, . . . , sd} | ∀i ̸= j, si ∩ sj = ∅} endowed with
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the uniform distribution. We prove a Chernoff bound for the swap complex under the

assumption that n ≥ Ω(kℓ)

Theorem 5.13.1 (Theorem 5.7.15 Restated). Let C = Cℓ,k,n for n ≥ (k+1)ℓ, f : C(0)→

[0, 1] and ε > 0:

1. Upper tail: P[U1, k
ℓ
f − E[f ] > ε] ≤ e−cε2 k

ℓ

2. Lower tail: P[U1, k
ℓ
f − E[f ] < −Var] ≤ e−cε2 k

ℓ

for some universal constant c > 0.

Proof. Recall it is enough to show that for any function 1A, the variables Xi = 1A(vi)

generated by drawing a d-face from C are negatively correlated [133]. Toward this end,

condition on an ℓ-set v ∈ C(0) appearing in the face s ∈ C(d). The conditional probability

that a second ℓ-set w ∈ C(0) appears in s is:

P
s∼C(d)

[w ∈ s | v ∈ s] =


0 if |v ∩ w| > 0

k
ℓ
−1

(n−ℓ
ℓ )

if |v ∩ w| = 0

On the other hand the unconditioned probability that w appears in s is k

ℓ(nℓ)
. Thus C(d)

is negatively correlated so long as

1− ℓ

k
≤
(
n−ℓ
ℓ

)(
n
ℓ

)
The righthand side is exactly

ℓ−1∏
j=0

(
1− ℓ

n− j

)
≥
(
1− ℓ

n− ℓ

)ℓ

≥ 1− ℓ2

n− ℓ

Thus C(d) is negatively correlated as long as ℓ2

n−ℓ
≤ ℓ

k
, which holds for n ≥ (k + 1)ℓ
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We conjecture that Cℓ,k,n should actually satisfy a Chernoff bound whenever n ≥ ck

for some sufficiently large constant c > 1. In fact, because the links of the swap complex

are exactly Kneser graphs, this would follow from the local-to-global entropy contraction

framework of [96, 186] if one could prove an optimal entropy contraction bound for Kneser

graphs. While it is possible to derive some entropic bounds on Kneser graphs from their

chi-squared mixing time [321], they do not seem to be strong enough to prove strong

concentration.

5.14 Outstanding Proofs on Samplers and Concentra-
tion

5.14.1 Sampling

Claim 5.14.1 (Claim 5.4.8 Restated). Let β, δ > 0, let δ′ > δ and α < min{δ,0.5}
1+δ

. Then for

every (α, β, δ)-sampler G = (L,R,E), it holds that Gop := (R,L,E) is a (1−α(1+δ)
α(δ′−δ)

β, 2α, δ′)-

sampler.

Proof of Claim 5.4.8. Let A ⊆ L be such that P [A] ≥ 1−α(1+ε)
α(ε′−ε)

β. Let

BS =

{
v ∈ R

∣∣∣∣ P
u∈L

[u ∈ A | u ∼ v] < (1− ε′)P [A]

}

and let

BB =

{
v ∈ R

∣∣∣∣ P
u∈L

[u ∈ A | u ∼ v] > (1 + ε′)P [A]

}
.

Showing that P [BB] ,P [BS] ≤ α will prove the claim. Let us begin with BS. Assume

toward contradiction that P [BS] > α. We denote by 1A : L→ {0, 1} and 1BS
: R→ {0, 1}

the indicators of A,BS respectively. On the one hand

E
uv∈E

[1A(u)1BS
(v)] < P [BS] (1− ε′)P [A] , (5.36)
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since the product of indicators is one iff v ∈ BS, in which case, there are at most a

(1− ε′)P [A] fraction of u ∈ A adjacent to v by the definition of BS. On the other hand,

by the sampling properties of (L,R,E) there is at most a β-fraction of u ∈ L such that

Pv∈R [v ∈ BS | v ∼ u] < (1− ε)P [BS]. Hence

E
uv∈E

[1A(u)1BS
(v)] ≥ P [BS] (1− ε)(P [A]− β).31 (5.37)

Combining (5.36) with (5.37) yields

P [BS]P [A] (ε′ − ε) < β P [BS] (1− ε)

or

P [A] <
1− ε

ε′ − ε
β

(α< ε
1+ε

)

≤ 1− α(1 + ε)

α(ε′ − ε)
β,

a contradiction to the lower bound on the size of A.

Let us bound BB. Let 1BB
: R→ {0, 1} be the indicator of BB. Similar to (5.36)

we have that

E
uv∈E

[1A(u)1BS
(v)] > P [BB] (1 + ε′)P [A] . (5.38)

By the sampling properties of (L,R,E) there is at most a β-fraction of u ∈ L such that

Pv∈R [v ∈ BB | v ∼ u] > (1 + ε)P [BB]. So similar to (5.37) we have that

E
uv∈E

[1A(u)1BS
(v)] ≤ β + P [BB] (1 + ε)(P [A]− β). (5.39)

Combining (5.38) with (5.39) yields

P [BB]P [A] (ε− ε′) < β (1− P [BB] (1 + ε))

31P [A] > β by assumption.
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or

P [A] <
1− P [BB] (1 + ε)

P [BB] (ε′ − ε)
β ≤ 1− α(1 + ε)

α(ε′ − ε)
β,

where the last inequality is because the function x 7→ 1−(1+ε)x
x(ε′−ε)

β is monotone increasing

when x ∈ [0, 0.5
1+ε

] and α is in this interval. This is a contradiction to the lower bound on

the size of A.

Claim 5.14.2 (Claim 5.4.9 Restated). Let G = (L,R,E) be a bipartite graph.

1. If G is a (β, δ)-additive sampler then G is a (Cδ, β, 1
C
)-multiplicative sampler for any

C > 1.

2. If G is a (α, β, δ)-multiplicative sampler for α ≤ 1
2
. Then G is a (β, δ)-additive

sampler, where δ = max{δ, (1 + δ)(α + p)} and p = maxv∈R P [v].

Proof of Claim 5.4.9. The first item follows immediately from the definition of multiplica-

tive samplers. If P [A] ≥ Cε then 1
C
P [A] ≥ ε so by the promise of additive sampling it

holds that

P
v∈L

[∣∣∣∣ Pu∈R [u ∈ A | u ∼ v]− P [A]

∣∣∣∣ > 1

C
P [A]

]
≤ P

v∈L

[∣∣∣∣ Pu∈R [u ∈ A | u ∼ v]− P [A]

∣∣∣∣ > ε

]
≤ β.

We turn to the second item. Let A ⊆ R. For every u ∈ L it holds that

∣∣∣∣ Pu∈R [u ∈ A | u ∼ v]− P [A]

∣∣∣∣ = ∣∣∣∣1− P
u∈R

[u ∈ A | u ∼ v]− (1− P [A])

∣∣∣∣
=

∣∣∣∣ Pu∈R [u ∈ R \ A | u ∼ v]− P [R \ A]
∣∣∣∣ ,

so we assume that without loss of generality P [A] ≤ 1
2
. We need to show that

P
v∈L

[∣∣∣∣ Pu∈R [u ∈ A | u ∼ v]− P [A]

∣∣∣∣ > δ

]
≤ β. (5.40)
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If P [A] ≥ α then this holds from the multiplicative sampling guarantee. Hence it

suffices to show that this inequality always holds for sets of relative size smaller that δ.

First we note that if u ∈ L is such that Pu∈R [u ∈ A | u ∼ v] < P [A] then

|Pu∈R [u ∈ A | u ∼ v]− P [A]| ≤ P [A] ≤ δ so

P
v∈L

[∣∣∣∣ Pu∈R [u ∈ A | u ∼ v]− P [A]

∣∣∣∣ > δ

]
= P

v∈L

[
P

u∈R
[u ∈ A | u ∼ v] > δ + P [A]

]
.

In this case we find a subset B ⊇ A such that P [B] ≤ α + p (we can do so by adding

vertices to A one-by-one which is where p comes into play). Then

P
v∈L

[
P

u∈R
[u ∈ A | u ∼ v] > δ + P [A]

]
≤ P

v∈L

[
P

u∈R
[u ∈ B | u ∼ v] > δ + P [A]

]
≤ P

v∈L

[
P

u∈R
[u ∈ B | u ∼ v] > (1 + ε)P [B]

]
≤ β.

The claim follows.

One can also remove the dependence on δ in the second item.

Claim 5.14.3 (Claim 5.4.10 Restated). Let β, α0 > 0. If for every α > α0 it holds that G

is an (α, β, α0√
α
)-multiplicative sampler, then G is a(β, 2(α + p))-additive sampler where

p = maxv∈R P [v].

Proof of Claim 5.4.10. The proof is the same as the proof of the second item in Claim 5.4.9.

the only difference is that for large sets, we still have that

P
v∈L

[∣∣∣∣ Pu∈R [u ∈ A | u ∼ v]− P [A]

∣∣∣∣ > 2α0 + p

]
≤ β (5.41)

because if P [A] = α then α0√
α
α ≤ α0.
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Claim (Restatement of Claim 5.4.11). Let G = (L,R,E) be an (ε, β)-additive sampler

such that every r ∈ R has degree at least k and every v ∈ L has probability at most 1
k
.

Assume that exp(−0.01ε2k)) < 1
4
. Then G is also a (4β, 2ε)-function additive sampler.

Proof of Claim 5.4.11. Fix f : L → [0, 1]. We prove a (2β, 2ε) upper tail bound. The

lower bound is similar. Let A ∼ P(L) be a random subset where every vertex is inserted

into A independently with probability pv = f(v). Since G is a sampler, for every possible

outcome A we have Pr∈R [Pv∼r [v ∈ A]− P [A] > ε] < β. Let 1(A, r) be the indicator for

this event. In particular, we have that EA,r∼R [1(A, r)] ≤ β. By Markov, the fraction of

r0 ∈ R such that EA [1(A, r0)] >
1
2

is at most 2β. On the other hand, we will show that if

E
v∼r0

[f(v)] ≥ E
v∈L

[f(v)] + 2ε

then EA [1(A, r0)] >
1
2
. Indeed, fix such an r0. Observe that if Pv∈L [A] < Ev∈L [f ] +

1
2
ε

and Pv∼r0 [A] > Ev∼r0 [f(v)]− 1
2
ε, then

P
v∼r0

[A] > E
v∼r0

[f(v)]− 1

2
ε ≥ E

v∈L
[f(v)] +

3

2
ε ≥ P [A] + ε.

It is direct to check that EA [P [A]] = E[f ] and that EA [Pv∼r0 [A]] = Ev∼r0 [f(v)]. Ho-

effding’s inequality therefore bounds the probability that either Pv∈L [A] < Ev∈L [f ] +
1
2
ε

or Pv∼r0 [A] > Ev∼r0 [f(v)]− 1
2
ε by 2 exp(−0.01ε2k) < 1

2
and EA [1(A, r0)] >

1
2

follows as

desired.

Finally we prove the basic Chebyshev-type sampling bound from expansion.

Claim (Restatement of Claim 5.7.3). Let G = (L,R,E) be a λ-bipartite expander and let

A be its bipartite adjacency operator. Let f : L→ [0, 1] be a function with E[f ] ≥ µ and
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let 0 < ε < µ. Then

P
u∈R

[Af(u) < µ− ε] <
λ2µ

ε2
.

Proof of Claim 5.7.3. Dinur and Kaufman observe the following bound

P
u∼R

[|Af(u)− µ| > ε] <
λ2V ar(f)

ε2
.

Let f⊥ = f − µ. Then Af(v) − µ = Af⊥. By Chebyshev’s inequality, P [T ] ≤ E[(Af⊥)2]
ε2

and by λ-expansion E[(Af⊥)2] ≤ λ2 E[(f⊥)2] = λ2V ar(f). The claim follows. Now by the

above we can write

P [Af(u) < µ− ε] ≤ P [|Af(u)− E[f ]| > E[f ]− µ+ ε] ≤ λ2V ar(f)

(ε+ (E[f ]− µ))2
.

Noting that V ar(f) ≤ E[f ] = µ+ (E[f ]− µ) and denoting x = E[f ]− µ, this is at most
λ2(µ+x)
(ε+x)2

≤ λ2µ
ε2

.

5.14.2 Concentration

Lemma 5.14.4 (Lemma 5.4.15 Restated). Let X be a d-uniform simplicial complex,

k ≤ d, and f : X(k)→ [0, 1] a function satisfying

1. Upper Tail: P
X(k)

[f − E[f ] > t] ≤ fup(t)

2. Lower Tail: P
X(k)

[f − E[f ] < −t] ≤ flow(t).

for some functions fup, flow : R+ → [0, 1]. Then the d-lift Uk,df : X(d)→ R satisfies:

1. Upper Tail: P
X(d)

[Uk,df − E[f ] > t] ≤ fup(
t
2
)(1− πd,k,f

low ( t
2
))−1

2. Lower Tail: P
X(d)

[Uk,df − E[f ] < −t] ≤ flow(
t
2
)(1− πd,k,f

up ( t
2
))−1.
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Proof. We give the argument for the upper tail. The argument for the lower tail is

analogous. Assume for the sake of contradiction that

P
X(d)

[Uk,df − µ > 2t] > fup (t)
(
1− πf,k,d

low (t)
)−1

.

Since a k-face can be drawn by first drawing a d-face, then a uniformly random k-subface,

we can use concentration of the complete complex to derive a contradiction. In particular,

let E1 denote the event that Uk,df − µ > 2t. Then:

P
{v0,...,vk}∈X(k)

[Uk,df − µ > t] ≥ P[E1] P
r⊂s

[f(r)− µ > t | s ∈ E1]

≥ P[E1](1− P
r⊂s

[f(r)− E[f ] < t | s ∈ E1])

≥ P[E1](1− P
r⊂s

[f(r)− Uk,d < −t | s ∈ E1])

> fup(t)

Lemma 5.14.5 (Lemma 5.4.16 Restated). Let X be a d-uniform simplicial complex and

k ≤ d. Assume there exist functions fup(t, ν) and flow(t, ν) such that any ν-Lipschitz

f : X(d)→ R satisfies:

1. Upper Tail: P[f − E[f ] > t] ≤ fup(t, ν)

2. Lower Tail: P[f − E[f ] < −t] ≤ flow(t, ν).

Then any function f ′ : X(k)→ R with ν-bounded difference satisfies:

1. Upper Tail: P[f ′ − E[f ′] > t] ≤ fup(
t
2
, k
d
ν) + e−

t2

4ν

2. Lower Tail: P[f ′ − E[f ′] < −t] ≤ flow(
t
2
, k
d
ν) + e−

t2

4ν .
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Proof. Let f : X(k)→ R be a function with ν-bounded difference and g its d-lift g = Uk,df .

Since a face r ∈ X(k) can equivalently be sampled by first drawing a face s ∈ X(d), then

subsampling r uniformly from s, we can bound the concentration of f as:

P[f(r)− E[f ] ≥ t] ≤ P
r⊂s

[g(s)− E[f ] ≥ t/2 ∨ f(r)− g(s) ≥ t/2]

≤ P
r⊂s

[g(s)− E[g] ≥ t/2] + P
r⊂s

[
f(r)− E

r⊂s
[f(r)] ≥ t/2

]

where we have used the fact that E[g] = E[f ]. Informally, the idea is then to argue the first

term is small due to exponential concentration of X(d) and the fact that the lift g is itself

more concentrated than f , and the second term is small by subgaussian concentration of

the complete complex.

We first argue that if f has ν-bounded difference, g is k
d
ν-Lipschitz. Given s ∈ X(d)

and i ∈ [d], let s(i) denote a copy of s with the ith coordinate re-sampled. Expanding νg

we have:

νg ≤
d∑

i=1

E
s,s(i)

[(
g(s)− g(s(i))

)2
+

]
=

d∑
i=1

E
s,s(i)

[(
E
t⊂s

[f ]− E
t⊂s(i)

[f ]

)2

+

]

=
1(
d
k

)2 d∑
i=1

E
s,s(i)

∑
T⊆[d]

f(sT )− f(s
(i)
T )

2

+


where we recall sT is the k-face consisting of the elements of s indexed by T . Observe

that the inner term is non-zero only when i ∈ T , since otherwise sT = s
(i)
T . Thus by

Cauchy-Schwarz, we have:

νf ≤
(
d−1
k−1

)(
d
k

)2 d∑
i=1

E
s,s(i)

∑
T⊆[d]

(
f(sT )− f(s

(i)
T )
)2
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≤
(
d−1
k−1

)(
d
k

)2 d∑
i=1

E
s,s(i)

 ∑
i∈T⊆[d]

ν

k


=

k

d
ν

where we have used the fact that s(T ) and s′(i)(T ) are neighboring k-faces in the down-up

walk on level k. We can now bound the first term of our upper tail by assumption as

P
r⊂s

[g(s)− E[g] ≥ t/2] ≤ fup

(
t

2
,
k

d
ν

)
.

For the second term, observe that since f has ν-bounded difference as a function of X(k),

the restriction of f to
(
s
k

)
⊂ X(k) also has ν-bounded difference (since any edge (r, r′)

in the down-up walk restricted to s is also an edge in the walk on X(k)). Thus using

subgaussian concentration for Lipschitz functions on the complete complex (see e.g. [102,

Corollary 2]) we also have

P
r⊂s

[
f(r)− E

r⊂s
[f(r)] ≥ t/2

]
≤ e−

t2

4ν .

Combining the two gives the result.

5.15 High Dimensional Expander-Mixing Lemma

In this section, we give the proof of our variant of the high-dimensional expander

mixing lemma and its various corollaries.

Theorem 5.15.1 (high dimensional expander Mixing Lemma (Theorem 5.10.14 Restated)).

Let (X,T, ρ) be a depth D λ-tuple splitting tree with k leaves. Denote by di the depth of

the leaf labeled i. Then for any family of functions {fi : X[i]→ R}i∈[k]:

∣∣∣∣∣ E
a∈X(k−1)

[
k∏

i=1

fi(ai)

]
−

k∏
i=1

E
ai∈X[i]

[fi(ai)]

∣∣∣∣∣ ≤ 3Dλ
k∏

i=1

∥fi∥2di .
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If (X,T, ρ) is instead a depth D standard λ-splitting tree, we take {fi : X(1) → R}i∈[k]

and have:

∣∣∣∣∣ E
a∈X(k−1),π∈Sk

[
k∏

i=1

fi(aπ(i))

]
−

k∏
i=1

E
ai∈X(1)

[fi(ai)]

∣∣∣∣∣ ≤ 3Dλ
k∏

i=1

∥fi∥2di .

Proof. We prove the partite case directly, then argue Equation (5.32) follows from partiti-

fication. It is convenient to introduce the following notation. Let f̄ = (f1, f2, . . . , fk) such

that fi : X[i]→ R. Let S ⊆ [k]. Let (T, ρ) be an ordered tree. Without loss of generality

we identify every leaf u ∈ L with its label ρ(u).

– Denote by f̄S the sub-tuple containing only functions whose index is in S.

– Let πf̄S : X[S]→ R be the product of functions in f̄S, that is πf̄S(s) =
∏

i∈S fi(ai)

(where s = {ai}i∈S). We note that when S1, S2 are disjoint then πf̄S1
· πf̄S2

= πf̄S1 ·∪S2
.

– Let Ef̄S =
∏

i∈S E[fi].

– Let TL and TR be the sub-trees rooted by the left and right children of the root of

T , respectively. Let L,R be the leaves of TL, TR respectively.

– For T, TL, TR and tuple of functions f̄ we denote by

E(f̄[k], T ) =
k∏

i=1

∥fi∥2di , E(f̄L, TL) =
∏
i∈L

∥fi∥2di−1 , E(f̄R, TR) =
∏
i∈R

∥fi∥2di−1 .

In this notation we need to show:

∣∣∣E[πf̄[k]
]− Ef̄[k]

∣∣∣ ≤ 3DλE(f̄[k], T ).

The proof is by induction on the depth D. The base case (depth 1) is trivial.

Assume that the theorem holds for any set of functions on any tree of depth ≤ D − 1. By
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adding and subtracting E[πf̄L ] · E[πf̄R ], observe that

∣∣∣E[πf̄[k]
]− Ef̄[k]

∣∣∣ ≤ ∣∣∣E[πf̄[k]
]− E[πf̄L ] · E[πf̄R ]

∣∣∣︸ ︷︷ ︸
I

+
∣∣∣E[πf̄L ] · E[πf̄R ]− Ef̄[k]

∣∣∣︸ ︷︷ ︸
II

(5.42)

by the triangle inequality. We bound I and II separately, starting with I. Since the swap

walk SL,R is a λ-bipartite expander, applying (5.6) to πf̄L , πf̄R we get that the first term

in the right-hand side of (5.42) is

∣∣∣E[πf̄[k]
]− E[πf̄L ]E[πf̄R ]

∣∣∣ = ∣∣E[πf̄L · πf̄R ]− E[πf̄L ]E[πf̄R ]
∣∣ ≤ λ∥πf̄L∥2∥πf̄R∥2 ≤ λ

∏
i

∥fi∥2di

where we have used the fact that

∥πf̄L∥2 ≤
∏
i∈L

∥fi∥2di , and ∥πf̄R∥2 ≤
∏
i∈R

∥fi∥2di (5.43)

by repeatedly applying Cauchy-Schwarz along the splitting trees of L and R respectively.

It remains to bound II. By the triangle inequality, we can factor this term into

components dependent on the left and right subtrees:

∣∣∣E[πf̄R ] · E[πf̄L ]− Ef̄[k]

∣∣∣ ≤ ∣∣E[πf̄L ] · E[πf̄R ]− E[πf̄L ] · Ef̄R

∣∣+ ∣∣∣E[πf̄L ] · Ef̄R − Ef̄[k]

∣∣∣ (5.44)

=
∣∣E[πf̄L ]

∣∣ ∣∣E[πf̄R ]− Ef̄R

∣∣+ ∣∣Ef̄R

∣∣ ∣∣E[πf̄L ]− Ef̄L

∣∣ .
Since (XL, TL, ρ|TL

), (XR, TR, ρ|TR
) are both λ-tuple splitting trees of depth ≤ D − 1,32

the inductive hypothesis implies

∣∣E[πf̄R ]− Ef̄R

∣∣ ≤ 3D−1λE(f̄R, TR), and
∣∣E[πf̄L ]− Ef̄L

∣∣ ≤ 3D−1λE(f̄L, TL)

32Recall that XL, XR are the simplicial sub-complexes induced by the faces in X[L] and X[R] respec-
tively.
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so we can upper bound (5.44) by

3D−1λ
(∣∣E[πf̄L ]

∣∣ E(f̄R, TR) +
∣∣Ef̄R

∣∣ E(f̄L, TL)
)
.

Finally, observe that

∣∣Ef̄R

∣∣ =∏
i∈R

|E[fi]| ≤
∏
i∈R

∥fi∥1 ≤
∏
i∈R

∥fi∥2di

by monotonicity of expectation norms and similarly

∣∣E[πf̄L ]
∣∣ ≤ ∥πf̄L∥2 ≤

∏
i∈L

∥fi∥2di

by (5.43). Altogether, this gives an upper bound of

I + II ≤ λE(f̄[k], T ) + 2 · 3D−1λE(f̄[k], T ) ≤ λ3DE(f̄[k], T )

as desired.

For the unordered case, take an arbitrary partitification (X ′, T, ρ′) as in Defini-

tion 5.10.8. (X ′, T, ρ′) is a λ-tuple splitting tree by Claim 5.10.9. Define f̃i : X[ρ′(ui)]→ R

by f̃i((v, j)) = fi(v). Viewed as random variables, f̃i and fi are equidistributed, so

E[fi] = E[f̃i] and ∥fi∥2di = ∥f̃i∥2di . Moreover, by construction

E
a∈X(k−1),π∈Sk

[
k∏

i=1

fi(aπ(i))

]
= E

(a,π)∈X′(k−1)

[
k∏

i=1

f̃i(aπ(i), π(i))

]
,

so can write

∣∣∣∣∣ E
a∈X(k),π∈Sk

[
k∏

i=1

fi(aπ(i))

]
−

k∏
i=1

E
ai∈X(1)

[fi(ai)]

∣∣∣∣∣
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=

∣∣∣∣∣ E
(a,π)∈X′(k)

[
k∏

i=1

f̃i((a, π)i)

]
−

k∏
i=1

E
(a,π)i∈X′(i)

[
f̃i(ai, i)

]∣∣∣∣∣
≤3Dλ

k∏
i=1

∥f̃i∥2di

=3Dλ
k∏

i=1

∥fi∥2di

as desired.

We now record a few useful corollaries from which hitting set and bias amplification

are essentially immediate.

Corollary 5.15.2. Let X be as in Theorem 5.10.14 and Ai ⊆ X[i]. Then

∣∣∣∣∣ P
a∈X(k−1)

[
k∧

i=1

ai ∈ Ai

]
−

k∏
i=1

P [Ai]

∣∣∣∣∣ ≤ 3Dλ
k∏

i=1

P [Ai]
2−di ≤ 3Dλ. (5.45)

Corollary 5.15.3. Let (X,T, ρ) be a λ-tuple splitting tree. Let u1, u2, . . . , uℓ ∈ T be nodes

such that for every i ̸= j, ui is not an ancestor of uj, and let di be the depth of ui in T .

Let f1, f2, . . . , fℓ be functions such that fi : X(ρ(ui))→ R. Then

∣∣∣∣∣ E
a∈X(k−1)

[
ℓ∏

i=1

fi(aρ(ui))

]
−

ℓ∏
i=1

E[fi(aρ(ui))]

∣∣∣∣∣ ≤ 3Dλ
ℓ∏

i=1

∥fi∥2di , (5.46)

where D = max{di}.

Proof. We sequentially prune the tuple-splitting tree using nodes u1, u2, . . . , uℓ as in

Definition 5.10.10. If there are nodes of depth greater than D we also prune their depth

D ancestor. By Claim 5.10.11, this results in a pruned λ-tuple splitting tree (X ′, T ′, ρ′)

where by construction u1, u2, . . . , uℓ are leaves in T ′ corresponding to X ′[i] = X[ρ(ui)] (we

note X ′ may have other parts not associated with these leaves as well). Setting fj = 1 for

the latter, applying Theorem 5.10.14 to (X ′, T ′, ρ′) gives the desired bound.
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Proposition 5.15.4 (Hitting Set (Proposition 5.10.12 Restated)). Any depth D λ-(tuple)

splitting tree with k leaves is (3Dλ, k)-hitting.

Proof. Any subset A ⊂ X(1) can be divided into partite components A = A1 ⨿ . . .⨿ Ak

where Ai ⊂ X[i]. Corollary 5.15.2 then implies

P
σ∈X(k)

[σ ⊂ A] ≤
k∏

i=1

µ(Ai) + 3Dλ ≤ µ(A)k + 3Dλ

where the righthand inequality follows from the fact that 1
k

∑k
i=1 µ(Ai) = µ(A).

Proposition 5.15.5 (Bias-Amplification (Proposition 5.10.13 Restated)). Let (X,T, ρ)

be a λ-tuple splitting tree for λ < 1
16

. For any 0 < ε < 1
4

and family of mean ε functions

{fi : X[i]→ {±1}}i∈[k],
∏

fi is a {±1}-valued function with bias at most:

∣∣∣∣∣ E
a∈X(k−1)

[
k∏

i=1

fi(ai)

]∣∣∣∣∣ ≤ εk + 2λ (5.47)

Proof. The proof is similar to Theorem 5.10.14, and we adopt the same notational conven-

tions. The base case k = 1 is trivial. For the inductive step, we have

|E[πf̄[k]
]| ≤

∣∣∣E[πf̄[k]
]− E[πf̄L ] · E[πf̄R ]

∣∣∣+ E[πf̄L ] · E[πf̄R ]

≤ λ+ (ε|L| + 2λ)(ε|R| + 2λ)

≤ εk + 2λ

by our assumptions on λ and ε.

Finally we list for completeness the unordered analogs of these results, which follow

immediately from partitification as in Theorem 5.10.14.

Corollary 5.15.6 (Expander-Mixing (Corollary 5.15.2)). Let X be a depth D λ-splitting
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tree. Then for any A1, . . . , Ak ⊂ X(1):

∣∣∣∣∣ P
a∈X(k),π∈Sk

[
k∧

i=1

ai ∈ Ai

]
−

k∏
i=1

P [Ai]

∣∣∣∣∣ ≤ 3Dλ
k∏

i=1

P [Ai]
2−di ≤ 3Dλ. (5.48)

Corollary 5.15.7 (Extended HD-EML (Corollary 5.15.3)). Let (X,T, ρ) be a λ-splitting

tree, u1, u2, . . . , uℓ ∈ T nodes such that for every i ≠ j, ui is not an ancestor of uj, and

let di be the depth of ui in T . Let f1, f2, . . . , fℓ be functions such that fi : X(ρ(ui))→ R.

Then ∣∣∣∣∣ E
a∈X(k−1),π∈Sk

[
ℓ∏

i=1

fi(aρ(ui))

]
−

ℓ∏
i=1

E[fi(aρ(ui))]

∣∣∣∣∣ ≤ 3Dλ
ℓ∏

i=1

∥fi∥2di , (5.49)

where D = max{di}.

Corollary 5.15.8 (Hitting Set (Proposition 5.10.12)). Any depth D λ splitting tree with

k leaves is (3Dλ, k)-hitting.

Corollary 5.15.9 (Bias-Amplification (Proposition 5.10.13)). Let (X,T, ρ) be a λ splitting

tree for λ < 1
16

. For any 0 < ε < 1
4

and family of mean ε functions {fi : X(1)→ {±1}}i∈[k],∏
fi is a {±1}-valued function with bias at most:

∣∣∣∣∣ E
a∈X(k−1),π∈Sk

[
k∏

i=1

fi(aπ(i))

]∣∣∣∣∣ ≤ εk + 2λ (5.50)

5.16 Reverse Hypercontractivity: From Boolean to
All Functions

We now give a generic reduction from reverse hypercontractivity for general functions

to the Boolean case.

Theorem (Restatement of Theorem 5.6.12). For every ℓ ≥ 1 and ε > 0 there exists

κ′ ≥
(
1
5

)2ℓ(1+ε)
(

1
18+ 12

ε

)2(ℓ−1)

such that the following holds. Let V be a finite probability
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space and D a monotone linear operator such that for every A,B ⊆ V ,

⟨1A, D1B⟩ ≥ κP [A]ℓ P [B]ℓ . (5.51)

Then for every two arbitrary functions f1, f2 : V → R≥0 it holds that

⟨f1, Df2⟩ ≥ κκ′∥f1∥ 1
ℓ(1+ε)
∥f2∥ 1

ℓ(1+ε)
. (5.52)

That is, D is ( 1
ℓ(1+ε)

, 1
1−ℓ(1+ε)

, κκ′)-reverse hypercontractive.

Before moving directly to the proof, we give a brief overview of the main idea.

Starting with arbitrary f1, f2, our goal is to build discrete approximations of the fi that

remain close to the original functions in expectation and don’t take too many unique

values. Once this is the case, we can write the functions as a weighted sum over indicators

for each value, and apply the boolean result without too much loss.

The key to the proof really lies in these approximations, which we build by dis-

cretizing the functions to powers of 2 and applying a careful iterative zero-ing procedure

to components that fall too far from the mean. Naively this approach seems problematic,

as fi is arbitrary and may not have a well-behaved tail to truncate. We handle this by

exploiting the fact that no function can have more than a small constant fraction of its

mass beyond its expectation times (an appropriate power of) its (1→(1 + ε))-norm.

More formally, the proof of Theorem 5.6.12 is split into two intermediate reductions,

corresponding to the ‘approximation step’ and the ‘indicator step’ above. The first of these

is a reduction from general reverse hypercontractivity to a slightly richer set of functions

that are balanced and discrete.

Definition 5.16.1 (Nice Functions). For any α ∈ [0, 1], and β ∈ [1,∞), we say the

function f : V → R≥0 is (α, β)-nice if it is:
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1. Balanced: all non-zero outputs of f satisfy

αE[f ] ≤ f(x) ≤ βE[f ].

2. Discrete: the range of f is entirely contained in {0} ∪ {2j : j ∈ Z}.

To state the reduction, we require a setting of parameters α and β based on the

(1→(1+ ε))-norm of the functions in question due to the tail truncation strategy described

above. In particular, for a fixed non-negative function fi, define

ηi =
E[f 1+ε

i ]

E[fi]1+ε
= ∥fi∥1+ε

1→(1+ε).

With this in mind, we state our two intermediate reductions and prove Theorem 5.6.12.

Proposition 5.16.2 (From General to Nice). Let ℓ, ε, κ, V , and D be as in Theorem 5.6.12.

Suppose that for any two functions f1, f2 : V → R≥0 that are ( 1
16ηi

, (25ηi)
2(1+ε)

ε )-nice

⟨f ℓ(1+ε)
1 , Df

ℓ(1+ε)
2 ⟩ ≥ κE[f1]ℓ(1+ε) E[f2]ℓ(1+ε). (5.53)

Then for every two functions f1, f2 : V → R≥0 it holds that

⟨f ℓ(1+ε)
1 , Df

ℓ(1+ε)
2 ⟩ ≥

(
1

5

)2ℓ(1+ε)

κE[f1]ℓ(1+ε) E[f2]ℓ(1+ε). (5.54)

The ‘indicator step’ then reduces reverse hypercontractivity for nice functions to

the Boolean case.

Proposition 5.16.3 (From Nice to Boolean). Let ℓ, ε, V , and D be as in Theorem 5.6.12.

If for every A,B ⊆ V ,

⟨1A, D1B⟩ ≥ κP [A]ℓ P [B]ℓ , (5.55)
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then every two ( 1
16ηi

, (25ηi)
2(1+ε)

ε )-nice functions f1, f2 : V → R≥0 satisfy

⟨f ℓ(1+ε)
1 , Df

ℓ(1+ε)
2 ⟩ ≥

(
1

18 + 12
ε

)2(ℓ−1)

κE[f1]ℓ(1+ε) E[f2]ℓ(1+ε). (5.56)

The proof of Theorem 5.6.12 is now essentially immediate.

Proof of Theorem 5.6.12. We have by assumption that all A,B ⊆ V satisfy ⟨1A, D1B⟩ ≥

κP [A]ℓ P [B]ℓ, so we may apply Proposition 5.16.3 to get that every two ( 1
16ηi

, (25ηi)
2(1+ε)

ε )-

nice functions f1, f2 : V → R≥0 satisfy

⟨f ℓ(1+ε)
1 , Df

ℓ(1+ε)
2 ⟩ ≥

(
1

18 + 12
ε

)2(ℓ−1)

κE[f1]ℓ(1+ε) E[f2]ℓ(1+ε).

Applying Proposition 5.16.2 then implies arbitrary non-negative g1, g2 satisfy

⟨gℓ(1+ε)
1 , Dg

ℓ(1+ε)
2 ⟩ ≥

(
1

5

)2ℓ(1+ε)(
1

18 + 12
ε

)2(ℓ−1)

κE[g1]ℓ(1+ε) E[g2]ℓ(1+ε).

Finally, for f1, f2 arbitrary non-negative functions applying the above to gi = f
1

ℓ(1+ε)

i gives

the result.

We now move to the formal proofs.

Proof of Proposition 5.16.2. Given arbitrary f1, f2 : V → R≥0 we will construct corre-

sponding f ′
1, f

′
2 satisfying

1. 0 ≤ f ′
i ≤ fi

2. E[f ′
i ] ≥ 1

5
E[f ]

3. f ′
i is ( 1

16ηi
, (25ηi)

2(1+ε)
ε )-nice
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Combining the above with monotonicity of D and reverse hypercontractive inequality for

nice functions gives

⟨f1, Df2⟩ ≥ ⟨f ′
1, Df ′

2⟩ (Item (1) and Monotonicity)

≥ κE[f ′
1]

ℓ(1+ε)E[f ′
2]

ℓ(1+ε) (Item (3) and Equation (5.53))

≥
(
1

5

)2ℓ(1+ε)

κE[f ′
1]

ℓ(1+ε)E[f ′
2]

ℓ(1+ε) (Item (2))

as desired.

We construct f ′
i in two separate steps: a simple discretization procedure, and a

more involved balancing procedure that iteratively zeroes out unbalanced parts of the

function. Starting with the former, given a non-negative f define its rounding down f̃ by

setting for j ∈ Z:

f̃(x) =


2j for f(x) ∈ [2j, 2j+1)

0 if f(x) = 0.

Note that, by construction, fi
2
≤ f̃i ≤ fi.

We now define an iterative balancing procedure outputting a sequence of functions

f̃i = f
(0)
i ≥ f

(1)
i ≥ . . . ≥ f

(ki)
i = f ′

i for ki ∈ N some finite stopping time. For these

(soon-to-be-defined) functions, define η
(j)
i =

E[(f (j)
i )1+ε]

E[(f (j)
i )]1+ε

and denote the set of ‘balanced’

inputs of f (j)
i as:

B
(j)
i =

{
x

∣∣∣∣∣ 1

4η
(j)
i

E[f (j)
i ] ≤ f

(j)
i (x) ≤

(
4η

(j)
i

) 2(1+ε)
ε E[f (j)

i ]

}
.

If f (0)
i is already ( 1

16ηi
, (25ηi)

2(1+ε)
ε )-nice, set ki = 0 and output f ′

i = f̃i. Otherwise for

j = 1, 2, . . . define f
(j)
i by zeroing out all non-balanced inputs:

f
(j)
i := f

(j−1)
i · 1

B
(j−1)
i

,
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and define the stopping time ki to be the first index j such that η
(j)
i ≥ 1

4
η
(j−1)
i . This

procedure terminates (i.e. ki is finite) since each η
(j)
i ≥ 1 by convexity. Every step the

process doesn’t stop decreases η
(j)
i by a factor of 4, so there can be a total of O(log(η

(0)
i ))

steps.

It is immediate from definition that 0 ≤ f ′
i ≤ fi, so we just need to show Item 2

and Item 3. The key is to observe that our balancing process cannot remove too much

mass in each step:

E[f (j−1)
i ] ≥ E[f (j)

i ] ≥

(
1− 1

2η
(j−1)
i

)
E[f (j−1)

i ]. (5.57)

We defer the proof, and first show Item 2 and Item 3 given this assumption.

Proof of Item 2.

The proof is essentially immediate by the exponential decay of η(j)i . Namely by

iterated application of (5.57) we have

E[f (k)
i ]

E[f (0)
i ]
≥

k−1∏
j=0

(
1− 1

2η
(k−1−j)
i

)
≥

∞∏
j=0

(
1− 1

2 · 4j

)
≥ 2

5

since by construction η
(j)
i > 4k−1−jη

(k−1)
i ≥ 4k−1−j . Combining with the fact f̃i = f

(0)
i ≥

fi
2

gives the result.

Proof of Item 3.

Recall that for any j we have by construction the following ‘pseudo’-balance

condition:

∀f (j)
i (x) ̸= 0 :

1

4η
(j−1)
i

E[f (j−1)
i ] ≤ f

(j)
i (x) ≤

(
4η

(j−1)
i

) 2(1+ε)
ε E[f (j−1)

i ].

When j = ki is the stopping time, observe that by Equation (5.57) and construction

respectively we have
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1. E[f (ki)
i ] ≤ E[f (ki−1)

i ] ≤ 2E[f (ki)
i ]

2. 4η
(ki)
i ≥ η

(ki−1)
i .

Substituting into the above gives

1

16η
(ki)
i

E[f (ki)
i ] ≤ f

(ki)
i (x) ≤

(
25η

(ki)
i

) 2(1+ε)
ε E[f (ki)

i ]

as desired.

Proof of (5.57).

The lefthand inequality is by construction. Toward the righthand, fix f = f
(j−1)
i

and η = η
(j−1)
i for notational simplicity and define the set of ‘terrible’ inputs zeroed in the

jth step as:

T1 :=

{
x

∣∣∣∣ f(x) <
1

4η
E[f ]

}
T2 :=

{
x
∣∣∣ f(x) > (4η)

2(1+ε)
ε E[f ]

}

Since T1 ∪ T2 = V \B(j−1)
i and f

(j)
i = 1

B
(j−1)
i

f , it is enough to show that

E[f · 1T1 ],E[f · 1T2 ] ≤
1

4η
E[f ]. (5.58)

It is obvious that E[f · 1T1 ] ≤ 1
4η

E[f ] since f is upper bounded by this value within T1.

To bound the upper tail we use Hölder and Markov:

E[f · 1T2 ] ≤ ∥f∥1+ε P
[
f ≥ (4η)

2(1+ε)
ε E[f ]

] ε
1+ε (Hölder’s inequality)

≤ ∥f∥1+ε
1

16η2
(Markov’s inequality)

≤
(
1

4
η−

ε
1+ε

)
1

4η
E[f ] (∥f∥1+ε = η

1
1+ε E[f ])

≤ 1

4η
E[f ] (η−

ε
1+ε ≤ 1)
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as desired.

Finally we prove reverse hypercontractivity for ‘nice’ functions (Proposition 5.16.3).

Proof of Proposition 5.16.3. Since fi is ( 1
16ηi

, (25ηi)
2(1+ε)

ε )-nice, it can attain at most

ni =

(
3 +

2

ε

)
log ηi +

10

ε
+ 15

non-zero values. With this in mind, decompose fi =
∑
j∈Z

2j1fi(x)=2j into level sets and

observe that, by linearity of D, we can decompose the inner product itself into boolean

sub-components and apply our assumed reverse hypercontractive inequality (Equation

Equation (5.56)):

⟨f (1+ε)ℓ
1 , Df

(1+ε)ℓ
2 ⟩ =

∑
i,j∈Z

2(1+ε)ℓj2(1+ε)ℓi⟨1f1(x)=2j , D1f2(x)=2i⟩

≥ κ
∑
i,j∈Z

2(1+ε)ℓj2(1+ε)ℓi P
[
f1(x) = 2j

]ℓ P [f2(x) = 2j
]ℓ

= κ

(∑
j∈Z

(2(1+ε)j P
[
f1(x) = 2j

]
)ℓ

)
·

(∑
j∈Z

(2(1+ε)j P
[
f2(x) = 2j

]
)ℓ

)
.

Now since the sums have only n1, n2 non-zero terms respectively, applying (ℓ, ℓ
ℓ−1

)-Hölder’s

inequality lower bounds this quantity by

κ(n1n2)
1−ℓ

(∑
j∈Z

2(1+ε)j P
[
f1(x) = 2j

])ℓ

·

(∑
j∈Z

2(1+ε)j P
[
f1(x) = 2j

])ℓ

=κn1−ℓ
1 E[f 1+ε

1 ]ℓ · n1−ℓ
2 E[f 1+ε

2 ]ℓ

≥κ · (n1−ℓ
1 ηℓ1) · (n1−ℓ

2 ηℓ2) · E[f1]ℓ(1+ε) E[f2]ℓ(1+ε).

It can be checked directly that

min
ηi≥1

niηi ≥
1

18 + 12
ε
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which gives the desired result.

5.17 Splittability

In this section we discuss the relations between our notion of complete splittability,

the splittability notion of [221], and the "τ -sampling" gaurantee of [132], and the inheritance

of splittability under projection. We start by defining the latter two notions.

Definition 5.17.1 (JST-Splittability [221]). X ⊂ [n]d is said to be λ-JST-splittable if for

all 1 ≤ a ≤ t ≤ b ≤ d:

λ2(S[a,t],[t+1,b]) ≤ λ

In their later work, [132] introduced the weaker notion of τ -sampling which suffices

for list-decoding.

Definition 5.17.2. X ⊂ [n]d is said to be τ -sampling if for t ∈ [d], S ⊂ [n] and W ⊂ [n]t:

Cov
w∼X

(
1[wt+1 ∈ S], 1[w[t] ∈ W ]

)
≤ τ.

Before arguing relations between these notions, we give the key lemma that underlies

all proofs in this section: the expansion of swap walks is inherited under projection.

Lemma 5.17.3 (Swap Walk Inheritence). Let X be a partite d-uniform complex, and A

and B disjoint subsets of [d], and F any subset of [d]. Then:

λ2(SA∩F,B∩F ) ≤ λ2(SA,B)

Proof. By the variational characterization it is enough to show

max
E[fF ]=0

∥SA∩F,B∩Ff
F∥

∥fF∥2
≤ λ2(SA,B)

513



Given any such function fF : X[A∩F ]→ R define its extension to X[A] by f(x) := fF (xF ).

Here xF = {v ∈ x : col(v) ∈ F} is the projection into XF . and observe that this extension

satisfies:

1. EX[A][f ] = EX[A∩F ][f
F ] = 0

2. ∥f∥2,X[A] = ∥fF∥2,X[A∩F ].

The result then follows from convexity, in particular:

∥SA∩F,B∩Ff
F∥2 = E

y∼X[A∩F ]

[(
E

x∈X(d)
[fF (xB∩F )|xA∩F = y]

)2
] 1

2

= E
y∼X[A∩F ]

[(
E

x∈X(d)
[f(xB)|xA∩F = y]

)2
] 1

2

= E
y∼X[A∩F ]

[(
E

y′∼Xy [A\F ]

[
E

x∈X(d)
[f(xB|xA∩F = y ∧ xA\F = y′]

])2
] 1

2

≤ E
y∼X[A]

[(
E

x∈X(d)
[f(xB|xA = y]

)2
] 1

2

= ∥SA,Bf∥2

≤ λ2(SA,B)∥f∥2

= γ∥fF∥2

With this in mind, we prove the following relations between complete splittability,

JST-splittability, and τ -sampling.

Proposition 5.17.4. X ⊂ [n]t is λ-JST-splittable if and only if it is completely λ-splittable.

Moreover any completely λ-splittable complex is λ-sampling.

Proof. If X is λ-JST-splittable it is clearly completely λ-splittable setting a = 1, b = d. If
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X is completely λ-splittable, then for any 1 ≤ a ≤ i ≤ b ≤ d we have:

S[a,i],[i+1,b] ≤ S[1,i],[i+1,d] ≤ λ

as desired. Finally, if X is completely λ-splittable, then for any S ⊂ [n] and X ⊂ [n]t

write 1S := 1[wt+1 ∈ S] and 1X := 1[w[t] ∈ X]

Covw∼X (1S, 1X) = E
y∼Xt+1

[1S(y)St+1,[t]1X(y)]− E[1S][E][1X ]

≤ λ2(St+1,[t])∥1S∥∥1X∥

≤ λ

where we have used that by Hölder duality and Lemma 5.17.3 λ2(St+1,[t]) = λ2(S[t],t+1) ≤

λ2(S[t],t+1) ≤ λ.

Finally, we show that both complete splittability and standard tuple splittability

are inherited under projections. Recall that given a d-partite complex X and F ⊆ [d], XF

is the projection of X given by drawing a d-face from X, and projecting the resulting face

onto the parts in F .

Proposition 5.17.5 (Claim 5.10.34 Restated). Let X ⊂ [n]d be a homogeneous, completely

λ-splittable complex. Then for any F ⊆ [d] XF is homogeneous and completely λ-splittable.

Proof. The proof is essentially immediate from definition and Lemma 5.17.3. Recall X

is homogenous if the projection onto each part is uniform on [n]. Since projecting onto

XF and then a coordinate i ∈ F is the same as just projecting onto i, homogeneity is

inherited. Toward splittability, write F = {i1, . . . , i|F |} where ij < ij+1. Then for any ij,

applying Lemma 5.17.3 gives

λ2(S
XF

{i1,...,ij},{ij+1,...,i|F |
}) ≤ λ2(S

X
{i1,...,ij},{ij+1,...,i|F |

})
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≤ λ2(S[ij ],[ij+1,d])

≤ λ

where we have used the fact that λ2(S
XF

{i1,...,ij},{ij+1,...,i|F |}) = λ2(S
X
{i1,...,ij},{ij+1,...,i|F |}) (indeed

they are the same operator).

Finally, while not strictly necessary for the results in this work, we show for

completeness that inheritance of splittability also holds in the setting of general tuple-

splitting trees as well.

Proposition 5.17.6 (Projected Splitting Trees). Let X be any d-uniform partite complex

with a λ-tuple splitting tree of depth D. For every F ⊆ [d], XF also has a λ-tuple splitting

tree of depth at most D.

The proof of Proposition 5.17.6 relies on a simple inductive algorithm for projecting

partite orderered binary trees (T, ρ) onto a subset of their coordinates. In particular, given

such a tree and a subset F ⊆ [d], we define the projection operation via the following

inductive algorithm that modifies the tree T in place starting from a specific node v ∈ T .

In other words, Algorithm 1 is the result of intersecting ρ with F and deleting the

resulting nodes with empty or repeated labelings. We define the F -projection of a tree by

applying this process at the root.

Definition 5.17.7 (Projected Trees). Let (T, ρ) be a d-uniform partite ordered binary

tree and F ⊂ [d+ 1] any coordinate subset. The F -projection of (T, ρ), denoted (T F , ρF )

is given by

T F = Project(T, ρ, F, root(T )), ρF = (ρ ∩ F )|TF .

We are now ready to prove Proposition 5.17.6.

Proof of Proposition 5.17.6. We will show that (XF , T F , ρF ) is a λ-tuple splitting tree of

depth at most D. We first argue that (XF , T F , ρF ) is a partite ordered binary tree of
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Algorithm 1. Project(T, ρ, F, v)

1: Output: Projected partite ordered binary tree (T F
v , ρFv ) rooted at v

2: if v is a leaf then
3: return
4: if ρ(ℓv) ∩ F = ∅ then
5: Delete(T (ℓv))
6: Merge(v, rv) ▷ Merge(v,rv) deletes the node v and replaces rv as the respective

child of v’s parent.
7: Project(T, ρ, F, rv)
8: else if ρ(rv) ∩ F = ∅ then
9: Delete(T (rv))

10: Merge(v, ℓv)
11: Project(T, ρ, F, ℓv)
12: else
13: Project(T, ρ, F, rv)
14: Project(T, ρ, F, ℓv)

depth at most D. First, observe that every operation in Algorithm 1 maps binary trees

to binary trees, and cannot increase depth. In particular, the only modification of the

tree structure occurs when a branch is deleted and the relevant root is contracted with its

other child, maintaining the invariant that every internal node has one parent and two

children, and that the depth is at most D. To see that the leaves are in bijection with F ,

observe that all leaves labeled by F survive the projection, all leaves labeled by [d] \ F

are deleted, and no new leaves are introduced by construction. The first two claims hold

since a node v is deleted if and only if either ρ(v) ∩ F = ∅, or the labeling is repeated

later down the tree. Finally, to see that the children of any internal node in T F partition

its labeling in ρF , observe that this property holds trivially for T under the intersected

labeling ρ ∩ F (albeit the partition may be trivial), and that this invariant is preserved by

every operation in Algorithm 1.

Finally we argue the projected tree inherits the splittability of XF . By Lemma 5.17.3,

we have that for any internal node u:

λ2(SρF (ℓu),ρF (ru)) = λ2(Sρ(ℓu)∩F,ρ(ru)∩F ) ≤ λ2(Sρ(ℓu),ρ(ru)) ≤ λ
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as desired.

This chapter, in full, has been submitted for publication of the material as it

may appear in Foundations of Computer Science 2024. Dikstein, Yotam; Hopkins, Max.

“Chernoff-Hoeffding and Reverse Hypercontractivity on High Dimensional Expanders”.

The dissertation author was a primary investigator and author of this material.
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Chapter 6

Explicit Lower Bounds Against Ω(n)-
Rounds of Sum-of-Squares

6.1 Introduction

The Sum-of-Squares (SoS) semi-definite programming (SDP) hierarchy is one of the

most powerful and widely studied algorithmic frameworks for approximating constraint

satisfaction problems (CSPs) in theoretical computer science, yet very little is known

about the structure of instances that are hard for the paradigm. Indeed, while it has long

been known that random instances of CSPs are hard for Sum-of-Squares [180, 340, 354,

45, 90, 269], there are essentially no explicit constructions of hard instances better than

brute force search [119, 355, 322]. Leveraging recent breakthroughs in locally testable

[117, 281] and quantum low-density parity-check (qLDPC) codes [315, 277], we resolve

this problem, giving the first explicit family of highly unsatisfiable CSPs that cannot be

refuted by Ω(n)-rounds of Sum-of-Squares.

Theorem 6.1.1 (Main Result: Explicit 3-XOR Instances Hard for SoS). There exist

constants µ1, µ2 ∈ (0, 1) and an infinite family of 3-XOR instances constructable in

deterministic polynomial time such that:

1. No assignment satisfies more than a 1− µ1 fraction of constraints

2. No instance can be refuted by µ2n levels of the corresponding Sum-of-Squares SDP
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Relaxation.

Though Theorem 6.1.1 only exhibits an ‘integrality gap’ of 1 v.s 1−µ1 (meaning the

instance are (1− µ1)-satisfiable but look fully satisfiable to SoS), combined with standard

PCP-like reductions in the SoS hierarchy this gap can be amplified to 1−ε v.s 1
2
+ε for any

ε > 0 [354, 119], which matches the hardness of random 3-XOR instances up to imperfect

completeness [180, 340].1 In fact, it is worth noting that Theorem 6.1.1 is the first explicit

family of CSPs to even beat more than O(log(n)) levels of the SoS hierarchy, which can be

done either by unique neighbor expanders [322, 17] or (up to lower order factors) simply

by brute force search [355]. While explicit constructions against Ω(n)-rounds of SoS were

known in proof complexity (e.g. Tseitin formulas [178], knapsack [179]), these examples do

not lead to inapproximability since their satisfiability is not bounded away from 1.

Thus, at a high level, Theorem 6.1.1 provides the first example of an approxi-

mation problem with short witnesses of unsatisfiability that cannot be captured by the

Sum-of-Squares proof system, settling (in the negative) the completeness of SoS in this

setting. Furthermore, it is worth noting that 3-XOR is not somehow ‘special’ in this

sense. As observed in [119] (who showed an analogous result for O(
√

log(n))-levels of SoS),

Theorem 6.1.1 also gives explicit hard instances across many types of CSPs by standard

reduction techniques [354], including instances with optimal integrality gaps for CSPs with

approximation resistant predicates based on pairwise independent subgroups [90, 119].

6.1.1 High Dimensional Small-Set Expanders

Theorem 6.1.1 is based on a new form of high dimensional expansion (HDX), a

nascent area of computer science and math that has already seen an impressive array of

breakthrough results across areas such as coding theory [221, 117, 315, 281], approximate

sampling [239, 25, 11, 24], approximation algorithms [9, 38], analysis of boolean functions
1Indeed one can see such a gap is essentially optimal, as a random assignment to any 3-XOR instance

will satisfy 1/2 the constraints in expectation.
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[111, 39, 187], agreement testing [124, 109], and, recently, Sum-of-Squares lower bounds

[119]. While most of these works consider notions of expansion on hypergraphs (often

called simplicial complexes in this setting), we take inspiration from recent breakthroughs

on LTCs [117, 281] and quantum codes [315, 277] and consider expansion on the more

general class of chain complexes :

X : FX(0)
2

δ0
⇄
∂1

FX(1)
2

δ1
⇄
∂2

FX(2)
2 .

Here X(0), X(1), and X(2) are sets, δ0 and δ1 are linear maps (called the co-boundary

operators), ∂2 and ∂1 are their transposes (called the boundary operators), and both satisfy

∂1∂2 = 0, δ1δ0 = 0.

Chain complexes admit a natural analog of boundary (edge) expansion in graphs

called high-dimensional (co)-boundary expansion [283]. To see this, we first note an

important inherent structural property of chain complexes: any function f ∈ im(δ0) (called

a co-boundary) satisfies |δ1f | = 0. A complex is called a ρ-co-boundary expander essentially

when this is the only obstruction to |δ1f | being large:

∀f ∈ FX(1)
2 : |δ1f | ≥ ρ · d(f, im(δ0)).

For intuition, it is worth briefly discussing why this generalizes boundary expansion on

graphs. Any graph G = (V,E) (or indeed hypergraph, see Section 6.4.2) can be written as

a chain complex:

X : F∅
2

δ0
⇄
∂1

FV
2

δ1
⇄
∂2

FE
2 ,

where δ0f(v) = f(∅), δ1f((u, v)) = f(u) ⊕ f(v), and it is easily checked that δ1δ0 = 0.

Notice that in this setting the only co-boundaries are im(δ0) = {∅, V }, and furthermore

that for any S ⊂ V and e ∈ E, the value of δ11S on e is 1 iff e crosses the cut defined by

S. This implies the ratio |δ11S |
d(1S ,im(δ0))

= E(S,V \S)
min{|S|,|V \S|} , which is just the standard boundary
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expansion of G!

Unfortunately, while standard boundary expansion on (random) graphs has been

quite useful for proving SoS lower bounds in the past [60, 180, 340], high dimensional

co-boundary expansion seems to be too strong a notion for this setting: good (co)-boundary

expanders are not known to exist (even probabilistically), and their structure is prohibitively

restrictive in other senses as well.2 We avoid these issues by introducing a simple relaxation

of boundary expansion to small-sets :

Definition 6.1.2 (Small-set (Co)-Boundary Expansion). We call X a (ρ1, ρ2)-small-set

boundary expander if the weight of any ‘small’ function f ∈ FX(1)
2 satisfying |f | ≤ ρ1|X(1)|

expands:

|∂1f | ≥ ρ2 · d(f, im(∂2)).

Similarly, X is a (ρ1, ρ2)-small-set co-boundary expander if all f ∈ FX(1)
2 s.t. |f | ≤ ρ1|X(1)|

satisfy:

|δ1f | ≥ ρ2 · d(f, im(δ0)).

We call X a (ρ1, ρ2)-small-set HDX (SS-HDX) if it satisfies both the above conditions.

Small-set (co)-boundary expansion is a direct generalization of small-set expansion

on graphs, a notion that lies at the heart of many problems in hardness of approximation.

A close variant of the above definition in the co-boundary direction was first considered on

simplicial complexes in [230, 141, 235, 237] to construct co-systolic expanders (a different

weakening of co-boundary expansion). In our case, it is critical the notion hold in both

directions, which requires moving away from (known) simplicial constructions.

In the next section, we will show how SS-HDX naturally lead to hard instances of

XOR for Sum-of-Squares (largely following a similar result of Dinur, Filmus, Harsha, and
2We’ll discuss this issue in Section 6.2, but in brief co-boundary expansion implies ker(δ1) = im(δ0).

Like [119], our instances will rely on a function in ker(δ1) \ im(δ0) to enforce global structure on the CSP
that cannot be detected through local algorithms like Sum-of-Squares.
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Tulsiani [119] for the LSV complex [290]), giving the first connection between hardness

of approximation and high dimensional small-set expanders. Thus, Theorem 6.1.1 boils

down to constructing an infinite family of SS-HDX on a growing number of vertices, each

of which can be constructed in deterministic polynomial time. While this may seem

hopelessly strong, a weaker variant of these requirements was very recently achieved in

breakthrough constructions of qLPDC codes by [315, 277]. Indeed, it turns out these

known constructions are already enough: we show Leverrier and Zémor’s [277] recent

qLDPC codes are in fact small-set HDX as well.3

Theorem 6.1.3 (Small-Set HDX Exist (informal Theorem 6.8.1)). There exist constants

ρ1, ρ2 ∈ (0, 1) and an explicit (polynomial time constructable) infinite family of bounded-

degree4 (3-term) chain complexes {Xi} satisfying:

1. Xi has non-trivial ‘co-homology,’ i.e. im(δ0) ̸= ker(δ1)

2. Xi is a (ρ1, ρ2)-SS HDX.

The guarantees of Theorem 6.1.3 are stronger than those originally proved by

Leverrier and Zémor [277] (see Section 6.3.1 for discussion), and give the strongest known

form of bi-directional high dimensional expansion to date.5 Indeed if one could remove the

small-set requirement6 or prove similar bounds for a 5-term chain complex, it would resolve

the qLTC conjecture [230, 136, 281], a major open problem in quantum computation.
3It is interesting here to observe the qualitative parallel with a classical relation between small-set

expanders and locally testable codes of [46, 174], though to our knowledge there is no quantitative
connection between the results.

4A complex is bounded degree roughly if each element in X(i) only has constantly many neighbors
with respect to the boundary and co-boundary operators. See Section 6.4 for an exact definition.

5In fact it’s worth mentioning we actually prove a stronger guarantee regarding local functions. See
Remark 6.8.9 and discussion in Section 6.3.1.

6Though it is worth noting one must be careful that the dimension of the cohomology stays large,
which requires weakening the expansion guarantee to a related notion called (co)-systolic expansion (the
correct notion for qLTC regardless) [136].
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6.2 Proof Overview

We now overview the constructions and proof techniques underlying our main result

(Theorem 6.1.1). Broadly speaking, this breaks into two main steps:

1. Show any SS-HDX implies a hard instance of 3-XOR

2. Construct an explicit infinite family of SS-HDX.

To start, it will be useful to cover some basic background on CSPs, Sum-of-Squares, and

chain complexes in a bit more detail. A more formal treatment is given in Section 6.4 and

Section 6.7.

6.2.1 Background

In this work, we study the limitations of the Sum-of-Squares proof system for

refuting MAX-k-XOR, a widely studied class of constraint satisfaction problems (CSPs).

An instance of MAX-k-XOR I consists of a set of variables {xi}i∈[n] and constraints

{Ci}i∈[m], where each Ci is a boolean function of the form:

Ci(x) = 1
{
xi1 ⊕ . . .⊕ xij = bi

}
,

where j = j(i) ≤ k and {i1, . . . , ij} ⊂ [n]. If all constraints have exactly k variables, we

say I is an instance of k-XOR. We will usually omit the indicator 1 from notation when

clear from context. The value of I is the maximum fraction of constraints that can be

satisfied by any assignment, and we say I is (1−µ)-satisfiable if there exists an assignment

satisfying at least a (1− µ) fraction of constraints. We call an infinite family of instances

{Ii} explicit if each instance can be constructed in deterministic polynomial time in the

number of variables.

The Sum-of-Squares semi-definite programming hierarchy is a powerful algorithmic

framework for approximating the value of any CSP (or more generally for solving con-
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strained polynomial optimization problems). The hierarchy consists of rounds or levels of

progressively stronger SDP relaxations (see Section 6.4). For the moment, it is enough to

know that the round-t SoS relaxation is local7 in the sense that it ranges over subsets of

variables of size at most t. We will cover more details on the SoS framework as they arise.

Finally, it will be useful to have some basic terminology corresponding to chain

complexes. Recall that a chain complex is a sequence X : FX(0)
2

δ0
⇄
∂1

FX(1)
2

δ1
⇄
∂2

FX(2)
2 such

that ∂1∂2 = 0, δ1δ0 = 0. Functions in the image of ∂2 and δ0 are called boundaries and

co-boundaries respectively, and are denoted:

im(∂2) = B1, im(δ0) = B1.

Functions in the kernel of ∂1 and δ1 are called cycles and co-cycles respectively, and are

denoted:

ker(∂1) = Z1, ker(δ1) = Z1.

The structure of a chain complex promises that B1 ⊂ Z1 ⊂ FX(1)
2 and B1 ⊂ Z1 ⊂ FX(1)

2 .

This leads to notions of homology and co-homology given by (co)-cycles mod (co)-boundary

and respectively denoted:

H1 = Z1/B1, H1 = Z1/B1,

where G/H denotes the quotient group. A complex has non-trivial co-homology if B1 ̸= Z1.

6.2.2 From SS-HDX to Hardness

With notation out of the way, we can now discuss how to transform an expanding

chain complex into a hard instance of 3-XOR. Before we give an informal theorem statement

to this effect, it is instructive to overview how one even relates a CSP to a chain complex

at all. To this end, let’s first recall the classical construction of CSPs (also frequently seen
7We note the relaxation does have (low-degree) global consistency checks, so it is not fully a local

algorithm in this sense.
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in coding theory) based upon a bipartite graph B = (L,R,E). In this setting, elements in

L correspond to variables {xv}v∈L, and elements in R correspond to the set of constraints

{Cr}r∈R. Fixing some assignment β ∈ {0, 1}R to constraints, the XOR instance classically

associated with the graph B is characterized by ensuring the (mod 2) sum across neighbors

of each r ∈ R is given by β(r):

Cr :=

 ∑
v∈N(r)

xv = β(r) (mod 2)

 . (6.1)

In prior hardness constructions, B is typically picked at random in order to satisfy strong

expansion properties, while β is typically chosen at random to ensure un-satisfiability (see

e.g. [180, 340, 269]). While it is sometimes possible to de-randomize the choice of B and

retain good inapproximability guarantees, no de-randomization of β better than brute

force search over log(n)-size instances was known up until this point.

The basic form of our XOR instances from chain complexes is actually very similar

to Equation (6.1) (indeed they can be viewed as a special instantiation of this framework).

Recall that a chain complex is a sequence:

X : FX(0)
2

δ0
⇄
∂1

FX(1)
2

δ1
⇄
∂2

FX(2)
2 ,

and in particular that the co-boundary operator δ0 : FX(0)
2 → FX(1)

2 is a linear map. To

define an instance of XOR on X, we simply move to the graph representation of δ0.

Namely, recall that any linear operator mapping from FX(0)
2 to FX(1)

2 can be written as an

(|X(1)| × |X(0)|)-dimensional matrix over F2. We can think of this matrix as the bipartite

adjacency matrix of a graph on left vertex set L = X(0) and right vertex set R = X(1).

Thus given a function β ∈ FX(1)
2 , we construct the associated XOR instance, denoted IX,β
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as in Equation (6.1) by adding the constraint for each r ∈ X(1):

Cr :=


∑

v∈X(0):
eTr δ0ev=1

xv = β(r) (mod 2)

 , (6.2)

where ev ∈ FX(0)
2 and er ∈ FX(1)

2 are the standard basis vectors associated to v ∈ X(0) and

r ∈ X(1). Note that eTr δ0 ∈ FX(0)
2 is just the list of neighbors of r, so this is indeed an

instantiation of the standard bipartite framework. We note that this construction also

generalizes the recent approach of [119] who built XOR instances via a 3-dimensional

simplicial complex (4-uniform hypergraph) by letting triangles correspond to constraints,

and edges correspond to variables. This is exactly the result of the above construction

when applied to the natural chain complex associated with a 3-dimensional simplicial

complex (see Section 6.4.2 for further details).

So far, we have not used the fact that δ0 is part of a chain complex, or even the

fact that the higher dimensional component X(2) exists at all. This structure comes into

play in the choice of β. Notice that by construction, the instance corresponding to X and

a choice of β is satisfiable exactly when β is a co-boundary. Following the framework laid

out in [119], the idea is to choose β ∈ Z1 \B1, a function which is a co-cycle, but not a

co-boundary. On a sufficiently expanding complex, this choice induces global structure

on the XOR instance that cannot be captured by local views of the complex, where both

the homology and co-homology look trivial. Since Sum-of-Squares only looks over local

views in this sense, this leads to the following direct translation between SS-HDX and

hard instances of XOR.

Theorem 6.2.1 (SS-HDX =⇒ Hard XOR Instance (Informal Theorem 6.6.4)). Let

X : FX(0)
2

δ0
⇄
∂1

FX(1)
2

δ1
⇄
∂2

FX(2)
2 be an SS-HDX with non-trivial co-homology. Then there exist

µ1, µ2 ∈ (0, 1) such that for any β ∈ Z1 \B1, the associated XOR instance IX,β satisfies:
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1. Soundness: IX,β is at most (1− µ1)-satisfiable,

2. Completeness: IX,β cannot be refuted by µ2|X(0)| levels of the SoS hierarchy.

Before moving on to the construction of SS-HDX, let’s discuss how small-set

expansion implies soundness and completeness for these instances. Soundness, the simpler

of the two, intuitively comes from the fact that small-set co-boundary expansion promises

that any element in Z1\B1 must be far from the co-boundary.8 Recall that by construction,

the instance IX,β is satisfiable exactly when β ∈ FX(1)
2 is a co-boundary. Intuitively one

might then expect that functions which are far from the co-boundary would therefore

be far from satisfiable. Indeed this intuition holds true—it is easy to show this robust

version of the statement holds for small-set co-boundary expanders, and therefore that our

instances are far from satisfiable as well.

Completeness is somewhat trickier and, unlike soundness, does actually require the

full power of small-set boundary expansion. We stated earlier that the completeness of

our instances, much like those of [119], comes from the fact that the global structure of

(co)-homology cannot be detected through local views of the complex. This is formalized

by observing that small-set boundary expansion can be equivalently re-stated as the

following isoperimetric inequality (see Lemma 6.5.4): “small, minimal9 functions have large

boundaries.” Largely following [119] (who use a much weaker isoperimetric inequality for

the LSV complex due to Gromov [181]), the idea is then to combine this fact with the

classical arguments of Ben-Sasson and Wigderson [60] to show that the width10 of any

refutation of IX,β in the ⊕-resolution proof system11 is large. Since Schoenebeck [340]
8It is worth noting that this property, called co-systolic distance, is quite well studied. Indeed as we

will soon discuss it is exactly the property needed (in both directions) to build good qLDPC codes [315],
and was also used directly by [119] to prove soundness of their 3-XOR instances by the same argument
stated here.

9A function f ∈ FX(1)
2 is said to be minimal if adding any boundary can only increase its size (Hamming

weight).
10The width of a refutation is the largest number of variables appearing in any equation.
11In this proof system, one is allowed to combine linear equations (equivalently XOR constraints) ℓ1 = b1

and ℓ2 = b2 to derive the equation ℓ1 ⊕ ℓ2 = b1 ⊕ b2. A refutation is a proof based on this rule deriving a
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showed any such bound transfers to a completeness lower bound for Sum-of-Squares, this

completes the proof.

In slightly more detail, a refutation in the ⊕-resolution system can be viewed as an

(in-degree two) DAG where leaves correspond to the original XOR constraints, internal

nodes correspond to the XOR of their two parents (as in the ⊕-resolution derivation

rule), and the root derives the contradiction 0 = 1. Recall that each element s ∈ X(1)

corresponds to a constraint in our XOR instance. Following [119], the idea is to assign a

function in hv ∈ FX(1)
2 for each node v in the DAG that tracks which XOR constraints are

being used at that node. The boundary of this function, ∂1hv ∈ FX(0)
2 , is exactly the set of

variables appearing in the equation corresponding to node v. Thus lower bounding the

width of the refutation boils down to finding a node with large boundary.

This is where small-set boundary expansion (namely the isoperimetric formulation)

finally comes into play. In particular, the corresponding inequality states that it is enough

to find a node v of ‘medium’ weight:12 small enough that one can apply the inequality, but

large enough to result in a large boundary. This can be done by fairly standard potential

arguments (see e.g. [60, 119]) where one sets of up a potential function tracking this weight

throughout the DAG, and argues that the leaves have small potential, the root has large

potential, and that potential is sub-additive. This implies the existence of an interior node

with medium potential and completes the proof. The details are given in Section 6.6.

Finally, before moving on to overviewing our construction of SS-HDX, we note

that except in very special cases (e.g. the simplicial complexes considered in [119]), the

CSPs given by Equation (6.2) (and therefore also Theorem 6.2.1) are actually instance

of MAX-k-XOR, not 3-XOR, where k is given by the maximum degree of the complex.

As it turns out, this is not a significant issue because the SS-HDX we construct in the

next section are bounded degree, meaning not only that every constraint in the XOR has

contradiction (0 = 1), which is equivalent in our setting to showing the XOR instance is unsatisfiable.
12We note that weight here is not just the standard Hamming weight, but must take into account

distance from the boundary as well. See Section 6.6.
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a constant number of variables, but also that every variable only appears in a constant

number of constraints. This observation allows us to move to hard instances of 3-XOR

by standard NP-reduction type arguments within the SoS hierarchy [340, 354] while only

losing constant factors in the soundness and levels of hardness for SoS.

6.2.3 Constructing SS-HDX

Now that we know how to transform an expanding chain complex into a hard

instance of 3-XOR, we turn our attention to the construction of such complexes. Our

method relies on recent breakthroughs on LTCs [117, 281] and quantum LDPC codes [315,

277]. As such, we’ll split this section into three parts: a review of the connection between

quantum LDPC codes and expanding chain complexes, the recent qLDPC construction of

Leverrier and Zémor [277], and our proof of small-set (co)-boundary expansion.

Quantum LDPC Codes and Chain Complexes

A classical error correcting code is a method of encoding k classical bits into n > k

classical bits such that it is possible to recover the original bit string even if the encoded

string becomes corrupted. We will consider linear codes, which are defined by a linear

operator M : Fn
2 → Fn−k

2 called the parity check matrix,13 where the corresponding code

C := kerM .

Similar to the classical setting, a quantum code encodes quantum bits into a larger

number of quantum bits, but is resistent to two types of corruption: the X-type errors

(bit flips) and the Z-type errors (phase flips). In this work, we will focus on a popular

notion of quantum codes called CSS-codes [86, 347], which come with the benefit of having

an entirely classical interpretation. In particular, a length n CSS-code is made up of two

classical codes C0 := kerM0 ⊂ Fn
2 and C1 := kerM1 ⊂ Fn

2 such that C⊥0 ⊂ C1, or equivalently
13We note the parity check matrix is traditionally denoted by ‘H,’ but this conflicts with the notation

for homology.
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M1 ·MT
0 = 0.14 The dimension of the code is defined as k = dimC0 − dimC⊥1 , and its

distance (which measures how much corruption it can handle) is defined as d = min(dx, dz)

where

dx = min
v∈C0\C⊥

1

|v|, dz = min
v∈C1\C⊥

0

|v|

and dx (dz) is called the X-distance (Z-distance). The quantum low-density parity-check

(LDPC) conjecture, recently resolved by [315], states that there exists a family of quantum

CSS codes with linear dimension and distance, k = Θ(n) and d = Θ(n), where M0 and

M1 have at most some constant number of ones in any row or column (and thus are

‘low-density’ parity check matrices).

Since we are promised by definition that M1 ·MT
0 = 0, it is easy to see that any

CSS-code induces the following chain complex:

X : Fm0
2

MT
0

⇄
M0

Fn
2

M1

⇄
MT

1

Fm1
2 ,

where mi = dim (im(Mi)). Indeed the same holds in reverse as well, given a chain complex

X : FX(0)
2

δ0
⇄
∂1

FX(1)
2

δ1
⇄
∂2

FX(2)
2 ,

one obtains a quantum CSS code by letting M0 := ∂1, and M1 := δ1.

In fact, it turns out this equivalence between quantum CSS codes and chain

complexes runs deeper: all of the discussed properties (e.g. distance, LDPC) have analogs

in the homological language we developed in the previous section. The classical codes

C0 and C1, for instance, correspond to the cycles and co-cycles of the chain complex

(C0 = Z1, C1 = Z1), while the dual codes C⊥0 and C⊥1 correspond to the co-boundaries

and boundaries (C⊥0 = B1, C⊥1 = B1). The dimension of the code k corresponds to the
14Here C⊥0 denotes the dual code, consisting of all elements orthogonal to C0. This code is generated by

the transpose of the parity check matrix MT
0 .
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dimension of the co-homology (k = dimH1), and the maximum degree of the complex

corresponds to the maximum density of the parity check codes (so the bounded-degree

and LDPC conditions are equivalent). Finally, the X-distance and Z-distance of the

code correspond to what is known as the (co)-systolic distance of the chain complex, the

minimum weight of any (co)-cycle that is not a (co)-boundary:

dx = min
v∈C0\C⊥

1

|v| = min
v∈Z1\B1

|v|,

dz = min
v∈C1\C⊥

0

|v| = min
v∈Z1\B1

|v|.

In [315] and [277], the authors construct two different explicit families of good

quantum LDPC codes. This partially solves our problem since the codes correspond

to a family of bounded-degree chain complexes with non-trivial co-homology and linear

co-systolic distance (which is enough to imply soundness of our XOR construction). We

will show these complexes in fact satisfy the stronger small-set (co)-boundary expansion

condition, which as discussed in the previous section further implies completeness and (up

to reduction to 3-XOR) finishes the proof of Theorem 6.1.1.

Leverrier and Zémor’s qLDPC Codes

Before discussing the proof, we need to overview the original construction of [277].

A significantly more detailed description of the construction and its associated components

is given in Section 6.7 and Section 6.8.

Leverrier and Zémor’s qLDPC codes are based on a classical object called a Tanner

code [351]. Given an n0-regular graph G = (V,E) and a linear code C of length n0, the

Tanner code T (G, C) ⊂ FE
2 is

{c ∈ FE
2 : ∀v ∈ V, c|E(v) ∈ C},
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where c|E(v) ∈ Fn0
2 is the vector formed by the values on the edges incident to v. Tanner

codes have long been used in coding theory. The main insight of [277] was to observe

that one can construct a quantum CSS code via two Tanner codes coming from a higher-

dimensional object called the left-right Cayley complex, recently developed in [117] to

construct c3-LTCs.

The left-right Cayley complex corresponding to a group G and two sets of generators

A = A−1 and B = B−1 consists of a vertex set V = G, edges given by (left) Cayley graph

C(G,A) and (right) Cayley graph C(G,B), and higher-dimensional ‘squares’ of the form

{g, ag, gb, agb} for g ∈ G, a ∈ A, b ∈ B. More formally, [277] consider the double cover of

this complex where:

– The vertices are V = V0 ∪ V1 where V0 = G× {0} and V1 = G× {1}.

– The ‘A-edges’ and ‘B-edges’ are respectively:

EA = {{(g, 0), (ag, 1)} : g ∈ G, a ∈ A}, EB = {{(g, 0), (gb, 1)} : g ∈ G, b ∈ B}.

– The squares are

F = {{(g, 0), (ag, 1), (gb, 1), (agb, 0)} : g ∈ G, a ∈ A, b ∈ B}.

Notice each square contains exactly two vertices in V0 and two vertices in V1. This allows

us to think of each square as an edge between two vertices in V0 (or V1) and to define

corresponding graphs G□0 = (V0, F ) and G□1 = (V1, F ). The local view around each vertex

in (g, i) ∈ G□i then corresponds to the squares {(g, i), (ag, 1 − i), (gb, 1 − i), (agb, i)} for

a ∈ A, b ∈ B. Assuming |A| = |B| = ∆ for some constant ∆, we will always think about

these local views as square matrices with rows indexed by A and columns indexed by B.

Leverrier and Zémor [277] observed that the Tanner codes associated to these
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graphs, C0 = T (G□0 , C⊥
0 ) and C1 = T (G□1 , C⊥

1 ), give a quantum CSS code (i.e. satisfy

C⊥0 ⊂ C1) whenever the associated local codes C0 = CA ⊗ CB and C1 = C⊥
A ⊗ C⊥

B are

tensors15 of linear codes CA ⊆ FA
2 and CB ⊆ FB

2 . Furthermore, they showed that whenever

CA, CB, C
⊥
A , C

⊥
B have linear distance and the codes C⊥

1 = CA ⊗ FB
2 + FA

2 ⊗ CB, and

C⊥
0 = C⊥

A ⊗ FB
2 + FA

2 ⊗ C⊥
B satisfy certain robustness properties (see Section 6.7.5), then

the associated quantum code has linear distance. [277] complete their construction by

showing random base codes CA, CB satisfy these properties with high probability. Note

that because these base codes are constant size, this final step can be brute-forced to

maintain explicitness of the construction.

Proving Small-Set (Co)-Boundary Expansion

With [277]’s construction in hand, we can now sketch the proof of small-set (co)-

boundary expansion. As mentioned previously, all other major requirements (e.g. non-

trivial homology, bounded-degree) already follow from the fact that the complex corre-

sponds to a good qLDPC code. We will focus here on proving small-set co-boundary

expansion in particular, but we note that small-set boundary expansion follows the same

argument by symmetry of [277]’s construction.

With this in mind, recall that small-set co-boundary expansion can equivalently be

phrased as an isoperimetric inequality for small, minimal functions (see Lemma 6.5.4). In

particular, to show small-set co-boundary expansion for the chain complex

X : Fm0
2

δ0:=MT
0−−−−→ Fn

2
δ1:=M1−−−−→ Fm1

2 ,

it is enough to show there exist constants ρ1, ρ2 ∈ (0, 1) such that any minimal x ∈ Fn
2

with weight |x| ≤ ρ1n has large boundary: |δ1x| ≥ ρ2|x|. We proceed by contradiction.

Assuming |δ1x| < ρ2|x|, we will show x is not minimal by finding y ∈ B1 such that
15The tensor code CA ⊗CB is the set of matrices whose rows are given by elements of CB and columns

are given by elements of CA.
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|x+ y| < |x|.

The proof of this fact largely follows the technique of [277] for proving the weaker

co-systolic distance property. The main difference is that while [277] only consider functions

x ∈ Fn
2 that are co-cycles, we consider arbitrary functions. In particular, recall that the

co-cycles in our construction correspond to codewords in the Tanner code T (G□1 , C⊥
1 ), or

equivalently to functions x ∈ Fn
2 whose ‘local view’ around each vertex (g, 1) ∈ V1 is given

by a codeword of C⊥
1 . Since our functions do not a priori have this structure, we will

need to track the set of ‘violations’ coming from local views that are not codewords (this

essentially corresponds to where δ1x is non-zero).

To this end, recall x is a bit string indexed by the squares of the double-covered

Cayley complex, and let S ⊂ V1 denote the set of vertices incident to any square in x.

We partition S into three parts: the violated vertices Sv, the normal vertices Sn, and the

exceptional vertices Se. A vertex is violated if the local view of x around the vertex does

not form a codeword in C⊥
1 . When the local view does form a codeword, if the codeword

has weight less than w := ∆3/2−ϵ we call it normal, and otherwise call it exceptional. This

weight-based distinction comes from the robustness condition of the local tensor code.

We cover this in detail in Section 6.7.5, but for the moment it is sufficient to think of

robustness as a structural condition forcing codewords with weight less than w to be zero

outside of a small number of rows and columns. In particular, this promises that each

column (respectively row) in the local view of a normal vertex is at most O(∆1/2−ϵ) away

from a codeword in CA (respectively CB).

Following [277], our goal is now to find a vertex v ∈ V0 that shares Ω(∆) columns

or rows with Sn. As long as Se and Sv are not too large compared to Sn, robustness of the

code then implies the local view of v is within O(∆3/2+ϵ) of a codeword c ∈ CA ⊗ CB, but

also has total weight Ω(∆2).16 This means we can construct a vector y ∈ B1 by defining y

to be c on the local view of v and 0 everywhere else. Since x + y and x match outside
16We note CA and CB can be chosen to have linear distance to ensure this.
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the local view (where x has weight Ω(∆2) and x+ y has weight O(∆3/2+ϵ)), this implies

|x+ y| < |x| as desired.

It therefore remains to find such a vertex v ∈ V0, which is the main technical

component of the proof. Let T ⊂ V0 be the vertices that share at least one ‘heavy’ column

or row with a normal vertex (that is one with many 1s). One can equivalently think

of this as an edge between V0 and V1 that is ‘heavy’ in the sense that it is contained

in many squares in x. The idea is then to show that there are many such heavy edges

passing between S and T . Using expansion of the underlying graph and our assumption

|δ1x| < ρ2 |x|, one can prove that T , Se, and Sv are small compared to Sn. This implies

that a typical vertex in T has not just one, but Ω(∆) heavy edges to Sn, which in turn

corresponds to sharing Ω(∆) rows and columns with normal vertices and completes the

proof.

6.3 Discussion

6.3.1 Related Work

Sum-of-Squares Lower Bounds:.

At a conceptual level, our work fits into a long line of research on the limitations

of Sum-of-Squares and related proof systems (e.g. Nullstellensatz [53, 178], Polynomial

Calculus [99, 85]), and LP/SDP hierarchies (e.g. Sherali-Adams [91, 294, 62], Lovász-

Schrijver [7, 341, 164]). Most relevant to our setting is the line of work on Sum-of-Squares

lower bounds initiated by Grigoriev [180] (and later independently Schoenebeck [340]),

who used boundary expansion to prove random 3-XOR instances cannot be refuted by Ω(n)

levels of SoS. This lead to a number of works improving integrality gaps for more general

classes of random k-CSPs [354, 45, 90, 269] along with a number of other combinatorial

optimization problems by reduction [340, 354].

In a sense, these prior works on SoS lower bounds for random instances can be

viewed as increasingly strong and general formulations of the statement: ‘Sum-of-Squares
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fails to capture the probabilistic method.’ In contrast, Dinur, Filmus, Harsha, and Tulsiani

[119] recently exhibited the first explicit families of CSPs hard for Sum-of-Squares based

on an algebraic, highly structured family of objects called Ramanujan (or LSV) complexes

[290], suggesting a new paradigm of hardness for structured instances. Due to the poor

systolic expansion of the Ramanujan complex, [119]’s bounds only hold up to O(
√
log(n))

rounds of SoS as compared to Ω(n) levels for random instances. Nevertheless, the authors

conjectured it might be possible to use such anti-random objects to fool Ω(n) levels as well.

Our work can be viewed as a confirmation of this general hypothesis: anti-random structure

(in particular certain algebraic structure) is indeed as hard as random for Sum-of-Squares.

High Dimensional Expansion:.

High dimensional expansion in the form we consider (i.e. topological expansion) was

originally introduced by Linial and Meshulam [283] to study the vanishing of cohomology on

random simplicial complexes, and independently by Gromov [182] to study the topological

overlapping principle. The closest notion of expansion in the literature to our SS-HDX

is the stronger simplicial co-isoperimetric inequality for small, locally minimal17 sets of

Kaufman, Kazhdan, and Lubotzky [230], used to construct bounded degree co-systolic

expanders (another weakening of co-boundary expansion that replaces distance from B1

with distance from Z1). A similar strategy was recently employed by Lin and Hsieh to

construct c3-LTCs [281] and (conditional) qLDPC codes [282]. It is worth noting that this

stronger condition actually holds for our construction as well (see Remark 6.8.9).

Quantum Codes and LTCs:.

Quantum LDPC and locally testable codes have long been known to share a close

connection with topological notions of high dimensional expansion (see e.g. [136]). Indeed

it was qLDPC constructions based on the Ramanujan complex [142, 244] that first broke
17A function is locally minimal if its weight cannot be decreased by adding the image of any standard

basis vector ∂2(ev). Any minimal function is also locally minimal (and the converse does not in general
hold), so this is a strictly stronger notion of expansion than we study.
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the
√
n distance barrier and started the race to good qLDPCs [142, 80, 314, 244, 193, 315,

219, 277]. As discussed in Section 6.2.3, qLDPC codes satisfy a weaker variant of expansion

called (co)-systolic distance, but must do so in both directions. This is in strong contrast

to typical constructions in the HDX literature which, due to the inherent asymmetry of

simplicial complexes, typically have very poor boundary expansion (indeed this is also

why we avoid simplicial complexes in this work). Such a guarantee was only recently

achieved by Panteleev and Kalachev [315] using refined products of chain complexes, and

very recently simplified through a more geometric lens by Leverrier and Zémor [277]. Since

small-set (co)-boundary expansion is a stronger notion than (co)-systolic distance (see

Section 6.5), our analysis provides the strongest form of two-sided topological expansion

to date. Further, this stronger form of two-sided expansion gives some hope for a positive

resolution of the famous qLTC conjecture, which in some sense requires another notion of

lying somewhere between basic (co)-systolic distance and (co)-boundary expansion, but

requires weaker expansion for all sets rather than the strongest notion for small sets as in

SS-HDX [136].

6.3.2 Further Directions

Strongly Explicit Instances:.

The XOR instances we construct may be built in polynomial time, but are not

necessarily strongly explicit because it is unclear whether the target function can be

computed locally in polylog time. Subsequent to this work, Golowich and Kaufman [173]

resolved this issue by a clever trick planting the all 1s function as a co-systole in a variant

of [277] and [315]’s balanced-product type construction.

Improved Integrality Gaps:.

We prove the existence of an explicit family of 3-XOR instances with a constant

integrality gap of 1 v.s 1− µ for 3-XOR, which falls short of reaching the 1 v.s 1
2
+ ε gap

exhibited by random instances [180, 340]. While standard reductions in the SoS hierarchy
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can improve our gap to arbitrarily close (1− ε v.s 1
2
+ ε), perfect completeness is lost in

the process. The same issue was observed in [119]’s original explicit construction from the

Ramanujan complex. They asked whether it is possible to bypass imperfect completeness

by giving a direct construction with co-systolic distance at least 1
2
− ε. This remains

a natural open question in our setting as well—can one directly construct a small-set

boundary expander with co-systolic distance 1
2
− ε? This would lead to a 1 v.s 1

2
+ ε gap

for MAX-k-XOR. Another natural question is whether such a bound can be transferred to

3-XOR without losing factors in the soundness. Our current reduction loses a factor in k,

but we have made no attempt to optimize this step (since any constant gap is sufficient to

amplify with PCP techniques if one is okay with imperfect completeness).

Hardness Beyond XOR:.

Many of the best integrality gaps known for combinatorial optimization problems

(e.g. maximum independent set, chromatic number) are proved by reduction from k-CSPs

[354]. Unfortunately, such reductions are often randomized, so they do not imply explicit

hard instances even when combined with our XOR construction. This raises a natural

question: can we build explicit reductions from k-CSPs to classical combinatorial problems

such as maximum independent set? Combined with our construction, this could lead to

new families of hard instances for many well-studied combinatorial optimization problems.

On a related note, it is worth observing that these reductions usually rely on CSPs with

better integrality gaps than k-XOR. For instance, it is not hard to see that while random

instances of k-XOR only exhibit a 1 v.s 1/2 + ε integrality gap, more constrained k-CSPs

(e.g. constraints of the form Ax = b for some matrix A ∈ Fd×k
2 ) can lead to much larger

integrality gaps up to 1 v.s 2k
2k

+ ε [354]. Can we use high dimensional expanders to recover

explicit k-CSPs matching these bounds?
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Small-Set HDX and Hardness of Approximation:.

Small set expansion plays a fundamental role in hardness of approximation, ranging

from use as a computational hardness assumption itself [325], to its pivotal use in the

proof of the 2-2 games conjecture [253, 126, 125, 47, 252, 255] and recent converse use

for algorithms for unique games [37, 38]. This work gives the first application of high

dimensional small-set expansion to hardness of approximation, raising the natural question:

does this high dimensional variant have a broader role to play in the field as well?

6.4 Preliminaries I: SS-HDX to Hardness

We now cover the preliminary definitions required to understand our general

translation of expanding chain complexes into hard instance of 3-XOR, including basics on

Sum-of-Squares, chain complexes, and traditional notions of high dimensional expansion.

Background required for the HDX construction itself (e.g. on left-right Cayley complexes,

robust tensor codes, etc.) is postponed to Section 6.7.

6.4.1 Sum of Squares and Refutations

The Sum-of-Squares Semidefinite Programming Hierarchy is a powerful method for

approximately solving constrained polynomial optimization problems, and is in particular

the strongest known algorithmic framework for approximating CSPs. In brief, the SoS

heirarchy presents a series of successively stronger SDP relaxations of a problem, where

the ‘round-t’ relaxation optimizes over t-local views and runs in time nO(t). We refer the

reader to [49, 150] for general information on the SoS hierarchy.

In this work, we focus in particular on the SoS relaxations of MAX-k-XOR, the

family of CSPs on n variables {x1, . . . , xn} and m constraints {Ci}i∈[m] of the form:

xi1 ⊕ . . .⊕ xij = zi,
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where zi ∈ {0, 1}, {i1, . . . , ij} ⊂ [n], and j = j(i) ≤ k. Let Ti ⊂ [n] denote the set

of variables appearing in the ith constraint. Then the round-t SoS SDP relaxation for

MAX-k-XOR can be written as:

Round-t SoS Relaxation of MAX-k-XOR:

Input: variables {vS}S∈([n]
≤t)

Maximize: 1
2
+ 1

2m

m∑
i=1

(−1)zi⟨vTi
, v∅⟩

Constraint to:

1. ∀S1 ⊕ S2 = S3 ⊕ S4, |Si| ≤ t : ⟨vS1 , vS2⟩ = ⟨vS3 , vS4⟩

2. ∀S, |S| ≤ t : ∥vS∥2 = 1

We refer to the maximum obtained by this SDP as the value of the round-t

relaxation, and say an infinite family of instances of MAX-k-XOR is hard for (or cannot

be refuted by) t rounds of Sum of Squares if there exists a constant µ such that every

instance is at most (1−µ)-satisfiable, but the round-t SDP relaxation has value 1. In other

words, t-rounds of the SoS hierarchy cannot distinguish between completely satisfiable and

(1− µ)-satisfiable instances—this is often said to induce an integrality gap for the problem

of size 1
1−µ

.

Rather than working directly with the Sum-of-Squares SDP relaxations, we prove

our hardness results through a fruitful connection with refutation complexity due to

Schoenebeck [340] and Tulsiani [354]. More formally, following [119] we will use a proof

system called ⊕-resolution where, given a system of linear equations Λ over F2, we may

derive new equations by mod 2 summation:

{ℓ1 = b1}, {ℓ2 = b2} =⇒ ℓ1 ⊕ ℓ2 = b1 ⊕ b2.

A refutation in this system is a derivation that 0 = 1, and in our setting corresponds to a

proof that the XOR instance given by Λ is unsatisfiable. Schoenebeck [340] and Tulsiani
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[354] showed that any system without a short refutation has a matching SoS lower bound.

Theorem 6.4.1 ([340, Lemma 13] (as stated in [119])). Let Λ be a system of linear

equations in n variables over F2. If all refutations of Λ have an equation using at least 2t

variables, then the round-t SoS Relaxation of Λ has value 1.

6.4.2 Chain Complexes

While previous works constructing hard instances of CSPs rely on structure coming

from graphs (e.g. [180, 340]) or hypergraphs [119], we take inspiration from recent work

on c3-LTCs [117, 281] and qLDPC codes [315, 277] and instead study a more general set

of objects called chain complexes.

Definition 6.4.2 (Chain Complex). Let X(0), X(1), and X(2) be sets, and ∂2 : FX(2)
2 →

FX(1)
2 , ∂1 : FX(1)

2 → FX(0)
2 linear maps. The sequence

X : FX(0)
2

∂1← FX(1)
2

∂2← FX(2)
2

is called a (3-term) chain complex if ∂1∂2 = 0.

For the sake of intuition, let’s take a moment to see why chain complexes are

indeed a generalization of hypergraphs. Given an r-uniform hypergraph H ⊆
(
[n]
r

)
, let

X(i) ⊂
(
[n]
i

)
denote any i-set contained in some r-set in H. H then induces an (r+1)-term

chain complex:18

X : FX(0)
2

∂1← FX(1)
2

∂2← . . .
∂r← FX(r)

2 ,

where ∂if(x) is given by summing f (mod 2) over x’s ‘boundary:’

∀f ∈ FX(i)
2 : ∂if(x) =

∑
y∈X(i):y⊃x

f(y). (6.3)

18Note X(0) is defined to be the empty set, and that our indexing is off by 1 from the usual notation in
topology.
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For instance, when x is a vertex, ∂2f(x) averages over all edges containing x. As such, ∂

is usually called the boundary operator, and it can be checked without too much difficulty

that ∂i−1∂i = 0 (e.g. for r = 3, this follows by noting a vertex is incident to either 0 or 2

edges of any given triangle).

In fact, the boundary operators can actually always be seen to have a similar form

to Equation (6.3), even on a generic chain complex. This follows from passing to the

matrix representation as discussed in Section 6.1. Namely, we may view our 3-term chain

complex as a pair of bipartite graphs B0 = (X(0), X(1), E1) and B1 = (X(1), X(2), E2),

whose bipartite adjacency matrices are given by the matrix representations of ∂1 and ∂2

respectively (in the standard basis). In this setting, it is easy to see that ∂1 and ∂2 are

also given by mod 2 summation over neighbors on these underlying bipartite graphs:

∀f ∈ FX(1)
2 : ∂1f(x) =

∑
y∈X(1):(x,y)∈E1

f(y) (mod 2)

∀f ∈ FX(2)
2 : ∂2f(y) =

∑
z∈X(2):(y,z)∈E2

f(z) (mod 2),

where we have assumed for simplicity that ∂1 and ∂2 are non-degenerate in the sense that

every row and column have at least one 1.19 All complexes we study are non-degenerate,

so we make this assumption throughout.

In matrix form, it is also easy to see that the transpose operators of ∂, called the

co-boundary operators and denoted δ0 := ∂T
1 and δ1 := ∂T

2 , also form a chain complex in the

opposite direction. As a result, we will usually write our chain complexes in the following

form:

X : FX(0)
2

δ0
⇄
∂1

FX(1)
2

δ1
⇄
∂2

FX(2)
2 .

We call elements of FX(i)
2 i-chains, and note FX(i)

2 is often written as “Ci” in the literature.

We avoid this notation since it conflicts with classical notation for codes used later in the
19In a graph, for instance, non-degeneracy corresponds to have no free-floating (degree 0) vertices.
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paper.

Finally, before moving on to expansion on chain complexes, we cover two further

concepts that will control important parameters of our corresponding XOR instaces:

maximum degree and explicitness.

Definition 6.4.3 (Maximum Degree). The maximum degree of a chain complex X :

FX(0)
2

δ0
⇄
∂1

FX(1)
2

δ1
⇄
∂2

FX(2)
2 is the maximum Hamming weight20 across rows and columns of ∂1

and ∂2.

In the bipartite graph view, this is simply the maximum vertex degree across both

graphs. We call an infinite family of chain complexes bounded degree if there exists some

constant d ∈ N such that all complexes in the family have maximum degree at most d.

Finally, in this work we will be interested in infinite families of chain complexes

(and their associated XOR instances), so we need to define a notion of computational

complexity over these objects. We will follow the standard notions used for expander

families, and call a family of complexes explicit if its elements can be constructed in

deterministic polynomial time (this is often called mildly explicit, but the difference is not

particularly important in our setting).

Definition 6.4.4 (Explicit Chain Complexes). We call an infinite family of chain complexes

{Xi} explicit if there exists a determinstic algorithm computing each Xi in time polynomial

in |Xi(0) ∪Xi(1) ∪Xi(2)|.

All complexes studied in this work will be bounded-degree, in which case this notion

may equivalently be defined looking only at the size of Xi(0). This corresponds correctly

to the standard notion of complexity for the associated k-CSP family where |Xi(0)| gives

the number of variables.
20The Hamming weight of binary vector v, denoted |v|, counts the number of entries with a 1.
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6.4.3 Homology and High Dimensional Expansion

High dimensional expansion is a generalization of expansion in graphs originally

introduced by Linial and Meshulam [283] (and later independently by Gromov [182]) to

study the vanishing of homology in simplicial complexes. In this section we cover the

basics of homology and introduce Linial and Meshulam’s original notion of (co)-boundary

expansion. These notions (or modifications thereof) will play an important role in our

CSP construction.

Following standard notation, we call functions in the kernel of ∂i cycles, and

functions in the kernel of δi co-cycles, denoted:

Zi = ker(∂i), Zi = ker(δi).

Since δ2 = ∂2 = 0, notice that im(∂i+1) are always cycles, and im(δi−1) are always co-cycles.

We call functions in these classes boundaries and co-boundaries respectively, denoted:

Bi = im(∂i+1), Bi = im(δi−1).

The homology and co-homology of the chain complex correspond to (co)-cycles mod

(co)-boundary:

Hi = Zi/Bi, H i = Zi/Bi,

where G/H denotes the quotient group. The notions of cycles and boundaries can be

used to define a natural generalization of expander graphs to chain complexes called

(Co)-boundary expansion.

Definition 6.4.5 ((Co)-Boundary Expansion). We call X : FX(0)
2

δ0
⇄
∂1

FX(1)
2

δ1
⇄
∂2

FX(2)
2 a

ρ-boundary expander if the weight of any element in FX(1)
2 \ B1 is proportional to its
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distance from the boundary:

∀f ∈ FX(1)
2 \B1 :

|∂1f |
d(f,B1)

≥ ρ,

where d(f,B1) = minb∈B1 |f + b|. Similarly, X is an ρ-co-boundary expander if:

∀f ∈ FX(1)
2 \B1 :

|δ1f |
d(f,B1)

≥ ρ.

Since this definition may seem un-motivated at first glance, let’s again take a look

at the case of a graph G = (V,E) which induces the (3-term) chain complex:

X : F∅
2

δ0
⇄
∂1

FV
2

δ1
⇄
∂2

FE
2 .

It is not hard to see that the co-boundary expansion of this chain is exactly Cheeger’s

constant:

h(G) := min
S ̸=V,∅

{
E(S, V \ S)

min{|S|, |V \ S|}

}
,

where E(S, V \ S) is the standard notation for the size of the edge boundary between S

and the rest of the graph. This connection follows from noting that the only co-boundaries

on this chain are V and ∅, and that |δ11S| exactly counts the edge-boundary of S, so in

particular we have:
|δ11S|

d(1S, B1)
=

E(S, V \ S)
min{|S|, |V \ S|}

.

6.5 Small Set Boundary Expansion

(Co)-boundary expansion is a very strong property, and unconditional construction

of bounded degree (co)-boundary expanders is still a major open question in topological

high dimensional expansion. Furthermore, (co)-boundary expansion actually implies the

vanishing of (co)-homology. This is an issue in and of itself in our setting, since as discussed
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in Section 6.2, our CSP construction rests crucially on the associated chain complex having

non-trivial co-homology. With this in mind, we introduce a new notion of high dimensional

expansion which requires boundary expansion to hold only over small sets.

Definition 6.5.1 (Small-Set (Co)-Boundary Expansion). We call X : FX(0)
2

δ0
⇄
∂1

FX(1)
2

δ1
⇄
∂2

FX(2)
2 a (ρ1, ρ2)-small-set boundary expander if the weight of small chains in FX(1)

2 is

proportional to their distance from the boundary:

∀f ∈ FX(1)
2 \B1, |f | ≤ ρ1|X(1)| : |∂1f |

d(f,B1)
≥ ρ2.

Similarly, X is a (ρ1, ρ2)-small-set co-boundary expander if:

∀f ∈ FX(1)
2 \B1, |f | ≤ ρ1|X(1)| : |δ1f |

d(f,B1)
≥ ρ2

We call X a (ρ1, ρ2)-small-set HDX if it is both a (ρ1, ρ2)-small-set boundary and (ρ1, ρ2)-

small-set co-boundary expander.

Just like standard co-boundary expansion is a higher-order analog of Cheeger’s

constant (edge-expansion) in graphs, small-set co-boundary expansion is the natural analog

of small-set expansion on graphs. As discussed in Section 6.3.1, various strengthened

notions of (unidirectional) high-dimensional small-set expansion have been considered

on both simplicial [230, 141, 235, 237] and chain complexes [281, 282], but this basic

generalization seems to be missing from the literature. In this work we show how small-set

HDX can be transformed into explicit hard CSP instances for linear levels of Sum-of-

Squares. Given the general prominence of small-set expansion throughout hardness of

approximation (see e.g. [325, 255]), we expect SS-HDX may have many further applications

in the area.

Before moving on, it will be useful to observe two important implications of a

complex satisfying small-set (co)-boundary expansion. First, while the notion does not
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require the vanishing of (co)-homology like standard boundary expansion, it does still

imply a strong restriction on the structure of elements in Z1 \B1: they must be large.

Lemma 6.5.2 (Small-Set (Co)-Boundary Expansion → (Co)-Systolic Distance). If X is

a (ρ1, ρ2)-small-set boundary expander, then all chains f ∈ Z1 \B1 are large:

min
f∈Z1\B1

{|f |} > ρ1|X(1)|. (6.4)

Similarly, if X is a (ρ1, ρ2)-small-set co-boundary expander, then all chains f ∈ Z1 \B1

are large:

min
f∈Z1\B1

{|f |} > ρ1|X(1)|. (6.5)

Proof. We prove the first statement only, the second follows similarly. Assume h1 ∈ Z1 \B1

satisfies |h1| ≤ ρ1|X(1)|. Since h1 is a cycle, we have ∂1h1 = 0, but then by small-set

boundary expansion we have d(h1, B1) = 0, so h1 ∈ B1 giving the desired contradiction.

We say complexes satisfying Equation (6.4) have systolic distance ρ1, and complexes

satisfying Equation (6.5) have co-systolic distance ρ1. As discussed in Section 6.2, these

properties were recently crucial to the construction of good qLDPC codes [315], and

were also used by [119] to prove the soundness of their 3-XOR construction. Indeed it is

worth noting that bounded co-systolic distance is actually enough for soundness in our

construction as well, we only truly need the full power of small-set boundary expansion in

one direction.

Second, we will crucially rely on a standard connection between boundary expansion

and a concept known as an isoperimetric inequality, which relates the size of an object

to the size of its boundary.21 In particular, it is well known that boundary expansion is

actually equivalent to an isoperimetric inequality for minimal chains (see e.g. [231]).
21For example the isoperimetric inequality on R2 says the length (boundary) of any closed curve is at

least 2
√
π times the square root of its area.
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Definition 6.5.3 (Minimal Chains). A function h ∈ FX(1)
2 is called minimal if ∀b ∈ B1,

|h+ b| ≥ |h|.

A similar equivalence holds for small-set boundary expansion as well, and will be

crucial for the completeness of our CSP instances: X is a small-set boundary expander if

and only if small, minimal chains in X satisfy an isoperimetric inequality.

Lemma 6.5.4 (Small-Set (Co)-Boundary ↔ (Co)-Isoperimetric Inequality). Let X be a

(ρ1, ρ2)-small-set boundary expander. Then for any h ∈ FX(1)
2 satisfying:

1. h is small: |h| ≤ ρ1|X(1)|

2. h is minimal: ∀b ∈ B1 : |h+ b| ≥ |h|

the boundary ∂1h must be large relative to h:

|∂1h| ≥ ρ2 |h| . (6.6)

Conversely if Equation (6.6) holds for any small minimal chain, then X is a (ρ1, ρ2)-small-

set boundary expander.

Proof. We start with the forward direction. Since |h| ≤ ρ1|X(1)| and h is minimal, by

small-set boundary expansion we have that:

|∂1h| ≥ ρ2d(h,B) = ρ2min
b∈B
{|h+ b|} = ρ2 |h| .

The converse implication is similar. Let h ∈ FX(1)
2 be a small chain satisfying |h| ≤ ρ1|X(1)|,

and let b ∈ B1 be the boundary minimizing |h+ b|. Then by isoperimetry of h + b, we

have:

|∂1h| = |∂1(h+ b)| ≥ ρ2 |h+ b| = ρ2d(h,B1)

as desired.
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We note the same result holds for co-boundary expansion by the same proof.

Isoperimetry (combined with good systolic distance) will be crucial for showing complete-

ness of our XOR instances, replacing the use of Gromov’s filling inequality in [119].

6.6 From Expansion to Hardness

We now show how to translate any family of expanding, bounded-degree 3-term

chain complexes with non-trivial cohomology into hard instances of 3-XOR for Ω(n)-levels

of Sum-of-Squares.

Theorem 6.6.1. Let {Xi} be an explicit family of chain complexes of maximum degree

k ∈ N and µ, ρ1, ρ2 ∈ (0, 1) constants such that:

1. H1 is non-trivial,

2. X has µ-co-systolic distance,

3. X is a (ρ1, ρ2)-small-set boundary expander.

Then there exist constants µ1, µ2 ∈ (0, 1) depending only on k, µ, ρ1, and ρ2 and an explicit

family of MAX-3-XOR instances {Ii} on ni variables such that:

1. Every instance is at most (1− µ1)-satisfiable,

2. No instance can be refuted by µ2ni levels of the SoS hierarchy.

Moreover if the complex has degree lower bounded by 3, {Ii} are instances of 3-XOR.

Theorem 6.6.1 is actually proved mainly by associating an instance of MAX-k-

XOR to every complex Xi in the family. Moving to 3-XOR can then be done through

standard NP-reduction arguments within the SoS hierarchy.22 Thus the main challenge is

to build hard instances of MAX-k-XOR from our complexes. We’ll start by overviewing
22Though one must be careful that the number of variables does not blow up in the reduction, as we

discuss later in the section.
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our construction, which is a generalization of [119]’s 3-XOR construction from simplicial

complexes to generic chain complexes.

Construction:.

It will be convenient to phrase our construction in the bipartite graph formulation

discussed in Section 6.4. Recall that any chain complex X : FX(0)
2

δ0
⇄
∂1

FX(1)
2

δ1
⇄
∂2

FX(2)
2 may

be written as a pair of bipartite graphs B1 = (X(0), X(1), E1) and B2 = (X(1), X(2), E2)

where E1 and E2 are uniquely determined by the matrix representations of the boundary

operators. Assuming our complex has non-trivial co-homology, let β ∈ Z1 \ B1.23 Our

associated CSP IX,β is given by adding for every y ∈ X(1) the constraint:

Cy :=

 ∑
x∈X(0):(x,y)∈E1

x (mod 2) = β(x)

 .

Since the choice of β ∈ Z1 \B1 will not matter, in what follows we will drop it from the

notation and just write IX . We make two observations about IX before moving on. First,

let’s confirm IX is indeed an instance of MAX-k-XOR.

Observation 6.6.2. If X has maximum degree k, then IX is an instance of MAX-k-XOR.

Proof. This follows immediately from the chain complex having maximum degree k, as

every y ∈ X(1) then has at most k neighbors in X(0) (i.e. that there are at most k elements

x such that (x, y) ∈ E1).

Second, we observe that our instances have at most a linear number of constraints.

Observation 6.6.3. If X has maximum degree k, then IX has at most k|X(0)| constraints.

Proof. Since our complex is non-degenerate and degree at most k, we have that |X(1)| ≤

k|X(0)|. IX has |X(1)| constraints by construction.
23Note that β can be found in polynomial time by standard linear algebraic techniques.
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As a result, any explicit infinite family of bounded degree chain complexes with non-

trivial cohomology induces an explicit infinite family of MAX-k-XOR instances with linearly

many constraints for some constant k ∈ N. The main work in proving Theorem 6.6.1

therefore boils down to proving that the instances IX are sound (at most (1−µ)-satisfiable),

and complete (look satisfiable to SoS).

Theorem 6.6.4. Let X be a chain complex of maximum degree k and µ, ρ1, ρ2 ∈ (0, 1)

constants such that:

1. H1 is non-trivial,

2. X has µ-co-systolic distance,

3. X is a (ρ1, ρ2)-small-set boundary expander.

Then IX is an instance of MAX-k-CSP on |X(0)| variables satisfying:

1. Soundness: IX is at most (1− µ)-satisfiable,

2. Completeness: IX cannot be refuted by
(
ρ1ρ2
4k
|X(0)|

)
-levels of the SoS hierarchy.

We’ll break the proof of Theorem 6.6.4 into two parts, corresponding to soundness and

completeness.

Soundness:.

The soundness of our construction can be proved with no further background, and

is a direct generalization of arguments in [119] from simplicial complexes to general chain

complexes.

Proof of Soundess (Theorem 6.6.4). Recall that our constraints are defined by some func-

tion β ∈ Z1 \ B1. Let f ∈ FX(0)
2 be a potential assignment to variables in our instance.

For any constraint y ∈ X(1), we can check if f satisfies y by evaluating (β + δ0f)(y):

(β + δ0f)(y) = β(y) +
∑

(x,y)∈E1

f(x).
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In other words, the Hamming weight |β + δ0f | exactly corresponds to the number of

violated constraints in our instance. The key is now to observe that since β ∈ Z1 \ B1,

β+δ0f also lies in Z1\B1. Since X has µ-co-systolic distance, we have |β + δ0f | ≥ µ|X(1)|,

so any assignment to variables must violate at least a µ fraction of constraints as desired.

Completeness:.

Proving the completeness of Theorem 6.6.4 requires a bit more setup. As discussed

in Section 6.4, we appeal to the general paradigm of Grigoriev [180], Schoenebeck [340],

and Tulsiani [354] relating refutation width with Sum-of-Squares completeness. Our lower

bound on the refutation width of IX can be viewed in some sense as a mix of the classical

strategy of Ben-Sasson and Wigderson [60] (who used traditional boundary expansion on

graphs to show lower bounds against refuting Tseiten formulas) and the recent argument

of [119] using Gromov’s filling inequality on the Ramanujan complex. We mostly follow

the exposition given in the latter.

We will consider refutations in the ⊕-resolution proof system, in which two linear

equations ℓ1 = b1 and ℓ2 = b2 can be added to derive ℓ1 ⊕ ℓ2 = b1 ⊕ b2. By Theorem 6.4.1,

it is enough to prove that any refutation of the linear equations corresponding to IX has

width at least ρ1ρ2
2k
|X(0)|, where width measures the largest number of variables appearing

in any equation in the refutation. A refutation in the ⊕-resolution proof system can be

modeled as a DAG where leaves correspond to linear equations (our XOR constraints),

internal nodes have two incoming edges and correspond to the XOR of their parents, and

the root derives the contradiction 0 = 1.

To track the number of variables at each step, we follow the strategy of [119] and

associate to each node v of the DAG a function hv ∈ FX(1)
2 and value bv ∈ {0, 1} as follows.

Since each leaf in the refutation corresponds to one of our XOR constraints, assign the

leaf corresponding to s ∈ X(1) the indicator 1s ∈ FX(1)
2 and value β(s) ∈ F2 (where we

recall β ∈ Z1 \B1 was the chain used to define our constraint values). The function and
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value assigned to each internal node v with parents v1, v2 is then defined recursively to be

the (mod 2) sum of its parents:

hv = hv1 ⊕ hv2 , and βv = βv1 ⊕ βv2 .

Notice that by construction, ∂1hv exactly corresponds to the variables appearing in the

linear equation at node v. This means we can bound the width of the refutation by

identifying some node v in the refutation whose associated function hv has large boundary.

To this end, following [119]’s high dimensional variant of [60]’s original technique

we define the following potential function across nodes in our refutation:

κ(v) := min
b∈B1

|hv + b| .

Our goal will be to find a node in the refutation whose potential is large, but still small

enough that we can apply small-set boundary expansion. Namely, if we can find v such

that ρ1
2
|X(1)| ≤ κ(v) ≤ ρ1|X(1)|, then by our isoperimteric inequality for small sets

(Lemma 6.5.4) we have:

|∂hv| = |∂(hv + b)| ≥ ρ2 |hv + b| ≥ ρ1ρ2
2
|X(1)| ≥ ρ1ρ2

2k
|X(0)|

which would give the desired bound on refutation width. With this in mind, we can finally

prove completeness.

Proof of completeness (Theorem 6.6.4). As discussed above, it is sufficient to prove that

any refutation has width at least ρ1ρ2
2k
|X(0)|, and that this can be done by finding a node

v with potential ρ1
2
|X(1)| ≤ κ(v) ≤ ρ1|X(1)|. The proof follows the classical strategy of

[60]. Namely it is enough to show the following three properties:

1. The root node has large potential: κ(r) > ρ1|X(1)|
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2. The leaves have small potential: κ(s) ≤ 1

3. The potential function is sub-additive: κ(v) ≤ κ(v1) + κ(v2).

As long as these hold, getting from the leaf potential of (at most) 1 to the root potential

of κ(r) > ρ1|X(1)| requires passing through some internal node v with ρ1
2
|X(1)| ≤ κ(v) ≤

ρ1|X(1)| as desired.

It is left to prove the three properties, which follow from similar analysis as in [119]

for the Ramanujan complex. The second and third properties are essentially immediate.

Leaves are given by the indicator function of elements s ∈ X(1), which are at most distance

one from 0⃗ ∈ B1 (the all 0s function). Sub-additivity follows from the triangle inequality.

For a node v with parents v1 and v2, let b1 and b2 be boundaries minimizing d(hv1 , B1)

and d(hv2 , B1), then we have:

κ(v1) + κ(v2) = |hv1 + b1|+ |hv2 + b2| ≥ |hv1 + b1 + hv2 + b2| = |hv + b1 + b2| ≥ κ(v).

For the first property, we argue the root node r must satisfy hr ∈ Z1 \B1. If this is the case

we are done by the fact that our complex has good co-systolic distance by Lemma 6.5.2:

κ(hr) = min
b∈B1

|hr + b| > ρ1|X(1)|,

since any hr + b ∈ Z1 \B1 as well. To see that hr ∈ Z1 \B1, first note that since the root

node in our refutation corresponds to the equation 0 = 1, we must have ∂1hr = 0 and

therefore hr ∈ Z1. To complete the proof we therefore only need to show hr /∈ B1, which

follows from the fact that br = 1 for the root node. Namely, notice that for any node v we

have bv = ⟨β, hv⟩ by construction (since we are just summing mod 2 over the constraints),

and in particular that ⟨β, hr⟩ = 1. On the other hand, if hr ∈ B1, then by definition there
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exists f ∈ FX(2)
2 such that hr = ∂2f and since δ1 = ∂T

2 we have

⟨β, hr⟩ = ⟨β, ∂2f⟩ = ⟨δ1β, f⟩ = 0

since β ∈ Z1. Thus hr is in Z1 but not B1, which completes the proof.

We are now one step away from proving Theorem 6.6.1; we just need to show how to

move from a hard instance of MAX-k-XOR to a hard instance of 3-XOR. Such a reduction

is fairly standard within the SoS literature, but we’ll include the proof for completeness.

To do so, we’ll need to introduce a second way to characterize completeness of an instance

for t rounds of SoS through an object called a pseudo-expectation. Given a set of variables

{xi}i∈[n] and d ∈ N, let polyR({xi}, d) denote the set of degree at most d polynomials in

R[x1, . . . , xn]. For our purposes, it is enough to think of a degree 2t pseudo-expectation as

an operator Ẽ : polyR({xi}, 2t)→ R that ‘pretends’ to be an expectation in the following

four ways:

1. Scaling: Ẽ[1] = 1

2. Linearity:

∀a, b ∈ R, p(x), q(x) ∈ polyR({xi}, 2t) : Ẽ[ap(x) + bq(x)] = aẼ[p(x)] + bẼ[q(x)]

3. Positivity of Squares:

∀q(x) ∈ polyR({xi}, t) : Ẽ[q(x)2] ≥ 0

4. Booleanity:

∀j ∈ [n], p(x) ∈ polyR({xi}, 2t− 2) : Ẽ[x2
jp(x)] = Ẽ[p(x)].
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With this in mind, let I be an instance of XOR on n variables {x1, . . . , xn}. It will be

convenient to express constraints in Ci ∈ I multiplicatively as:

Ci :=
{
xi1 . . . xij = bi

}
where bi ∈ {−1, 1} and assignments now range over {−1, 1}n. Let Ci(x) be shorthand for

the lefthand product of variables in the constraint, and |Ci| denote the degree of Ci(x).

It turns out (see e.g. [150]) that completeness of I against t levels of Sum-of-Squares

is equivalent to the existence of a degree 2t pseudo-expectation which respects every

constraint Ci ∈ I in the following strong sense:

∀p(x) ∈ polyR({x}, 2t− |Ci|) : Ẽ[Ci(x)p(x)] = biẼ[p(x)]. (6.7)

With this in mind, we can finally put everything together and prove Theorem 6.6.1.

Proof of Theorem 6.6.1. We’ll start by constructing an explicit family of hard instances

of MAX-k-XOR, then reduce to 3-XOR through the above machinery. By Theorem 6.6.4,

every complex Xi in our family corresponds to an instance IXi
of MAX-k-XOR on

ni = |Xi(0)| vertices and mi ≤ k|X(0)| constraints that is at most (1 − µ)-satisfiable

but cannot be refuted by the ρ1ρ2
4k

ni-level SoS relaxation. Furthermore each instance IXi

can be constructed in poly(ni) time. This follows immediately from the fact that {Xi}

itself is explicit (and bounded degree), and that finding some β ∈ Z1 \B1 can be done in

polynomial time by basic linear algebra over dimension O(ni) vector spaces.

It is left to argue that we can use IXi
to construct a corresponding instance of 3-XOR

that remains hard for Sum-of-Squares. We will use the following simple approach: given a

clause with more than 3 variables, split it into two clauses of about half the size whose

product is the original clause. More formally, given a constraint Ci :=
{
xi1 . . . xij = bi

}
,
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we apply the transformation:

Ci →
{
C

(0)
i := {xi1 . . . xi⌊j/2⌋yi = bi}, C

(1)
i := {xi⌊j/2⌋+1

. . . xijyi = 1}
}

(6.8)

where yi is a newly introduced ‘dummy’ variable. Given a generic instance of MAX-k-XOR

Ik, let Φ(Ik) denote the CSP resulting from applying the above transformation to every

constraint with more than 3 variables. We will argue that Φ(Ik) has about half as many

variables per clause as the original instance, but maintains soundness and completeness

up to constant factors.

Claim 6.6.5. Let Ik be an instance of MAX-k-XOR for k ≥ 4 on n variables and m

constraints such that:

1. Ik is at most (1− µ)-satisfiable,

2. Ik cannot be refuted by t rounds of Sum-of-Squares.

Then Φ(Ik) is an instance of MAX-j-XOR for j = ⌈k/2⌉+ 1 on at most n+m variables

and 2m constraints satisfying:

1. Ik is at most (1− µ/2)-satisfiable,

2. Ik cannot be refuted by 2t
k

rounds of Sum-of-Squares.

Let’s first show Claim 6.6.5 completes the proof of our main theorem. Starting

from our MAX-k-XOR instance IXi
, Claim 6.6.5 shows that Φ⌈log(k)⌉(IXi

) is an instance

of MAX-3-XOR on Ok(ni) variables that is at most (1− Ωk(µ))-satisfiable but cannot be

refuted by Ωk(ni) rounds of Sum-of-Squares. This follows from the fact that the original

(and all transformed instances) have m ≤ Ok(ni) constraints.24 Finally, if the original

instance had no constraints with fewer than 3 variables (which occurs if the original
24We note that it is possible to improve the dependence on k by slightly more involved analysis, but

since k is just a constant we choose to work with iterated applications of the above for simplicity of
exposition.
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complex has degree lower bounded by 3), Φ⌈log(k)⌉(IXi
) is an instance of 3-XOR. With this

in mind, it is left to prove the claim.

Proof of Claim 6.6.5. The fact that Φ(Ik) is an instance of MAX-j-XOR for j = ⌈k/2⌉+1

on at most n+m variables and at most 2m constraints is immediate from construction.

The main interest lies in proving soundness and completeness of the instance.

Soundness: Soundness of Φ(Ik) follows from observing that since y2i = 1, Ci = C
(0)
i ·C

(1)
i .

Namely by the soundness of the original instance, any assignment of variables to Φ(Ik)

must fail at least a µ fraction of original constraints Ci (since these have no dependence

on the new dummy variables). If Ci = C
(0)
i ·C

(1)
i is violated it must be the case that either

C
(0)
i or C

(1)
i is violated, so any assignment of variables to our transformed CSP Φ(Ik)

must still violate at least a µ/2 fraction of its constraints.

Completeness: Given a degree 2t pseudo-expectation Ẽ satisfying the constraints of

Ik (in the sense of Equation (6.7)), we must construct a new pseudo-expectation ẼΦ

on the variables of Φ(Ik) satisfying the transformed constraints. Given a polynomial

p(x, y) ∈ R[{xi}, {yj}], let p(x, 1) ∈ R[{xi}] denote the result of setting each y variable to

1. The idea is to observe that each dummy variable yi in the new instance can really be

thought of as a ‘stand-in’ for the product bixi1 . . . xi⌊j/2⌋ = biC
(0)
i (x, 1) in the sense that

replacing each yi with biC
(0)
i (x, 1) simply returns the original instance. This suggests

a natural strategy for defining our new pseudo-expectation ẼΦ: just replace yi with

biC
(0)
i (x, 1).25

Formally, this takes a bit of work. Let S ⊆ [m] denote the set of indices on which

we transformed our original instance, {yj}j∈S denote the newly introduced variables, and

T : R[{xi}i∈[n], {yj}j∈S] → R[x1, . . . , xn] denote the map which independently replaces

25We thank Sam Hopkins for suggesting this general approach.
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each occurrence of yj with bjC
(0)
j (x, 1) (and leaves variables in {xi} unchanged). It is an

elementary exercise to show that T satisfies the following useful properties:

1. T is (additively) linear:

T (az(x, y)) = aT (z(x, y)) and T (z1(x, y) + z2(x, y)) = T (z1(x, y)) + T (z2(x, y))

2. T is (multiplicatively) linear:

T (z1(x, y)z2(x, y)) = T (z1(x, y))T (z2(x, y))

3. T does not substantially blow up degree:

Deg(T (z(x, y))) ≤ ⌊k/2⌋Deg(z(x, y)).

With this in mind, define the value of our new pseudo-expectation on any degree at most

2t
⌊k/2⌋ polynomial z(x, y) ∈ R[{xi}i∈[n], {yj}j∈S] as:

ẼΦ[z(x, y)] := Ẽ[T (z(x, y))]

which is well-defined by the third property. It is an easy exercise to check that ẼΦ remains

a pseudo-expectation, as the linearity of T ensures scaling, linearity, positivity of squares,

and booleanity are all inherited from Ẽ. Thus it is left to check that ẼΦ satisfies every

constraint C
(j)
i ∈ Φ(Ik) in the sense of Equation (6.7). To see this, first observe that

ẼΦ[C
(j)
i (x, y)z(x, y)] = Ẽ[T (C(j)

i (x, y)z(x, y))]

= Ẽ[T (C(j)
i (x, y))T (z(x, y))].
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Taking a closer look at T (C
(j)
i (x, y)), we have by definition that:

T (C
(j)
i (x, y)) =


biCi(x) if j = 1

bi(C
(0)
i (x, 1))2 if j = 0.

Breaking into case analysis, we then have for j = 1:

Ẽ[T (C(1)
i (x, y))T (z(x, y))] = Ẽ[biCi(x)T (z(x, y))]

= Ẽ[T (z(x, y))]

= ẼΦ[z(x, y)]

and for j = 0 that:

Ẽ[T (C(0)
i (x, y))T (z(x, y))] = Ẽ[bi(C(0)

i (x, 1))2T (z(x, y))]

= biẼ[T (z(x, y))]

= biẼΦ[z(x, y)]

which match the form of the constraints given in Equation (6.8) as desired.

6.7 Preliminaries II: Constructing SS-HDX

We now cover the tools necessary for constructing our small-set HDX, including

background on basic expander graphs, left-right Cayley complexes, error correcting codes,

Tanner codes, and tensor codes. We closely follow the discussion in [277] who largely cover

the same background material.
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6.7.1 Expander Graphs

The main building block of Leverrier and Zémor’s qLDPC codes are a ubiquitous

class of graphs in computer science called spectral expanders. Let G = (V,E) be an

undirected ∆-regular (multi)-graph on n vertices, and define λ(G) := max{|λ2|, |λn|}

where ∆ = λ1 ≥ λ2 ≥ ... ≥ λn are the eigenvalues of the adjacency matrix of G. We say G

is a λ-spectral expander if λ(G) ≤ λ, and call it Ramanujan if λ(G) ≤ 2
√
∆− 1, which is

the optimal expansion for infinite families of fixed degree [14].

We will rely on spectral expanders for two main reasons. First, as we will discuss

in the following section, infinite families of these objects are well-known not only to exist,

but to be explicitly constructable (see e.g. [298]). Second, spectral expansion provides a

useful proxy for edge-expansion in the sense that for any S, T ⊆ V , there cannot be too

many edges passing between S and T . This is classically known as the expander-mixing

lemma, and likely first appeared in [18]:

Lemma 6.7.1 (Expander mixing lemma). Let G be a ∆-regular graph. Then for any

subset S, T ⊂ V (G) we have

|E(S, T )| ≤ ∆

|V |
|S||T |+ λ(G)

√
|S||T |.

When |S| and |T | are small compared with |V |, we will think of λ(G)
√
|S||T | as

the main term and ∆
|V | |S||T | as the error term (we note this is the opposite of how the

lemma is often applied).

It will also be important for us that the expander mixing lemma holds for double

covers of a spectral expanders with a small modification. The double cover G ′ = (V ′, E ′)

of a graph G = (V,E) has vertex set V ′ = V0 ∪ V1, for V0 = V × {0} and V1 = V × {1},

and edge set E ′ = {{(v, 0), (w, 1)} : v, w ∈ V, {v, w} ∈ E}. The expander mixing lemma

applies for double covered graphs when S ⊂ V0, T ⊂ V1.
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Lemma 6.7.2 (Expander mixing lemma for double covered graph). Let G be a ∆-regular

graph and G ′ be its double cover. Then for any subset S ⊂ V0(G ′), T ⊂ V1(G ′) we have

|E(S, T )| ≤ ∆

|V (G)|
|S||T |+ λ(G)

√
|S||T |.

This can be shown easily by projecting S and T back to the original graph.

6.7.2 Left-Right Cayley Complexes

While expansion is a useful property in its own right, our arguments require higher

dimensional structure. The key lies in an object called the left-right Cayley complex

introduced in [117] to build c3-LTCs. A left-right Cayley complex is determined by a

group G and two sets of generators A = A−1 and B = B−1. The complex consists of

vertices, A-edges, B-edges, and squares as follows:

– The vertices are V 0 = G.

– The A-edges are E0
A and the B-edges are E0

B where

E0
A = {{g, ag} : g ∈ G, a ∈ A}, E0

B = {{g, gb} : g ∈ G, b ∈ B}.

– The squares are

F 0 = {{g, ag, gb, agb} : g ∈ G, a ∈ A, b ∈ B}.

The main criterion for choosing G, A, and B is to ensure the Cayley graphs

Cay(G,A) and Cay(G,B) are good expanders, and in particular are Ramanujan. Besides

this, for simplicity we further assume two technical conditions as in [117]: that |A| =
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|B| = ∆, and the so-called total no-conjugacy condition

∀a ∈ A, b ∈ B, g ∈ G, ag ̸= gb.

The total no-conjugacy condition ensures squares are non-degenerate (contain exactly 4

distinct vertices), and that each vertex is incident to exactly k2 squares [117, Claim 3.7].

Leveraging classical results of Morgenstern [298] and Lubotzky, Samuels, and Vishne [290],

[117] show that explicit families of left-right Cayley complexes exist for infinitely many

degrees.

Theorem 6.7.3 ([117, Claim 6.7]). There exists an infinite sequence of degrees ∆ = q + 1

(where q is an odd prime power) such that for each fixed ∆ there exists an explicit infinite

family of left-right Cayley complexes with Gi = PSL2(q
i) and generator sets Ai and Bi

such that |Ai| = |Bi| = ∆, Cay(Gi, Ai) and Cay(Gi, Bi) are Ramanujan, and Ai,Bi satisfy

the total no-conjugacy condition.

As in [277], we will use the double cover of the left-right Cayley complex, defined

as:

– The vertices are V = V0 ∪ V1 where V0 = G× {0} and V1 = G× {1}.

– The A-edges are EA and the B-edges are EB where

EA = {{(g, 0), (ag, 1)} : g ∈ G, a ∈ A}, EB = {{(g, 0), (gb, 1)} : g ∈ G, b ∈ B}.

– The squares are

F = {{(g, 0), (ag, 1), (gb, 1), (agb, 0)} : g ∈ G, a ∈ A, b ∈ B}.

Note that every square in the original left-right Cayley complex corresponds to two squares
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in the double cover, and therefore that the double cover has a total of ∆2|G|
2

squares. Since

we will only use the double cover in our arguments, from now on the term “square” will

always refer to these double-covered squares, not the squares in the original Cayley complex.

Following [277]’s notation, we will mainly think of the double-covered complex as

represented by the following graphs. First, we’ll define a graph that captures the vertices

and edge-structure of the Cayley complex: G∪ = (V,EA ∪ EB). Second, we’ll define

graphs26 G□0 = (V0, E
□
0 ) and G□1 = (V1, E

□
1 ) capturing squares in the double cover, where

E□
i = {{(g, i), (agb, i)} : g ∈ G, a ∈ A, b ∈ B}

for i ∈ {0, 1}. Notice that the edges in these graphs have a one-to-one correspondence

with the double-covered squares, namely that E□
i
∼= F for i = 0, 1 through the following

identifications:

{(g, 0), (agb, 0)} ↔ {(g, 0), (ag, 1), (gb, 1), (agb, 0)}

and

{(g, 1), (agb, 1)} ↔ {(g, 1), (ag, 0), (gb, 0), (agb, 1)}.

These identifications will be particularly important in the proof of small-set (co)-boundary

expansion as we move between the squares of our complex and their associated graph

representations.

Finally, it will be important to observe that these graphs inherit the spectral

properties of Cay(G,A) and Cay(G,B). Namely that when the latter are Ramanujan,

G∪,G□0 ,G□1 are also very good expanders.

Lemma 6.7.4 ([277, Lemma 4]). If Cay(G,A), Cay(G,B) are Ramanujan graphs, then

λ(G□0 ) ≤ 4∆, λ(G□1 ) ≤ 4∆, and G∪ is the double cover of a 4
√
∆-spectral expander.

We note this is not exactly the statement given in [277], but the proof is the same.
26We note these may technically be multi-graphs as in [277], but this has no effect on our arguments.

565



6.7.3 Error Correcting Codes

A classical (n, k, d)-error correcting (erasure) code is a method for encoding a string

of k classical bits into n > k classical bits such that one can recover the original string even

when up to d− 1 bits of the encoded string are erased. More formally, we will consider

the standard setting of linear codes, where the encoded space is a linear subspace C ⊂ Fn
2 .

Here n is the length of the code, k := dim(C) is its dimension, and the minimum weight

of any element (also called codeword) of C, d := minc∈C{|c|}, is called its distance.27 One

can check that in a linear code of distance d, it is indeed possible to uniquely correct up

to d− 1 errors. Finally, the ratio r := k
n

is called the rate of the code, and measures the

overhead from the original to encoded space. We will typically be interested in families of

codes that have constant rate and linear distance.

One of the main reasons to use linear codes is that there are nice linear algebraic

ways of describing the objects. In particular, the linear subspace (code) C is typically

described either by a parity-check matrix, or a generator matrix. In particular, one can

always find a parity-check matrix M : Fn
2 → Fn−k

2 whose kernel is the code in question

(C := kerM ⊂ Fn
2 ), and likewise a generator matrix M ′ : Fk

2 → Fn
2 whose image gives the

code (C := imM ′ ⊂ Fn
2 ). When clear from context, we sometime abuse notation and write

C to mean the parity check matrix of C.

6.7.4 Tanner Codes

The Tanner construction (or tanner code) [351] is a classical strategy in coding

theory to build a linear code out of a ‘large’ regular graph and a ‘small’ local code that sits

on the neighborhood of each vertex. Crucially, when the underlying graph is an expander,

it is often the case that the Tanner code inherits desirable properties from the small code.

More formally, let G = (V,E) be a ∆-regular graph and E(v) denote the set of
27We note that this is similar to the distance operator d(·, ·) used to define co-boundary expansion.

Indeed the distance of a code C is just d(∅, C). We will abuse notation slightly to match standard coding
theory notation and write this as d(C) throughout.
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edges incident to any v ∈ V . Assume an identification of FE(v)
2 with F∆

2 for each v ∈ V ,

which we call the local view of v. Given a local code C0 with length ∆, the Tanner code

T (G, C0) ⊂ FE
2 is given by

{c ∈ FE
2 : ∀v ∈ V, c|E(v) ∈ C0},

where c|E(v) ∈ F∆
2 is the vector formed by the values of c on the local view of v.

It will be convenient for us to view the Tanner construction through its parity check

matrix, which will make up the co-boundary operators of our chain complex. If our local

code C0 has parity check matrix M0 and rate r0, the parity check matrix of the Tanner

code T (G, C) is given by the composition:

FE
2 → FV×∆

2 → FV×(1−r0)∆
2

where the first map copies the value on the edge to each local view of the vertices, and

the second map applies M0 to each local view independently for each vertex. We will

sometimes refer to this parity check matrix as the Tanner map.

6.7.5 Robust Tensor Codes Against Puncture

The properties of our Tanner maps are highly dependent on the local code used to

instantiate them. Following [277], we use a special type of local code called a tensor code.

We closely follow the discussion of these objects given in [277].

Recall that the generators of our left-right Cayley complex A and B have size

∆. We will consider codes on FA×B
2 with tensor product structures. Namely, given two

linear codes CA ⊂ FA
2 , CB ⊂ FB

2 , we define the tensor code CA ⊗ CB to be the set of

∆×∆ matrices M where each column vector (Mab)a∈A belongs to CA and each row vector

(Mab)b∈B belongs to CB. We define the dual tensor code to be the sum CA⊗FB
2 +FA

2 ⊗CB,

567



where CA ⊗ FB
2 are the ∆×∆ matrices whose columns belong to CA, and FA

2 ⊗ CB are

the ∆×∆ matrices whose rows belong to CB. The following claims about the dimension

and distance of these codes are standard and easy to verify:

1. dim(CA ⊗ CB) = dim(CA)dim(CB)

2. d(CA ⊗ CB) = d(CA)d(CB)

3. dim(CA ⊗ FB
2 + FA

2 ⊗ CB) = ∆dim(CA) + ∆dim(CB)− dim(CA)dim(CB)

4. d(CA ⊗ FB
2 + FA

2 ⊗ CB) = min(d(CA), d(CB)).

To ensure our Tanner maps have the right properties, we will actually require

our local tensor codes to have a stronger property called robustness. One can think of

robustness as a generalization of distance of usual linear codes to the context of tensor

codes, or as we will soon see, as a sort of robust testability property.

Definition 6.7.5 (Robust [277, Definition 5]). Let CA ⊂ FA
2 , CB ⊂ FB

2 be codes of length

∆ of distance dA and dB respectively. We say the dual tensor code C = CA⊗FB
2 +FA

2 ⊗CB

is w-robust if for every codeword c ∈ C with Hamming weight |c| < w, there exist

A′ ⊂ A,B′ ⊂ B, |A′| ≤ |c|/dB, |B′| ≤ |c|/dA, such that cab = 0 for any a ̸∈ A′ and b ̸∈ B′.

Leverrier and Zémor [277] prove that robust tensor codes satisfy a useful small-set

robust testability property.

Lemma 6.7.6 ([277], Proposition 6). Let CA ⊂ FA
2 , CB ⊂ FB

2 be codes of length ∆ of

distance dA and dB respectively. If the dual tensor code C = CA⊗FB
2 +FA

2 ⊗CB is w-robust

with w ≤ dAdB/2, then any word x close to both the column and row code is also close to

the tensor code. More explicitly, if d(x,CA ⊗ FB
2 ) + d(x,FA

2 ⊗ CB) < w then:

d(x,CA ⊗ CB) ≤
3

2

(
d(x,CA ⊗ FB

2 ) + d(x,FA
2 ⊗ CB)

)
.
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In fact, [277] need a slightly stronger condition than just robustness of the code:

it needs to remain robust even after the removal of a small set of rows and columns.

Conceptually, this is similar to the idea of smooth codes [131] where the code maintains

nice properties even after the removal of a small number of variables or checks. Given a code

CA ⊂ FA
2 and A′ ⊂ A, let CA′ ⊂ FA′

2 denote the puncture code which is the restriction of all

codewords in CA to the coordinates in A′ (more precisely, CA′ = {(ca)a∈A′ : (ca)a∈A ∈ CA}).

Definition 6.7.7 (Robust against puncture [277, Definition 7]). Given linear codes

CA ⊂ FA
2 , CB ⊂ FB

2 , we say the dual tensor code CA ⊗ FB
2 + FA

2 ⊗ CB is w-robust

with p-resistance to puncture if for any w′ ≤ p and A′ ⊂ A and B′ ⊂ B such that

|A′| = |B′| = ∆− w′, the dual tensor code CA′ ⊗ FB′
2 + FA′

2 ⊗ CB′ is w-robust.

Extending prior work of [315], [277] show random tensor codes are robust against

puncture.

Theorem 6.7.8 ([277, Theorem 8]). Let 0 < rA < 1 and 0 < rB < 1. Let 0 < ϵ < 1/2

and 1/2 + ϵ < γ < 1. Let CA be a random code obtained from a random uniform

rA∆×∆ generator matrix, and let CB be a random code obtained from a random uniform

(1− rB)∆×∆ parity-check matrix. With probability tending to 1 when ∆ goes to infinity,

the dual tensor code

CA ⊗ FB
2 + FA

2 ⊗ CB

is ∆3/2−ϵ-robust with ∆γ-resistance to puncturing.

Because the dual of a random code is again a random code, this implies both

CA ⊗ FB
2 + FA

2 ⊗ CB and C⊥
A ⊗ FB

2 + FA
2 ⊗ C⊥

B are robust against puncture with high

probability.

Corollary 6.7.9 ([277, Theorem 17]). Fix r ∈ (0, 1/2), ϵ ∈ (0, 1/2), γ ∈ (1/2 + ϵ, 1) and

δ > 0 satisfying −δ log δ− (1− δ) log(1− δ) < r. when ∆ is large enough, there exist codes

CA and CB of length ∆ such that
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1. dimCA = ⌊r∆⌋ and dimCB = ∆− dimCA

2. The distances of CA, CB, C
⊥
A , C

⊥
B are all at least δ∆

3. Both dual tensor codes C⊥
0 = (CA ⊗ CB)

⊥ and C⊥
1 = (C⊥

A ⊗ C⊥
B )

⊥ are ∆3/2−ϵ-robust

with ∆γ-resistance to puncturing

4. CA, CB, C
⊥
A , and C⊥

B have generator matrices where every row and column have at

least two ones.

We note that this is not exactly the statement of [277, Theorem 17], who prove the

first three conditions occur with probability going to 1 as ∆ becomes large when CA and

CB are generated as in Theorem 6.7.8. The fourth item is not included in [277], but also

occurs under this distribution with high probability by fairly standard arguments. We

give the proof in the appendix for completeness.

6.8 Constructing Small-Set HDX

We are finally ready to construct a family of 3-term chain complexes with small-set

boundary and co-boundary expansion.

Theorem 6.8.1. There exists an explicit infinite family of chain complexes {Xi} and

constants d ∈ N and ρ1, ρ2 ∈ (0, 1) such that each Xi satisfies:

1. Xi has maximum degree d and minimum degree at least 3

2. Xi has non-trivial co-homology H1

3. Xi is a (ρ1, ρ2)-small-set HDX.

Combined with Theorem 6.6.1 which transforms SS-HDX into hard instances of

3-XOR, this completes the proof of our main theorem.
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Proof of Theorem 6.1.1. Theorem 6.6.1 gives the desired explicit family of 3-XOR in-

stances as long as it is provided an explicit family of chain complexes with bounded

maximum degree, minimum degree at least 3, non-trivial co-homology, and which are

(ρ1, ρ2)-small-set boundary expanders with µ-co-systolic distance for some set of constants

µ, ρ1, ρ2 ∈ (0, 1). Since any (ρ1, ρ2)-small-set co-boundary expander has ρ1-co-systolic

distance (Lemma 6.5.2), Theorem 6.8.1 provides an explicit family of chain complexes

matching these conditions with µ = ρ1.

As discussed, Theorem 6.8.1 is proved via Leverrier and Zémor’s [277] recent

construction of good qLPDC codes. They show the associated 3-term chain complex has

linear systolic and co-systolic distance. Our contribution is to observe that the same

construction actually satisfies the stronger small-set boundary and co-boundary expansion

conditions. We note that while we only show this property for Leverrier and Zémor’s [277]

simplified construction, similar arguments likely hold for Panteleev and Kalachev’s [315]

original good qLDPC codes as well.

Construction:.

We first describe Leverrier and Zémor’s construction, which is based upon Tanner

maps (parity-check matrices of Tanner codes). To start, we’ll first need to describe the

underlying graphs and local codes of these maps. Recall the explicit family of left-right

Cayley complexes promised by Theorem 6.7.3 and for any fixed complex Xi in the family

let the group G = Gi and generator sets A = Ai, B = Bi be as in the theorem. The graphs

underlying our Tanner maps will be the ‘square graphs’ G□0 and G□1 , which we recall have

– Vertices Vi = G× {i},

– Edges E□
i = {{(g, i), (agb, i)} : g ∈ G, a ∈ A, b ∈ B}

for i ∈ {0, 1} respectively. It bears repeating that edges in these graphs are in one-to-one

correspondence with squares of the double covered Cayley complex via the following
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identifications:

{(g, i), (agb, i)} ↔ {(g, i), (ag, 1− i), (gb, 1− i), (agb, i)}.

We will frequently refer to edges in G□i as squares due to this connection.

Since the square graphs G□i are ∆2-regular, we can define a Tanner map by combining

them with any length ∆2 local code. This role will be played by the robust dual tensor

codes promised by Corollary 6.7.9. Namely, letting CA : F∆
2 → Fr∆

2 and CB : F∆
2 → F(1−r)∆

2

be as in Corollary 6.7.9 for some choice of r, ε, and γ, our local codes will be C⊥
0 and C⊥

1

where C0 = CA ⊗ CB and C1 = C⊥
A ⊗ C⊥

B .28

Combining these graphs and local codes gives the Tanner maps C0 = T (G□0 , C⊥
0 ) :

Fn
2 → Fm

2 and C1 = T (G□1 , C⊥
1 ) : Fn

2 → Fm
2 , where n = |F | = ∆2|G|/2 is the number of

squares, and m = r(1− r)∆2|V0| = r(1− r)∆2|G| comes from the fact that the both dual

tensor codes have dimension (1− r(1− r))∆2. Associating the edges of G□i with squares in

the discussed manner, one can check that C1CT0 = 0 (see [277, Section 4.1]) and therefore

that these maps define a chain complex:

X : Fm
2

δ0:=CT
0−−−−→ Fn

2
δ1:=C1−−−−→ Fm

2 . (6.9)

Moreover, this process gives an explicit family of chain complexes {Xi} by choosing Gi, Ai,

and Bi as in the explicit family of left-right Cayley complexes promised by Theorem 6.7.3,

and computing CA, CB with the desired properties by brute force search over all pairs of

length ∆ codes CA, CB of dimensions r∆ and (1− r)∆ respectively.29

This completes the construction. We now move to showing that X has the three

desired properties: bounded-degree, non-trivial co-homology, and small-set (co)-boundary
28Note we are assuming for simplicity that r∆ and (1−r)∆ are integer valued, but these can be replaced

with ⌊r∆⌋ and ∆− ⌊r∆⌋ without substantially affecting the proof (see [277]).
29Note that since ∆ is a constant with respect to our infinite family, brute force search only requires

O(1) time here.
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expansion.

X has (upper) bounded-degree:.

By definition X is bounded-degree if and only if the parity-check matrices of our

two Tanner codes have a bounded number of ones in every row and column. By the nature

of the Tanner code construction the support of any row or column is at most twice the

degree of the underlying graph. Since our graphs are of degree ∆2 (a constant with respect

to the family), the resulting complex is bounded-degree as desired.

X has (lower) bounded-degree:.

Recall we are promised that CA, CB, C
⊥
A , and C⊥

B have generator matrices where

every row and column have at least two ones. This implies that the tensor codes CA ⊗CB

and C⊥
A ⊗ C⊥

B can be taken to have generator matrices with at least four ones in each row

and column. Since these correspond to the parity check matrices of C⊥
0 = (CA⊗CB)

⊥ and

C⊥
1 = (C⊥

A ⊗ C⊥
B )

⊥ respectively, it can be easily checked that the parity check matrices

of the associated Tanner codes T (G□0 , C⊥
0 ) and T (G□1 , C⊥

1 ) also have at least four ones in

every row and column.

H1 is non-trivial:.

This follows immediately from dimensionality arguments. In particular, notice

that dimZ1 ≥ n − m, whereas dimB1 ≤ m. As a result we have dimH1 ≥ n − 2m =

(1/2− 2r(1− r))∆2|G| which is > 0 whenever r ̸= 1/2.

X is a small-set (co)-boundary expander:.

It is left to show our complexes are small-set (co)-boundary expanders. In what

follows we show the co-boundary expansion case. Since the construction is symmetric, a

similar proof gives small-set boundary expansion. For convenience, we first re-formulate

the problem as the following technical theorem. Note that this is the analog of [277,

Theorem 1] where co-systolic distance is replaced with small-set co-boundary expansion.
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We follow their notation when possible for consistency.

Theorem 6.8.2. Fix ϵ ∈ (0, 1/2), γ ∈ (1/2 + ϵ, 1) and δ > 0. For any fixed large enough

∆, if the linear codes CA and CB have minimum distance at least δ∆ and if the dual tensor

code CA⊗FB
2 +FA

2 ⊗CB = C⊥
1 is w-robust with p-resistance to puncturing for w = ∆3/2−ϵ/2

and p = ∆γ,30 then the chain complex in Equation (6.9):

X : Fm
2

δ0:=CT
0−−−−→ Fn

2
δ1:=C1−−−−→ Fm

2 ,

satisfies the following isoperimetric inequality for small, minimal chains:

∀x ∈ Fn
2 s.t. x is minimal and |x| ≤ ρ1n : |δ1x| ≥ ρ2 |x| ,

where ρ1 =
δ

6∆3/2+ϵ , ρ2 = 56
∆3−2ϵ .

Recall that this isoperimetric condition is equivalent to (ρ1, ρ2)-small-set co-

boundary expansion (Lemma 6.5.4), so this indeed proves the desired property. The

proof of Theorem 6.8.2 closely follows the analogous proof in [277] for systolic distance.

The main difference is that we must track an additional set of elements consisting of

vertices in G□0 corresponding to violated constraints. Since [277] only need to consider

x ∈ Fn
2 that are true codewords, this is not a relevant consideration in their result. We

note that throughout we set our coefficients to match those in [277] for ease of comparison.

Proof of Theorem 6.8.2. We assume x ̸= 0, as the theorem holds trivially otherwise. We

proceed by contradiction. Assuming |δ1x| < ρ2 |x|, we will show there exists y ∈ B1 such

that |x+ y| < |x|, contradicting minimality of x.

We first lay out some relevant notation. Thinking of x as a subset of E□
1 (the edge

set of G□1 ), we will consider the edge-induced subgraph G□1,x ⊂ G□1 and denote its vertex set

30We note that the value of w here is slightly different than in [277]. This corrects a small error in the
application of robust testability (Lemma 6.7.6) in the original work.
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by S ⊂ V1. Recall that each vertex (g, 1) ∈ V1 has a corresponding local view made up of

|A| · |B| incident squares, which we’ll denote by:

ℓ(g, 1) := {{(g, 1), (ag, 0), (gb, 0), (agb, 1)} : a ∈ A, b ∈ B} .

Thinking of x now as a set of squares, let x|ℓ(g,1) ∈ FA×B
2 denote the restriction of x to

the local view of (g, 1), and recall that x is a co-cycle exactly when these local views

correspond to codewords in C⊥
1 = CA ⊗ FB

2 + FA
2 ⊗ CB.

Since x is arbitrary in our setting (unlike [277] who only consider co-cycles) we

will partition the vertices of our induced subgraph into three parts: S = Sv ∪ Sn ∪ Se.

First, let Sv ⊂ S denote the set of violated vertices (g, 1) ∈ V1 whose local views x|ℓ(g,1)

do not form codewords in C⊥
1 . Following [277], we split the remaining vertices in S \ Sv

into two parts based upon their degree in the induced subgraph G□1,x: the normal vertices

Sn with degree less than w2 := ∆3/2−ϵ, and the exceptional vertices Se with degree at

least w2. The intuition behind this strategy is that because C⊥
1 is (w > w2)-robust, the

codewords associated to vertices in Sn have particularly nice structure: they are zero

outside of a small set of at most w2/(δ∆) rows and columns. This implies that any column

(respectively row) is close to a codeword in CA (respectively CB) which will eventually help

us apply small-set robust testability (Lemma 6.7.6) to prove x is close to a co-boundary

(and is therefore non-minimal).

To find such a co-boundary, we’ll first need to look to the other side of the complex.

Broadly speaking, the idea (which is the same as in [277]) is to find a vertex v ⊂ V0

whose local view shares many (heavy) rows and columns with local views of vertices in Sn.

One can then apply robustness to see that the value of x on this local view is close to a

codeword in CA ⊗ CB which can easily be translated to the desired co-boundary.

More formally, let Ex ⊂ G∪ denote the set of edges incident to the squares in x,31

31In particular for any square {(g, 0), (ag, 1), (gb, 1), (agb, 0)} ∈ x, add its four edges {(g, 0), (ag, 1)},
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and call an edge heavy if it is incident to at least δ∆ −∆1/2−ϵ/δ squares in x. We will

consider the set of vertices T ⊂ V0 which are adjacent to Sn ⊂ V1 through a heavy edge in

the graph G∪. Given v ∈ T , note that every heavy edge with an element in Sn corresponds

to a row or column that is shared in their local view (and is therefore close to a codeword of

CB or CA respectively). The goal is therefore to show that there exists a vertex in T that

is adjacent to many elements in Sn through heavy edges, while simultaneously adjacent to

few ‘bad’ vertices in Se and Sv. This will allow us to apply robustness against puncture to

find a co-boundary that reduces the weight of x. We formalize these statements below in

the following two claims.

Claim 6.8.3 (Modification of [277, Claim 13]). There exist h1 ≥ Ω(∆), d1 ≤ O(∆1/2+ϵ),

and v ∈ T such that v is incident to at least h1 heavy edges and adjacent to at most d1

vertices of Se ∪ Sv.

Claim 6.8.4 (Summary of paragraph following [277, Claim 13]). For all sufficiently large32

∆, if there exists a vertex v ∈ V0 incident to h1 ≥ Ω(∆) heavy edges and at most

d1 ≤ O(∆1/2+ϵ) vertices of Se∪Sv, then we can find a vector y ∈ B1 such that |x+ y| < |x|.

Together, Claim 6.8.3 and Claim 6.8.4 complete the proof of Theorem 6.8.2, as they

promise the existence of some y ∈ B1 such that |x+ y| < |x|, violating minimality of x.

Thus it is left to prove the claims. While Claim 6.8.4 follows largely from arguments in

[277], it is helpful to present first to motivate the more technical proof of Claim 6.8.3.

Proof of Claim 6.8.4. Recall we are given an element v ∈ V0 which is incident to at least

h1 ≥ Ω(∆) heavy edges and adjacent to at most d1 ≤ O(∆1/2+ε) vertices in Se ∪ Sv.

We consider the local view of x around v (considered as an element of G□0 ), denoted

xv ∈ FA×B
2 here for notational simplicity. Because at most d1 vertices adjacent to v in

G∪ are exceptional or violated (as considered in G□1,x), one can find A′ ⊂ A,B′ ⊂ B with

{(g, 0), (bg, 1)}, {(agb, 0), (ag, 1)}, and {(agb, 0), (gb, 1)} to Ex.
32Here we mean in terms of r, ε, and γ, so ∆ remains constant with respect to the infinite family.
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|A′| = |B′| ≥ ∆−d1, such that A′ and B′ are indexed by either normal vertices, or vertices

not in S. Furthermore, since d1 ≤ ∆γ for large enough ∆, we also have by robustness to

puncture that the restricted dual tensor code (C⊥
1 )

′ := CA′ ⊗ FB′
2 + FA′

2 ⊗ CB′ is w-robust.

Let x′
v be the restriction of xv in A′ × B′. Recall each column (row) of the local

view of a normal vertex is at most w2/(δ∆) away from a codeword by w-robustness. Then

since each column (row) of x′
v is indexed by either a normal vertex or a vertex whose

local view is all zero (i.e. not in S), every column (respectively row) of x′
v is at most

w2/(δ∆) = ∆1/2−ϵ/δ away from a codeword in CA′ (respectively CB′). Since there are

at most ∆ rows and columns, this means that x′
v is at most ∆3/2−ε/δ away from either

CA′ ⊗ FB′
2 or FA′

2 ⊗ CB′ , and moreover that:

d(x′
v, CA′ ⊗ FB′

2 ) + d(x′
v,FA′

2 ⊗ CB′) ≤ 2∆3/2−ε/δ ≤ w

for sufficiently large ∆. Because (C⊥
1 )

′ is w-robust, we can apply small-set robust testability

(Lemma 6.7.6) to infer that x′
v is close to some codeword c′ ∈ CA′ ⊗ CB′ :

d(x′
v, c

′) ≤ 3

2

(
d(x′

v, CA′ ⊗ FB′

2 ) + d(x′
v,FA′

2 ⊗ CB′)
)
≤ 3

∆3/2−ϵ

δ
.

Finally, since the total number of punctured rows and columns is less than the code

distance for large enough ∆, we can extend c′ uniquely to a codeword c ∈ CA⊗CB. Taking

into account the rows and columns added in this process, the distance from xv to c then

becomes at most d(xv, c) ≤ d(x′
v, c

′) + 2d1∆ ≤ O(∆3/2+ϵ) < o(∆2) since ε < 1/2.

On the other hand, because v is incident to Ω(∆) heavy edges, the weight |xv| =

Θ(∆2). Thus for large enough ∆, it must be the case that flipping c strictly reduces the

weight of x. More precisely, set y to be c on the local view xv and 0 elsewhere, then

we have |x+ y| < |x|. Since c ∈ CA ⊗ CB = C0, y ∈ B1 is indeed a co-boundary which

completes the proof.
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The only thing left is to show that our main technical claim actually holds, the

existence of a vertex with many heavy edges that is adjacent to few violated or exceptional

vertices. The proof technique is similar to that of [277, Claim 13], and mostly boils down

to proving that Sv and Se are small compared to Sn.

Proof of Claim 6.8.3. We split the proof into the following three claims. First, we claim

T is non-empty.

Claim 6.8.5. |T | > 0.

With this in mind, let α, β = Θ(1) be constants to be set later in the proof.

Following [277], we claim that a reasonable fraction of T is incident to many heavy edges:

Claim 6.8.6 ([277, Claim 12]). At least an α/2 fraction of vertices in T are incident to at

least h1 = α∆ heavy edges,

and further that at most some smaller fraction is adjacent to greater than d1 violated and

exceptional vertices:

Claim 6.8.7 ([277, Paragraph between Claim 4.10 and Claim 4.11]). At most an α/4

fraction of vertices in T are incident to more than d1 =
4β
α
∆1/2+ϵ vertices of Se ∪ Sv.

Combining these claims implies at least an α/4 fraction of vertices satisfy the

requirements of Claim 6.8.3. Since T is non-empty, this must apply to at least one v ∈ T

which gives the desired result.

The key to proving all three claims lies in showing that the number of vertices in

Se ∪ Sv is small compared to Sn. We will show that Sv can be upper bounded by taking

ρ2 sufficiently small, and Se can be upper bounded by the expander mixing lemma as in

[277].

Lemma 6.8.8 (Modification of [277, Claim 6]). The number of exceptional and violated

vertices is at most

|Se ∪ Sv| ≤
64

∆1−2ϵ
|S|. (6.10)
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On the other hand, the number of normal vertices is at least

|Sn| ≥ (1− 64

∆1−2ϵ
)|S|. (6.11)

Proof. The latter fact follows immediately from the former and recalling that Se, Sv, and

Sn partition S. We now show |Sv| is small. Note that by assumption we have that

|Sv| ≤ |δ1x| < ρ2 |x| ,

since δ1 is the parity-check matrix of C1 and every violated vertex corresponds to at least

one violated constraint in C1. Because V1 has degree ∆2 in G□1 (i.e. each vertex sits in ∆2

squares), we also have |x| ≤ ∆2|S|/2. Altogether this gives

|Sv| < ρ2∆
2|S|/2 = 28|S|/∆1−2ϵ

for our choice of ρ2.

Now we show |Se| is small. The degree of each non-violated vertex is at least δ∆

because the local view corresponds to a non-zero codeword in CA ⊗ FB
2 + FA

2 ⊗ CB. This

implies |Sn|+ |Se| ≤ 2|x|
δ∆

. Combining this with our bound on |Sv| gives

|S| = |Sn|+ |Se|+ |Sv| ≤ (ρ2 +
2

δ∆
)|x| ≤ 4

δ∆
|x| (6.12)

where the second inequality holds for large enough ∆ (recalling that ρ2 = O(∆−3+2ϵ)).

Applying the expander mixing lemma to E(Se, S), we then obtain

|E(Se, S)| ≤
∆2

|V1|
|Se||S|+ 4∆

√
|Se||S|

≤ 4∆

δ|V1|
|x||Se|+ 4∆

√
|Se||S|
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=
1

3
∆3/2−ϵ|Se|+ 4∆

√
|Se||S|

where we have used the assumption that |x| ≤ δn
6∆3/2+ϵ and the fact that |V1| = |G| = 2n/∆2.

On the other hand, by definition of exceptional vertices we have that |E(Se, S)| ≥

∆3/2−ϵ|Se|. Combining the inequalities we obtain |Se| ≤ 36|S|/∆1−2ϵ, and plugging in our

bound on |Sv| then gives |Se ∪ Sv| ≤ 64|S|/∆1−2ϵ as desired.

Finally, we prove Claim 6.8.5, Claim 6.8.6, and Claim 6.8.7, completing the result.

The latter two follow essentially as in [277] (replacing Se with Se ∪ Sv), but we give the

proofs here for completeness.

Proof of Claim 6.8.5. We wish to prove T is non-empty. First, recall that since x ̸= 0 by

assumption, |S| > 0. By Lemma 6.8.8, we then have |Sn| > 0 as well. We now argue

that every vertex in Sn is incident to at least one heavy edge. Since Sn is non-empty, this

implies T is non-empty as desired.

To see each vertex in Sn has a heavy edge, recall the local view of each normal

vertex is a codeword in CA ⊗ FB
2 + FA

2 ⊗ CB with weight less than w = ∆3/2−ϵ. Because

the dual tensor code is w-robust, each column (respectively row) is within ∆1/2−ϵ/δ of a

codeword in CA (respectively CB). Since these codes all have distance at least δ∆, there

must be a row or column with at least δ∆−∆1/2−ϵ/δ ones which exactly corresponds to a

heavy edge. We note this fact also implies the total number of heavy edges is at least |Sn|,

which will be useful later on.

Proof of Claim 6.8.6. Now that we have confirmed the existence of T , we want to show it

is incident to many heavy edges. To do so, we’ll argue that T is small compared to the

number of heavy edges.

To start, we show that |T | ≤ 64
δ2∆
|S|. The proof is the same as [277, Claim 11], but

we give it here for completeness. First, note that by the expander mixing lemma on G∪
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(which is the double cover of a 4
√
∆-spectral expander) we have:

|E(S, T )| ≤ 2∆

|G|
|S||T |+ 4

√
∆
√
|S||T |

≤ 2∆1/2−ε

3
|T |+ 4

√
∆
√
|S||T |

where as in Lemma 6.8.8 we have again used the fact that

|S| ≤ 4

δ∆
|x| ≤ 2

3∆5/2+ε
n =

1

3∆1/2+ε
|G|.

On the other hand, since each vertex v ∈ T is incident to at least one heavy edge e by

definition, v (and e) are contained in at least δ∆−∆1/2−ϵ/δ squares in x. Since each of

these contains an additional (unique) edge incident to v, we also have the following lower

bound

|E(S, T )| ≥ (δ∆−∆1/2−ϵ/δ)|T |.

Combining these inequalities one can check that |T | ≤ 64
δ2∆
|S| for large enough ∆ as

desired.

With this in hand, recall from the proof of Claim 6.8.5 that the total number

of heavy edges in Ex is at least |Sn| ≥ (1 − 64
∆1−2ϵ )|S| (where the inequality is given by

Lemma 6.8.8). Together, this implies the average number of heavy edges incident to a

vertex in T is at least:
|Sn|
|T |
≥ δ2∆

64

(
1− 64

∆1−2ϵ

)
=: 2α∆. (6.13)

Finally given that the average degree is at least 2α∆, we want to show there is some

fraction of vertices with degree ≥ α∆. This is immediate from recalling that the maximum

degree of G∪ (and thus T ) is 2∆, which implies at least an α/2 fraction of vertices in T

are incident to at least α∆ heavy edges as desired.

Proof of Claim 6.8.7. Finally, we want to show there are few edges between T and Se∪Sv.
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This follows from the fact that both sets are small, and the underlying graph G∪ is the

double cover of a 4
√
∆-expander on |G| = 2n

∆2 vertices. In particular, combining the

expander mixing lemma with our bounds from Lemma 6.8.8 gives:

E(Se ∪ Sv, T ) ≤
2∆

|G|
|Se ∪ Sv||T |+ 4

√
∆
√
|T ||Se ∪ Sv|

≤ 128∆2ε

|G|
|S||T |+ 32∆ε

√
|T ||S|.

Recall that |S| ≤ 1
3∆1/2+ε |G|. Further, since each normal vertex is adjacent to T and the

degree of T is at most 2∆, we have (1 − 64
∆1−2ϵ )|S| ≤ |Sn| ≤ 2∆|T |, and thus for large

enough ∆ that |S| ≤ 4∆|T |. Altogether we therefore have:

E(Se ∪ Sv, T ) ≤
128

3∆1/2−ε
|T |+ 64∆1/2+ε|T | ≤ β∆1/2+ϵ|T |

where β = 64 + 128
3∆

. As a result, at most an α/4 fraction of vertices in T are incident

to more than d1 =
4β
α
∆1/2+ϵ vertices of Se ∪ Sv as desired, which completes the proof of

Claim 6.8.3 and Theorem 6.8.2 in turn.

Putting everything together, we now prove the existence of an explicit family of

SS-HDX.

Proof of Theorem 6.8.1. Fix any r ∈ (0, 1/2), ε ∈ (0, 1/2), γ ∈ (1/2 + ε, 1), and δ ∈ (0, 1)

satisfying −δ log δ − (1− δ) log(1− δ) < r, and let ∆ = ∆(r, ε/2, γ, δ) ∈ N be sufficiently

large that the guarantees of Corollary 6.7.9 and Theorem 6.8.2 are met. Brute forcing over

pairs of length ∆ codes CA, CB of dimensions r∆ and (1− r)∆ respectively, Corollary 6.7.9

promises we can find in O∆(1) time codes CA, CB such that:

582



1. dimCA = ⌊r∆⌋ and dimCB = ∆− dimCA,

2. The distances of CA, CB, C
⊥
A , C

⊥
B are all at least δ∆,

3. Both dual tensor codes C⊥
0 = (CA⊗CB)

⊥ and C⊥
1 = (C⊥

A ⊗C⊥
B )

⊥ are ∆3/2−ϵ/2-robust

with ∆γ-resistance to puncturing.

4. CA, CB, C
⊥
A , and C⊥

B have generator matrices where every row and column have at

least two ones.

Following the construction and the discussion earlier this section, the Tanner maps

resulting from these codes and the explicit left-right Cayley complexes of [117] give an

explicit family of chain complexes with degree between 3 and 2∆2 and non-trivial co-

homology. Furthermore each individual complex in the family satisfies the requirements

of Theorem 6.8.2 in both directions, so by symmetry the complexes are (ρ1, ρ2)-small-set

HDX for ρ1 =
δ

6∆3/2+ϵ and ρ2 =
56

∆3−2ϵ . This concludes the proof of Theorem 6.8.1.

Remark 6.8.9. We note that the proof of Theorem 6.8.2 actually gives a stronger guarantee

than small-set (co)-boundary expansion. In particular, because the boundary y that

reduces the weight of x is supported on a local view of a single vertex, the result actually

gives an isoperimetric inequality for the broader class of small, locally minimal functions:

∀x ∈ Fn
2 s.t. x is locally minimal and |x| ≤ ρ1n : |δ1x| ≥ ρ2 |x| ,

where x is locally minimal if |x| ≤ |x+ δ0(ev)| for all basis vectors ev ∈ Fm
2 . As discussed

in Section 6.3.1, this stronger isoperimetric inequality has seen prior use in the topological

HDX literature [230, 141, 235, 237] as well as in recent work on c3-LTCs [281] and qLDPC

codes [282].
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6.9 Existence of Good Base Codes

In this section we prove Corollary 6.7.9, the existence of base codes CA and CB

with the properties needed for our SS-HDX construction in Theorem 6.8.1. We restate the

result here for convenience.

Corollary 6.9.1. Fix r ∈ (0, 1/2), ϵ ∈ (0, 1/2), γ ∈ (1/2 + ϵ, 1) and δ > 0 satisfying

−δ log δ − (1− δ) log(1− δ) < r. when ∆ is large enough, there exist codes CA and CB of

length ∆ such that

1. dimCA = ⌊r∆⌋ and dimCB = ∆− dimCA

2. The distances of CA, CB, C
⊥
A , C

⊥
B are all at least δ∆

3. Both dual tensor codes C⊥
0 = (CA ⊗ CB)

⊥ and C⊥
1 = (C⊥

A ⊗ C⊥
B )

⊥ are ∆3/2−ϵ-robust

with ∆γ-resistance to puncturing

4. CA, CB, C
⊥
A , and C⊥

B have generator matrices where every row and column have at

least two ones.

Proof. We assume for notational simplicity that r∆ and (1− r)∆ are integral (the proof

is essentially the same without this assumption). We will argue that all four properties

are satisfied with probability going to one (as ∆ becomes large) under some distribution
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for the generation of CA and CB. By a union bound, a pair satisfying all properties must

then exist for large enough ∆.

Consider the distribution over codes CA and CB given by generating CA by a

uniformly random r∆ × ∆ generator matrix, and C⊥
B from an independent uniformly

random r∆×∆ generator matrix. Leverrier and Zémor [277] prove that the first three

conditions occur with probability going to one under this distribution (see [277, Theorem

17]), so we need only show the last condition holds.

This follows easily from a few basic observations. Let r0 ∈ (0, 1) be any constant.

First, observe that conditioned on being full rank, a uniformly random r0∆×∆ generator

matrix corresponds to a uniformly random subspace of dimension r0∆, and furthermore

that such a matrix is full rank with probability going to 1 as ∆ grows large. Second, note

that by a Chernoff and union bound, the probability this random generator matrix has

any row or column with less than two ones also quickly goes to zero. This implies that for

any fixed r0, as ∆ grows large the probability that a random subspace of dimension r0∆

has a generator matrix satisfying condition 4 goes to 1.

Since CA and C⊥
B are generated by uniformly random r∆×∆ generator matrices,

they clearly satisfy condition 4 with high probability. The trick is then simply to notice

that (conditioned on full rank), C⊥
A and CB are uniformly random subspaces of dimension

(1− r)∆, and therefore also satisfy condition 4 with probability going to one by the above

observation.

This chapter, in full, is based on the material as it appears in Foundations of

Computer Science 2022. Hopkins, Max; Lin, Ting-Chun. “Explicit Lower Bounds Against

Ω(n)-Rounds of Sum-of-Squares". The dissertation author was a primary investigator and

author of this material.
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Chapter 7

High Dimensional Expanders: Eigen-
stripping, Pseudorandomness, and
Unique Games

7.1 Introduction

Since their introduction by Kaufman and Mass [234] in 2016, higher order random

walks (HD-walks) on high dimensional expanders (HDX) have seen an explosion of research

and application throughout theoretical computer science, perhaps most famously in approx-

imate sampling [25, 11, 24, 95, 96, 94, 146, 218, 286, 66], but also in CSP-approximation

[9], error correction [121, 112, 220, 221], and agreement testing [124, 109, 236]. These

breakthroughs, while evidence of the importance of HD-walks, tend to have a fairly narrow

focus in their analysis of the walks themselves—most rely only on proving (often one-sided)

bounds on spectral expansion. On the other hand, there are many reasons to study

combinatorial and spectral structure beyond the second eigenvalue. Such results are often

useful, for instance, when designing graph algorithms (e.g. techniques relying on threshold

rank [48, 189, 311]), and have even shown up in recent breakthroughs in hardness of

approximation [253, 126, 125, 47, 252, 255], where such an analysis of the Johnson and

Grassmann graphs (themselves HD-walks) proved crucial for the resolution of the 2-2

Games Conjecture. Despite so many interesting connections and the recent flurry of work
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on HDX, these structures remain relatively unexplored and poorly understood.

Building on work of [239, 111], we make progress on this problem, building a

combinatorial characterization of the spectral structure of HD-walks on two-sided local-

spectral expanders, a variant of HDX introduced by Dinur and Kaufman [124] to generalize

the Johnson and Grassmann schemes1 (and their corresponding agreement tests). We show

how our characterization leads to a new understanding of local-to-global algorithms on

HDX, including the introduction of a novel spectral parameter generalizing threshold rank,

and give a concrete application to efficient algorithms for Unique Games on HD-walks.

While the structural theorems we develop lie in a different regime than the one needed to

recover hardness results like the proof of 2-2 Games, we open the door for future work

connecting HDX and hardness of approximation.

7.1.1 Contributions

We start with an informal overview of our contributions, broken down into three

main sections. We give a more thorough exposition of these results in Section 7.2 along

with some relevant background, and overview their proofs in Section 7.3. The remainder

of the paper is devoted to background, proof details, and further discussion.

Eigenstripping and ST-Rank:.

We develop the interplay of spectral and combinatorial structure on HD-walks, and

introduce a spectral parameter called Stripped Threshold Rank (ST-Rank) that generalizes

threshold rank and controls the performance of local algorithms on such graphs. In more

detail, we prove that the spectrum of any HD-walk can be decomposed into small, disjoint

intervals we call “eigenstrips,” where the corresponding eigenvectors in each strip share the

same combinatorial structure.

1The Johnson Scheme consists of matrices indexed by k-sets of [n] which depend only on intersection
size. HD-walks on the complete complex are exactly the non-negative elements of the Johnson Scheme.
The Grassmann scheme is an analogous object over vector spaces.
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Theorem 7.1.1 (Eigenstripping (informal)). Let M be an HD-walk on k-sets of an γ-HDX.

Then the spectrum of M lies in k + 1 eigenstrips of width Ok,M (γ1/2),2 each corresponding

combinatorially to a level in the underlying HDX.3

The ST-Rank of an HD-walk (Definition 7.2.3) then measures the number of spectral

strips with eigenvalues above some smallness threshold. This generalizes the concept of

standard threshold rank, which measures the total number of such eigenvalues, to coarser

eigendecompositions. Threshold rank itself is well known to control the performance of

many graph algorithms [28, 48, 189, 311, 209]. At their core, these techniques often boil

down to various methods of enumerating over eigenvectors with large eigenvalues. On

structured objects like HD-walks, we argue one should instead enumerate over strips of

eigenvectors with matching combinatorial structure, and therefore that ST-rank is the

relevant parameter. Since many important objects share similar combinatorial and spectral

characteristics to HD-walks (e.g. noisy hypercube, q-ary hypercube...), we expect ST-Rank

to have far-reaching applications beyond those studied in this work.

Edge-expansion in HD-walks:.

The combinatorial and spectral machinery we develop allows us to characterize a

fundamental graph property on HD-walks: edge-expansion. Given a graph GM = (V,E)

(corresponding to a random walk M), the edge expansion of a subset S ⊆ V measures the

expected probability of leaving S after a single application of M . It is hard to overstate the

importance of edge-expansion throughout theoretical computer science. While the most

widely used characterizations of expansion are for families where all sets expand (expander

graphs) or all small sets expand (small set expanders), more involved characterizations for

objects such as the Johnson and Grassmann graphs have seen recent use for both hardness

of approximation [253, 126, 125, 47, 255] and algorithms [37]. We prove that HD-walks
2This was recently improved to Ok(γ) by Zhang [363].
3There are k+1 rather than k strips since 0 is a dimension of the complex (corresponding to the empty

set).
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exhibit similar expansion characteristics to the Johnson graphs in two key aspects: the

expansion of locally-structured sets called links, and the structure of non-expanding sets.

Applying our machinery to the former reveals a close connection between local

expansion and ST-rank:

Theorem 7.1.2 (Local Expansion vs. Eigenstripping (informal)). The (non)-expansion

of any i-link4 is almost exactly the eigenvalue corresponding to the ith level’s eigenstrip.

This connection is particularly useful in the construction and analysis of spectral

‘local-to-global’ graph algorithms, where it helps tie performance guarantees to ST-rank

rather than threshold rank. Surprisingly, to our knowledge, Theorem 7.1.2 is novel even for

the Johnson graphs (though in this case it follows easily from known results). In fact, this

special case alone already gives a better understanding of recent local-to-global algorithm

for unique games [37].

A corollary of this result, on the other hand, extends a very well known fact on the

Johnson graphs: locally structured sets expand poorly. This raises a natural question: are

all (small) non-expanding sets explained by local structure? Before answering, we address

a subtle point: what exactly does it mean to be “explained” by local structure? There are

a number of reasonable ways to formalize this notion, each with its own use. Following

[37], we resolve an ℓ2-variant of this conjecture stating:

Theorem 7.1.3 (Characterizing Expansion in HD-walks (informal ℓ2-variant)). Any

non-expanding set in an HD-walk has high variance across low-level links.

Similar results used in hardness of approximation [253, 126, 125, 47, 252, 255], on

the other hand, rely on an ℓ∞-variant that replaces variance with maximum. While our

bound is exactly tight in the former regime, it (necessarily) loses a factor in the latter in

cases where there is a significant gap between ℓ2 and ℓ∞ structure. Proving a tight bound
4Links are grouped by level of the complex. The set of links at each level give increasingly finer

decompositions of the HDX into local parts. See Section 7.2 for details.
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directly on the ℓ∞-variant for HD-walks remains an important open question given their

close connections to the structures used in hardness of approximation.

Playing Unique Games:.

Unique Games are a well-studied class of 2-CSP that underlie a central open

question in computational complexity and algorithms called the Unique Games Conjecture

(UGC). The UGC stipulates that distinguishing between almost satisfiable (value ≥ 1− ϵ)

and highly unsatisfiable (value ≤ ϵ) instances of Unique Games is NP-hard. It implies

optimal hardness of approximation for a host of optimization problems such as Max-

Cut [251], Vertex Cover [257], and in fact all CSPs [323], but is still not known to be true

or false. In a recent breakthrough, Khot, Minzer, and Safra [255] (following a long line of

work [253, 126, 125, 47, 252]) used an ℓ∞ characterization of expansion on the Grassmann

graphs to prove a weaker variant known as the 2-2 Games Conjecture: it is NP-hard to

distinguish (1
2
− ε)-satisfiable instances from ϵ-satisfiable instances of unique games. On

the other hand, in contrast to hard CSPs such as 3SAT, a long line of research establishes

sub-exponential time approximation algorithms for unique games [28] and furthermore

shows that approximating unique games is easy on various restricted classes of graphs

such as expanders [293], perturbed random graphs [266], certifiable small-set expanders

and Johnson graphs [37].

While our ℓ2-characterization of expansion may not be as useful for hardness of

approximation as the ℓ∞-variant, it gets its chance to shine in the latter context: algorithms.

For most classes of constraint graphs, the best known algorithms for unique games depend

on the threshold rank [28, 48, 189] of the graph. Using a sum-of-squares variant of our

ℓ2-characterization and the connection between local expansion and stripped eigenvalues,

we build a local-to-global algorithm for unique games on HD-walks (based off the recent

paradigm of [37]) that depends instead on ST-rank.

Theorem 7.1.4 (Playing Unique Games on HD-walks (informal)). For any ε ∈ (0, .01),
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there exists an algorithm A with the following guarantee. If I is a (1 − ε)-satisfiable

instance of unique games whose constraint graph is an HD-walk M5 on k-sets of an HDX,

then:

1. A outputs a poly(k−r, ε)-satisfying solution.

2. A runs in time at most N Õ((kr)ε−1)

where r = R1−O(ϵ)(M) is the ST-rank of M above threshold 1 − O(ϵ), and there are N

total k-sets.

When k = O(1), the ST-rank above any threshold τ is substantially smaller than

the threshold rank above τ for (non-expanding) HD-walks, and Theorem 7.1.4 therefore

obtains a strict improvement over previous results based on threshold rank for this family.

In many cases, such as sparsifications of (constant-level) Johnson graphs or related objects

like slices of the noisy q-ary hypercube, our algorithm reduces the best-known runtime

from nearly-exponential to polynomial. Besides its independent algorithmic interest, the

result carries a number of connections to other open problems both in and outside of

the study of unique games. The algorithm sheds some (limited) light,6 for instance, on

requisite structure for candidate hardness reductions that use direct product testing [256]

or potential attempts to use agreement tests based on local-spectral expanders [124]. It

gives some hope for better unique games algorithms on graphs like the hypercube [2] as

well, which can be viewed as an HD-walk on level k = O(logN) on a weaker (one-sided)

notion of high dimensional expansion than we study. Outside of unique games the result

has some further connections to error correcting codes, where approximation algorithms

for general CSPs on HDX underlie recent breakthroughs in efficient decoding for locally

testable codes [220, 221]. In fact, algorithms specifically for unique games over expanders
5Note that self-adjoint random walks can be equivalently viewed as undirected weighted graphs, and

therefore also as underlying constraint graphs for unique games.
6The result certainly does not rule out reductions using such structure, but states that one must be

careful in doing so that the resulting constraint graphs fall outside the parameter regime for our algorithm.
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have already seen similar use for efficient decoding of direct-product codes based on HDX

structure [121].

7.2 Our Results

We now move to a more in-depth exposition of our main results. First, however, we

cover some background regarding local-spectral expanders and higher order random walks.

For a full treatment of these and related objects, see Section 7.5. Local-spectral expansion

is a robust notion of local connectivity on pure simplicial complexes introduced by

Dinur and Kaufman [124]. A d-dimensional pure simplicial complex is the downward

closure of a d-uniform hypergraph, that is a collection:

X = X(0) ∪ . . . ∪X(d)

where X(d) ⊆
(
[n]
d

)
is a d-uniform hypergraph, and X(i) consists of all τ ∈

(
[n]
i

)
such that

τ ⊂ T for some T ∈ X(d) (and X(0) = {∅}). We note that this notation is off-by-one

from much of the HDX literature, where X(i) is instead given by sets of size i + 1, a

notation rooted in the topological view of simplicial complexes. The former definition is

more common in combinatorial works (e.g. the sampling literature [24]), and more natural

for our purposes.

Simplicial complexes come equipped with natural local structure called links. For

every i and τ ∈ X(i), the link of τ is the restriction of the complex to faces containing τ ,

that is:

Xτ = {σ : σ ∩ τ = ∅, σ ∪ τ ∈ X}.

We call the link of an i-face an i-link, and when clear from context, will also use Xτ to

denote the set of faces at a given level (e.g. in X(d)) containing τ . Following Dinur and

Kaufman [124], we say a complex is a two-sided γ-local-spectral expander if the
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graph underlying every link is a γ-spectral expander (that is all non-trivial eigenvalues

are smaller than γ in absolute value). Finally, it is worth noting that we actually study

the more general set of weighted pure simplicial complexes (see Section 7.5), but

for simplicity restrict to the unweighted case for the moment as it requires essentially no

modification.

Higher order random walks [234] are analogues of the walk associated with standard

graphs (given by the normalized adjacency matrix) that moves from vertex to vertex

via an edge. In a higher order random walk, one applies a similar process at any level

of the complex—moving for instance between two edges via a triangle, or two triangles

via a pyramid. We call walks between k-faces of a complex k-dimensional HD-walks

(see Definition 7.5.7 for formal definition), and study a broad set of walks that capture

important structures such as sparsifications of the Johnson and Grassmann schemes.7

For simplicity, throughout the introduction we will often focus on two natural classes of

HD-walks which see the most use in the literature: the canonical walks N i
k which walk

between k-faces via a neighboring (k + i)-face, and the partial-swap walks Si
k which

do the same but only move between k-faces of fixed intersection size k − i. While this

latter class may seem less natural at first, notice that on the complete complex they are

exactly the well-studied Johnson graph J(n, k, k − i) (the graph on
(
[n]
k

)
where (v, w) ∈ E

iff |v ∩ w| = k − i).

7.2.1 Eigenstripping and ST-Rank

With background out of the way, we start our results in earnest with a more in-

depth discussion of eigenstripping and ST-rank: the spectral and combinatorial structure

of HD-walks. We prove that the spectra of k-dimensional HD-walks lie in k + 1 tightly

concentrated “eigenstrips”, where the ith strip corresponds combinatorially to functions
7We note that the Grassmann scheme comes from applying HD-walks to the Grassmann poset, which

is not a simplicial complex.
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lifted from the ith level of the complex by averaging.

Theorem 7.2.1 (Spectrum of HD-Walks (Informal Theorem 7.6.2 + Corollary 7.7.6 +

Proposition 7.7.11)). Let M be an HD-walk on the kth level of a two-sided γ-local-spectral

expander. Then the spectra of M is highly concentrated in k + 1 strips:

Spec(M) ∈ {1} ∪
k⋃

j=1

[λi(M)− e, λi(M) + e]

where the λi(M) are decreasing constants depending only on M , and the error term satisfies

e ≤ Ok,M (
√
γ). Moreover, the span of eigenvectors with eigenvalues in the strip λi(M)± e

are (approximately) functions in X(i) lifted to X(k) by averaging.

Recently, Zhang [363] provided a quantitative improvement of Theorem 7.2.1 such

that e ≤ Ok(γ). Theorem 7.2.1 can be seen as a marriage (and generalization) of previous

results studying N1
k of Kaufman and Oppenheim [239], and Dikstein, Dinur, Filmus, and

Harsha (DDFH) [111]. The former prove that N1
k exhibits spectral eigenstripping, while

the latter introduce the corresponding combinatorial structure but lack the machinery

to tie it directly to these strips. We fill in the gap by proving a general linear algebraic

theorem of independent interest.

Theorem 7.2.2 (Approximate Eigendecompositions Imply Eigenstripping (Informal

Theorem 7.6.2)). Let M be a self-adjoint operator over an inner product space V , and

V = V 1 ⊕ . . .⊕ V k a decomposition satisfying ∀1 ≤ i ≤ k, fi ∈ V i:

∥Mfi − λifi∥ ≤ ci∥fi∥

for some family of constants ({λi}ki=1, {ci}ki=1). Then as long as the ci are sufficiently
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small, the spectra of M is concentrated around each λi:

Spec(M) ⊆
k⋃

i=1

[λi − e, λi + e] = Iλi
,

where e = Ok,λ

(√
maxi{ci}

)
. This was recently improved to e ≤ Ok(maxi{ci}) by Zhang

[363].

Theorem 7.2.1 then follows from proving that DDFH’s decomposition is an approx-

imate eigendecomposition for all HD-walks (DDFH only show this holds for N1
k ).

In the analysis of graphs, it is often useful to bound the number of eigenvalues

above some smallness threshold. This parameter, called the threshold rank, often plays

a key role, for instance, in graph algorithms, including many methods for generic 2CSP

approximation [28, 48, 189, 311, 209]. Painted in broad strokes, these algorithms usually

boil down to some method of eigenvalue enumeration, whether performed directly or

implicitly in the proof of key structural lemmas. Given the spectral structure of HD-walks

(or generally any operator with a natural approximate eigendecomposition), we argue that

it is generally more natural to enumerate over strips with large eigenvalues instead. This

motivates a natural spectral complexity measure we call stripped threshold rank.

Definition 7.2.3 (Stripped Threshold Rank). Let M be a linear operator over a vector

space V with decomposition V =
⊕

i V
i denoted D , where each V i is the span of some

set of eigenvectors. Given δ ∈ R, the stripped threshold rank (ST-Rank) with respect to δ

and D is:

Rδ(M,D) =
∣∣{V i ∈ D : ∃f ∈ V i,Mf = λf, λ > δ}

∣∣ .
In this work, D will always correspond to the eigenstrips given by Theorem 7.2.1 so we

drop it from the notation.

The ST-Rank of any (non-expanding) k-dimensional HD-walk is always substantially

smaller than its standard threshold rank (which is at least poly(n), and often as large as
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nΩ(k)). As a general algorithmic paradigm, if one can leverage the combinatorial structure

of eigenstrips to replace eigenvalue enumeration, it is possible to achieve substantially better

performance on structured graphs. In Section 7.2.3, we discuss a concrete instantiation of

this framework to unique games, where we gain substantial improvements over state of

the art algorithms [48, 28] over such constraint graphs.

Before moving on to such results, however, it is natural to ask whether we can give

a finer-grained characterization of ST-rank for HD-walks. In Section 7.7 we show how to

explicitly compute the approximate eigenvalue λi(M) corresponding to each strip based

upon the structure of M . While the full result requires further background, its specification

to canonical and partial-swap walks has a nice combinatorial interpretation. Recall that

the canonical walk N i
k walks between k-faces through a shared (k + i)-face. We say it has

depth i/(k + i) since it traverses i of the k + i relevant levels of the complex. Similarly,

we say the partial-swap walk Si
k has depth i/k, since it swaps i out of k elements (up to

factors in γ, this can also be viewed as walking between k faces via a shared k − i face,

where one traverses i out of the k relevant levels). We prove that the stripped eigenvalues

corresponding to the canonical and partial-swap walks decay exponentially fast with a

base rate dependent on depth.

Theorem 7.2.4 (ST-rank of HD-walks (Corollary 7.7.7 + Corollary 7.7.9)). Let M be

a canonical or partial-swap walk of depth 0 ≤ β ≤ 1 on a sufficiently strong two-sided

local-spectral expander. Then the eigenvalues corresponding to the eigenstrips of M decay

exponentially fast:

λi(M) ≤ e−βi.

The ST-Rank Rδ(M) is then at most:

Rδ(M) ≤
ln
(
1
δ

)
β
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In other words, walks that reach deep into the complex (e.g. N
k/2
k ) have constant

ST-Rank, whereas shallow walks like N1
k have ST-rank Ω(k).

7.2.2 Characterizing (non)-Expansion in HD-Walks

We now move to our main structural application, characterizing edge expansion

in HD-walks. Edge expansion is a fundamental combinatorial property of graphs with

applications across many areas of theoretical computer science, including (as we will soon

discuss) both hardness and algorithms for unique games. For a subset of vertices S ⊆ V ,

edge expansion measures the (normalized) fraction of edges which leave S.

Definition 7.2.5 (Edge Expansion). Given a graph G(V,E), the edge expansion of a

subset S ⊂ V is:

ϕ(G,S) =
E(S, V \ S)
E(S, V )

where E(S, T ) counts the number of edges crossing from S to T (double-counting edges in

the intersection). When convenient, we denote non-expansion, 1 − ϕ(G,S), as ϕ̄(G,S),

and drop G from the notation when clear from context.

It is often useful to characterize exactly which sets in a graph expand. The two

most widely used characterizations are when all8 sets expand (expanders), or when all

small sets expand (small-set expanders). However, many important structures fall outside

such a simple characterization. The Johnson and Grassmann graphs, for instance, are well

known to have small non-expanding sets. Characterizing the structure of non-expansion

in these graphs was crucial not only for the resolution of the 2-2 Games Conjecture [255],

but also for recent algorithms for unique games [37].

Using the spectral machinery developed in the previous section, we give a tight

characterization of expansion in HD-walks. As discussed, we focus mainly on two key

aspects: the expansion of links, and the structure of non-expanding sets. We start with
8By this we really mean all sets of size at most |V |/2.
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the former, where links have long been the prototypical example of small, non-expanding

sets for the Johnson graphs. In fact, we prove this stems from a much stronger connection

between local expansion and spectral structure in HD-walks.

Theorem 7.2.6 (Local (non)-Expansion = Global Spectrum (Informal Theorem 7.9.2)).

Let M be a k-dimensional HD-walk on a sufficiently strong d-dimensional two-sided γ-local-

spectral expander with d > k,9 and let λi(M) be approximate eigenvalues corresponding to

M ’s k + 1 eigenstrips. For all 0 ≤ i ≤ k and τ ∈ X(i), let Xτ denote the set of k-faces

that contain τ . Then Xτ is expanding if and only if λi(M) is small:

ϕ̄(Xτ ) ∈ λi(M)±Ok(γ).

Since HD-walks (like the Johnson graphs) are generally poor spectral expanders,

Theorem 7.2.6 implies the existence of small, non-expanding sets (namely 1-links10). Our

stronger characterization of local expansion is of independent interest beyond this simple

corollary, however, due to its important connections to local-to-global algorithms and

ST-rank. In particular, essentially all work on high-dimensional expanders relies on a

strategy known as the local-to-global paradigm, where a global property (e.g. mixing,

agreement testing, etc.) is reduced to examining a local version on links. These arguments

often reduce to showing that, in some relevant sense, interaction between links is minimal.

Theorem 7.2.6 offers exactly such a statement for levels of the complex which correspond

to eigenspaces with large eigenvalues—since links at these levels are non-expanding, they

don’t have much interaction. This gives a holistic local-to-global approach for spectral

graph algorithms on HDX, since the eigenspaces corresponding to small eigenvalues are
9The lower bound on non-expansion still holds for d = k, which is sufficient for most applications of

this result. It’s also worth noting that the condition d > k itself is generally trivially satisfied, since all
known two-sided local-spectral expanders are in fact cutoffs of larger complexes.

10Since we generally consider the regime where |X(1)| ≫ k, a basic averaging argument gives that there
must exist a o(1)-size 1-link. One may also note that in a γ-local-spectral expander, no 1-link can have
more than Ok(γ) mass, so all links are small if γ ≤ o(1).
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traditionally easy to handle through other means. Later we will see an algorithmic

application of this approach to unique games, where the non-expansion of links allows us

to patch together local solutions, and the connection to global spectra ties performance of

the algorithm to ST-rank.

Returning to the topic of expansion, Theorem 7.2.6 shows that as long as M is not

a spectral expander, there always exist small, non-expanding sets in the form of links. This

raises a natural question: are all non-expanding sets explained by links? Before answering,

let’s spend a little time formalizing this. Given a subset S ⊂ X(k), let LS,i be a function

on i-faces measuring the deviation of S from its average across links at level i:

∀τ ∈ X(i) : LS,i(τ) = E
Xτ

[1S]− E[1S].

The statement “non-expansion is explained by links” then really amounts to saying that we

expect LS,i to be far from 0 in some sense if S is non-expanding. There are a number of

reasonable ways to formalize this notion, each with its own use. Following [37], we mainly

focus on an ℓ2-variant that is particularly useful for designing local-to-global algorithms:

if S is non-expanding, then ∥LS,i∥22 (or equivalently the variance of S across i-links) must

be large. It is perhaps easier to think about this result in terms of its contrapositive. Call

a set ℓ2-pseudorandom if its variance across i-links is small.

Definition 7.2.7 (ℓ2-Pseudorandom Sets). Let X be a pure simplicial complex. We call

a subset S ⊂ X(k) (ε, ℓ)-ℓ2-pseudorandom if

∀i ≤ ℓ : ∥LS,i∥22 ≤ εE[1S]

We remark briefly on the choice of normalization by E[1S] on the right. While

mostly a formality, we will see this is in fact a natural choice both in comparison to the

ℓ∞-variant (which differs in some natural sense by at least a factor of E[1S]), and when
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considering expansion which is itself normalized by E[1S]. Indeed with this in mind, we

prove that (ε, ℓ)-ℓ2-pseudorandom sets expand near-perfectly.

Theorem 7.2.8 (ℓ2-Pseudorandom Sets Expand (Informal Theorem 7.9.5)). Given a

k-dimensional HD-walk M on a sufficiently strong two-sided γ-local-spectral expander and

small constants α, δ, ε > 0, we have that any (ε, Rδ(M))-pseudorandom set S of density α

expands near-perfectly:

ϕ(S) ≥ 1− α− δ −Ok(ε)−Ok(γ)

We note that (the formal version of) this result is exactly tight (in the limit

of γ → 0). Passing back to the original (now contrapositive) form of the statement,

Theorem 7.2.8 immediately implies that any non-expanding set must have large variance

across links at a level determined by the ST-rank of M . On the algorithmic side, this

informally translates to the statement that most interesting structure lies on low-level

links, which is crucial to any local-to-global algorithm.

Before formalizing this algorithmic intuition in the case of unique games, it’s worth

taking a moment to consider the implication of Theorem 7.2.8 to a different formalization

of this problem with recent applications to hardness of approximation: the ℓ∞-variant.

In this characterization, the (squared) ℓ2-norm of LS,i is replaced with its maximum. In

other words, the ℓ∞-variant characterization posits that every non-expanding set must be

highly concentrated in some individual link. We prove that Theorem 7.2.8 actually holds

in this regime as well by a simple reduction. If we analogously define ℓ∞-pseudorandom

sets (see Definition 7.8.5), it is not hard to show that any ℓ∞-pseudorandom set must also

be ℓ2-pseudorandom. This results in a tight version of Theorem 7.2.8 for the ℓ∞-regime,

but only when max(LS,i) is close to 1
E[1S ]
∥LS,i∥2. Practically, the interesting regime in

hardness of approximation is when these two quantities are far apart. In this case our ℓ∞

to ℓ2 reduction necessarily loses important factors, so we cannot recover any results from

the hardness of approximation literature.
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Nevertheless, it is worth stating that as an immediate corollary of our ℓ2-based

analysis we get an ℓ∞-characterization of expansion in HD-walks: any non-expanding set

must be non-trivially concentrated in a link.

Corollary 7.2.9 (Non-expanding Sets Correlate with Links (Informal Corollary 7.9.8)).

Let M be a k-dimensional HD-walk on a sufficiently strong two-sided γ-local-spectral

expander. Then if S ⊂ X(k) is a set of density α and expansion at most:

ϕ(S) < 1− α− δ −Ok(γ)

for some δ > 0, S must be non-trivially correlated with some i-link for 1 ≤ i ≤ r =

Rδ/2(M):

∃1 ≤ i ≤ r, τ ∈ X(i) : E
Xτ

[1S] ≥ α +
cδ,r(
k
i

)
where cδ,r depends only on δ and the ST-rank r.

Proving a k-independent ℓ∞-characterization for HD-walks, either directly or via

a stronger k-dependent reduction to the ℓ2-regime, remains an interesting open problem.

Such a characterization is known on the Johnson graphs (and a number of related objects

[245, 147]), and may shed light on similar structure in the Grassmann graphs used to prove

the 2-2 Games Conjecture [255]. We discuss some additional subtleties in this direction in

Section 7.2.4.

7.2.3 Playing Unique Games

One motivation for studying spectral structure and non-expansion in HD-walks

stems from a simple class of 2-CSPs known as unique games, a central object of study

in hardness-of-approximation since Khot’s introduction of the Unique Games Conjecture

(UGC) [250] nearly 20 years ago. We study affine unique games which are known to be as

hard as unique games [251]:
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Definition 7.2.10 (Affine Unique Games). An instance I = (G,S) of affine unique games

over alphabet Σ = {0, . . . ,m− 1} is a weighted undirected graph G(V,E), and set of affine

shifts S = {suv ∈ Σ}(u,v)∈E. The value of I, val(I), is the maximum fraction of satisfied

constraints over all possible assignments ΣV :

max
X∈ΣV

P
(u,v)∼E

[Xu −Xv = suv(mod |Σ|)],

where edges are drawn corresponding to their weight. For an individual assignment X, we

refer to this expectation as valI(X). Any weighted undirected graph G is uniquely associ-

ated with a self-adjoint random-walk matrix M where M(u, v) = PE[(u, v)]/
∑

w PE[(u,w)]

(see Section 7.14.1). We will usually view the constraint graph in this manner instead,

referring to unique games instances over random-walks as I = (M,Π).

Informally, the UGC states that for sufficiently small constants ε, δ, there exists

an alphabet size such that distinguishing between instances of unique games with value

1− ε and δ is NP-hard. A positive resolution to the UGC would resolve the hardness-of-

approximation of many important combinatorial optimization problems, including CSPs

[323], vertex-cover [257], and a host of others such as [250, 251, 188, 98, 258, 260].

Building on the recent framework of Bafna, Barak, Kothari, Schramm, and Steurer

[37], we show how our structural theorems combine with the notion of ST-rank to give

efficient algorithms for unique games over HD-walks.

Theorem 7.2.11 (Playing Unique Games on HD-walks (Informal Theorem 7.10.1)). For

any ε ∈ (0, .01), there exists an algorithm A with the following guarantee. If I = (M,S)

is an instance of affine unique games with value at least 1 − ε over M , a complete k-

dimensional HD-walk on a d-dimensional two-sided γ-local-spectral expander with γ ≪ ok(1)

and d > k,11 then A outputs a poly(τ)-satisfying assignment in time |X(k)|poly(1/τ), where
11Formally, we note γ also has dependence on M (see Theorem 7.10.1), though this can be removed in

special cases like the Johnson scheme. We also note again that d > k is generally a trivial condition for
strong two-sided local-spectral expanders.
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τ =

(
ε

( k
r(ε))

)
and r(ε) = R1−O(ε)(M) is the ST-rank of M .

It is worth giving a quantitative comparison of this result to the best known

algorithms based on threshold rank [28, 48, 189]. These algorithms run in time roughly

exponential in the (1−O(ϵ))-threshold rank of G to get similar soundness guarantees when

k = O(1).12 Due to the poor threshold rank of HD-walks, this generally amounts to nearly

exponential time (2|X(k)|poly(ϵ)), whereas our algorithm runs in time roughly |X(k)|2O(k) . In

the regime of constant k, Theorem 7.2.11 therefore gives a polynomial time algorithm for

such instances achieving an exponential improvement over threshold-rank based algorithms.

We describe a few examples of such families below.

Since Theorem 7.2.11 can be a bit hard to interpret without additional knowledge of

the high dimensional expansion literature, we end our discussion of algorithms for unique

games with a few concrete examples. Perhaps the most basic example generalizing the

Johnson graphs that fits into our framework are slices of the q-ary noisy hypercube. For

constant-level slices, we improve over BRS from nearly exponential to polynomial. Further,

the result is robust in the sense that it continues to hold even when the underlying complex

is perturbed. This results in algorithms, for instance, for dense random sparsifications

of these slices, or slices taken from a negatively correlated distribution over Zn
q (or more

generally slices of any spectrally-independent spin-system [24]). Another interesting class

of graphs we see significant speed-ups on are algebraic sparsifications of the Johnson graphs

stemming from bounded-degree constructions of two-sided local-spectral expanders such

as (cutoffs of) Lubotsky, Samuels, and Vishne’s [290] Ramanujan complexes, or Kaufman

and Oppenheim’s [238] coset complex expanders. The resulting speedups on this class

of graphs is somewhat more surprising than the above, since they exhibit substantially

different structure in other aspects (they are, for instance, of bounded degree unlike the

Johnson graphs).
12This corresponds to the setting in which the dimension of the HD-walk is fixed, and the number of

vertices in the complex grows.
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7.2.4 Connections to Hardness and the Grassmann Graphs

We finish the discussion of our results by taking a deeper look at connections with

recent progress on the UGC, and argue that our framework opens an avenue for further

progress. The resolution of the 2-2 Games Conjecture [255] hinged on a characterization

of non-expanding sets on the Grassmann graph not dissimilar to what we have shown

for two-sided local-spectral expanders. While we have focused above on HDX which are

simplicial complexes, our work extends to a broader set of objects introduced by DDFH

[111] called expanding posets which includes class of objects includes expanding subsets of

the Grassmann poset we call q-eposets (we refer the reader to [111] for definitions and

further discussion).

Theorem 7.2.8 and Corollary 7.2.9 extend naturally to HD-walks on q-eposets. We

state the latter result here since it follows without too much difficulty from the same

arguments as in this paper, but the full details (and further generalizations to expanding

posets) will appear in a companion paper.

Corollary 7.2.12 (Non-expansion in q-eposet). Let (X,Π) be a two-sided γ-q-eposet with

γ sufficiently small, M a k-dimensional HD-walk on (X,Π). Then if S ⊂ X(k) is a set of

density α and expansion:

ϕ(S) < 1− α−Oq,k(γ)− δ

for some δ > 0 and r = Rδ/2(M), S must be non-trivially correlated with some i-link for

1 ≤ i ≤ r:

∃1 ≤ i ≤ r, τ ∈ X(i) : E
Xτ

[1S] ≥ α +
cδ,r(
k
i

)
q

where cδ,r depends only on δ and the ST-rank r, and
(
k
i

)
q

is the standard q-binomial

coefficient: (
k

i

)
q

=
i−1∏
j=0

qk−j − 1

qi−j − 1
,
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Since the Grassmann graphs are simply partial-swap walks on the Grassmann

poset,13 Corollary 7.2.12 provides a direct connection to the proof of the 2-2 Games

Conjecture [255]. Unfortunately, due to the dependence on k, this result is too weak to

recover the proof.

The dependence of both Corollary 7.2.9 and Corollary 7.2.12 on k is a subtle but

important point, so we’ll finish the section by discussing it in a bit more detail. The

particular dependence we get in the ℓ2-regime,
(
k
i

)
for the Johnson and

(
k
i

)
q

for the

Grassmann, is tight and can be understood by examining the variance of i-links. While

i-links are the prototypical example of an Ω(1)-pseudorandom set in the ℓ∞ regime, one

can show that they are actually about 1/
(
k
i

)
-pseudorandom in the ℓ2-regime (or 1/

(
k
i

)
q

for

the Grassmann). Since links are non-expanding, any bound in the ℓ2-regime must have

matching dependence on k to make up for this fact. Indeed, one can use the same argument

to show that a k-independent bound cannot exist in ℓ2-regime (even if we relax dependence

on pseudorandomness, see Proposition 7.9.7). As a result, any ℓ∞ to ℓ2 reduction like ours

(which has no dependence on k) will always result in a final bound depending on k.

Finally, it’s worth noting that while the ℓ∞-regime escapes this particular issue since

links are Ω(1)-pseudorandom (and indeed that for the Johnson graphs, a k-independent

bound is known [252]), there is an additional consideration for the Grassmann graphs:

there exist small, non-expanding ℓ∞-pseudorandom sets [125]. The proof of the 2-2 Games

Conjecture therefore relies on a finer-grained definition of local structure than links (called

zoom-in zoom-outs) [255]. While we cannot hope to apply exactly the same techniques to

analyze this variant, we view our method’s generality and simplicity as evidence that a

deeper understanding of higher order random walks may be key to further progress on the

UGC.
13Seeing that they are HD-walks is non-trivial, and follows from the q-analog of work in [9].
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7.3 Proof Overview

In this section we give a proof overview of our main results. Throughout the section

we will assume the complex is endowed with a uniform distribution, and will (usually)

ignore error terms in the spectral parameter γ. The full details for weighted complexes

and a careful treatment of the error terms is given in the main body along with a number

of further generalizations.

7.3.1 Eigenstripping and the HD-Level-Set Decomposition

We start with a discussion of the techniques underlying Theorem 7.2.1 (Eigenstrip-

ping). At its core, this (and indeed all of) our results rely upon now-standard machinery

for working on simplicial complexes called the averaging operators.

Definition 7.3.1 (The Averaging Operators). Let X be a d-dimensional pure simplicial

complex. For any 0 ≤ k ≤ d, denote the space of functions f : X(k)→ R by Ck. The “Up”

operator lifts f ∈ Ck to Ukf ∈ Ck+1:

∀y ∈ X(k + 1) : Ukf(y) =
1

k + 1

∑
x∈X(k):x⊂y

f(x).

The “Down” operator lowers functions f ∈ Ck+1 to Dk+1f ∈ Ck:

∀x ∈ X(k) : Dk+1f(x) =
1

n− k

∑
y∈X(k+1):y⊃x

f(y).

Since it is often useful to compose these operators, we will use the shorthand Uk
i =

Uk−1 . . . Ui and Dk
i = Di+1 . . . Dk to denote the composed averaging operators which raise

and lower functions between Ci and Ck by averaging.

In fact, the averaging operators are crucial even to defining higher order random

walks. We discuss this definition in greater detail in Section 7.5, and for now settle for
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noting that a basic class of HD-walks are given simply by composing U and D. For

instance, the canonical walk N i
k is the composition Dk+i

k Uk+i
k , and the partial swap walks

Si
k turn out to be an affine combinations of the N i

k [9].

The proof of Theorem 7.2.1 relies on a useful decomposition for functions on simpli-

cial complexes based upon the averaging operators we call the HD-level-set Decomposition

recently introduced by Dikstein, Dinur, Filmus, and Harsha [111]. The idea is to break

functions into components coming from each level of the complex, lifted by averaging to

the top level.

Theorem 7.3.2 (HD-Level-Set Decomposition, Theorem 8.2 [111]). Let X be a d-

dimensional two-sided γ-local-spectral expander, γ < 1
d
, 0 ≤ k ≤ d, and let:

H0 = C0, H
i = Ker(Di), V

i
k = Uk

i H
i.

Then:

Ck = V 0
k ⊕ . . .⊕ V k

k .

In other words, every f ∈ Ck has a unique decomposition f = f0 + . . . + fk such that

fi = Uk
i gi for gi ∈ Ker(Di).

The HD-Level-Set Decomposition is particularly useful not only for its rigid combi-

natorial structure, but also its spectral properties. Namely, one familiar with the Johnson

Scheme might notice that when X is the complete complex, this decomposition exactly

gives the eigenspaces of the Johnson Scheme. DDFH gave an approximate extension of this

result to the basic “upper” walk Dk+1Uk, proving that the V i
k are approximate eigenspaces.

The proof of Theorem 7.2.1 follows from combining an extension of this result to

all HD-walks (see Corollary 7.7.6) with Theorem 7.2.2, which states that any approximate

eigendecomposition strictly controls the spectrum of the underlying operator. However,

since the proof of Theorem 7.2.2 is purely linear algebraic (and is essentially irrelevant
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for understanding our core results on expansion and unique games), we defer detailed

discussion of the result to Section 7.6.

7.3.2 Characterizing Expansion

We now take a look at how this combinatorial understanding of the spectra of

higher order random walks allows us to characterize their edge-expansion. We start with a

standard observation, the expansion of a set can be written as the inner product of its

indicator function. In other words, if X is a simplicial complex and M is an HD-walk on

X(k), the expansion of any S ⊂ X(k) with respect to M may be written as:

ϕ(M,1S) = 1− 1

E[1S]
⟨1S,M1S⟩.

The key is then to notice that by the bilinearity of inner products, we can expand the right-

hand side in terms of the HD-Level-Set Decomposition. In particular, writing 1S =
k∑

i=0

1S,i

for 1S,i ∈ V i
k , we have:

ϕ(M,1S) = 1− 1

E[1S]

k∑
i=0

⟨1S,M1S,i⟩.

Finally, since we know each V i
k is approximately an eigenstrip concentrated around some

λi, up to additive error in γ we can simplify this to:

ϕ(M,1S) ≈ 1− 1

E[1S]

k∑
i=0

λi⟨1S,1S,i⟩. (7.1)

Thus we see that understanding the expansion of S comes down to the interplay between its

projection onto each level of the complex and their corresponding approximate eigenvalues.

Our characterization of expansion combines this observation with the combinatorial and

spectral structure of the HD-Level-Set Decomposition. We devote the rest of the section to

sketching the proofs of Theorem 7.2.6 (local expansion vs global spectra), Theorem 7.2.8
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(pseudorandom sets expand), and our reduction from the ℓ∞-variant to ℓ2-variant.

Proof sketch of Theorem 7.2.6:.

Recall that Theorem 7.2.6 shows a tight inverse relation between the expansion

of links and the spectra of M . Given τ ∈ X(j), we wish to examine the indicator

function 1Xτ of the link Xτ . First, notice that since 1Xτ =
(
k
j

)
Uk
j 1τ , it’s easy to see that

1Xτ ∈ V 0
k ⊕ . . .⊕ V j

k . We prove something stronger, that 1Xτ in fact lies almost entirely

in V j
k . In particular, we show that for every i ̸= j, 1Xτ has almost no projection onto V i

k :

⟨1Xτ ,1Xτ ,i⟩ ≤ Ok(γ)E[1Xτ ].

Since the HD-Level-Set Decomposition is approximately orthogonal [111] (more generally,

this is true of any approximate eigendecomposition, see Lemma 7.6.3), this implies that

the mass on level j is around (1 ± Ok(γ))E[1Xτ ], and plugging these observations into

Equation (7.1) we get:

ϕ(M,1S) ≈ 1− 1

E[1S]

k∑
i=0

λi⟨1S,1S,i⟩

≈ 1− λi

E[1S]
⟨1S,1S,i⟩

≈ 1− λi

where we have ignored some Ok(γ) error terms.

Proof sketch of Theorem 7.2.8:.

Proving that pseudorandom functions expand is a bit more involved, but still at its

core revolves around the analysis of Equation (7.1). In particular, since the approximate

eigenvalues of M monotonically decrease (i.e. ∀i ≥ j, λi(M) ≤ λj(M)) then for any δ > 0
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we can simplify Equation (7.1) to:

ϕ(M,1S) ≲ 1− 1

E[1S]

Rδ(M)−1∑
i=0

λi⟨1S,1S,i⟩+ δ, (7.2)

where we recall Rδ(M) is the ST-rank, denoting the number of eigenstrips of M with eigen-

values greater than δ. Using Theorem 7.2.1, it is possible to show (see Proposition 7.7.11)

that essentially all HD-walks of interest satisfy this property. With this in hand, proving

Theorem 7.2.8 boils down to characterizing the projection of a set S onto low levels of the

complex by its behavior on links.

Theorem 7.3.3 (Pseudorandomness bounds low-level weight (Informal Theorem 7.8.7)).

Let X be a sufficiently strong d-dimensional γ-local-spectral expander. For any i ≤ k ≤ d

let S ⊂ X(k) be a (ε, i)-ℓ2-pseudorandom set. Then for all j ≤ i:

⟨1S,1S,j⟩ ≲
(
k

i

)
εE[1S]

Theorem 7.2.8 follows immediately from plugging this result into Equation (7.2).

Perhaps surprisingly, Theorem 7.3.3 itself follows without too much difficulty from com-

bining analysis of the averaging operators and our spectral analysis of the HD-Level-Set

Decomposition (namely Theorem 7.2.1). In particular, given a set S ⊂ X(k), the idea is

to examine the lowered indicator function Dk
j1S, which exactly gives the expectation of S

over j-links, that is for any τ ∈ X(j):

Dk
j1S(τ) = E

Xτ

[1S].

Proving Theorem 7.2.8 then corresponds to lower bounding Var(Dk
j1S) by some function of

the projection of S onto level j. In fact, it is possible to exactly understand this connection.

The idea is to reduce the problem to a spectral analysis of HD-walks using the adjointness
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of Dk
j and Uk

j (see e.g. [111]):

Var(Dk
j1S) = ⟨Dk

j1S, D
k
j1S⟩ − E[Dk

j1S]
2

= ⟨1S, U
k
j D

k
j1S⟩ − E[1S]

2

=
k∑

ℓ=0

⟨1S, U
k
j D

k
j1S,ℓ⟩ − E[1S]

2

=
k∑

ℓ=1

⟨1S, U
k
j D

k
j1S,ℓ⟩.

Since Uk
j D

k
j is an HD-walk, Theorem 7.2.1 implies that Uk

j D
k
j1S,ℓ ≈ λℓ1S,ℓ for some

approximate eigenvalue λℓ. In the formal version of Theorem 7.2.1 we compute the

approximate eigenvalues of such walks, and in this case a simple computation shows that

λℓ =
(jℓ)
(kℓ)

. As a result, we get a tight connection between Var(Dk
j1S) and the projection of

S onto low levels of the complex:

Var(Dk
j1S) ≈

k∑
ℓ=1

(
j
ℓ

)(
k
ℓ

)⟨1S,1S,ℓ⟩

where we have ignored factors in γ. The proof then follows from noting that the right-

hand side is approximately lower bounded by 1

(kj)
⟨1S,1S,j⟩ by near orthogonality of the

HD-Level-Set decomposition [111].

ℓ∞ to ℓ2 reduction:.

We end with a simple observation that generalizes our results to the ℓ∞-variant

characterization via reduction. The idea is that the 2-norm may be re-written as a

(normalized) expectation over a modified distribution:

1

E[1S]
Var(Dk

j1S) = E
ΠS

[Dk
j1S]− E[1S] ≤ max(Dk

j1S − E[1S])
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where ΠS is the distribution on X(j) naturally induced by restricting Π to the support of S

(see Section 7.8 for further details). It immediately follows that any (ε, ℓ)-ℓ∞-pseudorandom

set is also (ε, ℓ)-ℓ2-pseudorandom.

7.3.3 Playing Unique Games

We end the section with a discussion of Theorem 7.2.11, an application of our

structural theorems to algorithms for unique games. We follow the algorithmic framework

of [37] for playing unique games on Johnson graphs, a special case of HD-walks on the

complete complex. We generalize their algorithm and its analysis to HD-walks over all

(sufficiently strong) two-sided local spectral expanders by abstracting the algorithm into

the broader local-to-global paradigm for HDX:

1. For some r, break the UG instance down into sub-instances over r-links of the

complex.

2. Solve the local sub-instances and patch together the solutions into a good global

solution.14

For their underlying algorithmic machinery, BBKSS rely heavily on a well-studied paradigm

known as the Sum-of-Squares (SoS) semidefinite programming hierarchy. We won’t go

into too much detail about this paradigm here (see Section 7.10.1 for details), and for

the moment it suffices to say that analysing SoS algorithms relies on porting the proofs

of relevant inequalities (specific to the problem at hand) into the Sum-of-Squares proof

system, a restricted proof system for proving polynomial inequalities. We leverage the

BBKSS framework to solve unique games on HDX by observing that their algorithm’s

analysis can be generalized to rely on two core structural properties true of the graphs

underlying HD-walks:
14This is only informally speaking, as the actual algorithm is iterative and repeats these two steps many

times to obtain a good solution for the whole graph
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1. A low-degree Sum-of-Squares proof that non-expanding sets have high variance in

size across links.

2. For every small enough ϵ, the existence of some r = r(ε) such that:

(a) The (r + 1)-st largest (distinct) stripped-eigenvalue of the constraint graph is

small:

λr ≤ 1− Ω(ε)

(b) The expansion of any r-link is small as well:

∀τ ∈ X(r) : Φ(Xτ ) ≤ O(ε).

In essence, properties (1) and (2a) ensure that there are good local solutions at level r,

and property (2b) ensures that these solutions can be patched together without too much

loss. Given the above properties, the proof of Theorem 7.2.11 follows the BBKSS analysis

framework, but is more technical as properties that hold for Johnson graphs generally only

hold approximately for HD-walks.

The novelty in our analysis lies mostly in proving these two properties. Luckily, we

have already done most of the work! Property (1) is simply an SoS variant of Theorem 7.2.8,

which we prove by developing SoS versions of the now standard machinery for the HD-

Level-Set Decomposition from [111]. The proof then follows essentially as discussed in

Section 7.3.2. The second property is slightly more subtle. This parameter, found in

[37] by direct computation on the Johnson graphs, determines both the soundness and

runtime of their algorithm. In fact, our framework completely demystifies its existence:

since λr and the expansion of r-links are inversely correlated by Theorem 7.2.6, r is exactly

the ST-Rank of the underlying constraint graph! As a result, using these properties and

generalizing the analysis of BBKSS results in Theorem 7.2.11: an algorithm for unique

games on HD-walks with approximation and runtime guarantees dependent on ST-Rank.
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Organization

In Section 7.4 we discuss related work on HD-walks, Unique Games, and CSP

approximation. In Section 7.5 we give requisite background and notation. In Section 7.6

we prove that approximate eigendecompositions tightly control spectral structure. In

Section 7.7, we show that the combinatorial decomposition of [111] is an approximate

eigendecomposition for any HD-walk and compute its corresponding approximate spec-

tra, thereby determining the spectral structure of HD-walks. In Section 7.8 we prove

Theorem 7.3.3, showing how pseudorandomness controls projections onto any HD-walks

eigendecomposition. In Section 7.9, we use this fact to give a tight characterization of

edge expansion in HD-walks. Finally, in Section 7.10 we give a sum-of-squares variant of

our results and show they imply efficient algorithms for unique games over HD-walks.

7.4 Related Work

Higher Order Random Walks:.

The spectral structure of higher order random walks has seen significant study

in recent years, starting with the work of Kaufman and Oppenheim [239] who proved

bounds on the spectra of N1
k on one-sided local-spectral expanders. Their result lead

not only to the resolution of the Mihail-Vazirani conjecture [25], but to a number of

further breakthroughs in sampling algorithms via a small but consequential improvement

on their bound by Alev and Lau [11]. The spectral structure of N1
k on the stronger

two-sided local-spectral expanders was further studied by DDFH [111] who introduced

the HD-Level-Set Decomposition, and Kaufman and Oppenheim [239] who introduced a

distinct approximate eigendecomposition with the benefit of orthogonality (though this

came at the cost of additional combinatorial complexity). In recent work, Kaufman and

Sharakanski [242] claim that these two decompositions are equivalent on sufficiently strong

two-sided γ-local-spectral expanders, but their proof relies on [239, Theorem 5.10] which
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has a non-trivial error. Indeed, it is possible to construct arbitrarily strong two-sided

local-spectral expanders for which the HD-Level-Set Decomposition is not orthogonal (see

Section 7.13), so their result cannot hold.15 Finally, Alev, Jeronimo, and Tulsiani [9]

showed that the HD-Level-Set Decomposition is an approximate eigendecomposition (in a

weaker sense than we require) for general HD-walks, a result we strengthen in Section 7.7.

For further information on these prior works and their applications, the interested reader

should see [8].

Unique Games:.

The study of unique games has played a central role in hardness-of-approximation

since Khot’s [250] introduction of the Unique Games Conjecture. One line of work towards

refuting the UGC focuses on building efficient algorithms for unique games for restricted

classes of constraint graphs based off of spectral or spectrally-related properties; these

include works employing spectral expansion [29, 293], threshold rank [28, 48, 189, 265],

hypercontractivity [44], and certified small-set-expansion or characterized non-expansion

[37]. Our work continues to expand this direction with polynomial-time algorithms for

(affine) unique games over HD-walks and the introduction of ST-Rank. On the other hand,

recent work towards proving the UGC has focused on characterizing non-expanding sets in

structures such as the Grassmann [255, 253, 126, 125, 47, 252, 255] and Shortcode [47, 255]

graphs. Our spectral framework based on HD-walks and the HD-Level-Set Decomposition

provides a more general method to approach this direction than previous Fourier analytic

machinery.

CSPs on HDXs:.

Finally, it is worth noting a related, recent vein of work connecting high dimensional

expansion, Sum of Squares, and CSP-approximation. In particular, Alev, Jeronimo, and

Tulsiani [9] recently showed that for k > 2, certain natural k-CSP’s on two-sided local-
15It is worth noting that the main results of [239, 242] are unaffected by this error, as an approximate

version of [239, Theorem 5.10] remains true and is sufficient for their purposes.
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spectral expanders can be efficiently approximated by Sum of Squares. Conversely, Dinur,

Filmus, Harsha, and Tulsiani [119] later used cosystolic expanders (a stronger variant) to

build explicit instances of 3-XOR that are hard for SoS. Both these works focus on k-CSPs

for k ≥ 3, where the variables of the CSP are level 1 of the complex and the constraints

are defined using the higher levels of the complex; therefore these works do not encompass

unique games. At a high level, the techniques of [9] are based on [48], and they generalize

the BRS algorithm for 2-CSPs to k-CSPs. While these works are not directly related to

ours since their definition do not encompass unique games, we see a similar pattern where

high dimensional expanding structure is useful both for hardness of and algorithms for

CSP-approximation.

7.5 Preliminaries and Notation

7.5.1 Local-Spectral Expanders and Higher Order Random
Walks

We now overview the theory of local-spectral expanders and higher order random

walks in more formality than our brief treatment in Section 7.2.

Two-Sided Local-Spectral Expanders

Two-sided local-spectral expanders are a generalization of spectral expander graphs

to weighted, uniform hypergraphs, which we will think of as simplicial complexes.

Definition 7.5.1 (Weighted, Pure Simplicial Complex). A d-dimensional, pure simplicial

complex X on n vertices is a subset of
(
[n]
d

)
. We will think of X as the downward closure

of these sets, and in particular define the level X(i) as:

X(i) =

{
s ∈

(
[n]

i

) ∣∣∣∣ ∃t ∈ X, s ⊆ t

}
.
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We call the elements of X(i) i-faces.16 A simplicial complex is weighted if its top level

faces are endowed with a distribution Π. This induces a distribution over each X(i) by

downward closure:

Πi(x) =
1

i+ 1

∑
y∈X(i+1):y⊃x

Πi+1(y), (7.3)

where Πd = Π.

Two-sided local-spectral expanders are based upon a phenomenon called local-

to-global structure, which looks to propogate information on local neighborhoods of a

simplicial complex called links to the entire complex.

Definition 7.5.2 (Link). Given a weighted, pure simplicial complex (X,Π), the link of

an i-face s ∈ X(i) is the sub-complex containing s, i.e.

Xs = {t \ s ∈ X | t ⊇ s}.

Π induces a distribution over Xs by normalizing over top-level faces which we denote by

Πs. When considering a function on the k-th level of a complex, we also use Xs to denote

the k-faces which contain s as long as it is clear from context, and refer to Xs as an i-link

if s ∈ X(i).

Two-sided local-spectral expansion simply posits that the graph underlying every

link17 must be a two-sided spectral expander.

Definition 7.5.3 (Local-spectral expansion). A weighted, pure simplicial complex (X,Π)

is a two-sided γ-local-spectral expander if for every i ≤ d− 2 and every face s ∈ X(i), the

underlying graph of Xs is a two-sided γ-spectral expander.18

16We differ here from much of the HDX literature where an i-face is often defined to have i+1 elements.
Since our work is mostly combinatorial rather than topological or geometric, defining an i-face to have i
elements ends up being the more natural choice.

17The underlying graph of a simplicial complex X is its 1-skeleton (X(1), X(2)).
18A weighted graph G(V,E) with edge weights ΠE is a two-sided γ-spectral expander if the vertex-

edge-vertex random walk with transition probabilities proportional to ΠE has second largest eigenvalue in
absolute value at most γ.
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Higher Order Random Walks

Weighted simplicial complexes admit a natural generalization of the standard

vertex-edge-vertex walk on graphs known as higher order random walks (HD-walks). The

basic idea is simple: starting at some k-set S ⊂ X(k), pick at random a set T ∈ X(k + 1)

such that T ⊃ S, and then return to X(k) by selecting some S ′ ⊂ T . Let the space of

functions f : X(k) → R be denoted by Ck. Formally, higher order random walks are a

composition of two averaging operators: the “Up” operator which lifts a function f ∈ Ck

to Ukf ∈ Ck+1:

∀y ∈ X(k + 1) : Ukf(y) =
1

k + 1

∑
x∈X(k):x⊂y

f(x),

and the “Down” operator which lowers a function f ∈ Ck+1 to Dk+1f ∈ Ck:

∀x ∈ X(k) : Dk+1f(x) =
1

k + 1

∑
y∈X(k+1):y⊃x

Πk+1(y)

Πk(x)
f(y).

These operators exist for each level of the complex, and composing them gives a basic set

of higher order random walks we call pure (following [9]).

Definition 7.5.4 (k-Dimensional Pure Walk). Given a weighted, simplicial complex (X,Π),

a k-dimensional pure walk Y : Ck → Ck on (X,Π) (of height h(Y )) is a composition:

Y = Z2h(Y ) ◦ · · · ◦ Z1,

where each Zi is a copy of D or U .

We call an affine combination19 of pure walks which start and end on X(k) a

k-dimensional HD-walk.

Definition 7.5.5 (HD-walk). Let (X,Π) be a pure, weighted simplicial complex. Let Y
19An affine combination is a linear combination whose coefficients sum to 1.
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be a family of pure walks Y : Ck → Ck on (X,Π). We call an affine combination

M =
∑
Y ∈Y

αY Y

a k-dimensional HD-walk on (X,Π) as long as it is self-adjoint and remains a valid walk

(i.e. has non-negative transition probabilities).

Previous work on HD-walks mainly focuses on two natural classes: canonical walks

(introduced in [234, 124]), and partial-swap walks (introduced in [9, 109]).

Definition 7.5.6 (Canonical Walk). Given a d-dimensional weighted, pure simplicial

complex (X,Π), and parameters k + j ≤ d, the canonical walk N j
k is:

N j
k = Dk+j

k Uk+j
k ,

where Uk
ℓ = Uk−1 . . . Uℓ, and Dk

ℓ = Dℓ+1 . . . Dk.

In other words, the canonical walk N j
k takes j steps up and down the complex via

the averaging operators. Partial-swap walks are a similar process, but after ascending the

complex, we restrict to returning to faces with a given intersection from the starting point.

Definition 7.5.7 (Partial-Swap walk). The partial-swap walk Sj
k is the restriction of

N j
k to faces with intersection k − j. In other words, if |s ∩ s′| ̸= k − j, Sj

k(s, s
′) = 0, and

otherwise Sj
k(s, s

′) = αsN
j
k(s, s

′), where

αs =

 ∑
s′:|s∩s′|=k−j

Nk(s, s
′)

−1

is the appropriate normalization factor.
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It is not hard to see that partial-swap walk St
k on the complete complex J(n, d)

(all d-subsets of [n] endowed with the uniform distribution) is exactly the Johnson graph

J(n, k, k − t). While it is not immediately obvious that the partial-swap walks are HD-

walks, Alev, Jeronimo, and Tulsiani [9] showed this is the case by expressing them as an

alternating hypergeometric sum of canonical walks.

Expansion of HD-Walks

In this work, we study the combinatorial edge expansion of HD-walks, a fundamental

property of graphs with strong connections to many areas of theoretical computer science,

including both hardness and algorithms for unique games. Given a weighted graph

G = ((V,E), (ΠV ,ΠE)) where ΠV is a distribution over vertices, and ΠE is a set of non-

negative edge weights, the expansion of a subset S ⊂ V is the average edge-weight leaving

S.

Definition 7.5.8 (Weighted Edge Expansion). Given a weighted, directed graph G =

((V,E), (ΠV ,ΠE)), the weighted edge expansion of a subset S ⊂ V is:

ϕ(G,S) = E
v∼ΠV |S

[E(v, V \ S)] ,

where

E(v, V \ S) =
∑

(v,y)∈E:y∈V \S

ΠE((v, y))

is the total weight of edges between vertex v and the subset V \ S, and ΠV |S is the

re-normalized restriction of ΠV to S. In the context of a k-dimensional HD-Walk M on a

weighted simplicial complex (X,Π), we will always have V = X(k), ΠV = Πk, and E,ΠE

given by M . Thus when clear from context, we will simply write ϕ(S).

Edge expansion in a weighted graph is closely related to the spectral structure of
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its adjacency matrix. Given a set S ⊂ V of density α = E[1S], we may write

ϕ(G,S) = 1− 1

α
⟨1S, AG1S⟩ΠV

,

where AG is the adjacency matrix with weights given by ΠE, and ⟨f, g⟩ΠV
is the expectation

of fg over ΠV . When considering such an inner product over a weighted simplicial

complex (X,Π), the associated distribution will always be Πk, so we will drop it from the

corresponding notation. Notice that the right-hand side of this equivalence may be further

broken down via a spectral decomposition of 1S with respect to AG. Thus to understand

the edge-expansion of HD-walks, it is crucial to understand the structure of their spectra.

7.6 Approximate Eigendecompositions and Eigenstrip-
ping

In this section we prove a general linear algebraic result concerning the spectra

of operators that admit an approximate eigendecomposition: their spectra lies tightly

concentrated around the decomposition’s approximate eigenvalues. Before giving the

formal result, we formalize the concept of approximate eigendecompositions.

Definition 7.6.1. Let M be an operator over an inner product space V . We call

V = V 1 ⊕ . . . ⊕ V k a ({λi}ki=1, {ci}ki=1)-approximate eigendecomposition if for all i and

vi ∈ V i, the following holds:

∥Mvi − λivi∥ ≤ ci∥vi∥.

As long as the ci are sufficiently small, we prove each V i (loosely) corresponds to

an eigenstrip, the span of eigenvectors with eigenvalue closely concentrated around λi.

Theorem 7.6.2 (Eigenstripping). Let M be a self-adjoint operator over an inner product

space V , and V = V 1 ⊕ . . .⊕ V k a ({λi}ki=1, {ci}ki=1)-approximate eigendecomposition. Let

cmax = maxi{ci}, λdif = mini,j{|λi − λj|}, and λratio =
maxi{|λi|}

λ
1/2
dif

. Then as long as cmax is
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sufficiently small:

cmax ≤
λdif

4k
,

the spectra of M is concentrated around each λi:

Spec(M) ⊆
k⋃

i=1

[λi − e, λi + e] = Iλi
,

where e = O
(
k · λratio · c1/2max

)
.

This result was recently improved by Zhang [363] to have dependence e ≤

O(
√
kcmax), removing the dependence on the approximate eigenvalues altogether. This

follows from a simple modification to our proof which we will note below. Finally, it is

also worth mentioning that a version of Theorem 7.6.2 holds with no assumption on cmax,

but the assumption substantially simplifies the bounds and is sufficient for our purposes.

Before proving Theorem 7.6.2, we note a useful property of approximate eigende-

compositions of self-adjoint operators: they are approximately orthogonal.

Lemma 7.6.3. Let M be a self-adjoint operator over an inner product space V . Further,

let V = V 1 ⊕ . . .⊕ V k be a ({λi}ki=1, {ci}ki=1)-approximate eigen-decomposition. Then for

i ̸= j, V i and V j are nearly orthogonal. That is, for any vi ∈ V i and vj ∈ V j:

|⟨vi, vj⟩| ≤
ci + cj
|λi − λj|

∥vi∥∥vj∥.

Proof. This follows from the fact that M is self-adjoint, and V i and V j are approximate

eigenspaces. In particular, notice that for any vi ∈ V i and vj ∈ V j we can bound the

interval in which ⟨Mvi, vj⟩ = ⟨vi,Mvj⟩ lies by Cauchy-Schwarz:

⟨Mvi, vj⟩ ∈ λi⟨vi, vj⟩ ± ci∥vi∥∥vj∥
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and

⟨vi,Mvj⟩ ∈ λj⟨vi, vj⟩ ± cj∥vi∥∥vj∥.

Since these terms are equal, the right-hand intervals must overlap. As a result we get:

|(λi − λj)⟨vi, vj⟩| ≤ (ci + cj)∥vi∥∥vj∥,

as desired.

Using Lemma 7.6.3, we can modify [239, Theorem 5.9] to prove Theorem 7.6.2.

Given an eigenvalue µ of M , the idea is to find a probability distribution over [k] for which

the expectation of |µ − λi| is small, where i ∈ [k] is sampled from the aforementioned

distribution.

Proof. The proof follows mostly along the lines of [239, Theorem 5.9], modifying where

necessary due to lack of orthogonality. Let ϕ be an eigenvector of M with eigenvalue µ.

Our goal is to prove the existence of some λi such that |µ− λi| is small. To do this, we

appeal to an averaging argument. In particular, denoting the component of ϕ in V i by ϕi,

we bound the expectation of |µ − λi|2 over a distribution Pϕ given by the (normalized)

squared norms ∥ϕi∥2:

E
i∼Pϕ

[
|µ− λi|2

]
=

1
k∑

j=1

∥ϕj∥2

k∑
i=1

|µ− λi|2∥ϕi∥2. (7.4)

If we can upper bound this expectation by some value c, then by averaging there must

exist λi such that |µ− λi| ≤
√
c, and thus the spectra of M must lie in strips λi ±

√
c. To

upper bound Equation (7.4), consider the result of pushing the outer summation inside
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the norm:

k∑
i=1

|µ− λi|2 ∥ϕi∥2 = ∥
k∑

i=1

(µ− λi)ϕi∥2 −
∑

1≤i ̸=j≤k

(µ− λi)(µ− λj) ⟨ϕi, ϕj⟩ . (7.5)

We will separately bound the two resulting terms, the former by the fact that the ϕi are

approximate eigenvectors, and the latter by their approximate orthogonality. We start

with the former, which follows by a simple application of Cauchy-Schwarz:

∥
k∑

i=1

(µ− λi)ϕi∥2 = ∥µϕ−
k∑

i=1

λiϕi∥2

= ∥Mϕ−
k∑

i=1

λiϕi∥2

= ∥
k∑

i=1

(Mϕi − λiϕi)∥2

≤ k
k∑

i=1

∥(Mϕi − λiϕi)∥2

≤ kc2max

k∑
i=1

∥ϕi∥2.

The latter takes a bit more effort. Let λmax be maxi{|λi|}, then by Lemma 7.6.3 we have:

∣∣∣∣∣ ∑
1≤i ̸=j≤k

(µ− λi)(µ− λj) ⟨ϕi, ϕj⟩

∣∣∣∣∣ ≤ ∑
1≤i ̸=j≤k

|µ− λi||µ− λj|
ci + cj
|λi − λj|

∥ϕi∥∥ϕj∥

≤ 2cmaxλ
−1
dif (λmax + ∥M∥)2

(
k∑

i=1

∥ϕi∥

)2

≤ 2kcmaxλ
−1
dif (λmax + ∥M∥)2

k∑
i=1

∥ϕi∥2

Since we’d like our bound to depend only on λi and ci, we must further bound ∥M∥ which
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will follow similarly from approximate orthogonality. Let v be a unit eigenvector with

eigenvalue ∥M∥ and vi be v’s component on V i, then we have:

∥M∥ = ∥Mv∥

= ∥
k∑

i=1

Mvi − λivi + λivi∥

≤
k∑

i=1

(λi + ci)∥vi∥

≤ (λmax + cmax)
k∑

i=1

∥vi∥

≤ (λmax + cmax)

√√√√k
k∑

i=1

∥vi∥2

≤ (λmax + cmax)
√
2k.

where the last step follows from Lemma 7.6.3 and our assumption on cmax:

k∑
i=1

∥vi∥2 = ∥v∥2 +
∑

1≤i ̸=j≤k

⟨vi, vj⟩

≤ 1 +
2cmax

λdif

∑
1≤i ̸=j≤k

∥vi∥∥vj∥

≤ 1 +
2cmax

λdif

(
k∑

i=1

∥vi∥

)2

≤ 1 +
2kcmax

λdif

k∑
i=1

∥vi∥2

≤ 1 +
1

2

k∑
i=1

∥vi∥2.

Together, these bounds imply the existence of some λi′ such that:

|µ− λi′ | ≤

√
kcmax

(
cmax + 2λ−1

dif

(
λmax + (λmax + cmax)

√
2k
)2)

,
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which implies the desired result when accounting for our assumption on cmax.

Zhang’s [363] improvement to our proof came from the observation that the analysis

of the latter term can be simplified by a recursive strategy. In particular, this term can

instead be upper bounded by 2cmaxk
λdif

k∑
i=1

|µ− λi|2∥ϕi∥2. With the appropriate assumption

on cmax, plugging this back into Equation (7.5) gives the desired result.

In either case, notice that if cmax is sufficiently small, the intervals Iλi
are disjoint.

As a result, each V i corresponds to an eigenstrip W i:

W i = Span {ϕ : Mϕ = µϕ, µ ∈ Iλi
} .

The approximate eigenspaces V i are closely related to the resulting eigenstrips. Indeed, it

is possible to show that most of the weight of a function in V i must lie on W i, though we

will not need this result in what follows. Previous works [239, 242] make stronger claims

for the specific case of the HD-Level-Set Decomposition, most notably that V i and W i are

in fact equivalent on sufficiently strong two-sided local-spectral expanders. Unfortunately,

these results are based off of [239, Theorem 5.10], whose proof has a non-trivial error we

discuss further in Section 7.13. Indeed, were their proof correct, it would imply (due to

the generality of their argument) that V i = W i for any approximate eigendecomposition.

However, it is easy to see this cannot be the case by considering a diagonal 2× 2 matrix

with an approximate eigendecomposition given by a slight rotation of the standard basis

vectors in R2.

7.7 The Spectra of HD-walks

We now show that the HD-Level-Set Decomposition is an approximate eigendecom-

position for any HD-Walk. Combined with Theorem 7.6.2, this proves Theorem 7.2.1, that

the spectrum of any k-dimensional HD walk is tightly concentrated in k+1 eigenstrips. As
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a result, we give explicit bounds on the spectra of HD-walks, paying special attention to

the canonical and partial-swap walks. Finally, we show that the approximate eigenvalues

(and thus the values in their corresponding eigenstrips) of the HD-Level-Set Decomposition

decrease monotonically for a broad class of HD-Walks we call complete walks which, to

our knowledge, encompass all walks used in the literature. As we will see in the following

section, such decay is crucial for understanding edge expansion.

To start, we recall the definition of pure and HD-walks along with introducing some

useful notation.

Definition 7.7.1 (k-Dimensional Pure Walk). Given a weighted, simplicial complex

(X,Π), a k-dimensional pure walk Y : Ck → Ck on (X,Π) is a composition:

Y = Z2h(Y ) ◦ · · · ◦ Z1,

where each Zi is a copy of D or U , and h(Y ) is the height of the walk, measuring the total

number of down (or up) operators.

Definition 7.7.2 (k-Dimensional HD-Walk). Given a weighted, simplicial complex (X,Π),

a k-dimensional HD-walk on (X,Π) is an affine combination of pure walks

M =
∑
Y ∈Y

αY Y

which is self-adjoint and gives a valid walk on (X,Π) (i.e. has non-negative transition

probabilities). We say the height of M , h(M), is the maximal height of any Y with a

non-zero coefficient, and say the weight of M , w(M), is the one norm of the αY (namely,

w(M) =
∑
|αY |).

Our proofs in this section rely mainly on a useful observation of [111], who show that

the up and down operators on two-sided γ-local-spectral expanders satisfy the following
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relation:

∥Di+1Ui −
1

i+ 1
I − i

i+ 1
Ui−1Di∥ ≤ γ. (7.6)

This fact leads to a particularly useful structural lemma showing the effect of flipping D

through multiple U operators.

Lemma 7.7.3 (Claim 8.8 [111]). Let (X,Π) be a d-dimensional γ-local-spectral expander.

Then for all j < k < d:

∥Dk+1U
k+1
k−j −

j + 1

k + 1
Uk
k−j −

k − j

k + 1
Uk
k−j−1Dk−j∥ ≤

(j + 1)(2k − j + 2)

2(k + 1)
γ.

One crucial application of Lemma 7.7.3 lies in understanding the relation between

∥fi∥, and ∥gi∥, where fi = Uk
i gi.

Lemma 7.7.4 (Lemmas 8.10, 8.13, Theorem 4.6 [111]). Let (X,Π) be a d-dimensional

γ-local-spectral expander with γ < 1/d, f ∈ Ck a function with HD-Level-Set Decomposition

f0 + . . .+ fk. Then for all 0 ≤ ℓ ≤ k ≤ d:

∥fℓ∥2 =
1(
k
ℓ

) (1± c1(k, ℓ)γ) ∥gℓ∥2,

where c1(k, ℓ) = O(k2
(
k
ℓ

)
).

In Section 7.12, we prove a stronger version of both Lemma 7.7.3 and Lemma 7.7.4

for γ ≤ 2−Ω(k) where the dependence on the first order term γ is polynomial rather than

exponential in k. However, since this only provides a substantial improvement for a small

range of γ, we use the simpler versions from [111] throughout the body of the paper.

Using Lemma 7.7.3 and Lemma 7.7.4, an inductive argument shows that the HD-Level-Set

Decomposition is an approximate eigendecomposition. We show this first for the basic
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case of a pure walk, and then note that the general result follows immediately from the

triangle inequality.

Proposition 7.7.5. Let (X,Π) be a two-sided γ-local-spectral expander with γ ≤ 2−Ω(k)

and Y : Ck → Ck a pure walk:

Y = Z2h(Y ) ◦ · · · ◦ Z1.

Let i1 ≤ . . . ≤ ih(Y ) denote the h(Y ) indices at which Zi is a down operator. Then for all

0 ≤ ℓ ≤ k, f ∈ V ℓ
k :

∥Y f −
h(Y )∏
s=1

(
1− ℓ

max{ℓ, is − 2s+ k + 1}

)
f∥ ≤ O

(
γh(Y )(k + h(Y ))

(
k

ℓ

)
∥f∥

)
.

Proof. We prove a slightly stronger statement to simplify the induction. For b > 0, let

Y b
j : Cℓ → Cℓ+b denote an unbalanced walk with j down operators, and j + b up operators.

If Y b
j has down operators in positions i1 ≤ . . . ≤ ij and gℓ ∈ Hℓ, we claim:

∥Y b
j gℓ −

j∏
s=1

(
1− ℓ

max{ℓ, is − 2s+ ℓ+ 1}

)
U b+ℓ
ℓ gℓ∥ ≤ γj(b+ j)∥gℓ∥. (7.7)

Notice that since f ∈ V ℓ
k may be written as Uk

ℓ gℓ for gℓ ∈ Hℓ, then we may write Y f

as Y k−ℓ
h(Y )gℓ where Y k−ℓ

h(Y ) has down operators in positions i1 + k − ℓ ≤ . . . ≤ ij + k − ℓ.

Combining Equation (7.7) with Lemma 7.7.4 then implies the result.

We prove Equation (7.7) by induction. The base case j = 0 is trivial. Assume the

inductive hypothesis holds for all Y b
i , i < j. Notice first that if i1 = 1, we are done since

gℓ ∈ Hℓ, and
j∏

s=1

(
1− ℓ

max{ℓ, is − 2s+ ℓ+ 1}

)
Y b
0 gℓ = 0,

as is − 2s+ ℓ+ 1 = ℓ for s = 1. Otherwise, it must be the case that one or more copies

of the up operator appear before the first down operator, and we may therefore apply
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Lemma 7.7.3 to get:

Y b
j gℓ =

(
i1 − 1

i1 + ℓ− 1

)
Y b
j−1gℓ + Γgℓ,

where we can (loosely) bound the spectral norm of Γ by

∥Γ∥ ≤ (b+ j)γ

since at worst the first down operator D passes through b+ j up operators. By the form

of Lemma 7.7.3, Y b
j−1 has down operators at indices i2 − 2 ≤ . . . ≤ ij − 2. Then by the

fact that i1 + ℓ− 1 > ℓ and the inductive hypothesis:

Y b
j gℓ =

(
i1 − 1

max{ℓ, i1 + ℓ− 1}

j−1∏
s=1

is+1 − 2s− 1

max{ℓ, is+1 − 2s+ ℓ− 1}

)
Y b
0 gℓ +

i1 − 1

i1 + ℓ− 1
h+ Γgℓ

=

(
i1 − 1

max{ℓ, i1 + ℓ− 1}

j∏
s=2

is − 2s+ 1

max{ℓ, is − 2s+ ℓ+ 1}

)
Y b
0 gℓ +

i1 − 1

i1 + ℓ− 1
h+ Γgℓ

=

(
j∏

s=1

is − 2s+ 1

max{ℓ, is − 2s+ ℓ+ 1}

)
Y b
0 gℓ +

i1 − 1

i1 + ℓ− 1
h+ Γgℓ,

where ∥h∥ ≤ γ(j − 1)(b+ j − 1)∥gℓ∥ and we have used the (vacuous) fact that max{ℓ, i1 +

ℓ− 1} = i1 + ℓ− 1. Finally, we can bound the norm of the right-hand error term by:

∥ i1 − 1

i1 + ℓ− 1
h+ Γgℓ∥ ≤ ∥h∥+ ∥Γ∥∥gℓ∥

≤ (j − 1)(b+ j − 1)∥gℓ∥+ (b+ j)∥gℓ∥

≤ j(b+ j)∥gℓ∥

as desired.

Since HD-walks are simply affine combinations of pure walks, the triangle inequality

immediately implies the result carries over to this more general setting.
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Corollary 7.7.6. Let (X,Π) be a two-sided γ-local-spectral expander with γ ≤ 2−Ω(k) and

M =
∑
i

αiYi a k-dimensional HD-walk on (X,Π). Then for all 0 ≤ ℓ ≤ k, f ∈ V ℓ
k :

∥Mf − λℓ(M)f∥ ≤ O

(
γw(M)h(M)(k + h(M))

(
k

ℓ

)
∥f∥

)
,

where

λℓ(M) =
∑

αiλℓ(Yi)

and λℓ(Yi) is the approximate eigenvalue of Yi given in Proposition 7.7.5.

It is worth noting that the resulting approximate eigenvalues in Corollary 7.7.6 are

exactly the eigenvalues of M when considered on a sequentially differential poset with

δ⃗i = i/(i+1). We discuss this generalization in more depth and give tighter bounds on the

approximate spectra in our upcoming companion paper. It should be noted that this result

is similar to one appearing in [9], where a weaker notion of approximate eigenspaces based

on the quadratic form ⟨f,Mf⟩ is analyzed. Plugging Corollary 7.7.6 into Theorem 7.6.2,

we immediately get that for small enough γ the true spectra of HD-walks lie in strips

around each λi(M), and thus that that the approximate eigenvalues of the HD-Level-Set

Decomposition and the spectra of HD-walks are essentially interchangeable.

For concreteness, we now turn our attention to computing the approximate eigen-

values (and thereby the true spectra) of the canonical and swap walks.

Corollary 7.7.7 (Spectrum of Canonical Walks). Let (X,Π) be a d-dimensional γ-local-

spectral expander with γ satisfying γ ≤ 2−Ω(k+j), k + j ≤ d, and fℓ ∈ V ℓ
k . Then:

∥N j
kfℓ −

(
k
ℓ

)(
k+j
ℓ

)fℓ∥ ≤ c(k, ℓ, j)∥fℓ∥,
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where c(k, ℓ, j) = O
(
γj(j + k)

(
k
ℓ

))
. Moreover:

Spec(N j
k) = {1} ∪

k⋃
j=1

[ (
k
ℓ

)(
k+j
ℓ

) ± 2O(j+k)√γ

]
.

Proof. By Proposition 7.7.5, N j
k is an

(
{λℓ}kℓ=0, {c(k, ℓ, j)}kℓ=0

)
-approximate eigendecom-

position for

λℓ =

j∏
s=1

(
1− ℓ

max{k − 2s+ is + 1, ℓ}

)
,

where i1 ≤ . . . ≤ is denote the indices of down operators. By the definition of N j
k we have

is = j + s, and therefore

λℓ =

j∏
s=1

(
1− ℓ

k − s+ j + 1

)
=

(
k
ℓ

)(
k+j
ℓ

)
as desired. The bounds on Spec(N j

k) follow immediately from plugging the above into

Theorem 7.6.2.

A priori, it is not obvious how to bound the spectra of the partial-swap walks, or

indeed even that they are HD-walks. However, Alev, Jeronimo, and Tulsiani [9] proved

that partial-swap walks may be written as an alternating hypergeometric sum of canonical

walks.

Proposition 7.7.8 (Corollary 4.13 [9]). Let (X,Π) be a two-sided γ-local-spectral expander

with γ < 1/k. Then for 0 ≤ j ≤ k:

Sj
k =

1(
k

k−j

) j∑
i=0

(−1)j−i

(
j

i

)(
k + i

i

)
N i

k.

As a result, we can use Corollary 7.7.7 to bound their approximate eigenvalues and

true spectrum.
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Corollary 7.7.9. Let X be d-dimensional two-sided γ-local-spectral expander, γ < 2−Ω(k),

k + j ≤ d, and fℓ ∈ V ℓ
k . Then:

∥Sj
kfℓ −

(
k−j
ℓ

)(
k
ℓ

) fℓ∥ ≤ c(k)∥fℓ∥,

where c(k) = γ2O(k). Moreover,

Spec(Sj
k) = {1} ∪

k⋃
j=1

[(
k−j
ℓ

)(
k
ℓ

) ± 2O(k)√γ

]
.

Proof. By Corollary 7.7.6,
⊕k

ℓ=0 V
ℓ
k is a

(
{λℓ}kℓ=0, {c′(k, ℓ, j)}kℓ=0

)
-approximate eigende-

composition for Sj
k with

λℓ =
1(
k

k−j

) j∑
i=0

(−1)j−i

(
j

i

)(
k + i

i

)
λℓ(N

i
k)

=
1(
k

k−j

) j∑
i=0

(−1)j−i

(
j

i

)(
k + i

i

) (
k
ℓ

)(
k+i
ℓ

)
=

1(
k

k−j

) j∑
i=0

(−1)j−i

(
j

i

)(
k − ℓ+ i

i

)

=

(
k−ℓ
j

)(
k

k−j

)
=

(
k−j
ℓ

)(
k
ℓ

) ,

and

c′(k, ℓ, j) = γ2O(k).
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This latter fact follows from noting that

∥α⃗∥1 =
j∑

i=0

(
j

i

)(
k + i

i

)
≤ 22j+k

where α⃗ consists of the hypergeometric coefficients of Proposition 7.7.8. The bounds on

Spec(Sj
k) then follow from Theorem 7.6.2.

Together, Corollary 7.7.7 and Corollary 7.7.9 prove Theorem 7.2.4 (assuming γ is

sufficiently small).

In Theorem 7.2.1, we mentioned that approximate eigenvalues λi(M) are mono-

tonically decreasing for any HD-walk. In fact, to prove this we will need to restrict our

original definition of HD-walks slightly, requiring that our walks are always well-defined

on the complete complex.

Definition 7.7.10 (Complete HD-Walk). Let (X,Π) be a weighted, pure simplicial

complex and M =
∑
Y ∈Y

αY Y an HD-walk on (X,Π). We call M complete if for all n ∈ N

there exist n0 > n and d such that
∑
Y ∈Y

αY Y is also an HD-walk when taken to be over

J(n0, d).

To our knowledge, all walks considered in the literature (pure, canonical, partial-

swap) are complete. We can prove that the eigenstrips of complete HD-walks corresponding

to the HD-Level-Set Decomposition exhibit eigenvalue decay by noting that the approximate

eigenvalues of Corollary 7.7.6 are independent of the underlying complex.

Proposition 7.7.11. Let (X,Π) be a two-sided γ-local-spectral expander, M =
∑
Y ∈Y

αY Y a

complete HD-walk over (X,Π), and γ small enough to apply the conditions of Theorem 7.6.2.

Then for all 0 ≤ i < j ≤ k,

λi(M) ≥ λj(M)

Proof. The proof follows from two observations. First, recall from Corollary 7.7.6 that

λi(M) is independent of the underlying complex. Second, any HD-walk on the complete
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complex can be written as a non-negative sum of partial-swap walks, which satisfy the

monotonic decrease property. Let n ∈ N be any parameter such that applying
∑
Y ∈Y

αY Y to

J(n, d) results in a valid walk (i.e. a non-negative matrix). By the symmetry of J(n, d),

the transition probabilities of this walk depends only on size of intersection, and it may

thus be written as some convex combination of partial-swap walks:

M =
∑
Y ∈Y

αY Y =
k∑

i=0

βiS
i
k.

Since these walks are equivalent over J(n, d), their spectra must match. Then by The-

orem 7.6.2, it must be the case that for every 1 ≤ ℓ ≤ k and n sufficiently large, the

intersection of
∑
Y ∈Y

αY λℓ(Y )±O(1/n) and
∑
Y ∈Y

βiλℓ(S
i
k)±O(1/n) is non-empty. Since we

may take n arbitrarily large, this implies the two quantities are in fact equivalent. Finally,

by Corollary 7.7.9 λℓ(S
i
k) decreases monotonically in ℓ for all i, which implies that the

λi(M) =
∑

αY λi(Y ) =
∑

βλi(S
j
k) decrease monotonically as desired.

7.8 Pseudorandomness and the HD-Level-Set Decom-
position

Now that we have examined the spectral structure of the HD-Level-Set Decomposi-

tion, we turn to understanding its combinatorial characteristics. In this section, we give

a combinatorial characterization how arbitrary functions project onto the HD-Level-Set

decomposition, proving in particular a generalization of Theorem 7.3.3: pseudorandom

sets have bounded projection onto corresponding levels of the complex. We discuss two

variants of pseudorandomness, an ℓ2-variant stating that the variance across links is small,

and an ℓ∞-variant stating that the maximum (or ℓ∞-norm for arbitrary functions) across

links is small. We focus mainly on giving an exact analysis for the ℓ2-case, as this forms

the structural core of our algorithm for unique games in Section 7.10. We further discuss

the implications of our ℓ2 analysis to the ℓ∞-variant by reduction.
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As such, we’ll start by analyzing the ℓ2-variant. First, let’s extend our definition of

ℓ2-pseudorandomness from sets (boolean functions) to arbitrary functions.

Definition 7.8.1 (ℓ2-Pseudorandom functions). A function f ∈ Ck is (ε1, . . . , εℓ)-ℓ2-

pseudorandom if its variance across i-links is small for all 1 ≤ i ≤ ℓ:

V ar(Dk
i f) ≤ εi|E[f ]|

As mentioned in Section 7.3, the key to connecting Var(Dk
i f) and the HD-Level-Set

Decomposition is to notice that by the adjointness of D and U , we can reduce the problem

to analyzing the spectral structure of HD-walks. The proof then follows immediately from

arguments in the previous section.

Theorem 7.8.2. Let (X,Π) be a γ-local-spectral expander with γ ≤ 2−Ω(k) and let f ∈ Ck

have HD-Level-Set Decomposition f = f0 + . . .+ fk. Then for any ℓ ≤ k, the Var(Dk
ℓ f) is

controlled by its projection onto V 0
k ⊕ . . .⊕ V ℓ

k in the following sense:

Var(Dk
ℓ f) ∈

ℓ∑
j=1

(
ℓ
j

)(
k
j

)⟨f, fj⟩ ± cγ⟨f, f⟩

where c ≤ 2O(k).

Proof. To start, notice that since ⟨Dℓ
kf,D

ℓ
kf⟩ = ⟨Uk

ℓ D
k
ℓ f, f⟩ it is enough to analyze the

application of the HD-walk Uk
ℓ D

k
ℓ to f . By Proposition 7.7.5, we know that each fj is an

approximate eigenvector satisfying:

∥Uk
ℓ D

k
ℓ fj −

(
ℓ
j

)(
k
j

)fj∥ ≤ c1γ∥f∥,

where c1 ≤ 2O(k). Combining these observations gives:

〈
Dk

ℓ f,D
k
ℓ f
〉
=
〈
f, Uk

ℓ D
k
ℓ f
〉
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=
k∑

j=0

⟨f, Uk
ℓ D

k
ℓ fj⟩

∈
ℓ∑

j=0

(
ℓ
j

)(
k
j

)⟨f, fj⟩ ± cγ⟨f, f⟩

where all constants c ≤ 2O(k), and noting that ⟨f, f0⟩ = E[f ]2 completes the result.

Theorem 7.3.3 follows immediately from combining this result with approximate

orthogonality of the HD-Level-Set Decomposition.

Lemma 7.8.3 (DDFH Theorem 4.6). Let (X,Π) be a γ-local-spectral expander with

γ ≤ 2−Ω(k) and let f ∈ Ck have HD-Level-Set Decomposition f = f0 + . . .+ fk. Then for

all i ̸= j:

|⟨fi, fj⟩| ≤ c1γ⟨f, f⟩

where c1 ≤ 2O(k).

Corollary 7.8.4. Let (X,Π) be a γ-local-spectral expander with γ ≤ 2−Ω(k) and let f ∈ Ck

be an (ε1, . . . , εℓ)-ℓ2-pseudorandom function. Then for any 1 ≤ i ≤ ℓ:

|⟨f, fi⟩| ≤
(
k

i

)
εi|E[f ]|+ cγ⟨f, f⟩

where c ≤ 2O(k).

Proof. By Lemma 7.8.3, for all j we have ⟨f, fj⟩ ≥ −cγ⟨f, f⟩ for some c ≤ 2O(k). Then by

Theorem 7.8.2, for all 0 ≤ i ≤ k the variance of Dk
i f is lower bounded by the projection

onto fi:

Var(Dk
i f) ≥

1(
k
i

)⟨f, fi⟩ − c2γ⟨f, f⟩,

where c2 ≤ 2O(k). Finally, since f is (ε1, . . . , εℓ)-ℓ2-pseudorandom, we have by definition

that for all 1 ≤ i ≤ ℓ, Var(Dk
i f) ≤ εi|E[f ]|. Therefore isolating ⟨f, fi⟩ gives the desired
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upper bound:

⟨f, fi⟩ ≤
(
k

i

)
Var(Dk

i f) + c3γ⟨f, f⟩

≤
(
k

i

)
εi|E[f ]|+ c3γ⟨f, f⟩

where c3 ≤ 2O(k). Finally, we already noted that ⟨f, fi⟩ ≥ −cγ⟨f, f⟩ for some c ≤ 2O(k),

which gives the desired lower bound and completes the proof.

It is worth noting that both Theorem 7.8.2 and Corollary 7.8.4 are tight. This is

obvious for the former which is a near-equality, and the latter is clearly tight for subsets

like i-links which project (almost) entirely onto level i (we’ll prove this formally in the

next section).

We’ll also see in Section 7.9 that Corollary 7.8.4 leads to a tight ℓ2-characterization

of edge-expansion stating that any non-expanding set must have high variance across links.

Since an ℓ∞-variant of this result for the Grassmann graphs was recently crucial for the

resolution of the 2-2 Games Conjecture [255], it is natural to discuss what our results

imply for this regime. First, let’s formalize ℓ∞-pseudorandomness for arbitrary functions.

Definition 7.8.5 (ℓ∞-Pseudorandom functions). A function f ∈ Ck is (ε1, . . . , εℓ)-ℓ∞-

pseudorandom if for all 1 ≤ i ≤ ℓ its local expectation is close to its global expectation:

∥∥Dk
i f − E[f ]

∥∥
∞ ≤ εi.

We will prove via reduction to the ℓ2-variant that a version of Corollary 7.8.4 holds

in this regime as well. We proceed in two steps. First, we show that ℓ∞-pseudorandom

functions are also ℓ2-pseudorandom assuming a weak local-consistency property.

Definition 7.8.6. Let (X,Π) be a weighted, pure simplicial complex. We say a function

f ∈ Ck has ℓ-local constant sign if:
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1. E[f ] ̸= 0,

2. ∀s ∈ X(ℓ) s.t. E
Xs

[f ] ̸= 0 : sign
(
E
Xs

[f ]

)
= sign (E[f ]).

Second, we’ll reduce to the case of locally constant sign by noting that we can

always shift a function to satisfy this property. With these definitions in hand, we can

now state the ℓ∞-variant of Theorem 7.3.3:

Theorem 7.8.7. Let (X,Π) be a γ-local-spectral expander with γ ≤ 2−Ω(k) and let f ∈ Ck

have HD-Level-Set Decomposition f = f0 + . . .+ fk. If f is (ε1, . . . , εℓ)-ℓ∞-pseudorandom,

then for all 1 ≤ i ≤ ℓ:

|⟨f, fi⟩| ≤
((

k

i

)
+ c(k)γ

)
ε2i + c(k)γ∥f∥2,

where c(k) ≤ 2O(k), and if f has i-local constant sign:

|⟨f, fi⟩| ≤
(
k

i

)
εi|E[f ]|+ c(k)γ∥f∥2.

In dealing with expansion, we will mainly be interested in boolean-valued functions,

which always have locally-constant sign and satisfy ⟨f, f⟩ = E[f ]. Thus in the boolean

case we have:

⟨f, fi⟩ ≤
((

k

i

)
εi + 2O(k)γ

)
E[f ],

which is particularly useful since the expansion of f may be written as 1− 1
E[f ]⟨f,Mf⟩.

In the case f is non-negative, we can also replace the ℓ∞ norm with maximum in our

definition of pseudorandomness, which is important to show non-expanding sets are locally

denser than expected. Finally, we note that one can improve the dependence on γ by

pushing exponential dependence on k to the second order γ2 term via more careful analysis

of error propagation. However since the analysis is complicated and only gives a substantial

improvement for a small range of relevant γ, we relegate such discussion to Section 7.12.
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We now move to the proof of Theorem 7.8.7, starting with our generic ℓ∞ to ℓ2

reduction for functions with locally-constant sign.

Lemma 7.8.8. Let (X,Π) be a weighted, pure simplicial complex, and f ∈ Ck a (ε1, . . . , εℓ)-

ℓ∞-pseudorandom function with i-local constant sign for any i ≤ ℓ. Then f is also

(ε1, . . . , εℓ)-ℓ2-pseudorandom

Proof. For ease of notation, let Πk(Xs) be shorthand for
∑
t∈Xs

Πk(t) (i.e. the normalization

factor for the above restricted expectation). The trick is to notice that since f has locally

constant sign, we may rewrite ∥Dk
i f∥22 as an expectation over a related distribution Pi:

1

E[f ]
⟨Dk

i f,D
k
i f⟩ =

∑
s∈X(i)

Πi(s)

(
1

E[f ]
∑
t∈Xs

Πk(t)f(t)

Πk(Xs)

)
Dk

i f(s)

=
∑

s∈X(i)

(
1

E[f ]
∑
t∈Xs

Πk(t)f(t)(
k
i

) )
Dk

i f(s)

= E
Pi

[Dk
i f ],

where we have used the fact that Πk(Xs) =
(
k
i

)
Πi(s) by Equation (7.3). To understand

Pi(s) more intuitively, consider the special case when f is non-negative. Here, Π and f

induce a distribution Pk over X(k), where

Pk(t) =
Πk(t)f(t)

E[f ]
.

Pk then induces the distribution Pi on X(i) via the following process: draw a face t ∈ X(k)

from Pk, and then choose a i-face s ⊂ t uniformly at random. Replacing the non-negativity

of f with the conditions in the theorem statement still leaves Pi(s) a valid distribution,

albeit one with a less intuitive description.
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The result then follows from an averaging argument:

∣∣∣∣ 1

E[f ]
Var(Dk

i f)

∣∣∣∣ = ∣∣∣∣EPi

[Dk
i f ]− E[f ]

∣∣∣∣ ≤ ∥Dk
i f − E[f ]∥∞

We note that when E[f ] > 0, the ℓ∞-norm may be replaced with maximum in the above.

To complete the proof of Theorem 7.8.7, we reduce to Theorem 7.8.2 by noting

that any function may be shifted to have locally constant sign and applying our reduction.

Proof of Theorem 7.8.7. Note that the latter bound for functions with locally constant sign

is immediate since, by Lemma 7.8.8, f is also (ε1, . . . , εℓ)-ℓ2-pseudorandom and therefore

satisfies the guarantees of Corollary 7.8.4.

For the former, assume for simplicity that E[f ] ≥ 0 (the negative case follows from

a similar argument) and consider the shifted function f ′ = f + (εi − E[f ])1. Notice that

as long as εi > 0, f ′ has positive expectation over all i-links and non-zero expectation, and

further that

f ′ = f ′
0 + f1 + . . .+ fk,

where f ′
0 = f0 + (εi − E[f ])1 and f =

∑
fi is the original HD-Level-Set Decomposition

of f . Since adding a constant has no effect on the ℓ∞-pseudorandomness, f ′ remains

(ε1, . . . , εℓ)-ℓ∞-pseudorandom and, by our ℓ∞ to ℓ2 reduction, (ε1, . . . , εℓ)-ℓ2-pseudorandom

as well. Applying Corollary 7.8.4 then gives:

⟨f + (εi − E[f ])1, fi⟩

≤
(
k

i

)
εiE[f + (εi − E[f ])1] + cγ⟨f + (εi − E[f ])1, f + (εi − E[f ])1⟩

≤
((

k

i

)
+ cγ

)
ε2i + cγ⟨f, f⟩

where we have used the fact that fi is orthogonal to 1 for all i > 0. We are left to deal

with the case that εi = 0, which follows from a limiting argument applying the above to
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any ε > 0.

7.9 Expansion of HD-walks

In this section we characterize the edge expansion of HD-walks, proving Theo-

rem 7.2.6, Theorem 7.2.8, and Corollary 7.2.9. As a reminder, these results focus on two

key aspects of edge-expansion: the expansion of links, and the structure of non-expanding

sets. We’ll start with the former, but first let’s recall the definition of edge-expansion

(specified to HD-walks for simplicity).

Definition 7.9.1 (Weighted Edge Expansion). Given a weighted simplicial complex

(X,Π), a k-dimensional HD-Walk M over (X,Π), and a subset S ⊂ X(k), the weighted

edge expansion of S is

ϕ(S) = E
v∼Πk|S

[M(v,X(k) \ S)] ,

where

M(v,X(k) \ S) =
∑

y∈X(k)\S

M(v, y)

and M(v, y) is the transition probability from v to y.

We start by proving Theorem 7.2.6: that the expansion of i-links is (up to O(γ)

error) exactly controlled by the eigenvalue of the ith eigenstrip.

Theorem 7.9.2 (Local Expansion vs Global Spectra). Let (X,Π) be a d-dimensional

two-sided γ-local-spectral expander with γ ≤ 2−Ω(k), and M a k-dimensional, complete

HD-walk with k < d. Then for all 0 ≤ i ≤ k and τ ∈ X(i):

ϕ(Xτ ) ∈ 1− λi(M)± cγ,

where c ≤ w(M)h(M)22O(k).

642



The main idea behind Theorem 7.9.2 is simply to show that the indicator function

of any i-link always lies almost entirely in V i
k (or equivalently, almost entirely in the ith

eigenstrip W i
k).

Lemma 7.9.3. Let (X,Π) be a d-dimensional two-sided γ-local-spectral expander with

γ ≤ 2−Ω(k). Then for all 0 ≤ i ≤ k < d and τ ∈ X(i), 1Xτ lies almost entirely in V i
k . That

is for all j ̸= i:

⟨1Xτ , 1Xτ ,j⟩ ≤ cγ⟨1Xτ , 1Xτ ⟩

where c ≤ 2O(k).

Proof. It is enough to analyze the expansion of Xτ with respect to N1
k since the quantity

can both be analyzed directly, and expressed in terms of Xτ ’s HD-Level-Set decomposition.

For the direct analysis, recall that N1
k describes the process of moving from a k-face σ

to a (k + 1)-face T = σ ∪ {v}, then back to a k-face σ′ ⊂ T . Crucially, the latter step is

performed uniformly at random. Applying N1
k to any element in Xτ , the probability of

returning to Xτ is exactly the probability that we remove an element in T \ {τ} in the

final step, which gives:

ϕ̄(1Xτ ) =
k + 1− i

k + 1
.

On the other hand, we may also expand out ϕ̄(1Xτ ) in terms of 1Xτ ’s HD-Level-Set

decomposition. Using the fact that 1Xτ =
(
k
i

)
Uk
i 1τ ∈ V 0

k ⊕ . . .⊕ V i
k , we may write:

ϕ̄(1Xτ ) =
1

⟨1Xτ , 1Xτ ⟩

i∑
j=0

⟨1Xτ , N
1
k1Xτ ,j⟩

=
1

⟨1Xτ , 1Xτ ⟩

i∑
j=0

k + 1− j

k
⟨1Xτ , 1Xτ ,j⟩+

1

⟨1Xτ , 1Xτ ⟩

i∑
s=0

⟨1Xτ ,Γs⟩,

where ∥Γs∥ ≤ 2O(k)γ∥1Xτ∥ by Corollary 7.7.6 and the fact that ∥1Xτ ,s∥ ≤ (1+2O(k)γ)∥1Xτ∥.
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Finally, applying Cauchy-Schwarz to the error term gives:

ϕ̄(1Xτ ) ∈
1

⟨1Xτ , 1Xτ ⟩

i∑
j=0

k + 1− j

k
⟨1Xτ , 1Xτ ,j⟩ ± cγ (7.8)

for c ≤ 2O(k)γ. Recall by approximate orthogonality (Lemma 7.8.3), the projections

⟨1Xτ , 1Xτ ,j⟩ cannot be too negative, that is ⟨1Xτ , 1Xτ ,j⟩ ≥ −cγ⟨1Xτ , 1Xτ ⟩ for some c ≤

2O(k). Then if there exists some j ̸= i such that ⟨1Xτ , 1Xτ ,j⟩ > c2γ⟨1Xτ , 1Xτ ⟩ for large

enough c2 ≤ 2O(k), the LHS of Equation (7.8) lies strictly above k+1−i
k+1

, giving the desired

contradiction.

Since the HD-Level-Set decomposition of 1Xτ has no dependence on the walk in

question, Theorem 7.9.2 follows almost immediately.

Proof of Theorem 7.9.2. The expansion of Xτ may be written as:

ϕ(Xτ ) = 1− 1

α
⟨1Xτ ,M1Xτ ⟩

= 1− 1

α

i∑
s=0

⟨1Xτ ,M1Xτ ,s⟩,

where α is the density of Xτ and 1Xτ ,s ∈ V s
k . By Corollary 7.7.6 we can simplify the sum

up to an error term:

ϕ(Xτ ) = 1− 1

α

i∑
s=0

⟨1Xτ ,M1Xτ ,s⟩

= 1− 1

α

i∑
s=0

λj(M)⟨1Xτ ,1Xτ ,s⟩+
1

α

i∑
s=0

⟨1Xτ ,Γs⟩,

where by the fact that ∥1Xτ ,s∥ ≤ (1 + 2O(k)γ)∥1Xτ∥ we have

∥Γs∥ ≤ O

(
w(M)h(M)(h(M) + k)

(
k

s

)
γ∥1Xτ∥

)
.
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By Lemma 7.9.3 for all s ̸= i we can absorb ⟨1Xτ ,1Xτ ,s⟩ into the error term which gives:

ϕ(Xτ ) ∈ 1− 1

α
λi(M)⟨1Xτ ,1Xτ ,i⟩ ± cγ

for c ≤ w(M)h(M)22O(k). Finally, by Lemma 7.9.3 and approximate orthogonality, we

know that ⟨1Xτ ,1Xτ ,i⟩ is very close to α:

(1− c1γ)α ≤ ⟨1Xτ ,1Xτ ,i⟩ ≤ (1 + c2γ)α

where c1, c2 ≤ 2O(k). Combining this with the above completes the proof. Note that the

proof falls through for d = k since we cannot analyze N1
k on such a complex. The upper

bound, however, still holds in this case simply by expanding out the inner product and

bounding the inner summation using λi(M).

Theorem 7.9.2 will form one of two core pieces of our algorithm with unique games.

The fact that links corresponding to bad eigenvalues have poor expansion will allow us

to patch together good local solutions into a global solution without seeing too much

interference. Moreover, close connection between local expansion and stripped eignenvalues

will result in the performance of our algorithm being tied directly to ST-rank (which we

recall here for convenience).

Definition 7.9.4 (Stripped Threshold Rank). Let (X,Π) be a two-sided γ-local-spectral

expander and M a k-dimensional HD-walk with γ small enough that the HD-Level-Set

Decomposition has a corresponding decomposition of disjoint eigenstrips Ck =
⊕

W i
k.20

The ST-Rank of M with respect to δ is the number of strips containing an eigenvector
20It should be noted that when the HD-Level-Set Decomposition has spaces with the same approximate

eigenvalue, their corresponding eigenstrips technically must be merged. However, since this detail has no
effect on our arguments, we ignore it in what follows.
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with eigenvalue at least δ:

Rδ(M) = |{W i
k : ∃f ∈ V i,Mf = λf, λ > δ}|.

We often write just Rδ when M is clear from context.

A basic corollary of Theorem 7.9.2 is that, like the Johnson graphs, links are small,

non-expanding sets (at least when |X(1)| ≫ k or γ is small). The second core piece

of our algorithm for unique games relies on a certain converse to this result: that all

non-expanding sets are explained by links. As discussed in Section 7.1 and Section 7.2,

we consider two regimes for this problem. The first, which we call the ℓ2-variant, claims

that any non-expanding set must have high variance over links—this regime is useful for

constructing algorithms for unique games, as we’ll show in the next section. The second

is the ℓ∞-variant, which claims that any non-expanding set must have a high maximum

over links—this regime is useful in hardness of approximation. We examine both regimes

through their contrapositive: that both ℓ2/ℓ∞-pseudorandom sets expand near-perfectly.

Theorem 7.9.5. Let (X,Π) be a two-sided γ-local-spectral expander, M a k-dimensional,

complete HD-walk, and let γ be small enough that the eigenstrip intervals of Theorem 7.6.2

are disjoint. For any δ > 0, let r = Rδ(M)− 1. Then the expansion of a set S ⊂ X(k) of

density α is at least:

ϕ(S) ≥ 1− α− (1− α)δ − cγ −
r∑

i=1

(λi(M)− δ)

(
k

i

)
εi,

where λi(M) is the approximate eigenvalue given by Corollary 7.7.6, S is either (ε1, . . . , εr)-

ℓ2-pseudorandom or (ε1, . . . , εr)-ℓ∞-pseudorandom, and c ≤ w(M)h(M)22O(k).

Proof. Recall that the expansion of S may be written as:

ϕ(S) = 1− 1

E[1S]
⟨1S,M1S⟩.
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Decomposing 1S = 1S,0 + . . .+ 1S,k by the HD-Level-Set Decomposition, we have:

ϕ(S) = 1− 1

E[1S]

k∑
i=0

⟨1S,M1S,i⟩

= 1− 1

E[1S]

k∑
i=0

λi(M)⟨1S,1S,i⟩+
1

E[1S]

k∑
i=1

⟨1S,Γi⟩

where by Corollary 7.7.6 ∥Γi∥ ≤ O
(
w(M)h(M)(h(M) + k)

(
k
i

)
γ∥1S,i∥

)
. Using Cauchy-

Schwarz and the fact that ∥1S,i∥ ≤ (1 + 2O(k)γ)∥1S∥ (this follows from approximate

orthogonality, see [111, Corollary 8.13]) we can simplify this to

ϕ(S) ≥ 1− 1

E[1S]

k∑
i=0

λi(M)⟨1S,1S,i⟩ − eγ,

where e ≤ w(M)h(M)22O(k). Since M is a complete walk, we know the λi(M) decrease

monotonically and as long as γ is sufficiently small, correspond to the eigenvalues in strip

W i as well. Thus we may write:

ϕ(S) ≥ 1− eγ − 1

E[1S]

r∑
i=0

λi(M)⟨1S,1S,i⟩ −
δ

E[1S]

k∑
i=r+1

⟨1S,1S,i⟩

= 1− e2γ −
1

E[1S]

r∑
i=1

λi(M)⟨1S,1S,i⟩ − δ

(
1− 1

E[1S]

r∑
i=0

⟨1S,1S,i⟩

)

= 1− e2γ − δ − 1

E[1S]

r∑
i=1

(λi(M)− δ)⟨1S,1S,i⟩

Finally, recalling that 1S,i = E[1S ]⃗1 and applying Theorem 7.8.7 gives the ℓ2-variant result,

and the ℓ∞-variant follows immediately from our ℓ∞ to ℓ2 reduction (Lemma 7.8.8).

We now turn to the discussion of a surprisingly subtle point: the tightness of
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Theorem 7.9.5. There are two main parameters of interest: the pseudorandomness

parameter ε, and the level of the HD-walk k. We’ll first prove that in both the ℓ2 and ℓ∞

regimes, if we fix the dependence on ε to be linear, our bound is exactly tight.

Proposition 7.9.6. Let X = J(n, d) be the complete complex, 2k − t ≤ d, m|n, and

Bm be the the set of all k-faces
(
[n/m]

k

)
. Then for any t, Bm witnesses the tightness of

Theorem 7.9.5 with respect to Sk−t
k as n,m→∞.

Proof. First, note that it is enough to examine only the ℓ∞ bound, since the function in

question has locally-constant sign the tightness of the ℓ2 bound follows from Lemma 7.8.8.

By direct computation, it is not hard to show that the expansion of Bm with respect

to Sk−t
k is:

ϕ(Bm) = 1−
( n

m
−k

k−t

)(
n−k
k−t

) = 1− mt

mk
+Ok,m(1/n)

On the other hand, we can directly compute that Bm is (ε1, . . . , εk)-pseudorandom, where:

εi ≤
( n

m
−i

k−i

)(
n−i
k−i

)
Since the complete complex is a two-sided O(1/n)-local-spectral expander [111], for large

enough n Theorem 7.9.5 gives the bound:

ϕ(Bm) ≥ 1−
t∑

i=0

(
t

i

)( n
m
−i

k−i

)(
n−i
k−i

) −Ok,m(1/n)

= 1−
(
n/m
k

)(
n
k

) t∑
i=0

(
t

i

) (
n
i

)(
n/m
i

) −Ok,m(1/n)

≥ 1−m−k

t∑
i=0

(
t

i

)
mi −Ok,m(1/n)

= 1− (m+ 1)t

mk
−Ok,m(1/n)
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Thus we see that for large n, the bound is tight up to the leading term in m.

However, Proposition 7.9.6 does not preclude a bound with better (or even no)

dependence on k. Indeed, proving that such a bound holds in the ℓ∞-regime for the

Johnson graphs was an important stepping stone in the proof of the 2-2 Games Conjecture

[252]. On the other hand, we can actually prove that a k-independent bound is impossible

in the ℓ2-regime. The intuition behind the difference can be summarized by examining

the behavior of these two variants on a link. In the ℓ∞ regime, links are of course

Ω(1)-pseudorandom. On the other hand, somewhat counter-intuitively, links are actually

O(
(
k
i

)−1
)-pseudorandom in the ℓ2-regime. Since links tend to have poor expansion, the

dependence on k in our bound has to make up for the fact that links are O(
(
k
i

)−1
)-ℓ2-

pseudorandom (this also explains the particular dependence on
(
k
i

)
).

Proposition 7.9.7. For every ℓ ∈ N and c1(ℓ), c2(ℓ) > 0, there exist n≫ k ≫ ℓ and an

(ε1, . . . , εℓ)-ℓ2-pseudorandom subset S of Sk/2
k on J(n, 2k)21 of density α satisfying:

ϕ(S) < 1− α− λℓ+1(S
k/2
k )− c1ε

c2

Proof. The result follows from letting S be any ℓ-link of the complete complex J(n, 2k)

for sufficiently large n,k. In particular, notice that the expansion of S with respect to S
k/2
k

is then:

ϕ(S) ≤ 1− 2−ℓ +Ok

(
1

n

)
.

On the other hand, note that λℓ+1(S
k/2
k ) ∈ 2−ℓ−1±Ok(

1
n
). Since one can also check that S

is (ε1, . . . , εℓ)-ℓ2-pseudorandom for εi ≤
(
k
i

)−1
+Ok

(
1
n

)
, we for large enough n≫ k that:

1− α− λℓ+1(S
k/2
k )− c1ε

c2 ≥ 1− 2−ℓ−1 −Ok

(
1

n

)
− ok(1) > ϕ(S)

21Note that this is exactly the Johnson Graph J(n, k, k/2) mentioned in Section 7.2.
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as desired.

In other words, no k-independent version of Theorem 7.9.5 exists for the ℓ2-variant,

as such a result would violate the upper bound in Proposition 7.9.7. While this doesn’t

directly rule out a reduction from ℓ∞ to ℓ2 that proves a k-independent bound for the

former (the reduction itself would need to be k-dependent in this case), it’s known to be

impossible in our framework which encompasses the Grassmann where such a result is

known to be false [125].

The difference between a k-independent bound and the regime we consider is most

stark when examining the contrapositive of Theorem 7.9.5, which states that non-expanding

sets must be concentrated inside links.

Corollary 7.9.8. Let (X,Π) be a two-sided γ-local-spectral expander, M a k-dimensional,

complete HD-walk, and let γ be small enough to satisfy the requirements of Theorem 7.6.2.

Then for any δ > 0, if S ⊂ X(k) is a set of density α and expansion:

ϕ(S) < 1− α− (1− α)δ − cγ

for c ≤ w(M)h(M)22O(k), then S is non-trivially correlated with an i-link for 1 ≤ i ≤ Rδ/2:

∃1 ≤ i ≤ Rδ/2, τ ∈ X(i) : E
Xτ

[1S] ≥ α +
δ

c2Rδ/2

(
k
i

)
λi(M)

,

where c2 > 2 is some small absolute constant.

Notice that the excess correlation implied by Corollary 7.9.8 decays as k grows large

(except in the case of very deep walks like S
k−O(1)
k ); this is one of the main obstructions to

using results like Corollary 7.9.8 for hardness of unique games. On the other hand, we now

turn our attention to algorithms for unique games, where the ℓ2-regime gets its chance to

shine.
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7.10 Playing Unique Games on HD-Walks

Following the recent algorithmic framework of [37], we show how to translate our

spectral machinery and combinatorial characterization of non-expansion into a polynomial

time algorithm for unique games over HD-walks whose finer-grained runtime and approxi-

mation guarantees depend on ST-rank. Before we dive into the theorems let’s start with

some notation for this section.

Notation:.

We briefly comment on the use of I = (M,S) to denote an affine UG instance over

a random-walk M , since unique games are formally defined over graphs, not random walks.

In particular, it is well known that every HD-walk M over X(k) uniquely corresponds to

an undirected weighted graph GM = (X(k), E) (see Section 7.14.1). Thus by I = (M,S),

we really mean that the constraints S are over the edges of G and the value is calculated

according to the distribution over edges E. We will use the Õ(·) notation in this section

to hide log factors, that is, Õ(f) denotes O(f logc f) for any constant c > 0.

With notation out of the way, let us describe the main theorem:

Theorem 7.10.1. For any ε ∈ (0, .01), there exists an algorithm A with the following

guarantee. Let (X,Π) be a d-dimensional two-sided γ-local spectral expander and M be

a k-dimensional complete HD-walk over X such that γ ≤ w(M)−12−Ω(k+h(M)) and d > k.

Let I = (M,S) be an instance of affine unique games over M with value at least 1 − ε.

Then A outputs an Ω

(
ε3

( k
r(2ε))

2

)
-satisfying assignment in time |X(k)|Õ((

k
r(2ε))

1
ε), where

r(ε) = R1−16ε(M) is the ST-rank of M .

Since the HDX literature focuses mostly on canonical and partial-swap walks, we

also give the specification of Theorem 7.10.1 to this class for concreteness. Here we see

that the finer-grained performance of our algorithm depends on the depth of the walk.
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Corollary 7.10.2. For any ε ∈ (0, .01), there exists an algorithm A with the following

guarantee. Let (X,Π) be a d-dimensional two-sided γ-local spectral expander and M be

a k-dimensional canonical or partial-swap walk of depth β ∈ [0, 1] over X such that

γ ≤ w(M)−12−Ω(k+h(M)) and d > k. Let I = (M,S) be an instance of affine unique games

over M with value at least 1− ε. Then A outputs an Ω

(
ε3

( k
c ε
β
)
2

)
-satisfying assignment in

time |X(k)|Õ((
k

cε/β)
1
ε) for some absolute constant c > 0.

To prove Theorem 7.10.1, we follow the general SoS algorithmic paradigm introduced

by BBKSS for Johnson graphs (partial-swap walks on the complete complex), described in

Section 7.10.2 for completeness. As discussed in Section 7.3.3 we abstract BBKSS’ analysis

to rely on two core structural properties true of the graphs underlying HD-walks:

1. There exists a low-degree Sum-of-Squares proof that non-expanding sets have high

variance in size across links.

2. For every small enough ϵ, there exists a parameter r = r(ε) such that:

(a) The (r + 1)-st largest (distinct) stripped-eigenvalue of G is small:

λr ≤ 1− Ω(ε)

(b) The expansion of any r-link is small as well:

∀τ ∈ X(s) : Φ(Xτ ) ≤ O(ε).

Recall that we have already proved property (1) in Theorem 7.9.5, albeit not in the

low-degree SoS proof system. In Section 7.10.4 we modify the proof of Theorem 7.9.5

to show that it has a degree 2 SoS proof. For property (2), it is clear that the existence

of r(ϵ) is an inherent consequence of Theorem 7.9.2, and furthermore it is exactly the
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(1−O(ϵ)) ST-Rank of the HD-walk. Analyzing the generalized BBKSS algorithm using

these properties combined with a few more technicalities (described in Section 7.10.4) then

gives an efficient algorithm for unique games over HD-walks on two-sided local spectral

expanders.

7.10.1 Background for Unique Games and SoS

Proving Theorem 7.10.1 from the ground up requires substantial background in the

SoS framework. However, since we mostly rely on a number of higher level results from

[37] for the SoS side of our work, we cover here only background necessary to understand

our methods, and refer the reader to the surveys of [49, 151, 324] and additionally Sections

1, 2, and A of [37] for more information.

The Sum of Squares framework is a method for approximating polynomial

optimization problems through semi-definite programming relaxations. In particular,

given the problem:UG

Maximize p ∈ R[x1, . . . , xn] constraint to {qi = 0}mi=1,

for qi ∈ R[x1, . . . , xn], the Degree-D Sum of Squares semidefinite programming relaxation

outputs in time nO(D) a pseudoexpectation operator Ẽ : polyR(n,D)→ R over polynomials

in R[x1, . . . , xn] of degree at most D satisfying:

1. Scaling: Ẽ[1] = 1

2. Linearity: Ẽ[af(x) + bg(x)] = a Ẽ[f(x)] + b Ẽ[g(x)]

3. Non-negativity (for squares): Ẽ[f(x)2] ≥ 0

4. Program constraints: Ẽ[f(x)qi(x)] = 0
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5. Optimality: Ẽ[p(x)] ≥ maxx {p(x) : {qi = 0}mi=1}

Note that the first four properties give the definition of a pseudoexpectation

(under constraints {qi = 0}mi=1), whereas the fifth is promised by the SoS relaxation.

The pseudoexpectation operator can equivalently be defined as a weighted expectation

over a “pseudodistribution” µ satisfying similar properties (and analogous to an actual

distribution). We will sometimes use the pseudodistribution view below when convenient

and refer to Ẽ[·] (or Ẽµ[·] in this case) as pseudomoments of the pseudodistribution (see

[49] for a more detailed exposition).

A Degree-D Sum of Squares proof of a polynomial inequality f(x) ≤ g(x)

(where f, g are polynomials of degree at most D) is a method for ensuring the inequality

continues to hold over any degree-D pseudoexpectation. In particular, given constraints

{qi = 0}mi=1, a degree-D sum of squares proof of f ≤ g, denoted by:

{qi = 0}mi=1 ⊢D f ≤ g,

is a certificate of the form g(x) = f(x)+
∑

s(x)2+
∑

i t(x)qi(x) where all terms have degree

at most D. Notice that properties 2, 3, and 4 then immediately imply Ẽ[f(x)] ≤ Ẽ[g(x)].

Conditioning is a standard algorithmic technique in the SoS paradigm used to

improve the value of independently sampling a solution from the output of an SoS

semidefinite relaxation (see e.g. [48, 37]). Given a degree D pseudodistribution µ, and a

degree < D sum of squares polynomial s(x), we can define a new pseudodistribution µ′ by

conditioning on s(x) as follows:

Ẽ
µ′
[f(x)|s(x)] = Ẽµ[f(x)s(x)]

Ẽµ[s(x)]
,
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for all polynomials f(x) of degree ≤ D − deg(s). We have that µ′ is a valid pseudodistri-

bution of degree D − deg(s) that satisfies the axioms satisfied by µ22. In an algorithmic

context, this is often used to restrict the pseudoexpectation to some partial solution.

7.10.2 The Algorithm

We now present our algorithm for solving Unique Games on HD-walks. We

follow the overall framework of BBKSS, which is based on the Sum-of-Squares semidefinite

programming (SDP) relaxation paradigm and its view as optimizing over pseudoexpectation

operators. The unique games problem (Definition 7.2.10) can be written as a polynomial

optimization problem. In particular, given an instance I of unique games with alphabet Σ

and constraints S over G(V,E) (that are of the form Xu −Xv = suv (mod k)), consider

the following quadratic optimization problem AI over variables {Xv,s}V×Σ that computes

val(I):

Maximize: E
(u,v)∼E

[∑
s∈Σ

Xu,sXv,πuv(s)

]

Constraint to: X2
v,s = Xv,s ∀v ∈ V, s ∈ Σ

Xv,aXv,b = 0 ∀v ∈ V, a ̸= b ∈ Σ∑
s∈Σ

Xv,s = 1 ∀v ∈ V

The variables Xv,a are 0/1 indicators that vertex v ∈ V takes the value a ∈ Σ, E is

a distribution over the edges of the weighted graph G, the constraints are πuv(s) =

s− suv (mod k), and the objective function maximizes the fraction of constraints satisfied.

We will work with the Degree-D Sum of Squares relaxation of this program, which

outputs a degree-D pseudodistribution µ and corresponding pseudoexpectation operator

Ẽµ : X≤D → R, where X≤D is the set of all monomials in the X variables up to degree D,
22Technically only the axioms that were of degree ≤ D − deg(s)
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and Ẽµ satisfies the above equality constraints as axioms. The value of Ẽµ, with respect to

the instance I is denoted by valµ(I) = Ẽµ[valI(X)] = Ẽµ[ E
(u,v)∼E

[
∑

s∈ΣXu,sXv,πuv(s)]]. This

operator is obtained in time |V |O(D) such that Ẽµ[valI(X)] ≥ val(I).

We now describe the rounding algorithm that takes a pseudodistribution µ over an

almost-satisfiable UG instance I and produces a high value assignment.

Condition&Round:.

We start with a basic sub-routine which will then be used in the final algorithm

for HD-walks. This subroutine takes a pseudodistribution µ for an affine unique games

instance (G(V,E),Π) on alphabet Σ and outputs an assignment x ∈ ΣV via the following

process:

1. Sample a vertex v ∈ V uniformly at random, and condition µ on event Xv,0 = 1 to

get the conditioned pseudodistribution µ|(Xv,0 = 1).

2. Sample a solution x ∈ ΣV by independently sampling a label for every vertex w ̸= v

from its marginal distribution in µ|(Xv,0 = 1): P[xw = s] = Ẽµ[Xw,s|Xv,0 = 1].

Note that Ẽµ[·|Xv,0 = 1] is by definition conditioning µ on the polynomial Xv,0,

hence Ẽµ[Xw,s|Xv,0 = 1] = Ẽµ[Xw,sXv,0]/ Ẽµ[Xv,0]. Following [37], we define the term

Condition&Round-value (abbreviated to CR-val) of an instance I with respect to a

pseudodistribution µ:

Definition 7.10.3 (Condition&Round value). The CR-Value of the instance I with respect

to a pseudodistribution µ is the expected value of the solution output by Condition&Round

on instance I and pseudodistribution µ, denoted CR-Valµ(I). We drop the subscript µ

when clear from context.

Before we describe the main algorithm, an iterative framework for applying Condi-

tion&Round, we need to introduce a simple operation on pseudodistributions for affine

unique games that allows for ease of analysis:

656



Symmetrization:.

Symmetrization is an operation on pseudodistributions introduced in [37] to take

advantage of the symmetric structure of affine unique games. The idea is to average the

pseudoexpectation operator over shifts s ∈ Σ. Formally, given a degree D pseudodistribu-

tion µ, define the symmetrized pseudodistribution µsym via its pseudoexpectation operator

as follows. For all degree ≤ D monomials:

Ẽ
µsym

[Xu1,a1 . . . Xut,at ] =
1

|Σ|
∑
s∈Σ

Ẽ
µ
[Xu1,a1+s . . . Xut,at+s].

We will call a pseudodistribution shift-symmetric if it is invariant under this operation.

If µ is a degree D pseudodistribution that satisfies the unique games axioms AI it is

easy to verify that the symmetrized pseudodistribution µsym is also a valid degree D

pseudodistribution satisfying AI with val(µ) = val(µsym). Furthermore symmetrization

can be performed in time subquadratic in the description of Ẽµ. As a result, we can perform

this operation essentially for free inside our algorithm and therefore assume throughout

that we are working with a shift-symmetric pseudodistribution.

We are now ready to describe the main algorithm which is called Iterated Condi-

tion&Round. The algorithm follows the strategy presented in [37, Algorithm 6.1], differing

mainly in that the parameter r(ε) satisfying their second condition has been replaced with

the (1−O(ϵ))-ST-Rank of the underlying constraint graph.

Iterated Condition&Round:.

The full algorithm builds a solution by iteratively applying Condition&Round to

links. Let M be a complete k-dimensional HD-walk over a d-dimensional two-sided γ-local

spectral expander (X,Π) and GM = (X(k), E) be the corresponding undirected weighted

graph on vertex set X(k). Let I = (M,S) be an instance of affine unique games over

alphabet Σ with val(I) ≥ 1− ε and r = R1−16ε(M). Further, given a subset H ⊂ X(k),

let IH denote the restriction of the instance I to the subgraph vertex-induced by H. Given
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a subroutine for finding a link with high CR-value (see Proposition 7.10.5), the following

process returns an Ωε,r,k(1) satisfying assignment.

1. Let δ(ε) := Ω

(
ε

(kr)

)
. Solve the Degree-D = Õ (1/δ(ε)) SoS SDP relaxation of unique

games, and symmetrize the resulting pseudodistribution to get µ0. Set j = 1.

2. Let Dif(j) = Ẽµ0 [valI(x)]− Ẽµj−1
[valI(x)]. While Dif(j) ≤ ε:

(a) Find an r-link Xτ such that the CR-Value of I|Xτ is at least δ(ε+ Dif(j))23.

(b) Let Sj be the subgraph of Xτ induced by the vertices in X(k) which have not

yet been assigned a value in any partial assignment fi, i ≤ j, and perform

Condition&Round on Sj to get partial assignment fj.

(c) Create a new pseudodistribution µj by making the marginal distribution over

assigned vertices uniform and independent of others, i.e. for all degree ≤ D

monomials let Ẽµj
be:

Ẽ
µj

[Xh1,a1 . . . Xht,atXu1,b1 . . . Xum,bm ] =
1

|Σ|t
Ẽ

µj−1

[Xu1,b1 . . . Xum,bm ],

where hi ∈ Sj and ui ∈ X(k) \ Sj. Increment j ← j + 1.

It is worth noting that the Condition&Round subroutine, and thus the entire

Iterated Condition&Round algorithm, can be derandomized by standard techniques like

the method of conditional expectations [37].

7.10.3 Analysis of Algorithm 7.10.2

BBKSS’ analysis of Iterated Condition&Round algorithm relies heavily on analysing

a quantity called the Approximate shift-partition potential defined therein. For complete-

ness we include the definitions of the potential functions used in Section 7.14.2. For the
23When γ, k, d satisfy certain inequalities then such a link is guaranteed to exist by Proposition 7.10.5.

Therefore we can find it by enumerating over all links τ ∈ X(r) and computing CR-val(Xτ )
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purpose of this section, the potential ΦI
β,ν(X) can be thought of as a low-degree polynomial

(with degree = Õ(1/ν)) in the variables of AI (X = (. . . , Xv,a, . . .) where v ∈ V and a ∈ Σ).

Given a pseudodistribution µ for instance I, the pseudoexpectation of the potential will

be denoted by ΦI
β,ν(µ) = Ẽµ[Φ

I
β,ν(X)]. β, ν are some parameters in [0, 1] that control the

degree of ΦI
β,ν(X) and the value of the assignment we finally obtain via Condition&Round.

The framework developed by BBKSS for analyzing Iterated Condition&Round can

be described as follows. First, they prove that the Condition&Round subroutine, when run

on a pseudodistribution µ for a unique games instance I, returns a high value assignment

whenever ΦI
β,ν(µ) (Definition 7.14.2) is high:

Theorem 7.10.4 (BBKSS Theorem 3.3). Let I = (G,S) be an affine instance of Unique

Games over graph G = (V,E) and the alphabet Σ. Let β, ν ∈ [0, 1] and µ be a degree-Õ(1/ν)

shift-symmetric pseudodistribution satisfying the unique games axioms AI (Section 7.10.2).

If ΦI
β,ν(µ) ≥ δ, then on input µ, the Condition&Round Algorithm runs in time poly(|V (G)|)

and returns an assignment of expected value at least (δ − ν)(β − ν) for I.

Using this rounding algorithm as a subroutine the analysis of Iterated Condi-

tion&Round in BBKSS proceeds in the following way:

1. For every I = (G,Π), where G is a Johnson graph, using the structure theorem for

non-expanding sets of G and the properties of the potential function, there exists a

link Xτ of G such that the potential induced on C is large: ΦI|Xτ
β,ν (µ) ≥ poly(δ), where

I|Xτ denotes the UG instance induced on the subgraph Xτ . Using the rounding

theorem 7.10.4 we get that the Condition&Round value on this link is high.

2. Iterative Condition&Round: Using iterations one can patch together solutions on

different links, and since each link is a non-expanding set we get a good solution for

the whole graph.
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We show that this framework extends to all UG instances on HD-walks. We use

the analysis of Condition&Round (Theorem 7.10.4) in a blackbox way. We start with

the analysis of Point 1, which relies on the technical machinery developed in the previous

sections for analysing the non-expanding sets of HD-walks. Using this, we show that there

always exists a link with high potential and therefore with high Condition&Round value.

Proposition 7.10.5. Let M be a k-dimensional complete HD-walk on a d-dimensional,

two-sided γ-spectral expander with γ ≤ w(M)−12−Ω(h(M)+k) and d > k, and I be an

affine unique games instance over M with value at least 1 − η where 1/2k ≤ η < .02.

Let r = r(η) = R1−16η(M) − 1, and assume r ≤ k/2. Then given a degree-Õ
(

1
η

(
k
r

))
pseudodistribution satisfying the axioms AI , we can find in time |X(k)|4 an r-link Xτ with

CR-Value(Xτ ) ≥ Ω

(
η

(kr)

)
.

The proof of this lemma is similar in nature to the proof of the analogous lemma

in BBKSS, albeit with all of our technical machinery is plugged in. In particular we use a

sum-of-squares version of Theorem 7.8.2, the relation between eigenvalues and expansion

of links (Theorem 7.9.2), and a new property analyzing the expansion of vertices within a

link (Lemma 7.10.12). We elaborate on this in Section 7.10.4.

Given the ability to find a link with high CR-value, we can use BBKSS analysis of

Iterated Condition&Round ([37, Lemma 6.12]) as a blackbox to conclude it produces an

assignment satisfying a large fraction of the constraints for the whole graph.

Lemma 7.10.6 (Lemma 6.12 [37]). Let ε ∈ (0, .01), δ : [0, 1] → [0, 1] be any function,

and δmin = minδ(η)∈[ε,2ε]. Let G be a weighted graph24 and I be any affine unique games

instance on G with alphabet size |Σ| ≥ Ω
(

1
δmin

)
and value at least 1− ε.

Suppose we have a subroutine A which, for any ε ≤ η ≤ 2ε, given as input a

shift-symmetric degree-D pseudodistribution µ satisfying AI with Ẽµ[valI(x)] ≥ 1 − η

returns a vertex-induced subgraph H such that:
24BBKSS only state the result for regular graphs, but their proof works for weighted graphs too, where

the value, expansion etc are measured appropriately according to the edge-weights.
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1. The CR-Value of IH is at least δ(η).

2. The expansion of H is O(η).

Then if A runs in time T (A), Iterated Condition&Round25 outputs a solution for I

satisfying an Ω(δ2minε)-fraction of edges of G in time |V (G)|(T (A) + |V (G)|O(D)).

With these results in hand, the final observation to prove Theorem 7.10.1 lies in the

relation between the local expansion of links and global spectra of eigenstrips we proved in

Section 7.9. Namely, since the rth strip is by definition the last one with eigenvalue worse

than 1−O(ε), the expansion of r-links is at most O(ε) by Theorem 7.9.2. We therefore

meet the conditions of Lemma 7.10.6, and can use Iterated Condition&Round to output a

good global assignment. We now prove Theorem 7.10.1 assuming Proposition 7.10.5 and

Lemma 7.10.6 hold.

Proof of Theorem 7.10.1. To start, we first prove that we may assume without loss of

generality both that ε ≥ 1/2k, and that r(2ε) ≤ k/2 (we will need these properties to

meet the conditions of Proposition 7.10.5 and Lemma 7.10.6). This relies on the following

claim, the proof of which we defer to Section 7.14.4.

Claim 7.10.7. Let M be a k-dimensional complete HD-walk on a d-dimensional, two-sided

γ-local-spectral expander with d > k and γ ≤ w(M)−12−Ω(h(M)+k). If the expected laziness

of M (i.e. EΠk
[1T

vM1v]) is at least .1, then the spectral gap of M is at least Ω(1/k) and

λk/2(M) ≤ .68.

With this in mind, note that we can always assume the expected laziness E[1T
vM1v]

is at most 1/10. This follows from the fact that the expected laziness of M exactly

corresponds to the probability of drawing a self-edge on the corresponding graph GM (see

Section 7.14.1), and in an affine unique game, every self edge is either always or never

satisfiable. Since our game has value at least .99, in a walk with more than .1 laziness, at
25We note that the version of Iterated Condition&Round analyzed in [37] differs slightly from the one

we present. Our version simplifies their algorithm a bit but the analysis is exactly the same.
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least .09 of the weight on self-edges must be satisfiable, and therefore every assignment will

satisfy our approximation guarantee. Assuming then that E[1T
vM1v] ≤ .1, Claim 7.10.7

implies that the spectral gap of M is at least Ω(1/k), in which case standard algorithms

for unique games on expander graphs (e.g. [293]) give the desired result. Similarly, we have

λk/2 ≤ .68 ≤ 1− 32ε by assumption, so we may further assume r(2ε) ≤ k/2 as desired.

Now that we have 1/2k ≤ ε < .02 and r ≤ k/2, we are in position to solve the

degree-D SoS relaxation of the unique games integer program AI for D = Õ(1
ε

(
k

r(2ε)

)
), and

apply Proposition 7.10.5 to build a sub-route that satisfies Lemma 7.10.6. Namely, we have

that for any ε ≤ η ≤ 2ε and pseudodistribution of value at least 1− η, Proposition 7.10.5

finds a link Xτ with high Condition&Round value:

CR-val(Xτ ) ≥ Ω

(
η(
k

r(η)

)) .

Further, note that by our assumptions on γ and the fact that M is complete, Proposi-

tion 7.7.11 gives that the eigenvalues corresponding to each eigenstrip strictly decrease,

and therefore by definition of ST-Rank that the approximate eigenvalue corresponding to

the rth eigenstrip is at least 1−O(η). By Theorem 7.9.2, this implies that Xτ has poor

expansion:

Φ(Xτ ) ≤ O(η) + w(M)h(M)22O(k)γ ≤ O(η)

since η ≥ ε ≥ w(M)2O(h(M)+k)γ by assumption. As a result, this sub-routine satisfies

the conditions of Lemma 7.10.6 with δ set to δ(η) = Ω

(
η

( k
r(η))

)
. The only catch is

that we need the alphabet Σ to satisfy |Σ| ≤ Ω
(

1
δmin

)
. This can be assumed without

loss of generality, since a random solution satisfies a 1/|Σ| fraction of constraints in

expectation (and can be easily derandomized), which satisfies our approximation guarantee

if |Σ| ≤ O
(

1
δmin

)
. As a result, applying Lemma 7.10.6 outputs a Ω(δ2minε)-satisfying

solution for δmin = minη∈[ε,2ε]

{
ε

( k
r(η))

}
≥ Ω

(
ε

( k
r(2ε))

)
. The running time guarantee follows
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from noting that the sub-routine promised by Proposition 7.10.5 runs in time |V (G)|4,

so Lemma 7.10.6 then runs in time |V (G)|O(D) with |V (G)| = |X(k)|. Since solving the

original Degree-D SoS relaxation also takes time only |V (G)|O(D), we get the desired

result.

7.10.4 Proof of Proposition 7.10.5

Now that we have given the algorithmic background, we prove the main technical

lemma behind the analysis. The broad outline of the proof is as follows:

1. We first prove a structure theorem (Theorem 7.10.8) for non-expanding sets of

HD-walks. We show an SoS proof of the fact that every non-expanding set must

have large variance of size when restricted to links of the complex.

2. Using the structure theorem, in Proposition 7.10.10 we show that given a pseudodis-

tribution µ with objective value 1− η for unique games over an HD-walk M , one

can find a link Xτ with high global shift-partition potential (Definition 7.14.3).

3. In the final step (Lemma 7.10.11), we relate the global shift-partition potential

to the shift-partition potential on the subgraph induced by Xτ
26: we show that

ΦIτ
β,ν(µ) (Definition 7.14.4) is large. By the rounding theorem (Theorem 7.10.4), we

then conclude that the expected value of the Condition&Round algorithm, when

performed on Xτ (CR-valµ(Xτ )) must be high.

This proof structure is similar to the analogous Lemma 6.9 of [37]. Most of our

technical work goes into proving points 1 and 3 above, and point 2 turns out to be

straightforward given BBKSS.

We now turn to proving our structure theorem in the low-degree SoS proof system.

We will reprove the lemmas for expansion for pseudorandom sets in HD-walks proved
26This is just the potential measured on the sub-instance I when restricted to the induced subgraph

given by the link Xτ .
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in Section 7.8 and Section 7.9, but this time carefully making sure that they are in the

low-degree SoS proof system.

Theorem 7.10.8 (SoS Structure Theorem for HD-Walks). Let (X,Π) be a two-sided

γ-local-spectral expander and M be a k-dimensional, complete HD-walk on X with γ ≤

w(M)−1h(M)−22−Ω(k). Then for any f ∈ Ck and any 0 ≤ ℓ ≤ k/2, the expansion27 of f

with respect to M is large:

⊢2 ⟨f, (I −M)f⟩ ≥ (1− λℓ+1)

(
(1− c1γ)(E f +B(f))−

(
k

ℓ

)
⟨Dℓ

kf,D
ℓ
kf⟩
)
,

where B(f) = E[f 2 − f ] represents the Booleanity constraints and c1 ≤ 2O(k).

The proof of Theorem 7.10.8 relies on a number of SoS variants of properties

of the HD-Level-Set Decomposition used in the previous sections, namely approximate

orthogonality and the relation between ∥fi∥ and ∥gi∥.

Lemma 7.10.9. Let (X,Π) be a two-sided γ-local-spectral expander with γ ≤ 2−Ω(k) and

f ∈ Ck. Then for fi = Uk
i gi ∈ V i

k :

⊢2 ⟨fi, fi⟩ ∈

(
1(
k
i

) ± c1γ

)
⟨gi, gi⟩,

where c1 ≤ O(k2). Further, weak variants of approximate orthogonality also have degree 2

proofs:

⊢2 ⟨fi, fi⟩ ≤ (1 + c2γ)⟨f, f⟩,

and

⊢2 ⟨f, fi⟩ ≥ −c3γ⟨f, f⟩,

where c2, c3 ≤ 2O(k)

27This notion of expansion varies slightly from our previous definition, coinciding (up to normalization)
for Boolean functions.
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The proof of Lemma 7.10.9 follows from combining arguments in [111] with standard

SoS tricks. For completeness, we give the proof in Section 7.14.3. With Lemma 7.10.9 in

hand, Theorem 7.10.8 follows similarly to Theorem 7.8.7 and Theorem 7.9.5.

Proof of Theorem 7.10.8. As in the proof of Theorem 7.9.5, it is sufficient to bound the

weight of f onto low levels of the HD-Level-Set decomposition to prove that the expansion

of f is small. First, note that given the function f , the low-level decomposition functions

fi’s are explicit linear functions of the coordinates of f [111]. We will thus show that

Lemma 7.8.2 has an SoS proof, that is the following relation between ∥Dk
ℓ f∥2 and f ’s

weight holds:

⊢2
ℓ∑

j=0

⟨f, fj⟩ ≤
(
k

ℓ

)
⟨Dℓ

kf,D
ℓ
kf⟩+ 2O(k)γ⟨f, f⟩. (7.9)

Before proving Equation (7.9), we check that if the above inequality holds then

the theorem statement follows. To see this, first recall from Section 7.7 that Mfi =

λifi + Γgi where Γ is a matrix with spectral norm ≤ w(M)h(M)22O(k)γ which we call C

for convenience. It will be useful to have an SoS upper bound on ⟨f,Γgi⟩, which we will

use multiple times throughout this proof. First by an SoS version of Cauchy-Schwarz we

get that for all real constants ζ > 0:

⊢2 ⟨f,Γgi⟩ ≤
ζ

2
⟨f, f⟩+ 1

2ζ
⟨Γgi,Γgi⟩.

Now substituting ζ = C and simplifying using the spectral norm bounds on Γ and

Lemma 7.10.9 we get:

⟨f,Γgi⟩ ≤
C

2
⟨f, f⟩+ 1

2C
⟨Γgi,Γgi⟩

≤ C

2
⟨f, f⟩+ C

2
⟨gi, gi⟩

≤ C

2
⟨f, f⟩+ C

2

((
k

i

)
+O(γ)

)
⟨fi, fi⟩,
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≤ c1γ⟨f, f⟩,

where all inequalities are degree 2 SoS inequalities and c1 ≤ w(M)h(M)22O(k). With this

in hand and assuming Equation (7.9), the result follows from expanding out ⟨f, (I −M)f⟩

and applying Lemma 7.10.9:

⟨f, (I −M)f⟩ = ⟨f, f⟩ −
k∑

i=0

λi⟨f, fi⟩ −
k∑

i=0

⟨f,Γgi⟩

≥ (1− c1γ)⟨f, f⟩ −
ℓ∑

i=0

λi⟨f, fi⟩ −
k∑

i=ℓ+1

λi⟨f, fi⟩

≥ (1− c2γ)⟨f, f⟩ −
ℓ∑

i=0

⟨f, fi⟩ − λℓ+1

k∑
i=ℓ+1

⟨f, fi⟩

= (1− c2γ)⟨f, f⟩ −
ℓ∑

i=0

⟨f, fi⟩ − λℓ+1⟨f, f⟩+ λℓ+1

ℓ∑
i=0

⟨f, fi⟩

= (1− λℓ+1)

(
(1− c3γ) ⟨f, f⟩ −

ℓ∑
i=0

⟨f, fi⟩

)

≥ (1− λℓ+1)

(
(1− c4γ) ⟨f, f⟩ −

(
k

ℓ

)
⟨Dℓ

k, D
ℓ
k⟩
)

= (1− λℓ+1)

(
(1− c4γ)E[f ] + (1− c4γ)B(f)−

(
k

ℓ

)
⟨Dℓ

k, D
ℓ
k⟩
)

where c1, c2, c3, c4 ≤ w(M)h(M)22O(k), and B(f) = E[f 2 − f ].

It remains to prove Equation (7.9). This follows from a similar modification of

Lemma 7.8.2. Notice that by the adjointness of D and U , it is enough to analyze the walk

Uk
ℓ D

k
ℓ :

⟨Dk
ℓ f,D

k
ℓ f⟩ = ⟨f, Uk

ℓ D
k
ℓ f⟩

Using Proposition 7.7.5 and the assumption ℓ ≤ k/2, we can decompose the righthand

side as: (
k

ℓ

)
⟨f, Uk

ℓ D
k
ℓ f⟩ =

ℓ∑
j=0

(
k − j

ℓ− j

)
⟨f, fj⟩+

k∑
j=0

⟨f,Γgj⟩
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where ∥Γ∥ ≤ w(M)h(M)22O(k)γ := C. Noting that
(
k−j
ℓ−j

)
is at least 1 for 0 ≤ j ≤ ℓ, we

can apply the upper bound on ⟨f,Γgj⟩ proved above and Lemma 7.10.9 to get:

(
k

ℓ

)
⟨Dk

ℓ f,D
k
ℓ f⟩ ≥

ℓ∑
j=0

⟨f, fj⟩ − c5γ⟨f, f⟩ −
k∑

j=0

⟨f,Γgj⟩

≥
ℓ∑

j=0

⟨f, fj⟩ − c6γ⟨f, f⟩

where all the constants ci’s are less than w(M)h(M)22O(k) and all inequalities are degree-2

SoS.

It is worth giving a brief qualitative comparison of this result to a similar version

for the Johnson graphs in [37]. In particular, Theorem 7.10.8 not only gives a tighter

bound (by a factor of exp(r)), but perhaps more importantly shows how viewing the

problem from the framework of high dimensional expansion demystifies the original Fourier

analytic proof. This understanding allows us to extend the structural result well beyond

the Johnson graphs to all HD-walks. In fact, this result also holds for the more general

class of expanding posets [111] (albeit with different parameters). We leave their discussion

to future work.

Given this structure theorem, we use the BBKSS’ framework to show that the

global potential (Definition 7.14.3) on a link is high. This follows because of the properties

of the potential function and the pseudodistribution over (1−η)-satisfying assignments. In

general, the potential function ΦI
β,ν(µ) turns out to be an average taken over non-expanding

partitions of the graph. Using our structure theorem, we get that every non-expanding

partition must have a large variance across links, and therefore there must exist a link

Xτ such that the partition is large even when restricted to Xτ . As a result, there must

be be a link Xτ where the partitions are large on average too, which corresponds to a

quantity called the global potential restricted to Xτ , denoted by ΦI
β,ν(µ|τ ), being large.

The proof is essentially the same as [37, Lemma 6.9], but we include it in Section 7.14.5
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for completeness.

Proposition 7.10.10. Let M be a k-dimensional complete HD-walk on a d-dimensional,

two-sided γ-local-spectral expander satisfying γw(M)2O(h(M)+k) ≤ 1/2k < η < 0.02 and

d > k, and I be an affine unique games instance over M with value at least 1 − η. Let

r(η) = R1−16η(M) − 1, and assume r ≤ k/2. Let β = 19η and ν = η

56(kr)
. Then given a

degree-Õ(1/ν) pseudodistribution µ satisfying the axioms AI , there exists an r-link Xτ

such that the global potential restricted to Xτ is large:

ΦI
β,ν(µ|τ ) ≥

1

4
(
k
r

) .
In the next lemma, we will relate the global potential to the potential induced on Xτ .

In particular, we’ll show that since the global potential on Xτ is high (Proposition 7.10.10),

the potential induced on Xτ , ΦIτ
β,ν(µ), must also be high. Since this is just the usual potential

function when applied to the sub instance I|τ corresponding to the subgraph induced by

Xτ (Definition 7.14.4), we can then apply the rounding theorem of BBKSS Theorem 7.10.4

to surmise that the CR-value of Xτ is high.

Lemma 7.10.11. Assume the conditions of Proposition 7.10.10 hold. Let Xτ be an r-link

for r = R1−16η(M) − 1 with high global potential: ΦI
β,ν(µ|τ ) ≥ 1

4(kr)
, for β = 19η and

ν = η

56(kr)
. Then the potential induced on Xτ is also high:

ΦI|τ
η,ν(µ) ≥

1

8
(
k
r

) .
We prove Lemma 7.10.11 in Section 7.14.5, but it’s worth pausing to discuss the

proof, especially in how it differs from the analogous result in BBKSS [37, Claim 6.11].

Recall that the main idea behind Lemma 7.10.11 is to relate the global potential on Xτ

(bounded in Proposition 7.10.10) to the potential induced on Xτ itself (which implies high

CR-Value by Theorem 7.10.4). In a bit more detail, the global potential on a link depends
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on the “value” of the vertices in the link (which measures the value of an assignment at

the vertex), but is measured with respect to its neighbors across the entire graph. On

the other hand, the induced potential on the link depends on the value of vertices when

measured only with respect to the edges inside the link (see Definitions 7.14.3,7.14.4 for

exact details). It is possible to relate the two potentials by observing that the internal-value

of a vertex (value with respect to only the neighbors inside the link) can decrease by at

most an additive factor equal to its edge-expansion inside the link (i.e. the fraction of

edges incident on the vertex that leave the set). By leveraging machinery developed in

Section 7.7 and some additional properties, we show not only that the expansion of links

is small (by Theorem 7.9.2), but in fact that this holds approximately vertex by vertex:

for most vertices in the link, only an O(η)-fraction of their edges are outgoing. We prove

the following claim formally in Section 7.14.5:

Lemma 7.10.12. Let M be a k-dimensional HD-walk on d-dimensional two-sided γ-local-

spectral expander satisfying γ ≤ w(M)−12−Ω(h(M)+k) and d > k. Then for every i-link Xτ ,

the deviation of the random variable ϕXτ (v) (v ∼ Xτ) is small:

E
v∼Xτ

[|ϕXτ (v)− ϕ(Xτ )]|] ≤
1

211k
,

where ϕXτ (v) denotes the fraction of edges incident on v ∈ Xτ that leave Xτ .

BBKSS use an exact version of this statement for the Johnson (that expansion

holds vertex-by-vertex) to prove their analogous version of Lemma 7.10.11. We relax the

conditions required for their proof and show that the approximate statement state above

is sufficient in Section 7.14.5.

Finally, we complete the section by using Proposition 7.10.10 and Lemma 7.10.11 to

prove Proposition 7.10.5 (and thereby Theorem 7.10.1 as well). We restate the proposition

here for convenience:

669



Proposition 7.10.13 (Restatement of Proposition 7.10.5). Let M be a k-dimensional

complete HD-walk on a d-dimensional, two-sided γ-spectral expander with γ ≤

w(M)−12−Ω(h(M)+k) and d > k, and I be an affine unique games instance over M with

value at least 1 − η where 1/2k ≤ η < .02. Let r = r(η) = R1−16η(M) − 1, and assume

r ≤ k/2. Then given a degree-Õ
(

1
η

(
k
r

))
pseudodistribution µ satisfying the axioms AI , we

can find in time |X(k)|4 an r-link Xτ with CR-valµ(Xτ ) ≥ Ω

(
η

(kr)

)
.

Proof. Let β = 19η and ν = η

56(kr)
as in Proposition 7.10.10. By Proposition 7.10.10, there

exists an r-link Xτ with high global potential:

ΦI
β,ν(µ|τ ) ≥

1

4
(
k
r

) .
By Lemma 7.10.11, this implies that Xτ also has high induced potential:

ΦI|τ
η,ν(µ) ≥

1

8
(
k
r

) .
As mentioned previously, this is just the usual potential function on the instance induced by

Xτ (Definition 7.14.4), so we may apply the rounding theorem of BBKSS Theorem 7.10.4

to bound Xτ ’s CR-Value. In particular, since we have set ν such that (η − ν) ≥ Ω(η)

and (Φ
I|τ
η,ν(µ)− ν) ≥ Ω

(
1

(kr)

)
, Theorem 7.10.4 implies that rounding µ, which is a degree

Õ(1/ν) = Õ
(

1
η

(
k
r

))
pseudodistribution as required, would give an assignment with large

-value on Xτ :

CR- valµ(Xτ ) ≥ (η − ν)(ΦI|τ
η,ν(µ)− ν) ≥ Ω

(
η(
k
r

)) .

Now that we have shown that there exists an r-link Xτ with large CR-value, it remains to

show that we can efficiently find such a link. We can do a brute-force enumeration over

all r-links in time |X(r)|, compute every CR-value in time |X(r)|3, and therefore in time

|X(r)|4 find a link with large CR-value. Since |X(k)| ≥ |X(r)| is a standard consequence
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of X being a local-spectral expander [111] the proposition follows.
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7.12 Proof of Lemma 7.7.3

In this section, we prove a strengthening of the main technical lemma of DDFH

Section 8 [111, Claim 8.8], which allows for better control of error propagation.

Lemma 7.12.1 (Strengthened Claim 8.8 [111]). Let (X,Π) be a d-dimensional two-sided

γ-local-spectral expander. Then for all j < k < d:

Dk+1U
k+1
k−j −

j + 1

k + 1
Uk
k−j −

k − j

k + 1
Uk
k−j−1Dk−j =

j−1∑
i=−1

k − i

k + 1
Uk
k−1−iΓiU

k−1−i
k−j

where ∥Γi∥ ≤ γ.

Proof. The proof follows by a simple induction. The base cases, j = 0 and k < d, follow

671



immediately from Equation (7.6). For the inductive step, consider:

Dk+1Uk+1
k−(j+1) =

(
Dk+1Uk+1

k−j −
j + 1

k + 1
Uk
k−j −

k − j

k + 1
Uk
k−jDk−j

)
Uk−j−1

+
j + 1

k + 1
Uk
k−j−1 +

k − j

k + 1
Uk
k−j−1Dk−jUk−j−1

By the inductive hypothesis, the first term on the RHS may be written as:

(
Dk+1Uk+1

k−j −
j + 1

k + 1
Uk
k−j −

k − j

k + 1
Uk
k−jDk−j

)
Uk−j−1 =

j−1∑
i=−1

k − i

k + 1
Uk
k−i−1ΓiU

k−1−i
k−j−1,

where ∥Γi∥ ≤ γ. For the latter term, consider flipping DU and UD. By Equation (7.6)

we have:

k − j

k + 1
Uk
k−j−1Dk−jUk−j−1 = Uk

k−j−1

(
1

k + 1
I +

k − j − 1

k + 1
Uk−j−2Dk−j−1 +

k − j

k + 1
Γj

)
,

for some Γj satisfying ∥Γj∥ ≤ γ. Combining these observations yields the desired result:

Dk+1Uk+1
k−(j+1) −

(j + 1) + 1

k + 1
Uk
k−j+1 +

k − (j + 1)

k + 1
Uk
k−(j+1)−1Dk−j+1

= Dk+1Uk+1
k−(j+1) −

j + 1

k + 1
Uk
k−j−1 − Uk

k−j−1

(
1

k + 1
I − k − j − 1

k + 1
Uk−j−2Dk−j−1

)
=

(
j−1∑
i=−1

k − i

k + 1
Uk
k−i−1ΓiU

k−1−i
k−j−1

)
+

k − j

k + 1
Uk
k−(j+1)Γj

=

j∑
i=−1

k − i

k + 1
Uk
k−1−iΓiU

k−1−i
k−(j+1).

We now show how to use this strengthened result to prove tighter bounds on the

quadratic form ⟨f,N j
kf⟩ which implies a stronger version of Lemma 7.7.4 as an immediate

corollary. This improvement mainly matters in the regime where γ ≤ 2−ck for c a small

constant.
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Proposition 7.12.2. Let (X,Π) be a d-dimensional γ-local-spectral expander with γ

satisfying γ ≤ 2−Ω(k+j), k + j ≤ d, and fℓ ∈ V ℓ
k . Then:

⟨fℓ, N j
kfℓ⟩ =

(
k
ℓ

)(
k+j
ℓ

) (1± j(j + 2k + 2ℓ+ 3)

4
γ ± c3(k, j, ℓ)γ

2

)
⟨fℓ, fℓ⟩

where c3(k, j, ℓ) = O((k + j)3
(
k+j
ℓ

)
).

Proof. We proceed by induction on j. We will prove a slightly stronger statement for the

base-case j = 1:

⟨fℓ, Dk+1Ukfℓ⟩ =
(
k + 1− ℓ

k + 1
± (k − ℓ+ 1)(k + ℓ+ 2)

2(k + 1)
γ ± c2(k, ℓ)γ

2

)
⟨fℓ, fℓ⟩,

where c2(k, ℓ) = O(k3
(
k
ℓ

)
). Recall that fℓ may be expressed as Uk

ℓ gℓ, for gℓ ∈ Hℓ. For

notational convenience, we write f i
ℓ = U i

ℓgℓ. Then we may expand the inner product

based on Lemma 7.7.3, and simplify based on applying the naive bounds on N i
k given by

Corollary 7.7.6:

⟨fℓ, Dk+1Ukfℓ⟩

=⟨fℓ, Dk+1U
k+1
ℓ gℓ⟩

=
k − ℓ+ 1

k + 1
⟨fℓ, fℓ⟩+

k−ℓ−1∑
i=−1

⟨fℓ,
k − i

k + 1
Uk
k−1−iΓiU

k−1−i
ℓ gℓ⟩

=
k − ℓ+ 1

k + 1
⟨fℓ, fℓ⟩+

k−ℓ−1∑
i=−1

k − i

k + 1
⟨N i+1

k−i−1f
k−1−i
ℓ ,Γif

k−1−i
ℓ ⟩

=
k − ℓ+ 1

k + 1
⟨fℓ, fℓ⟩+

k−ℓ−1∑
i=−1

k − i

k + 1

(
k−i−1

ℓ

)(
k
ℓ

) ⟨fk−1−i
ℓ ,Γif

k−1−i
ℓ ⟩+

k−ℓ−1∑
i=−1

k − i

k + 1
⟨hi,Γif

k−1−i
ℓ ⟩

where ∥hi∥ ≤ γ(k − ℓ)(i+ 1)∥gℓ∥. We now apply Cauchy-Schwarz, and Lemma 7.7.4 to
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collect terms in ⟨fℓ, fℓ⟩:

⟨fℓ, Dk+1Ukfℓ⟩

=
k − ℓ+ 1

k + 1
⟨fℓ, fℓ⟩ ± γ

k−ℓ−1∑
i=−1

k − i

k + 1

(
k−i−1

ℓ

)(
k
ℓ

) ⟨fk−1−i
ℓ , fk−1−i

ℓ ⟩ ± a1(k, ℓ)γ
2⟨gℓ, gℓ⟩

=
k − ℓ+ 1

k + 1
⟨fℓ, fℓ⟩ ± γ

k−j−1∑
i=−1

k − i

k + 1

1(
k
j

)⟨gℓ, gℓ⟩ ± a2(k, ℓ)γ
2⟨gℓ, gℓ⟩

=
k − ℓ+ 1

k + 1
⟨fℓ, fℓ⟩ ± γ

k−j−1∑
i=−1

k − i

k + 1

⟨fℓ, fℓ⟩
(1− c1(k, ℓ)γ)

± a2(k, ℓ)γ
2 ⟨fℓ, fℓ⟩
(1− c1(k, ℓ)γ)

=
k − ℓ+ 1

k + 1

(
1± (k + ℓ+ 2)

2
γ ± a3(k, ℓ)γ

2

)
⟨fℓ, fℓ⟩

where the final step comes from a Taylor expansion assuming γ sufficiently small, and

a3(k, ℓ) = O(k3
(
k
ℓ

)
).

The inductive step follows from noting that the canonical walk essentially acts like

a product of upper walks from lower levels in the following sense:

⟨fℓ, N j
kfℓ⟩ = ⟨U

k+j−1
k fℓ, Dk+jU

k+j
k fℓ⟩

= ⟨Uk+j−1
k fℓ, N

1
k+j−1(U

k+j−1
k fℓ)⟩.

Thus by the base-case and inductive hypothesis we get:

⟨fℓ, N j
kfℓ⟩ = ⟨U

k+j−1
k fℓ, N

1
k+j−1(U

k+j−1
k fℓ)⟩

=

(
k + j − ℓ

k + j
± (k + j − ℓ)(k + j + ℓ+ 1)

2(k + j)
γ ± c2(k + j − 1, ℓ)γ2

)
⟨fℓ, N j−1

k fℓ⟩

=

(
k
ℓ

)(
k+j
ℓ

) (1± (k + j + ℓ+ 1)

2
γ ± k + j

k + j − ℓ
c2(k + j − 1, ℓ)γ2

)
·
(
1± (j − 1)(j + 2k + 2ℓ+ 2)

4
γ ± c3(k, j − 1, ℓ)γ2

)
⟨fℓ, fℓ⟩

=

(
k
ℓ

)(
k+j
ℓ

) (1± j(j + 2k + 2ℓ+ 3)

4
γ ± c3(k, j, ℓ)γ

2

)
⟨fℓ, fℓ⟩,
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Notice that this immediately implies a stronger version of Lemma 7.7.4, since

⟨Uk
ℓ gℓ, U

k
ℓ gℓ⟩ = ⟨Nk−ℓ

ℓ gℓ, gℓ⟩. Finally, we conjecture that a stronger result is true, and the

error dependence on γ should in fact be exp(−poly(k)γ). Proving this would require a

more careful and involved analysis of how the error term propogates.

7.13 Orthogonality and the HD-Level-Set Decomposi-
tion

In this section we discuss in a bit more depth the error in [239, Theorem 5.10], and

further show by direct counter-example that its implication [242] that the HD-Level-Set

is orthogonal does not hold. In [239], Kaufman and Oppenheim analyze an approximate

eidgendecomposition of the upper walk N1
k for two-sided local-spectral expanders. They

prove a specialized version of Theorem 7.6.2 for this case, and in particular that for

sufficiently strong two-sided local-spectral expanders, the spectra of N1
k is divided into

strips concentrated around the approximate eigenvalues of their decomposition. They call

the span of each strip W i, and note that the W i form an orthogonal decomposition of the

space. Let V i be the space in the original approximate eigendecomposition corresonding to

strip W i. Kaufman and Oppenheim claim in [239, Theorem 5.10] that the W i are closely

related to the original approximate decomposition in the following sense:

∀ϕ ∈ Ck : ∥PW iϕ∥ ≤ c∥PV iϕ∥

for some constant c > 0, where PW i and PV i are projection operators. Unfortunately, this

relation cannot hold, as it implies [242] that the HD-Level-Set Decomposition is orthogonal

for sufficiently strong two-sided local-spectral expanders, which we will show below is false

by direct example. In slightly greater detail, the issue in the argument is the following.
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The authors show that for any j ̸= i:

∥PW jPV i∥ ≤ c′,

for some small constant c′, and then claim that this fact implies for any ϕ ∈ Ck:

∥PW jPV iϕ∥ ≤ c′∥PV jϕ∥.

Unfortunately, this is not true—the righthand side should read PV i rather than PV j for

the relation to hold, but this makes it impossible to compare PW iϕ solely to PV iϕ.

We now move to showing that for any γ > 0, there exists a two-sided γ-local-spectral

expander such that the HD-Level-Set Decomposition is not orthogonal, which implies [239,

Theorem 5.10] cannot hold by arguments of [242].

Proposition 7.13.1. For any γ > 0, there exists a two-sided γ-local-spectral expander

such that the HD-Level-Set Decomposition is not orthogonal.

Proof. Our construction is based off of a slight modification of the complete complex J(n, 3).

In particular, we consider the uniform distribution Π over triangles X =
(
[n]
3

)
\ (123). It is

not hard to see through direct computation that (X,Π) is a two-sided O(1/n)-local-spectral

expander. Recall that the link of 1, U3
111, lies in V 0

3 ⊕V 1
3 . Our goal is to prove the existence

of a function f = Ug ∈ V 2
3 such that the inner product:

⟨U3
111, f⟩ ∝

∑
(1xy)∈X

g(1x) + g(1y) + g(xy) (7.10)

is non-zero. To do this, we first simplify the above expression assuming g ∈ Ker(D2),

which we recall implies the following relations:

∀y ∈ [n] :
∑

(xy)∈X(2)

Π2(xy)g(xy) = 0.
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In particular, summing over all y ∈ [n] gives

∑
(xy)∈X(2)

Π2(xy)g(xy) = 0.

Notice further that by definition of Π2, we have Π2(12) = Π2(13) = Π2(23) =
n−3

3(n3)−3
, and

otherwise Π2(xy) =
n−2

3(n3)−3
. We then may write:

∑
(1x)∈X(2):

x/∈[3]

g(1x) = −n− 3

n− 2
(g(12) + g(13)) ,

∑
(xy)∈X(2):
(xy)/∈[3]×[3]

g(xy) = −n− 3

n− 2
(g(12) + g(13) + g(23)).

Plugging this into Equation (7.10), the inner product drastically simplifies to depend only

on g(23). To see this, we separate the inner product into two terms and deal with each

separately:

∑
(1xy)∈X

g(1x) + g(1y) + g(xy) =

 ∑
(1xy)∈X

g(1x) + g(1y)

+
∑

(1xy)∈X

g(xy)

We start with the former. Notice that each face (1z) in this term is counted exactly the

number of times it appears in a triangle in X, and further that this is exactly how Π2 is

defined. Thus we have: ∑
(1xy)∈X

g(1x) + g(1y)

 ∝ ∑
(1x)∈X(2)

Π2(1x)g(1x) = 0.
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It is left to analyze the latter term. Since (123) is not in our complex, we may write:

∑
(1xy)∈X

g(xy) =

 ∑
(xy)∈X(2):
(xy)/∈[3]×[3]

g(xy)

−
 ∑

(1x)∈X(2):
x/∈[3]

g(1x)


= −n− 3

n− 2
(g(12) + g(13) + g(23)) +

n− 3

n− 2
(g(12) + g(13))

= −n− 3

n− 2
g(23).

Thus it remains to show that there exists g ∈ Ker(D2) such that g(23) ̸= 0. Note that

the kernel of D2 is exactly the space of solutions to the underdetermined linear system of

equations given by D2g(i) = 0 for all 1 ≤ i ≤ n. Thus we can check if a solution exists

with g(23) = c for c ̸= 0 by ensuring that this constraint is linearly independent of the

D2g(i). This can be checked through a direct but tedious computation that we leave to

the reader.

7.14 Unique Games

7.14.1 Random-walks and Weighted graphs

Unique games are defined on weighted, undirected constraint graphs, unlike most

of the walks we analyze in the previous section. However, it is not hard to see that every

self-adjoint random walk corresponds to some underlying undirected graph. In particular,

recall that given a weighted, undirected graph G(V,E), G induces a random walk on

vertices where the transition probability from x ∈ V to y ∈ V is given by the normalized

weights:

P (x, y) =
W (s, t)∑

v∈N(s)

W (s, v)
.

In fact, every self-adjoint walk can be described as such a process.
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Lemma 7.14.1. Let M be a k-dimensional HD-walk on a weighted simplicial complex

(X,Π). Define GM to be the graph whose vertex set is X(k) and whose edge set consists

of any pair (s, t) such that M(s, t) ̸= 0. Further, endow the edges of GM with weight:

W (s, t) = Πk(s)M(s, t).

Then M is the random walk induced by GM .

Proof. The crucial observation for this proof is the following implication due to M being

self adjoint:

∀s, t ∈ X(k) : Πk(s)M(s, t) = Πk(t)M(t, s).

Given this fact, let PG(s, t) denote the transition probability of the induced walk on G.

We have:

PG(s, t) =
Πk(s)M(s, t)∑

v∈N(s)

Πk(s)M(s, t)

=
M(s, t)∑
v∈N(s)

M(s, t)

= M(s, t)

7.14.2 The Shift-Partition Potential

The analysis of the Iterated Condition&Round algorithm relies on analysing a

quantity called the Approximate shift-partition potential which was defined in BBKSS.

For completeness we include the definitions of the various potential functions used in this

section.
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For analysing the Condition&Round subroutine, define a low-degree polynomial

Φβ,ν : ΣV × ΣV → [0,∞) called the “approximate shift partition potential”:

Definition 7.14.2 (Approximate Shift-Partition Potential). For any ν, β ∈ (0, 1), and two

assignments X,X ′ ∈ ΣV define the approximate shift-partition potential to be the quantity

Φβ,ν(X,X ′) =
∑
s∈Σ

Eu1[Xu −X ′
u = s] · pβ,ν(valu(X))

2
,

for pβ,ν(x) the degree-Õ(1/ν) polynomial which SoS-certifiably approximates the indicator

1[x ≥ β] for x ∈ [0, 1] up to an error of ν. The exact definition of pβ,ν and the properties

required of it are described in more detail in Section 7 of BBKSS and we omit them here.

The approximate shift-partition potential on a pseudodistribution µ of degree at

least O(deg(Φβ,ν)) is defined as:

Φβ,ν(µ) = Ẽ
µ
[Φβ,ν(X,X ′)].

For analysing the Iterated Condition&Round algorithm we further need to define

the potential when restricted to a subgraph which in our case will be a link of the complex.

Definition 7.14.3 (Global shift-potential restricted to links). Let I = (M,Π) be a UG

instance on a complex X where M is a complete random walk on X(k) with stationary

distribution πk. For any ν, β ∈ (0, 1) and a link Xτ of the complex X, define the approximate

global shift-partition potential restricted to Xτ to be the quantity:

Φβ,ν(X,X ′)|τ =
∑
s∈Σ

E
u∼πk|τ

[1[Xu −X ′
u = s] · pβ,ν(valu(X))]2,

where valu(X) = E (u, v) ∼M1[X satisfies (u, v)), and as before pβ,ν(x) is the degree-

Õ(1/ν) polynomial that ν-approximates the indicator function 1[x ≥ β]. The global

potential restricted to Xτ with respect to a pseudodistribution µ will be denoted by
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Φβ,ν(µ|τ ):

Φβ,ν(µ|τ ) = Ẽ
µ
[Φβ,ν(X,X ′)|τ ].

Note that the global shift-partition potential measures the size of the global partition

inside Xτ , and although the expectation is taken only over the vertices u ∈ Xτ , valu(X)

is a function of all the edges in M that are incident on u, not just the edges in Xτ . We

will also need to consider the potential induced on a link, which is defined as applying the

potential function (Definition 7.14.2) to the graph induced by Xτ :

Definition 7.14.4 (Induced Shift-Potential on a Link). Let I = (M,Π) be a UG instance

on a complex X where M is a complete random walk on X(k) with stationary distribution

πk. For any ν, β ∈ (0, 1) and a link Xτ of the complex X, define the approximate induced

shift-partition potential on Xτ to be the quantity:

Φτ
β,ν(X,X ′) =

∑
s∈Σ

E
u∼πk|τ

[1[Xu −X ′
u = s] · pβ,ν(valτu(X))]2,

where valτu(X) = E (u, v) ∼M |τ1[X satisfies (u, v)). The induced potential on Xτ with

respect to a pseudodistribution µ will be denoted by Φτ
β,ν(µ):

Φτ
β,ν(µ) = Ẽ

µ
[Φτ

β,ν(X,X ′)].

Note that in the above definition the value of a vertex u ∈ Xτ is measured only

with respect to the edges incident on u that lie inside the link Xτ .

7.14.3 Sum of Squares and the HD-Level-Set Decomposition

This section is devoted to proving Lemma 7.10.9 which we separate into two parts.

First, we examine the relation between ∥fi∥ and ∥gi∥.

Lemma 7.14.5 (Restated Lemma 7.10.9 (Part 1)). Let (X,Π) be a d-dimensional two-sided
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γ-local-spectral expander. Then for any fi = Uk
i gi ∈ V i

k :

⊢2 ⟨fi, fi⟩ ∈

(
1(
k
i

) ± (k − i)(k + 1)

i+ 2
γ

)
⟨gi, gi⟩

Proof. It is sufficient to prove the following equality:

⟨fi, fi⟩ =
1(
k
i

)⟨gi, gi⟩+ ⟨gi,Γgi⟩, (7.11)

where ∥Γ∥ < (k−i)(k+1)
i+2

γ. To see why, note that:

⟨gi,Γgi⟩ =
〈
gi,

Γ + Γ∗

2
gi

〉

where Γ∗ is the adjoint of Γ. Since Γ+Γ∗

2
is self-adjoint and ∥Γ∗∥ = ∥Γ∥, we have both:

1. ⊢2
〈
gi,

Γ+Γ∗

2
gi
〉
≤ (k−i)(k+1)

i+2
γ⟨gi, gi⟩

2. ⊢2
〈
gi,

Γ+Γ∗

2
gi
〉
≥ − (k−i)(k+1)

i+2
γ⟨gi, gi⟩

as desired. To prove Equation (7.11), we induct on k. The base case k = i is trivial.

Assume k > i, then we may write:

⟨fi, fi⟩ = ⟨Uk−1
i gi, DkU

k
i gi⟩

In order to apply the inductive hypothesis, we recall the machinery of [111, Claim 8.8] for

pushing Dk through Uk
i . In particular:

∥DkU
k
i −

k − i

k
Uk−1
i − i

k
Uk−1
i−1 Di∥ ≤ (k − i)γ.
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Since gi lies in the kernel of Di, combining this with our initial observation gives:

⟨Uk−1
i gi, DkU

k
i gi⟩ =

k − i

k
⟨Uk−1

i gi, U
k−1
i gi⟩+ ⟨gi,Γgi⟩,

where ∥Γ∥ ≤ (k − i)γ. Since Uk−1
i gi ∈ V k−1

i . Applying the inductive hypothesis, we see

that:

⟨fi, fi⟩ =
k − i

k

(
1(

k−1
i

)⟨gi, gi⟩+ ⟨gi,Γ′gi⟩

)
+ ⟨gi,Γgi⟩

=
1(
k
i

)⟨gi, gi⟩+ ⟨gi,(k − i

k
Γ′ + Γ

)
gi⟩,

where:

∥k − i

k
Γ′ + Γ∥ ≤ (k − i)(k + 1)

i+ 2
γ

by the triangle inequality and inductive hypothesis.

Second, we prove that a version of approximate orthogonality of the HD-Level-Set

Decomposition has a low-degree SoS proof.

Lemma 7.14.6 (Restated Lemma 7.10.9 (Part 2)). let (X,Π) be a two-sided γ-local-spectral

expaner with γ ≤ 2−Ω(k) and f ∈ Ck. Then for any fi = Uk
i gi ∈ V i

k and fj = Uk
j gj ∈ V j

k

we have:

⊢2 ⟨fi, fi⟩ ≤ (1 + c1γ)⟨f, f⟩,

and

⊢2 ⟨f, fi⟩ ≥ −c2γ⟨f, f⟩,

where c1, c2 ≤ 2O(k)

Proof. First, note that by Lemma 7.7.3 and the fact that gj ∈ Ker(Dj), we have that:

⟨fi, fj⟩ = ⟨gi,Γgj⟩
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where ∥Γ∥ ≤ 2O(k). We can bound the latter by an SoS version of Cauchy Schwarz. In

particular, we have that:

⟨fi, fj⟩ = ⟨gi,Γgi⟩

≤ ∥Γ∥
2
⟨gi, gi⟩+

1

2∥Γ∥
⟨Γgj,Γgj⟩

≤ ∥Γ∥
2
⟨gi, gi⟩+

∥Γ∥
2
⟨gj, gj⟩

≤ cγ(⟨fi, fi⟩+ ⟨fj, fj⟩)

where all inequalities are degree 2 SoS and c ≤ 2O(k). Further, notice that that by applying

the same argument to ⟨−fi, fj⟩ we get that ⟨fi, fj⟩ is bounded above and below:

⊢2 −cγ(⟨fi, fi⟩+ ⟨fj, fj⟩) ≤ ⟨fi, fj⟩ ≤ cγ(⟨fi, fi⟩+ ⟨fj, fj⟩).

We now apply this fact directly to prove the two desired inequalities. First, we have

⟨f, f⟩ =
k∑

ℓ=0

⟨fℓ, fℓ⟩+
∑
ℓ̸=m

⟨fℓ, fm⟩

≥
k∑

ℓ=0

⟨fℓ, fℓ⟩ −
k∑

ℓ=0

kcγ⟨fℓ, fℓ⟩

= (1− kcγ)
k∑

ℓ=0

⟨fℓ, fℓ⟩

≥ (1− c1γ)⟨fi, fi⟩,

where c1 ≤ 2O(k). For small enough γ, Taylor expanding (1 − c1γ)
−1 gives the desired

result. We can now apply the first inequality to easily prove the second inequality:

⟨f, fi⟩ = ⟨fi, fi⟩+
∑
j ̸=i

⟨fi, fj⟩
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≥ (1− ckγ)⟨fi, fi⟩ −
∑
j ̸=i

cγ⟨fj, fj⟩

≥ −ckγ(1 + c2γ)⟨f, f⟩ ≥ −c3⟨f, f⟩

for c2, c3 ≤ 2O(k).

7.14.4 Remaining Proofs from Section 7.10.3

Here we prove Claim 7.10.7, restated for convenience.

Claim 7.14.7 (Restated Claim 7.10.7). Let M be a k-dimensional complete HD-walk on a

d-dimensional, two-sided γ-local-spectral expander with d > k and γ ≤ w(M)−12−Ω(h(M)+k)

with stationary distribution π. If the total laziness of M E[1T
vM1v] is at least .1, then the

spectral gap of M is at least Ω(1/k) and λk/2(M) ≤ .68.

Proof. To see this, note that any walk can be (approximately) decomposed by Lemma 7.7.3

into an affine combination of pure walks of the form (Uk−1Dk)
i, that is:

M =

h(M)∑
i=0

αi(Uk−1Dk)
i + Γ,

where ∥Γ∥ ≤ w(M)2O((M) and (Uk−1Dk)
0 = I. Notice that for any (Uk−1Dk)

i for i > 0,

the probability of returning to any given k-face is at most γ. This follows from the fact

that the probability of returning to any particular face in the final up step (given that the

previous step is at σ ∈ X(k− 1))) is at most |Πσ,1|∞ ≤ γ. This last inequality follows from

(X,Π) being a two-sided γ-local-spectral expander satisfying d > k, as the link (Xσ,Πσ)

(at level k) is then a γ-spectral expander, which are easily shown to satisfy this property.

Since the total laziness of M is at most .1, by our assumption on γ the above

analysis implies that the coefficient α0 cannot be too large, say at most 1/5 (since the

remaining parts cannot contribute much to the laziness). We can use this fact to bound

the spectral gap of M by the same trick used in Proposition 7.7.11: transferring M over
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to the complete complex. Since the approximate eigenvalues of M are independent of the

underlying complex and (UD)i has a vanishing lazy component on J(n, d) as n goes to

infinity, it must be the case that in lazy component of M on the Johnson complex is also

small. Since M can be written as a convex combination of partial-swap walks, all of which

have spectral gap at least 1/k (save for the identity which carries at most a 1/5 of the

weight), we get that 1− λ2(M) ≥ Ω(1/k) as desired. The bound on λk/2 follows similarly

noting that all (non-identity) partial-swap walks satisfy λk/2 ≤ 1/2.

7.14.5 Remaining Proofs from Section 7.10.4

In this section we will prove the claims that were stated without proof in Sec-

tion 7.10.4. We will use the exact definition of the potential functions from Section 7.14.2

and also the propertites of the polynomials pβ,ν(Y ) that SoS certifiably ν-approximate the

indicator function 1[Y ≥ β]. See Section 7 of BBKSS for a detailed overview about these

polynomials and their properties.

Proposition 7.14.8 (Restated Proposition 7.10.10). Let M be a k-dimensional

complete HD-walk on a d-dimensional, two-sided γ-local-spectral expander satisfying

γw(M)2O(h(M)+k) ≤ 1/2k < η < 0.02 and d > k, and I be an affine unique games

instance over M with value at least 1− η. Let r(η) = R1−16η(M)− 1, and assume r ≤ k/2.

Let β = 19η and ν = η

56(kr)
. Then given a degree-Õ(1/ν) pseudodistribution µ satisfying the

axioms AI , there exists an r-link Xτ such that the global potential restricted to Xτ is large:

ΦI
β,ν(µ|τ ) ≥

1

4
(
k
r

) .
Proof of Proposition 7.10.10. Before diving into the details of the proof we give a proof

overview and some high level intuition. Given two UG assignments X,X ′, BBKSS define

a partition of the graph G into |Σ| parts and call this the approximate shift-partition of

G with respect to X,X ′. The partition is given by the functions fX,X′
s for s ∈ Σ, where
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fX,X′
s (u) roughly equals the indicator function of whether u belongs to part s. Concretely,

we have that fX,X′
s (u) = 1[Xu − X ′

u = s] · pβ,ν(valu(X)), that is, u belongs to part s if

Xu−X ′
u = s and the value of u measured with respect to assignment X is large. Note that

any vertex can only belong to one part s but some vertices may not belong to any part.

BBKSS prove that for any instance of affine unique games and any two UG assignments

X,X ′ that have large value, the functions fX,X′
s satisfy three properties: a) they include

a large number of vertices in total, b) they form a non-expanding partition of G, that

is, the fraction of edges that go across parts is small (roughly at most edges violated

by X,X ′), and finally c) the functions fs are approximately Boolean-valued on average.

These properties are proved in Section 4 of their paper. They then apply the structure

theorem for non-expanding sets of G to conclude that there exists a subgraph H where

the size of the partition restricted to H (
∑

s Eu∼H [f
X,X′
s (u)]2) must be large. The crucial

observation then is that the pseudoexpectation of the restricted size on H is by definition

the global potential on H. Therefore by taking pseudoexpectation over X,X ′ ∼ µ where

µ is a pseudodistribution with high value, they conclude that there exists a subgraph with

large potential. We will use the same proof strategy to conclude that the global potential

on a link is large, using the SoS structure theorem (Theorem 7.10.8) along the way.

Let us elaborate on the properties (proved in BBKSS Section 4) of the approximate

shift-partition given by the functions fX,X′
s . We will drop the superscript X,X ′ for

convenience and throughout the proof the pseudoexpectation is taken with respect to

X,X ′ ∼ µ. Since µ is a degree Õ(1/ν) pseudodistribution with value at least 1 − η we

have that:

1. The approximate shift-partition includes most of the vertices in pseudoexpectation

over µ:

Ẽ
µ

[∑
s∈Σ

E
u
[fs]

]
≥ 1− η

1− β − ν
− ν
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2. The approximate shift-partition is non-expanding28 in pseudoexpectation over µ:

Ẽ
µ

[∑
s∈Σ

⟨fs, (I − AG)fs⟩

]
≤ 2η + 2

η

1− β − ν
+ 2ν

3. The functions fs are approximately Boolean-valued in pseudoexpectation over µ:

Ẽ
µ
[
∑
s

B(fs)] = Ẽ
µ

[∑
s∈Σ

E
u
[fs − f 2

s ]

]
≤ η

1− β − ν
+ ν

Since the functions fs are non-expanding (property (2) above), this allows us to use

our ℓ2 characterization of non-expansion, to get a lower bound on the size of fs restricted to

r-links. We will now use the key observation that E
Xτ

[fs]
2 is exactly Dk

i fs(τ)
2. In particular,

applying Theorem 7.10.8 to the function fs with ℓ set to r(η) = R1−16η(M), gives:

⟨fs, (I−M)fs⟩ ≥ (1−λr+1(M))

(
(1− c1γ)E[fs]−

(
k

r

)
⟨Dk

rfs, D
k
rfs⟩+ (1− c1γ)B(fs)

)
,

where B(f) = Eu∼Xk
[f(u)− f(u)2]. Now using the key observation that Dk

rfs is exactly

EXτ [fs] and noting that 1− λr+1 ≥ 16η by definition, we can simplify the above to:

1

16η
⟨fs, (I −M)fs⟩ ≥

(
(1− c1γ)E[fs]−

(
k

r

)
E

r∼X(r)
[E
Xτ

[fs]
2] + (1− c1γ)B(fs)

)
.

Taking a sum over s and then a pseudoexpectation over µ yields:

1

16η
Ẽ
µ
[
∑
s∈Σ

⟨fs, (I −M)fs⟩]

≥ Ẽ
µ

[∑
s∈Σ

(
(1− c1γ)E[fs]−

(
k

r

)
E

τ∈X(r)

[
E
Xτ

[fs]
2

]
+ (1− c1γ)B(fs)

)]
28If the functions fs(u) were exactly Boolean-valued and further exactly partitioned the graph, then

the term
∑

s⟨fs, (I −AG)fs⟩ is equal to the fraction of edges in G that have endpoints in different parts.
Therefore this expression measures the non-expansion of a partition.
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=(1− c1γ) Ẽ
µ
[
∑
s∈Σ

E[fs]]−
(
k

r

)
E

τ∈X(r)

[
Ẽ
µ

[∑
s∈Σ

E
Xτ

[fs]
2

]]

+ (1− c1γ) Ẽ
µ
[
∑
s∈Σ

B(fs)],

where c1 ≤ 2O(k).

We will now use the observation that the global potential restricted to Xτ exactly

corresponds to the second term above! Recall that the global potential (Definition 7.14.3)

over an r-link Xτ is given by:

ΦI
β,ν(µ|τ ) = Ẽ

X,X′∼µ
[
∑
s∈Σ

E
u∼Xτ

[fX,X′

s (u)]2].

For convenience of notation we will drop the superscript I in the potential notation

henceforth. Re-arranging gives a lower-bound on the global potential averaged across

r-links:

E
τ∈X(r)

[Φβ,ν(µ|τ )] ≥
1(
k
r

)((1− c1γ) Ẽ[
∑
s

E[fs]] + (1− c1γ) Ẽ[
∑
s

B(fs)] (7.12)

− 1

16η
Ẽ[
∑
s

⟨fs, (I −M)fs⟩]

)
. (7.13)

Plugging in the properties of the functions fs discussed at the start of the proof, this gives

the following bound on the global potential:

E
τ∈X(r)

[Φβ,ν(µ|τ )] ≥
1(
k
r

) (1− c1γ − 2
η

1− β − ν
− 2ν − 1

16η

(
2η + 2

η

1− β − ν
+ 2ν

))
.

Setting β = 19η and ν = η

56(kr)
and recalling our assumptions on γ and η, this may be

simplified by direct computation to:

E
τ∈X(r)

[Φβ,ν(µ|τ )] ≥
1

4
(
k
r

) .
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As a result, we see by averaging that there must exist some r-link with high

potential:

∃τ ∈ X(r) : Φβ,ν(µ|τ ) ≥
1

4
(
k
r

) , (7.14)

as desired.

We will now prove Lemma 7.10.11.

Lemma 7.14.9 (Lemma 7.10.11 restated). Assume the conditions of Proposition 7.10.10

hold. Let Xτ be an r-link for r = R1−16η(M)−1 with high global potential: ΦI
β,ν(µ|τ ) ≥ 1

4(kr)
,

for β = 19η and ν = η

56(kr)
. Then the potential induced on Xτ is also high:

ΦI|τ
η,ν(µ) ≥

1

8
(
k
r

) .
As discussed in Section 7.10, proving Lemma 7.10.11 requires that a strong expansion

property holds for links: expansion must be similar vertex-by-vertex. We now formalize

this property and prove it holds for HD-walks.

Definition 7.14.10. The edge-expansion of a vertex v in a set S ⊆ X(k) with respect to

a random walk operator M is given by,

ϕS(M, v) = 1− 1
T
vM1S.

The edge-expansion of S with respect to M is the average edge-expansion taken over

vertices in S:

ϕ(M,S) = E v ∼ SϕS(M, v),

where v ∼ S is the distribution πk conditioned on S. As before, we drop M from the

notation when clear from context.
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We prove that the expansion of vertices in a link cannot vary much from the link’s

overall expansion (which is small by Theorem 7.9.2).

Lemma 7.14.11 (Restatement of Lemma 7.10.12). Let M be a k-dimensional HD-walk on

d-dimensional two-sided γ-local-spectral expander satisfying γ ≤ w(M)−12−Ω(h(M)+k) and

d > k. Then for every i-link Xτ , the deviation of the random variable ϕXτ (v) (v ∼ Xτ ) is

small:

E
v∼Xτ

[|ϕXτ (v)− ϕ(Xτ )]|] ≤
1

211k
.

We prove this claim by reducing to simpler HD-walks we can analyze directly. With

that in mind, let’s first prove that a stronger point-wise result holds for any product of

“lower walks” (Uk−1Dk)
i.

Proposition 7.14.12. Let M be a k-dimensional HD-walk on d-dimensional two-sided

γ-local-spectral expander satisfying γ ≤ w(M)−12−Ω(h(M)+k) and d > k. For every i-link

Xτ , walk (Uk−1Dk)
t, and k-face v ∈ Xτ , the expansion of v in Xτ is almost exactly ϕ(Xτ ):

|ϕXτ ((Uk−1Dk)
t, v)− ϕ((Uk−1Dk)

t, Xτ )| ≤ tγ.

Proof. It is more convenient to analyze the non-expansion at v, ϕXτ
((Uk−1Dk)

t, v) =

1− ϕXτ ((Uk−1Dk)
t, v), which for brevity we will denote by ϕ(v). Below we will prove that

for every v ∈ Xτ , ϕ(v) ∈ [c, c+ tγ], for some fixed constant c. This immediately implies

the result. Since by definition the non-expansion of Xτ denoted ϕ((Uk−1Dk)
t, Xτ ), is an

average over ϕ(v), we get that:

|ϕ(v)− ϕ((Uk−1Dk)
t, Xτ )| = |ϕ(v)− ϕ((Uk−1Dk)

t, Xτ )| ≤ tγ,

as desired.

Therefore let us now prove that ϕ(v) ∈ [c, c+ tγ] for all v ∈ Xτ . First, notice that
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the non-expansion at v is lower bounded by the probability that the walk does not remove

any element from τ in any down-step. Since the down step is uniformly random, this

probability is the same across all v ∈ Xτ . Denote this probability by c.

Let us now upper bound ϕ(v). The probability that the walk returns to Xτ is

equal to c plus the probability that starting from v, the walk leaves the link Xτ at some

intermediate (down) step but ends back in Xτ regardless. We will show that the latter

probability is at most tγ.

Consider the first down-step where the walk leaves Xτ , removing an element w ∈ τ .

To end up in the link of τ , the walk needs to add w back in one of the future up steps.

The probability of this occurring at an up step from any σ ∈ X(k − 1) is exactly Πσ,1(w)

by definition (where Πσ,1(w) = 0 if w /∈ Xσ). Since (X,Π) is a two-sided γ-local-spectral

expander, (Xσ,Πσ) is a standard γ-spectral expander. It is a standard result that such

graphs cannot have any vertex of weight greater than γ, thus Πσ,1(w) ≤ γ. By a union

bound the probability that w is added back in any of the future up steps is therefore at

most tγ. Hence the probability that the walk returns to Xτ given that it exited in an

intermediate step is at most tγ, so we get that ϕ(v) ∈ [c, c+ tγ].

It’s worth noting that the vertex-by-vertex expansion property actually holds

exactly for the canonical walks. However, we can only reduce to canonical walks when

the height of M is small, an issue we avoid by analyzing lower walks. We now prove

Lemma 7.10.12 by reducing general M to this case.

Proof of Lemma 7.10.12. By repeated application of Lemma 7.7.3, any k-dimensional

HD-walk M on a two-sided γ-local-spectral expander with k > 0 can be written as a linear

combination of lower products (Uk−1Dk)
i up to O(γ) error in the following sense:

M =

h(M)∑
i=0

ci(Uk−1Dk)
i + Γ,
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where (Uk−1Dk)
0 denotes the identity matrix and ∥Γ∥ ≤ w(M)2O(h(M))γ. For simplicity of

notation, we write C := ∥Γ∥, which is in turn ≤ 1/213k for γ chosen to be small enough.

We also know by Lemma 7.14.12 that for all i there exists a constant ui such that

for all vertices v ∈ Xτ , ϕXτ ((Uk−1Dk)
i, v) = ui ± h(M)γ. Hence we get that,

1− ϕXτ (M, v) =

j∑
i=0

ci1
T
v (Uk−1Dk)

i
1Xτ + 1

T
v Γ1Xτ =

∑
i

ciui + 1
T
v Γ1Xτ ± w(M)h(M)γ.

Let
∑

i ciui = u. We will show that in expectation over v ∈ Xτ , |1 − ϕXτ (M, v) − u| ≤

|1T
v Γ1Xτ |+w(M)h(M)γ is small. Define err as the error vector Γ1Xτ . We will bound the

1-norm of err when restricted to coordinates in Xτ . Define the vector s to be sign(err(v))

for v ∈ Xτ and 0 otherwise. First note that,

⟨s, err⟩ =
∑
v∈Xτ

P
πk

[v] · |err(v)|.

Applying Cauchy-Schwarz on the LHS we get that,

∑
v∈Xτ

Πk(v)|err(v)| ≤ ∥s∥ · ∥err∥

= ∥1Xτ∥ · ∥Γ1Xτ∥

≤ ∥1Xτ∥ · C∥1Xτ∥

= C⟨1Xτ ,1Xτ ⟩πk
.

So we get that, ∑
v∈Xτ

Πk(v)|err(v)|
⟨1Xτ ,1Xτ ⟩πk

= E
v∼Xτ

[|err(v)|] ≤ C.

Using the fact that E v ∼ XτϕXτ (M, v) = ϕ(M,Xτ ), we can conclude with a simple trick:

|1− ϕ(M,Xτ )− u| = |E v ∼ Xτ1− ϕXτ (M, v)− u|
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≤ E v ∼ Xτ |err(v)|+ w(M)h(M)γ

≤ 2C.

Since the average deviation of (1− ϕM,τ (v)) from u is small, the average deviation from

the mean (1− ϕM(Xτ )) should also be small by triangle inequality:

E v ∼ Xτ |ϕXτ (M, v)− ϕ(M,Xτ )| ≤ E v ∼ Xτ |1− ϕXτ (M, v)− u|+ C ≤ 3C ≤ 1

211k
.

We are now ready to prove Lemma 7.10.11/Lemma 7.14.9.

Proof of Lemma 7.10.11. We will use Lemma 7.10.12 to relate the global potential on Xτ

to the potential induced on Xτ . As a reminder, we proved that for every i-link Xτ , the

deviation of the random variable ϕXτ (M,u) (u ∼ Xτ ) is small:

E
u∼Xτ

[|ϕXτ (M,u)− ϕ(M,Xτ )]|] ≤
1

211k
.

Let us partition Xτ into two sets, G and G, where G contains all vertices u for which

ϕM,Xτ (u) is close to ϕM(Xτ ). We will henceforth drop the subscripts M,Xτ . Formally we

define:

G =

{
u ∈ Xτ | |ϕ(u)− ϕ(Xτ )| ≤

1

2k
.

}
Now note that by Markov’s inequality on Lemma 7.10.12 we have that Pu∼Xτ [u /∈

G] := c ≤ 1/210k. For an assignment X, let Zu,s denote 1[Xu −X ′
u = s]. Expanding out

the definition of the global potential on Xτ (Definition 7.14.3), for any two assignments
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X,X ′ we get:

Φβ,ν(X,X ′)|τ =
∑
s

E
u∼Xτ

[Zu,spβ,ν(valu(X))]

=
∑
s

((1− c) E
u∼G

[Zu,spβ,ν(valu(X))] + c E
u∼G

[Zu,spβ,ν(valu(X))])2

≤
∑
s

(1− c)2 E
u∼G

[Zu,spβ,ν(valu(X))]2 +
∑
s

c(1− c) E
u∼G

[Zu,s]

+
∑
s

c2 E
u∼G

[Zu,s]
2

≤
∑
s

(1− c)2 E
u∼G

[Zu,spβ,ν(valu(X))]2 + c(1− c) + c2,

where c ≤ 1/210k and we used the fact that pβ,ν(y) ≤ 1, when y ∈ [0, 1], Zu,s ∈ [0, 1] and∑
s Zu,s = 1.

To relate the two potentials we will relate the quantities valu(X) and valτu(X) for

u ∈ G, where valu(X) denotes the fraction of edges incident on u that are satisfied by

X, and further valτu(X) denotes the fraction of edges incident on u that lie inside Xτ

and are satisfied by X. We will use the fact that vertices in G have small expansion.

When r = R1−16η(M), by Theorem 7.9.2 the expansion of the r-link Xτ is at most

1− λr+1 + w(M)h(M)22O(k)γ which is less than 17η because of the way the parameters

have been set up. Therefore for all vertices u in G, ϕ(u) ≤ 18η since η > 1/2k. This

implies that for any assignment X ∈ ΣV and any u ∈ G:

1[valτu(X) ≥ β − 18η] ≥ 1[valu(X) ≥ β],

Furthermore by the properties of the polynomials pβ,ν(Y ), since ν < η,

pβ−18η,ν(val
τ
u(X)) + ν ≥ pβ,ν(valu(X))− ν.
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Finally expanding out the definition of the potential induced on Xτ (Defini-

tion 7.14.4), for any two assignments X,X ′ we get:

Φτ
β−18η,ν(X,X ′) =

∑
s∈Σ

E
u∼Xτ

[Zu,s · pβ−18η,ν(val
τ
u(X))]2

=
∑
s∈Σ

E
u∼Xτ

[Zu,s · (pβ,ν(valu(X))− 2ν)]2

≥

(∑
s∈Σ

E
u∼Xτ

[Zu,s · (pβ,ν(valu(X)))]2

)
− 4ν

≥
∑
s∈Σ

(1− c)2 E
u∼G

[Zu,spβ,ν(valu(X))]2 − 4ν

≥ Φβ,ν(X,X ′)|τ − c(1− c)− c2 − 4ν, (7.15)

where we again used the facts that Zu,s ∈ [0, 1],
∑

s Zu,s = 1 and pβ,ν(y) ∈ [0, 1] when

y ∈ [0, 1]. We also have that c ≤ 1
210k
≤ η

56(kr)
since η > 1/2k and therefore c ≤ ν implying

that: Φτ
β−18η,ν(X,X ′) ≥ Φβ,ν(X,X ′)|τ − 6ν.

Now note that all the inequalities above are sum-of-squares inequalities of degree at

most 2 deg(p) = Õ(1/ν). We can therefore relate the two potentials when measured with re-

spect to µ, which is a degree-Õ(1/ν) pseudodistribution, by applying the pseudoexpectation

operator Ẽµ to Equation (7.15) above:

Φτ
β−18η,ν(µ) = Ẽ

µ
[Φτ

β−18η,ν(X,X ′)] ≥ Ẽ
µ
[Φβ,ν(X,X ′)|τ ]− 6ν = Φβ,ν(µ|τ )− 6ν.

By the conditions of the lemma, Φβ,ν(µ|τ ) = 1/4
(
k
r

)
, β = 19η and ν = η

56(kr)
we get

Φτ
η,ν(µ) ≥ 1

8(kr)
. This completes the proof of the lemma.

This chapter, in full, is based on the material as it appears in the Symposium on

Discrete Algorithms 2022. Bafna, Mitali; Hopkins, Max; Kaufman, Tali; Lovett, Shachar.

“High Dimensional Expanders: Eigenstripping, Pseudorandomness, and Unique Games".
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The dissertation author was a primary investigator and author of this material.

697



Chapter 8

Sampling Equilibria: Fast No-Regret
Learning in Structured Games

8.1 Introduction

Online learning and equilibrium computation in games has long played a major role

in our understanding of human behavior and general multi-agent systems, with applications

ranging all the way from politics [55, 270] and national defense [350] to complexity theory

[104, 334] and machine learning [155, 156, 26]. Perhaps the most celebrated line of work

in this area is the introduction and analysis of randomized weighted-majority (RWM) and

its ‘mixed’ variant (Optimistic) Hedge [285, 155, 326, 103]. These powerful algorithms

allow players to engage in repeated gameplay without regret, in the sense that the overall

loss experienced by any player is not much more than that of the best fixed strategy, even

against an arbitrary, adaptive adversary. Such a guarantee is not only powerful in its own

right, but is also known to converge quickly to equilibria when performed by all players in

repeated rounds of play [88].

Randomized weighted majority is a surprisingly simple algorithm given its powerful

guarantees. In each round of a repeated game, a player following RWM samples a strategy

s with probability proportional to its (exponentiated) historical loss ℓ(s):

P[Player chooses s] ∝ βℓ(s) (8.1)
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for some specified ‘learning rate’ β ∈ (0, 1). RWM is also well studied in the setting where

the player ‘plays’ the distribution itself (typically called a mixed strategy), and experiences

its expected loss. This variant, called Hedge, is perhaps the best studied algorithm in all

of learning in games [155, 88].

Unfortunately, while RWM and Hedge are statistically optimal [285, 155], they

come with an inherent computational barrier: both techniques crucially rely on tracking a

distribution over all possible actions. Since the number of actions is typically exponential

in the relevant parameters of the game (e.g. in the famous Colonel Blotto problem), this

seems to render both Hedge and RWM completely infeasible.

It turns out, however, that this intuition is not entirely correct. In many important

settings the distributions that arise from RWM are highly structured, and while it still may

not be possible to efficiently output the distribution itself as in Hedge, it is sometimes

possible to efficiently sample from it. It is known, for instance, that RWM can be

implemented in polylogarithmic time when actions are given by the k-edges of a complete

hypergraph and rewards decompose linearly over vertices [361]. This raises an important

question:

When is it possible to efficiently sample in Randomized Weighted Majority?

Toward this end, we introduce a natural generalization of the complete hypergraph

setting we call linear hypergraph games, where actions are given by k-edges of an arbitrary

hypergraph, and the reward of any edge similarly decomposes as a sum over individual

reward functions on its vertices (see Section 8.2.2 for more detail). This simple definition

captures a surprising number of settings studied in the literature including resource

allocation problems like Colonel Blotto [72], along with other widely-studied settings such

as congestion [332], security [350, 4, 348, 43], and basic dueling games [211, 4].

In this work, we show it is indeed possible to efficiently (approximately) sample

from RWM over several important subclasses of linear hypergraph games including Colonel
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Blotto and its variants, matroid congestion [356], matroid security [350, 4, 348, 43], and

basic dueling games [211, 4]. This leads to the first algorithms for no-regret learning in

these settings that are polylogarithmic in the size of the state space, and thereby the first

polylogarithmic time algorithms for (approximate) equilibrium computation. On top of

giving an exponential improvement over prior results, this also constitutes the first efficient

algorithm for equilibrium computation whatsoever in several more involved settings such

as dice games, Colonel Blotto with multiple resources, and for multiplayer and general-sum

variants of all games we consider.

Our techniques are largely based on two main paradigms: dynamic programming,

and Monte Carlo Markov Chains (MCMC). Generalizing seminal work on learning k-sets

and other structured concepts [361, 267], we show that the distributions arising from RWM

on linear hypergraph games correspond to well-studied structure in approximate sampling

and statistical physics called external fields. In resource allocation games like Colonel Blotto

that are played over (ordered) fixed-size partitions of n, we exploit this structure to build a

dynamic program that approximately computes the normalization factor of Equation (8.1)

(often called the partition function). On the other hand, in settings like matroid congestion

and security, we rely on deep results from the MCMC-sampling literature showing that

any hypergraph that is a sufficiently good high dimensional expander can be sampled

under arbitrary external fields [25, 13, 22]. To the authors’ knowledge, these are the first

applications of approximate sampling techniques to game theory.

8.1.1 Results

We briefly review the theory of games, equilibria, and no-regret learning before

discussing our results in more formality. Games are mathematical objects that model

(possibly non-cooperative) interaction between rational agents. A (simultaneous) game

consists of a set of actions Ai for each player, and reward functions Ri mapping action tuples

to rewards (real numbers). Players seek to maximize their own reward, and optimal play is
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typically characterized by Nash equilibria: randomized strategies such that no player can

improve by deviating. By the historic result of [306], every finite game has at least one NE.

As they are not always efficiently computable [104], one often instead hopes to understand

weaker notions such as Coarse Correlated Equilibria (CCE), where the strategies of different

players are chosen in coordination with one another (see Section 8.2.1).

There is a deep connection between equilibrium computation and no-regret learning

in games. We consider the typical adaptive online setting in which, in each round, a

learner chooses an action and receives an adversarially selected loss that may depend

on the learner’s previous actions (see [88, Chapter 4]). An algorithm is said to have

“no-regret” when the expected loss suffered by the learner in sequential rounds grows

sublinearly compared to the loss of the best fixed action in hindsight. No-regret learning is

itself a powerful tool, as it allows for optimal play against sub-optimal opponents (unlike

equilibria which only model the setting where all agents play optimally). Furthermore, it

is well known that any no-regret algorithm1 leads to approximate equilibrium computation

with similar runtime simply by simulating the algorithm for all players for sufficiently

many rounds. RWM, for instance, is well-known to satisfy the following (optimal) regret

guarantee.

Lemma 8.1.1 (RWM is No-Regret [88, Lemma 4.1]). The regret of RWM over T rounds,

N actions, and with rewards in [−Lmax, Lmax], satisfies

RegT ≤ O
(
Lmax

√
T log(N)

)
,

against any adaptive adversary (with high probability).

In fact, it is important to note in our setting that essentially all guarantees of RWM

also hold in the approximate regime, where the learner only δ-approximately samples from
1Formally we may need to require that a players strategy depends only on the opponents history and

not their own [88]. This is satisfied by all algorithms considered in this work.
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the distribution in Equation (8.1) in each round (in Total Variation distance). We call

such algorithms δ-approximate RWM (δ-RWM). It is not hard to show that δ-RWM also

satisfies the above regret guarantees for small enough δ (see Lemma 8.2.10). We now

cover four of the main settings in which we give new algorithms for no-regret learning

and equilibrium computation through efficient implementatin of δ-RWM: Colonel Blotto,

Matroid Security, Matroid Congestion, and Dueling games. We note that all results are

given in the algebraic computation model for simplicity (where algebraic operations such

as addition and subtraction are considered to be unit time), but can easily be moved to

the standard bit model with no substantial loss in running time (see Section 8.6).

The Colonel Blotto Game

The Colonel Blotto game was originally described by Borel in 1921 [72] and

formalizes how warring colonels should distribute soldiers over different battlefields. In

the most general version of this game, two colonels have n1 and n2 soldiers that they must

assign to k different battlefields, each with a non-negative integer weight. A colonel wins

a battle (receiving its weight in reward) if they assign more armies to that battle than

their opponent. Each colonel seeks to maximize the total weight of battles won in a single

assignment.

Despite its breadth of applications and simplicity to state, the first polynomial

time algorithm to compute optimal strategies for this game was only developed recently in

[4]. This breakthrough result deservedly received significant media attention [216, 296],

but struggled to see any practical use due to an infeasible O(n13k14) running time (where

n = max{n1, n2}). To this day, this is the only known algorithm to provably compute exact

optimal strategies for the (discrete) Colonel Blotto game with arbitrary parameters in

polynomial time. Though some progress has been made towards more practical algorithms

in different settings [56], even these methods cannot handle parameters beyond a few

hundred troops [358].
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Indeed, solving the Colonel Blotto problem is now only more relevant than it was

in 1921, with practical applications in a large swath of market competitions including

advertising and auctions [331], budget allocation [272], elections [275], and even ecological

modeling [169]. We give the first no-regret learning algorithm for the Colonel Blotto

games under the most general setting [271], where rewards are heterogeneous across battles

and players and different players are allowed different troop capacities. Moreover, our

algorithm runs in time polylogarithmic in the state space, making it extremely efficient in

the regime where n≫ k (i.e. there are many more troops than battlefields).

Theorem 8.1.2 (Blotto without Regret (Informal Corollary 8.4.9)). In a Colonel Blotto

game, for a player with n soldiers, k battlefields, and maximum reward bounded by Lmax,

δ-RWM can be implemented over T rounds of play in time:

Õ
(
T 3Lmaxk log(n)δ

−1
)
,

and is no-regret. In the regime where n = O(k2), we give a faster algorithm running in

time Õ(Tnk).

Theorem 8.1.2 is the first no-regret algorithm for Colonel Blotto in online adaptive

settings, and also gives the fastest known algorithms to compute (approximate) Nash

equilibria provided the game is zero-sum, and approximate coarse correlated equilibrium in

general sum settings with many players. We state the theorem for the two-player zero-sum

setting here.

Corollary 8.1.3 (Equilibrium Computation for Blotto (informal Corollary 8.4.10)). Let

n = max(n1, n2), where n1, n2 are the soldier counts for the two player Colonel Blotto

game. Let Lmax be maximum reward of the game. There exists an algorithm to compute

an ϵ-approximate Nash equilibrium for the two-player Colonel Blotto Game in time

Õ
(
L7
maxk

4 log4(n)ϵ−6
)
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with high probability. When n = O(k2), we give a faster algorithm running in time

Õ(nk2L2
maxϵ

−2).

Not only is this algorithm exponentially faster than any prior work in most relevant

scenarios (namely when n≫ k), it is also the first known method for computing CCE for

multiplayer Blotto at all. Even more generally, our algorithm extends to a number of other

variants of Blotto (or ‘resource allocation’ problems) such as Dice games and settings with

multiple types of troops known as the Multi-resource Colonel Blotto problem [56] (though

in this latter setting we lose the logarithmic dependence on n). We cover these further

applications in Section 8.4.3 and Section 8.4.4.

Congestion Games

Another natural example is a congestion game, a class introduced by Rosenthal

[332] to model resource competition among greedy players. In a congestion game, m

players compete to select from a set of n resources and receive rewards depending on how

many players chose a particular resource. Classical examples of congestion games include

routing traffic (pick the least congested route) and variants of the famed El Farol Bar

Problem [32] (players aim to choose a bar that is neither too under nor over-crowded).

Unlike Blotto, equilibrium computation is known to be hard for congestion games,

namely (PPAD ∩ PLS)-complete [36]. However, this can be circumvented when the

underlying strategy spaces are sufficiently combinatorially structured. It has long been

known, for instance, that a Nash equilibrium can be found in time Õ(m2nqk) via iterated

best-response when all strategies are given by the bases of a rank-k matroid2 over n

resources of q types [1]. We show matroid congestion games are similarly well-behaved

under RWM, and provide a near-optimal no-regret algorithm in both a computational and

statistical sense.
2Matroid bases can be thought of as a generalization of the combinatorial properties enjoyed by

spanning trees, see Section 8.3.1 for details.
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Theorem 8.1.4 (Congestion without Regret (informal Corollary 8.3.10)). Let I =

{{Ai}mi=1, c} be a congestion game over a size-n ground set Ω with q resource types where

each Ai is the set of bases of a rank-k matroid. Then δ-RWM can be implemented for T

rounds in time

Õ
(
kT log(n) log(δ−1)(q + kmT )

)
,

and is no-regret.

To our knowledge, this is the first efficient no-regret algorithm for matroid congestion.

Moreover, in the setting where there are polylog(n) resource types, the algorithm leads to

exponentially faster (approximate) equilibrium computation than the typical best response

strategy (albeit for CCE rather than Nash).

Corollary 8.1.5 (Equilibrium Computation for Congestion (informal Corollary 8.3.11)).

Let I = {(Ai, Ri)
m
i=1} be a congestion game over a size-n ground set Ω with q resource

types where each Ai is the set of bases of a rank-k matroid. Then there exists an algorithm

to compute an ε-CCE in time

Õ
(
m2L4

maxk
4 log3(n)ϵ−4 + qmL2

maxk
2 log2(n)ϵ−2

)
with high probability.

Security Games

While slightly less intuitive, games modeling security also fit within the resource

allocation paradigm. Security games are a basic two-player setting modeling the behavior

of a limited-resource player defending n targets, and an adversarial attacker. Each target

in the game has a cost to defend, and a “k-resource” defender may choose a (possibly

restricted) k-set to defend. Similarly, each target has a cost to attack, and the attacker

chooses a single element, receiving a reward depending on whether or not the selected
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target was defended by the opponent. Depending on the cost/reward structure, security

games model several real-world scenarios, ranging from allocating defensive resources at

military checkpoints to choosing a path to transmit critical resources (in the latter the

attacker actually wins if they attack a ‘defended’ node). Indeed, security games have

actually seen significant use in critical real-life infrastructure such as checkpoint placements

at LAX and US Coast Guard and Federal Air Marshal Service patrol schedules [350].

Given their practical importance, it is no surprise equilibrium computation is

well-studied in the security game setting [350, 4, 348, 43], and polynomial time algorithms

are known in several settings, notably including when allocation constraints are given by

matroid bases [348, 43]. Unfortunately, as is the case in previous work on Blotto, known

algorithms are not practically useful and have large polynomial factors in the number

of targets. We take a major step toward resolving this issue by showing δ-RMW can

be implemented in time polylogarithmic in n, an exponential improvement over prior

techniques [350, 348, 43].

Theorem 8.1.6 (Security without Regret (Informal Corollary 8.3.13)). Let I a security

game over the bases of a rank-k matroid over n targets with q distinct defender costs. Then

δ-RMW can be implemented for T rounds in time

Õ(kT log(n) log(δ−1)(q + T )),

and is no-regret.

Corollary 8.1.7 (Equilibrium Computation for Security (Informal Corollary 8.3.14)). Let

I be a security game over the bases of a rank-k matroid over n targets with q distinct

attacker and defender costs. Then it is possible to compute an ε-CCE in time

Õ
(
L4
maxk

3 log3(n)ε−4 + qL2
maxk

2 log2(n)ϵ−2
)
.
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If the game is zero-sum, the resulting strategy is ε-Nash.

Dueling Games

Finally, we make a slight departure from the resource allocation framework to

consider the popular class of dueling games studied in [211, 4]. Dueling games model

competitive optimization between two players over a randomized set of events. We will

focus our attention on one of the simplest dueling games called ranking duel (also known

as the ‘Search Engine game’) where two players compete to rank n elements over a known

distribution µ, and win a round if they rank x ∼ µ higher than the opponent. This

classically models the problem of search engines competing to optimize a page ranking

given a known distribution over searches.

Equilibrium computation is well-studied in dueling games, and algorithms are

known in a few settings via a mix of bilinear embedding techniques and reduction to

non-competitive optimization [211, 4]. As in previous settings, however, the algorithms

are too slow to be of practical use. In contrast, we focus our attention only on the basic

ranking duel, but give both a faster algorithm and a novel no-regret guarantee over the

original space.

Theorem 8.1.8 (Dueling without Regret (Informal Corollary 8.3.19)). Let I be an instance

of ranking duel. Then δ-RMW can be implemented for T rounds in time

Õ(T 2n7 log(δ−1)),

and is no-regret.

Corollary 8.1.9 (Equilibrium Computation for Ranking Duel (Informal Corollary 8.3.20)).

Let I be an instance of ranking duel. Then it is possible to compute an ε-CCE in time

Õ(n9ε−4).
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If the game is zero-sum, the resulting strategy is ε-Nash.

While a running time of O(n9) can hardly be claimed as practical, the broader

technique used in this result has the eventual possibility of running in near-linear time.

We discuss this further in Section 8.1.3.

8.1.2 Techniques

At their core, our results all stem from the ability to approximately sample distri-

butions arising from randomized weighted majority on various linear hypergraph games.

Recall that RWM maintains a mixed strategy, which we denote as the RWM distribution,

whose probabilities are proportional to their (exponentiated) total historical loss (negative

reward):

∀x ∈ Ai : P(x) ∝ βℓT (x) (8.2)

where ℓT (x) is the total loss experienced by pure strategy x up to round T . As discussed

earlier in the section, we typically cannot hope to maintain this distribution explicitly, but

it may still be possible to sample from it in polylogarithmic time. Furthermore, while

sampling such a distribution exactly is a challenging task (and very few such algorithms

are known), approximate sampling is perfectly sufficient in our setting. Indeed, our

approximate variant δ-RWM satisfies essentially the same guarantees as RWM itself.

Lemma 8.1.10 (δ-RWM is No-Regret (Lemma 8.2.10)). δ-RWM over N actions has

Reg(T ) ≤ O
(
Lmax

√
T logN + δLmaxT

)

expected regret, where Lmax is the maximum loss experienced by any action.

As discussed at the start of Section 8.1, no-regret algorithms like RWM are classically

used to compute equilibria of the base game by simulating repeated play across all players.

While much of the current literature centers around the Hedge algorithm that ‘plays’ an
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entire mixed strategy in each round, classical (and therefore approximate) RWM still

leads to equilibrium computation with high probability, by the classic result that no-regret

implies equilibrium computation [156].

Lemma 8.1.11 (Approximate RWM → Equilibria (Informal Corollary 8.2.11)). Let I

be an m-player game where each player has at most N strategies. Let {(x(t)
1 , . . . , x

(t)
m )}Tt=1

be the strategies arising from T rounds of δ-approximate RWM. There exist universal

constants C > 0 such that for T = C · L2
maxε

−2 · log(N) rounds, and approximation

parameter δ ≤ ϵ/(CLmax), these strategies constitute an ε-CCE with high probability (Nash

if the game is two-player zero-sum).

As a result, efficient no-regret learning and equilibrium computation truly reduces

to the existence of an efficient approximate sampling scheme for distributions arising in

the execution of (δ-approximate) RWM. Of course, this is easier said than done. While

approximate sampling is easier than its exact variant, it is still a challenging problem, even

over structured domains. Using a mixture of novel sampling techniques and reductions

to known methods in the literature, we show it is indeed possible to efficiently sample

from RWM across a wide variety of structured games. Our strategies fall into two main

paradigms: dynamic programming (DP), and Monte Carlo Markov Chains (MCMC).

Sampling via Dynamic Programming

We start with the former: sampling in basic resource allocation settings via dynamic

programming. At its most general, resource allocation problems are played over (possibly

constrained) fixed size partitions of n. The discrete Colonel Blotto game on n troops and k

battlefields is the simplest example of this problem, where the strategy space corresponds

to the set of all k-size (ordered) partitions of n (i.e. assignments x1, . . . , xk such that∑
xi = n). In this section, we will focus only on the Colonel Blotto problem—general

resource allocation follows from very similar arguments (see Section 8.4 for details).
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Our goal is now to design an algorithm for approximately sampling distributions

over strategies of the Colonel Blotto game that arise from RWM. In this setting, it will

actually be easier to solve an equivalent problem, computing the normalizing factor of

Equation (8.2), otherwise known as the partition function:

fk(n) =
∑

x1+...+xk=n

βℓ(x) =
∑

x1+...+xk=n

k∏
h=1

βℓh(xh),

where ℓh(xh) is the historical losses from the h-th battlefield over previous rounds of

play if one were to place xh soldiers on that battlefield. Notice that once we know the

value of fk′(n′) for all k′ ≤ k and n′ ≤ n, it is actually possible to exactly sample from

Equation (8.2) (and therefore implement RWM). In particular, one does this simply by

sequentially sampling the number of troops to put in each battlefield conditional on prior

choices in the following manner:

P[x1 = y] ∝ βℓ1(y) · fk−1(n− y) for the first battlefield,

P [xh+1 = y|x1···h] ∝ βℓh+1(y) · fk−h−1

(
n−

(
h∑

j=1

xj

)
− y

)
for the remaining battlefields.

One can easily check the joint distribution arising from this procedure is exactly the RWM

distribution.

Thus we have reduced our problem to computing the partition functions fk′(n
′).

This can be done by a simple dynamic programming argument, and in particular by

noticing that:

fk′(n
′) =

n′∑
i=0

βℓk′ (i) · fk′−1 (n
′ − i) . (8.3)

Since filling each entry fk′(n
′) takes time at most O(n) given that fh−1 is pre-computed,
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we can fill the entire DP table in time O(n2k).3

While this procedure already gives the first no-regret learning algorithm for Blotto

in the adversarial setting and by far the fastest known equilibrium computation, one can

still hope to do much better. Indeed, it is known that there exist ε-Nash Equilibrium

with support that is logarithmic in the size of the state-space [284], so there is hope in

building a polylogarithmic time algorithm (equivalently, a polynomial time algorithm in the

description complexity of the equilibria). We show this is indeed possible by building an

approximation scheme for the above DP. The key is to observe that the partition functions

fk′(n
′) are bounded and monotonic. Roughly speaking, this means f can be approximated

within multiplicative (1± ε) factors by a piece-wise function with only poly(k log(n)/ε)

pieces (which is polylogarithmic in the size of the state space).

By carefully computing and maintaining approximate versions of the partition

function, we can run a modified variant of the same dynamic program that computes

approximations for all nk partition functions fk′(n′) (despite their sizes, these can indeed be

presented in only poly(k log(n)) bits due to being piece-wise). Once we have approximately

computed the partition functions, it is easy to show that a similar sampling scheme as

discussed for the exact case gives an efficient approximate sampling scheme for RWM

running in poly(k log(n)/ε) time. Combined with Lemma 8.1.10 and Lemma 8.1.11, this

results in the first polylogarithmic time algorithm for no-regret learning and (approximate)

equilibrium computation for Colonel Blotto (Theorem 8.1.2 and Corollary 8.1.3), as well

as for a number of related resource allocation variants discussed later in the paper (e.g.

multi-resource Blotto and Dice games).

MCMC-methods

While dynamic programming is a powerful algorithmic method for structured

computation, there are many combinatorial settings common to games we cannot hope to
3We note that this can actually be improved to near-linear in n using the Fast Fourier Transform.

711



handle via such techniques. Building an analogous exact-counting based DP for games over

bipartite matchings or matroids, for instance, would give efficient algorithms for classical

#P-hard problems such as the permanent and counting matroid bases [101]. On the other

hand, we do actually know of approximation algorithms for these problems based on a

powerful tool called MCMC-sampling [223, 25].

MCMC-sampling is an elegant method for approximately sampling from a distribu-

tion µ with exponential size support usually traced back to Ulam and Von Neumann in

the 1940s (see e.g. [135]). The idea is simple. Imagine we can construct a Markov chain

(random process) M satisfying the following three conditions:

1. The stationary distribution of M is µ

2. A single step of M can be implemented efficiently

3. M converges quickly to its stationary distribution.

Approximate sampling would then simply boil down to finding a starting configuration and

running the chain until it is within δ of stationary (this typically takes around O(log(N/δ))

samples for a good chain).

Unsurprisingly, while MCMC-sampling itself is a simple technique, the design and

analysis of Markov chains is a difficult task, and general recipes for their construction

are known in very few scenarios. One particularly well-studied setting in the literature

that arises from simulation problems in statistical physics are external fields. Given a

hypergraph Ω ⊂
(
[n]
k

)
, the distribution arising from external field w ∈ Rn

+ simply assigns

each k-set a probability proportional to the product of its fields:

Ωw(s) ∝
∏
v∈s

w(v).

External fields often correspond to particularly natural problems, and are well-studied in

the literature. In a recent breakthrough series of works, for instance, it was shown that
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approximate sampling under external fields is possible whenever the underlying state-space

is a good enough high dimensional expander [239, 11, 25, 22].4

This is particularly relevant to our setting since it is a simple observation that the

distributions arising from RWM on a linear hypergraph game are exactly given by the

application of an external field over the action space.

Observation 8.1.12 (RWM → External Fields (Informal Observation 8.3.3)). Let I =

{(Ai, Ri)
m
i=1} be an m-player linear hypergraph game. Then for any Ai and any round of

play, Player i’s RWM distribution can be written as the application of an external field w

to Ai.

As a result, no-regret learning and equilibrium computation are possible in any

linear hypergraph game whose state space can be sampled under arbitrary external fields.

As a short detour, it is worth noting that the result in the previous section can be phrased

as a slight refinement of this statement. At a technical level, our resource allocation

algorithm simply corresponds to an efficient approximate sampling scheme for fixed-size

partitions of n under monotonic external fields (corresponding to the fact that assigning

more troops to a battlefield always results in at least as many victories).

Many well-studied games in the literature have state spaces where efficient approxi-

mate sampling schemes under external fields exist. In this work we focus mostly on games

played on matroids (e.g. matroid congestion, security), and dueling games arising from

bipartite matchings such as ranking duel. Both settings have well-known sampling schemes

over external fields [25, 102, 223], which leads to our results for Congestion, Security, and

Dueling games (Theorems 8.1.4,8.1.6, 8.1.8 and Corollaries 8.1.5,8.1.7, 8.1.9 respectively).

8.1.3 Discussion

In this work, we present two potential paradigms for learning in games via ap-

proximate sampling. In this section we touch on the pros and cons of each method, their
4More formally, when the space satisfies a property known as ‘fractional log-concavity.’
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likelihood to generalize beyond the settings considered in this work, and natural open

problems.

Dynamic Programming vs MCMC-sampling

Broadly speaking, the DP and MCMC approaches we develop in this work seem to

be largely incomparable. Dynamic programming works well in relatively unconstrained

resource allocation problems, where recursive structure allows for inductive computation

of the partition function. On the other hand, typical MCMC methods (which are usually

local in nature) actually fail drastically in this sort of setting due to the need for global

coordination. One natural example of this issue appears in the Colonel Blotto game.

Imagine a scenario where Colonel A has k more troops than Colonel B, then there always

exists a configuration where A wins every battle by assigning one more troop in each

battlefield than B. Finding this sort of optimum, however, requires coordinated planning

across battlefields. Typical MCMC methods like Glauber dynamics (see Section 8.3) only

look at a few battlefields at a time, and therefore struggle to converge to such solutions.

Simulations confirm this intuition—even for small n and k Glauber dynamics seem to

exhibit very poor mixing on distributions arising in RWM.

On the other hand, as we mentioned in the previous section, our dynamic pro-

gramming approach has a significant issue in any setting with non-trivial combinatorial

structure. In particular, because the underlying method relies on exactly computing the

partition function, constructing any such method for a problem like matroid games is

#P-hard. On the other hand, local chains such as the Glauber Dynamics mix extremely

fast in these settings, providing near-optimal algorithms.

Of course, neither of these arguments rules out either approach. It is possible

there exist successful MCMC methods for Blotto that are more global in nature—indeed

the main insight leading to the resolution of approximate permanent was exactly such a

Markov chain that avoided these issues [223]. On the other hand, there may exist DP-based
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approaches that do not go through computing the partition function. Understanding in

which scenarios these two or other potential sampling methods may apply remains an

interesting and important open problem if we wish to extend efficient learnability in games

beyond the few structured settings considered in this work.

Further Open Problems

Our work gives the first no-regret learning guarantees and polylogarithmic equilib-

rium computation for several well-studied settings in game theory, but there is still much

to be done. Perhaps the most obvious open directions involve improving the computational

efficiency (and therefore practicality) of our algorithms. The polynomial dependencies

of our algorithm would be universally improved if we can show that the δ-approximate

optimistic variant of RWM achieves Õ(1) regret in games like its deterministic counter-part,

Optimistic Hedge [103], even for polynomial approximation δ.

Question 8.1.13 (Optimistic-RWM). Does δ-RWM with weights {w(t)
i }i,t and optimistic

updates

w
(t+1)
i ← w

(t)
i · β2ℓ

(t)
i −ℓ

(t−1)
i achieve polylog(T ) regret in games (even for δ = (polylogN)−1)?

These techniques are well known to give a substantial improvement in the exact set-

ting [103], but their analysis is subtle and may be nontrivial to adapt to the δ-approximate

sampling variant we need for efficient computation.

Similarly, our algorithm for dueling games (while faster than prior work in the

worst-case), is not practical at O(n9) running time. One interesting question is whether

the MCMC-sampling technique can be improved in this setting using the fact that the

weights arising from RWM are not arbitrary, but exhibit monotonic structure (in the sense

that ranking a page higher is always better). This actually corresponds to a well-studied

problem in the sampling and geometry of polynomials literature (monotone permanent

[79]), but giving an improved sampling algorithm over the JSV-chain [223] remains an

interesting open problem.
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Question 8.1.14 (Sampling with Monotone Weights). Can a perfect matching in a

complete bipartite graph with n nodes under monotone external fields be sampled in faster

than O(n7) time? In near-linear time?

There is certainly hope in this direction, as recent years have seen many break-

throughs towards near-optimal MCMC methods, including similar linear time guarantees

on problems that once seemed infeasible [25, 102, 96].

Another natural direction is to try to strengthen the type of equilibria we compute in

multiplayer and general-sum games. Foremost in this direction are the so-called Correlated

Equilibria (CE), a substantially stronger notion than CCE which allows a player to switch

strategies even after they receive instructions from the coordinator. It was recently shown

that a variant of Optimistic Hedge converges quickly to CE in multiplayer, general-sum

games [21]. It is an open question whether an approximate, sampled variant could do the

same. We pose this as the following,

Question 8.1.15 (Correlated Equilibria with RWM). Is there a variant of δ-approximate

RWM that converges to CE and remains efficiently samplable? A variant that achieves

Õ(T−1) convergence rate?

Finally, we end with a concrete direction toward answering our original question:

when can one efficiently sample from RWM? We rely in part of this work on a series of

breakthroughs in the approximate sampling and high dimensional expansion literatures

[239, 11, 25, 22] leading to a sufficient condition called fractional log-concavity [13, 22] for

sampling hypergraphs under arbitrary external fields (generalizing an earlier result for

matroids [25]). This is in fact a stronger guarantee than we actually need to ensure efficient

sampling for RWM. Not only are the fields we study typically additionally structured

(e.g. monotonic), but we are also okay with some amount of decay in the mixing time

depending (logarithmically) on the field size. Is there a characterization of such objects in

terms of geometry of polynomials or high dimensional expansion?
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Question 8.1.16. Is there a general condition on hypergraphs (e.g. in terms of high

dimensional expansion, geometry of polynomials) that allows for approximate sampling

under external fields with polylogarithmic dependence on the worst field size? What about

under structural constraints (e.g. monotonicity)?

8.1.4 Further Related Work

No-regret learning with structured loss

Online learning over exponentially large classes with structured losses has been

considered previously in other contexts (e.g. [263, 100, 196, 267, 34, 359]). Much of this

work considers the combinatorial bandit setting [89], which typically competes against a

non-adaptive adversary, but has restricted information. This work introduces the notion

of sampling from the MWU distribution in structured games by constructing a linear

embedding and performing MWU explicitly on each dimension (their ComBand algorithm).

We note two distinctions with our current work. First, since the ComBand algorithm

focuses on the partial information setting, the regret guarantee of ComBand has worse

dependence on dimension than MWU. Furthermore, the natural embedding of a linear

hypergraph game into binary vectors (which maps a k-set to its corresponding weight

k vector in {0, 1}Ω) typically has dimension linear in n, leading to exponentially worse

runtime compared to our techniques in all of our settings except ranking duel.

There are two additional works which also consider efficient implementation of

RWM [361, 196], but only for the very special settings of k-sets and permutations (which

are generalized by our framework). Also of note is the later work of [267], who built a new

hedge-based algorithm for these settings called component-hedge that also gives efficient

online learning in a few additional cases (e.g. for spanning trees).

One may also consider a kernelized approach to sampling in RWM [144]. We note

that the kernel approach (which in particular implies the ability to compute the partition

function) cannot be applied efficient in many settings (e.g. matroids, where this problem is
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known to be #P-hard). Indeed, it is worth noting that the ability to exactly compute the

partition function implies the ability to exactly sample efficiently (at least in self-reducible

settings), so in this sense requiring efficient kernel computation is strictly stronger than our

approach. Further, since the standard embedding of our setting into a 0/1-polytope has

dimension that is linear in n (or more accurately the number of vertices in the hypergraph),

a naive application of a kernelized method leads to bounds that are linear rather than

polylogarithmic in n.

Computing equilibra for Colonel Blotto

The Colonel Blotto game is one of the most well studied problems in algorithmic

game theory—we restrict our attention here to some of the most notable and relevant

results. As mentioned previously, the first known algorithm to compute exact Nash

equilibria strategies for discrete Colonel Blotto was introduced in [4], who consider games

that are asymmetric across battles and across players (allowing different troop capacity

and rewards across battles and players). This work remains the only known algorithm for

exact equilibrium computation that is polynomial in the number of troops and battlefields,

though follow-up work gave a more practical (but potentially exponential time) algorithm

[56].

Due to the difficulty of understanding the discrete version, a number of works

have also considered Colonel Blotto’s continuous relaxation. It should be noted that the

equilibria in the continuous version do not apply to the discrete case [319]. The works by

[184, 185, 274, 352, 271] consider the case that troop counts are identical (symmetric) for

both players. Later, the symmetric case was also studied when Colonels have different

values for battles [271]. On the other hand, when the troop counts of the two players

differ, constructing/computing equilibria becomes more complicated. In [331], the author

constructs equilibrium strategies explicitly in the case that the rewards for each battlefield

are the same (homogeneous). The authors of [292] consider Blotto with heterogeneous
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rewards and asymmetric troops counts (but with only two battles). In [342], they consider

more than two battles but with strict assumptions on the battle weights. More recently,

the authors in [319] present an efficient algorithm to compute approximate Nash equilibria

in the two-player continuous Colonel Blotto game with asymmetric troop and battle values.

There is also a breadth of work that constructs strategies for approximate and

exact equilibrium under constrained parameter settings of Borel’s two-player discrete

version. Beginning with [191], the author constructs optimal strategies explicitly when the

troop counts and battle rewards are identical. In [358], the authors give an algorithm to

compute equilibria with fixed approximation (decaying with the number of battles). They

also give an algorithm to compute the best-response strategy to a given distribution over

soldiers in each battlefield using dynamic programming. In [70, 352], the authors describe

equilibria in the symmetric case where the number of soldiers is the same for both players.

Moreover, [70] introduces the multiplayer variant. In [357], the authors construct equilbria

under particular conditions for an extension of the Colonel Blotto game that accounts for

pre-allocations and resource effectiveness.

8.2 Preliminaries

All throughout the paper, for integers a ≤ b we denote by [a, b] the set {a, . . . , b} and

shorthand [n] = [1, n]. We use the notations Õ(f) to hide polylogarithmic dependencies

on the argument. Given a finite set Ω, we denote by ∆(Ω) the (convex) polytope of all

distributions defined on Ω. We denote by 2Ω as the power set of Ω, i.e. the set of all

subsets of Ω. Given two finite sets Ω1,Ω2, we denote by Ω1 × Ω2 as the Cartesian product

of the two sets, i.e. (x, y) ∈ Ω1 × Ω2 if x ∈ Ω1 and y ∈ Ω2. We will use
(
Ω
k

)
to denote all

size-k subsets of the ground set Ω. Given two integers k, n ∈ Z+, we will use Pk(n) to

represent the set of ordered size-k partition of n.
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8.2.1 Game Theory

Definition 8.2.1 (Multiplayer Simultaneous Game). An m-player Simultaneous Game

is a tuple {{Ai}mi=1, {Ri}mi=1} where Ai denotes the finite set of actions available for the

i-th player and Ri : A1 × · · · × Am 7→ R denotes the reward function for the i-th player.

Given a set of actions a1, . . . , am, we often write a−i to represent the combined action

tuples without ai, i.e. (a1, . . . , ai−1, ai+1, . . . , am), and Ri(ai, a−i) = Ri(a1, . . . , am) where

we have abused notation in the input ordering to Ri for simplicity of notation.

In a game, a player can choose to play an action, often called a pure strategy, or to

draw randomly from a mixed strategy given by a probability distribution over the set of

available actions.

Definition 8.2.2 (Mixed Strategy). Let {{Ai}mi=1, {Ri}mi=1} be an m-player simultane-

ous game. For the i-th player, the set of mixed strategies are all possible probability

distributions over the actions Ai. Let si ∈ ∆(Ai) be the mixed strategy chosen by

the i-th player. Then, the expected reward received by the i-th player is given by

Ea1∼s1,...,am∼sm [Ri(a1, . . . , ai, . . . , am)].

We will also make use of the following notion of a joint strategy.

Definition 8.2.3 (Joint Strategy). A joint strategy is a distribution σ ∈ ∆(A1 × · · · × Am).

If players were to participate in a joint strategy, then a central coordinator samples an

action tuple a = (a1, . . . , am) ∼ σ, and each player then plays the action ai correspondingly.

As a result, the expected reward of the i-th player is given by Ea∼σ Ri(a).

For a set of actions a
(t)
i for i ∈ [m], and t ∈ [T ], we will often write 1

T

∑T
t=1 a

(t)
i as

the mixed strategy of player i such that action a
(t)
i is played with probability 1/T , and

1
T

∑T
t=1 a

(t)
1 ⊗ · · · ⊗ a

(t)
m as the joint mixed strategy such that the action tuple (a

(t)
1 , . . . , a

(t)
m )

is played with probability 1/T .
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It is well known that if all players play a game optimally, the resulting strategy

tuples compose of a Nash Equilibrium of the game.

Definition 8.2.4 (Nash Equilibrium). In an m-player game {{Ai}mi=1, {Ri}mi=1}, a tuple

of mixed strategies (s1, . . . , sm) composes an ϵ-Nash Equilibria (ε-NE) if for all i ∈ [m] it

satisfies:

E
s1,...,sm

[Ri(s1, . . . , si, . . . , sm)] ≥ sup
s′∈∆(Ai)

E
s1,...,sm

[Ri(s1, . . . , s
′, . . . , sm)]− ϵ,

where the mixed strategies si for i ∈ [m] are mutually independent.

In multiplayer and general-sum games, computating Nash equilibria is challenging.

In fact, this problem is known to be complete for PPAD [104], a complexity class containing

many other computationally hard problems. A standard and arguably more realistic goal

is to find the so-called Coarse Correlated Equilibria (CCEs) of the multi-player game, a

relaxation of Nash Equilibrium introduced by Aumann [35].

In a CCE, all players together sample from a joint mixed strategy (in contrast

to NE where players independently sample from their own mixed strategy). Although a

player i cannot benefit from switching to any single action s′i before the joint strategy is

sampled, once a strategy si is sampled from a CCE distribution (becoming known to each

player), a player may improve their outcome by deviating (using the fact that her strategy

is correlated with other players’). Thus, CCE apply to situations where a player must

commit to their strategy up front and are unable to deviate after sampling.

Definition 8.2.5. Let I = {(Ai, Ri)
m
i=1} be an m-player game. An ϵ-approximate

coarse correlated equilibrium (ϵ-CCE) is a joint mixed strategy σ ∈ ∆(A1 × · · · ×Am)

that satisfies:

∀i ∈ [m], and actions a′i ∈ Ai : Ea∼σRi(a) ≥ Ea∼σRi(a
′
i, a−i)− ϵ.
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8.2.2 Linear Hypergraph Game

Given a ground set of vertices Ω, a hypergraph H is a collection of subsets of Ω

called hyperedges. If all hyperedges of H are in
(
Ω
k

)
, the graph is called k-uniform. In this

work we study a special class of games whose reward functions can be ‘decomposed’ based

on the underlying structure of the game’s action space. More formally, we consider games

played over k-uniform hypergraphs whose rewards decompose linearly over vertices. We

denote this class of games as Linear Hypergraph Games.

Definition 8.2.6 (Linear Hypergraph Games). Let I = {(Ai, Ri)
m
i=1} be an m-player

game. We call I a linear hypergraph game if for all i ∈ [m] there is a groundset Ωi and

parameter ki ∈ N such that Ai ⊂
(
Ωi

ki

)
and a ‘vertex-wise’ reward function RΩi

i : Ωi × A−i

such that for all t1, . . . , tn ∈ A1 × . . .× An

Ri(ti, t−i) =
∑
v∈ti

RΩ
i (v, t−i).

In other words, each element v in the ground set Ωi has a certain reward with respect to

any choice of the opponents, and the reward of a k-set is simply the sum of its individual

rewards. Many important games that are well-studied in the game theory literature

falls under this category, e.g. Colonel Blotto Games, Security Games, Congestion Games,

Dueling Games, etc. In fact, it should be noted a similar notion has been studied in

the online learning setting in [267], who develop an efficient no-regret algorithm called

Component Hedge for linear losses over basic structures such as the complete hypergraph,

truncated permutations, and spanning trees.

8.2.3 No-Regret Learning in Games

We consider the framework of No-Regret Learning in Games (see [88, 103] and

references therein). In this framework, a game is iterated with one or more players

implementing a no-regret learning algorithm to adaptively choose strategies. At the t-th
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round of the game, each player selects a mixed strategy s
(t)
i , and samples the action

a
(t)
i ∼ s

(t)
i , where the choice of s(t)i depends only on a

(t′)
j for j ∈ [m] and t′ < t.

The goal for each player is to optimize her regret, defined as the following.

Definition 8.2.7 (Regret). At the T -th round of the game, the regret for the i-th player

is defined as

RegT,i := max
a∗∈Ai

T∑
t=1

Ri(a
(t)
1 , · · · , a(t)i−1, a

∗, a
(t)
i+1, · · · , a(t)m )−

T∑
t=1

Ri(a
(t)
1 , · · · , a(t)m ).

It is classical result that if all players follow no-regret learning strategies, the overall

dynamics quickly converge to a Nash or Coarse-Correlated Equilibria (CCEs) of the game

(see e.g. [156, 88, 310]).

Theorem 8.2.8 (No-Regret Implies Equilibrium Computation [156]). Suppose m players

are playing under the No-Regret Learning in Games framework. Let σ∗ := 1
T

∑T
t=1 a

(t)
1 ⊗

· · · ⊗ a
(t)
m be the average mixed joint strategies played by the i-th player over T rounds.

Then, σ∗ forms an T−1max
(
RegT,1, · · · ,RegT,m

)
-approximate CCE of the game, where

R
(T )
i is the regret for the i-th player at the T -th round. When m = 2 and the game is zero-

sum, the mixed strategies
(

1
T

∑T
t=1 a

(t)
1 , 1

T

∑T
t=1 a

(t)
2

)
constitute a T−1max

(
RegT,1,RegT,2

)
-

approximate Nash Equilibrium.

8.2.4 Randomized Weighted Majority Algorithm

As in online learning, no-regret learning in games studies the regret of a player

against the opponents’ strategies in repeated play with respect to the best single strategy

in hindsight.

One of the most frequently used tools in no-regret learning is the randomized

weighted majority (RWM) algorithm. For player i ∈ [m], RWM maintains the mixed

strategies from ∆(Ai) as follows: at the first round, it chooses uniformly among the

actions.
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At the (T + 1)-st round, a cumulative reward is computed for each action x ∈ Ai

r(T+1)(x) =
T∑
t=1

Ri(s
(t)
1 , · · · , s(t)i−1, x, s

(t)
i+1, · · · , s(t)m ),

and RWM chooses the mixed strategy RM (T+1) (β) (which we refer to as the RWM

distribution) such that

P
[
RM (T+1) (β) = x

]
∝ β−r(T+1)(x). (8.4)

It is well known that if any player samples according to RM (T+1) (β) in each round,

her expected regret will be bounded in the worst case by Oβ,N(
√
T ).

In games whose action sets are exponentially large, exactly sampling from the the

RWM distribution may be intractable in relevant cases. Nonetheless, we show that similar

regret bounds hold even when one approximately samples the RWM distributions in each

round (the proof is given in Appendix).

Definition 8.2.9 (Approximate Sampling). We say a randomized algorithm A with output

space Ω δ-approximately samples a distribution µ over Ω if the output of A is δ-close to µ

in TV-distance.

We call any strategy that δ-approximately samples from RM (t) (β) in each of T

rounds of repeated play δ-approximate RWM, and denote this class of algorithms by

δ-RWMT
β . It is not hard to show that δ-RWM has near-optimal regret in the adversarial

setting (see Section 8.5).

Lemma 8.2.10 (δ-RWM is No-Regret). Let I be an m-player game with at most N

actions and Lmax reward. If the i-th player follows δ-RWMT
β in T rounds of play with

learning rate β = 1−
√
log(N)/T and approximation factor δ ≤

√
log(N)/T ,5 then for

5We are assuming T ≫ logN . Otherwise, the regret bound becomes LmaxT , which can be achieved by
any arbitrary sequence of choices.
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any η > 0 they experience regret at most

RegT,i ≤ O
(
Lmax

√
T
(√

logN +
√

log(1/η)
))

with probability at least 1− η.

As an immediate corollary, for any game, if we can approximate sample from the RWM

distribution efficiently, we immediately get an efficient no-regret learner. In addition,

connecting it with Theorem 8.2.8, we also obtain the following corollary for equilibrium

computation with RWM.

Corollary 8.2.11 (Equilibrium Computation with δ-RWM). Let I = {(Ai, Ri)
m
i=1} be an

m-player where |Ai| ≤ N for each i ∈ [m] and reward bounded by Lmax. Suppose the game

is played repeatedly for T rounds. If there is an algorithm which can perform δ-RWMT
β for

each player i in time fI(T, δ), then there exists an algorithm which computes an ϵ-CCE of

I (Nash if the game is 2-player zero-sum) with probability at least 1− η. Moreover, the

algorithm runs in time

O

(
m · fI

(
C · Lmaxϵ

−2 log(Nm/η),
ϵ

C · Lmax

))
.

for some universal constant C > 0.

In Sections 8.3 and 8.4, we develop two different types of methods of approximate

sampling from the RWM distribution in many well-studied games and discuss their impli-

cations. Before moving on, however, it is convenient to briefly discuss one computational

consideration that frequently occurs in efficient implementation of RWM. In particular,

it will often be the case that our algorithm needs to deal with piece-wise constant func-

tions that map from [0, n] to R (e.g. reward functions in Blotto for each battlefield are

2-piecewise in this sense). To represent such functions, we will use the following data

structure that we refer as a succinct representation.
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Definition 8.2.12 (Succinct Descriptions of piecewise constant functions). Let f : [0, n] 7→

R be a q-piecewise constant function. The succinct description of f , denoted as Df , consists

of q tuples of the form (ai, bi, yi) ∈ (Z+,Z+,R) such that for all x ∈ [ai, bi], f(x) = yi and

the intervals {[a1, b1] · · · [aq, bq]} partition [0, n].

We will often write |Df | to denote the number of intervals contained in the succinct

description. Finally, note that assuming access to succinct descriptions does not lose much

generality, as given query access to a standard representation for the monotonic piece-wise

function in question (e.g. in the RAM model), it is easy to build a succinct description in

time q log(n) by binary search.

8.3 Playing Games via MCMC-Sampling

In this section, we develop the connections between linear hypergraph games, the

RWM distribution, and efficient sampling. In doing so, we unlock access to powerful tools

from the sampling literature for the first time in the context of games. This allows for a

number of immediate applications including the first no-regret algorithms for well-studied

settings such as matroids.

With this in mind, let’s first recall the basic framework of Monte Carlo Markov

Chains: a powerful tool for approximately sampling from large spaces like the RWM

distribution. More formally, consider the following problem: given a distribution π over a

large state space A, we’d like to approximately sample a state from π in polylog(|A|) time.

MCMC-sampling is an elegant approach to this problem in which one defines a Markov

chain M on A satisfying the following three conditions:

1. The stationary distribution of M is π

2. A single step of M can be implemented efficiently

3. M converges quickly to its stationary distribution.
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As long as these three conditions hold, it is possible to efficiently sample from π up to

any desired accuracy simply by running the Markov chain from any starting position a

few steps and outputting the resulting state. More formally, recall that the mixing time

of a Markov chain M is the number of steps until the resulting distribution is close in

TV-distance to π:

Definition 8.3.1 (Mixing Time). The mixing time of a Markov chain M is the worst-case

number of steps until the total variation distance of M is close to its stationary measure:

T (M, δ) := min
t∈N

: ∀πs, TV (M tπs, π) ≤ δ.

Thus one only needs to run the chain T (M, δ) times (from any starting position) in order

to δ-approximately sample from π.

While MCMC-sampling is a promising approach, designing efficient Markov chains

is typically a challenging task. However, in structured settings such as linear hypergraph

games, the distributions arising from RWM seem to be more conducive to the approach.

In fact, they correspond to well-studied structure in the approximate sampling literature

called external fields.

Definition 8.3.2 (External Field). Let π be a distribution over a k-uniform hypergraph

H ⊂
(
Ω
k

)
. The distribution given by π ‘under external field w’ for w ∈ RΩ

+ has measure

proportional to the product of w across each k-set:

πw(s) ∝ π(s)
∏
v∈s

w(v).

When π is uniform over H, we often just write Hw for πw.

It is a simple observation that the distribution arising from RWM (or indeed any

reasonable variant) is exactly given by the application of an external field to the state

space.
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Observation 8.3.3 (RWM → External Fields). Let I = {(Ai, Ri)
m
i=1} be an m-player linear

hypergraph game. Then for any i ∈ [m], RM (T ) (β) can be written as the application of

an external field w to Ai such that Aw
i has minimum probability at most β−2LmaxT

|Ai| .

Proof. Assume i = 1 without loss of generality (for simplicity of notation). Recall that

RWM operates at round T +1 by exponentiating the total loss over the previous T rounds:

P
[
RM (T ) (β) = a

]
∝ β

−
T∑

j=1
R1(a,s(j))

where s(1), . . . , s(T ) ∈ A−1 are the historical strategies played by players {2, . . . , n} in

rounds one through T . For simplicity of notation, let ℓ(T )(a) := −
T∑
t=1

R(a, s(t)) be the total

loss. We can similarly define this quantity for any element of the ground set v ∈ Ω as:

ℓ(T )(v) = −
T∑
t=1

RΩ
1 (v, s

(t)).

Switching the summations, linearity promises we can express ℓT (s) as a sum over ℓT (v):

ℓT (a) =
∑
v∈a

ℓT (v).

As a result, the RWM distribution is proportional to the product of (exponentiated) total

loss for each vertex:

P(a) ∝
∏
v∈a

βℓ(T )(v).

This is exactly A1 under the external field w ∈ RΩ
+ where w(v) = βℓ(T )(v). Since the

distribution started uniformly over A1 and is update by at most βLmax in each step, the

minimum probability is at worst β−2Lmax

|A1| .

As an immediate corollary, we get an efficient no-regret algorithm for any linear

hypergraph game whose state space can be approximately sampled under arbitrary external
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fields, a well-studied problem in approximate sampling. In the remainder of the section,

we’ll show how such results lead to new efficient no-regret learning algorithms for many

well-studied settings in game theory.

8.3.1 Glauber Dynamics and Fractionally Log-Concave Games

The past few years have seen major advances in approximate sampling various

combinatorial objects under external fields [25, 24, 13, 22]. The recent breakthroughs have

largely been driven by new analysis techniques for a simple local Markov chain arising

from the study of Ising models in statistical physics called the Glauber Dynamics. Starting

from a state σ ∈ H ⊂
(
Ω
k

)
, the (single-site) Glauber Dynamics for a distribution π over Ai

are given by the following two-stage procedure:

1. “Down-Step:” Remove a vertex v uniformly at random from σ.

2. “Up-Step:” Sample from π conditional on σ \ v.

It is not hard to show that π is the stationary distribution of this process. The first major

breakthrough towards rapid mixing of Glauber Dynamics was due to Anari, Liu, Oveis-

Gharan, and Vinzant [25], who used tools developed in the high dimensional expansion

literature [239] to prove rapid-mixing of Glauber Dynamics on a broad class of combinatorial

objects called matroids.

Definition 8.3.4 (Matroids). Let Ω be a ground set and J a family of subsets of Ω.

(Ω,J ) is called a matroid if it satisfies

1. Non-emptiness: J contains at least one subset.

2. Downward-closure: For all S ∈ J and S ′ ⊂ S, S ′ ∈ J

3. Exchange-property: For all S, S ′ ∈ J s.t. |S| > |S ′|, there exists x ∈ S s.t.

S ′ ∪ x ∈ J .
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An element S ∈ J is a basis if it is maximal, and the rank of the matroid (denoted r(J ))

is the size of its largest basis.

Note that the bases of a matroid make up an r(J )-uniform hypergraph over vertex

set Ω. These objects are perhaps best thought of as generalizing the combinatorial structure

seen in spanning trees (which form the bases of a ‘graphic’ matroid). ALOV’s [25] major

breakthrough was to prove rapid mixing of Glauber Dynamics on matroid bases, a problem

known as the Mihail-Vazirani Conjecture (this result was later optimized by Cryan, Guo,

and Mousa [102]). Since matroids maintain their structure under external fields (see

e.g. [22]), this leads to the following MCMC-algorithm for sampling matroid bases under

arbitrary external fields.

Theorem 8.3.5 (Glauber Dynamics on Matroids [22, Theorem 5]). Let H be the set of

bases of a rank-k matroid (Ω,J ). Let w ∈ RΩ
+ be any external field. Then, the single-step

Glauber Dynamics on Hw has mixing time

T (GD, δ) ≤ O

(
k log

(
log(|Ω|/w∗)

δ

))
.

A substantial amount of progress has been made since ALOV and CGM’s works.

In fact, recently Anari, Jain, Koehler, Pham, and Vuong [22] introduced an even more

general class of hypergraphs that can be sampled under arbitrary external fields called

fractionally log-concave hypergraphs.6 All of our results extend to this setting, but to our

knowledge matroids already capture most settings of interest in game theory so we focus

just on this case for concreteness.

Since matroids are typically exponential size in their rank, we will need implicit

access in order to build efficient algorithms. This is typically done through various types

of oracle access to the independent sets. For simplicity of presentation, we will assume
6Formally this requires a slight generalization known as the q-step Glauber Dynamics.
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access to a contraction oracle, a standard operation on matroids that restricts the object

to independent sets containing some fixed S ∈ J .

Definition 8.3.6 (Contraction Oracle). Let (Ω,J ) be a rank-k matroid. A rank-r

contraction oracle inputs an independent set S ∈ J of size r, and outputs (query access

to) the contracted matroid (Ω,JS), where

JS = {T : T ∪ S ∈ J }.

Crucially we will only use rank-(k − 1) contraction oracles on matroids with rank

k (and thus drop rank from the notation below). This can always be implemented in

|Ω| applications of a standard independence oracle (which decides given S ⊆ Ω whether

S ∈ J ), but can often be implemented much more efficiently. For instance, it is easy to

see in the case of uniform (unconstrainted) matroids, this can be implemented in O(k)

time simply by removing each element of S from the list.

Before stating the main guarantees for no-regret learning and equilibrium com-

putation, it will be useful to discuss a few finer-grained properties typical to games on

matroids that help parameterize related computation complexities. First, while not strictly

necessary, it will be convenient to restrict our attention to games where the action sets of

all players are given by ki-uniform hypergraphs on some shared groundset Ω, i.e. Ai ⊆
(
Ω
ki

)
for all i. Given such a game I = {(Ai, Ri)

m
i=1}, we will typically write k−i = maxj ̸=i kj to

denote the maximum support of any viable opponent strategy.

Second, it will be useful to introduce an important property of congestion and

security games we call collision-sensitivity : the vertex-wise reward of an element v ∈ Ω

only changes if v is also selected by another opponent.

Definition 8.3.7 (Collision-sensitive Games). Let I = {(Ai, Ri)
m
i=1} be an m-player linear

hypergraph game where Ai ⊆ 2Ω. We call the rewards of player i ‘collision-sensitive’ if for
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all v ∈ Ω, the vertex-wise reward of v only changes if another opponent also selects v:

∀v ∈ Ω and s, s′ ∈ A−i s.t. v /∈ s, s′ : RΩ
i (v, s) = RΩ

i (v, s
′).

We will write NCi : Ω 7→ R as the function specifying the i-th player’s no-collision reward

function for each vertex, i.e. NCi(x) = RΩ
i (x, s) for x /∈ s. We say a collision-sensitive

reward has support q if the no-collision reward function NCi for each player takes on at

most q values across all vertices v ∈ Ω.

In a sense, collision-sensitivity can be thought of as an independence criterion on

the vertices: roughly speaking, actions taken on v do not effect actions taken on w for

w ̸= v. With these definitions out of the way, we can now state our main guarantees for

no-regret learning on matroids.

Theorem 8.3.8 (RWM on Matroids). Let I = {(Ai, Ri)
m
i=1} be an m-player linear

hypergraph game on a size-n ground set Ω. If Ai is collision-sensitive with support q, then

it is possible to implement δ-RWMT
β in time

O

(
kiT (CO + q log(n) +mk−iT log(n)) log

(
ki log(n) + LmaxT log(β−1)

δ

))
,

assuming access to a q-piecewise succinct description of NCi encoded under an ordering of

Ω and a contraction oracle matching the same ordering.

The proof of Theorem 8.3.8 is not particularly interesting beyond combining

Observation 8.3.3 and Theorem 8.3.5 and involves mostly tedious implementation details

of Glauber Dynamics on matroids. We give these details in Section 8.7 for completeness.

Before moving on, we briefly note this result is nearly tight in many of the main

parameters. For instance, the dependence on k,m, and n is Õ(mk log(n)),7 which in many
7This may increase when the support of other players is non-constant. E.g. if all players are playing

bases of k-uniform matroids, we require mk2 log(n)
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cases (e.g. uniform matroid) is the number of bits required even to express a set of pure

strategies for each player. The bound is also linear in q, which is easily seen to be necessary

since one needs to know the q distinct values in order to sample.

Many games in the literature satisfy the conditions of Theorem 8.3.8. We’ll end this

subsection by giving a few concrete examples. Perhaps the most well-studied variant of

these games is a popular setting called congestion games. Congestion games are a natural

model for resource competition where m-players compete to share n resources and receive

rewards dependent on the number of players sharing the same resource.

Definition 8.3.9 (Congestion Game). Given a ground set Ω, an m-player congestion

game on Ω consists of a collection {Ai}mi=1 and a reward function c : Ω× [m]→ R where

each Ai ⊆ 2Ω are the strategies of player i, and the reward on the actions (s1, . . . , sn) is

given by:

Ri(si, s−i) =
∑
e∈si

c(e, |e(s)|)

where e(s) = {si : e ∈ si}.

Congestion games are particularly well-studied on matroid bases, which are the

only structure on which best response is known to converge to Nash in polynomial time.

However, to our knowledge Theorem 8.3.8 provides the first no-regret algorithm for

congestion games.

Corollary 8.3.10 (Matroid Congestion without Regret). Let I = {{Ai}mi=1, c} be a

congestion game where each Ai is the set of bases of a rank-ki matroid on a ground set

Ω of size n satisfying maxi∈[m] ki = k. Suppose NC(e) = c(e, 1), the no collision reward

function, is q-piecewise under some ordering of Ω. Then there is a no-regret learning

algorithm for I with regret:

RegT ≤ O
(
Lmax

√
T ·
(√

k log(n) +
√
log(1/η)

))
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with probability at least 1− η that runs in time

O (kT (CO + q log(n) + Tmk log(n)) log (LmaxTk log(n)))

assuming access to a q-piecewise succinct description of NC encoded in some ordering of

Ω and a contraction oracle matching this ordering.

Proof. It is enough to argue the game is linear, as the result then follows immediately

from Theorem 8.3.8. Denote by s be the strategy tuples chosen by the players. Recall

that the reward of any strategy si ∈ Ai ⊂
(
Ω
ki

)
in the congestion game is given by:

R(si, s−i) =
∑
e∈si

c(e, |e(s)|).

c can easily be extended into the desired vertex-wise reward function, so we are done.

Corollary 8.3.11 (Equilibrium Computation for Matroid Congestion). Let I =

{{Ai}mi=1, c} be a congestion game where each Ai is the set of bases of a rank-ki ma-

troid on a shared ground set Ω of size n satisfying maxi∈[m] ki = k. Suppose NC(e) = c(e, 1)

is q-piecewise under some ordering of Ω. Then it is possible to compute an ε-CCE with

probability at least 1− η in time

O

(
mL2

maxk
2 log(mn/η)ε−2(CO + q log(n) +mL2

maxk
2 log2(mn/η)ε−2)

∗ log

(
Lmaxk log(mn/η)/ε

))
.

We note that these results also easily generalizes matroid congestion over any FLC,

unlike the best response strategy for computing Nash. Furthermore, we note that Hedge

is actually known to converge to better equilibria [262] than original techniques based on

best response, which gives this approach an additional potential advantage.
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Another setting particularly well-suited to matroids are security games, which

model a variety of attack/defense scenarios.

Definition 8.3.12 (Security Game). A security game I = (Ad, Aa, {r, ζ, c, ρ}) over ground

set Ω consists of defender actions Ad ⊆ 2Ω, attacker actions Aa = Ω, and reward/cost

functions r, ζ, c, ρ : Ω→ R. Let S ∈ Ad, i ∈ Aa be the actions taken by the defender and

the attacker respectively. The reward matrices are given by:

Rd(S, i) =


r(i) if i ∈ S

c(i) else,
and Ra(S, i) =


ζ(i) if i ∈ S

ρ(i) else.

Security games can model a couple natural settings dependent on the choice of

parameters. One basic setting is where the defender has k security resources to defend a

set of n targets, and ‘wins’ if the attacker chooses a defended target. On the other hand,

the model also captures the complement of this game where the defender chooses k targets

to distribute key resources, and the attacker wins if they intercept this distribution (pick

one of the k marked targets). Security games have broad applicability in practice, and

indeed have been used in cases such as assigning security checkpoints at LAX [350].

Security games are inherently linear in their natural representation and thus admit

efficient no-regret algorithms when the defender’s state-space is a matroid (simulating

RWM for the attacker is trivial as it corresponds to a size-|Ω| multinomial distribution).

Corollary 8.3.13 (Security without Regret). Let I = (Ad, Aa, {r, ζ, c, ρ}) be a security

game where Ad are the bases of a rank-k matroid on the ground set Ω and Aa = Ω. Suppose

c, ρ : Ω 7→ R are q-piecewise under some ordering of Ω. Then there exists a no-regret

learning algorithm for I with regret:

RegT ≤ O
(
Lmax

√
T ·
(√

k log(n) +
√
log(1/η)

))
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with probability at least 1− η that runs in time

O (kT (CO + q log(n) + T log(n)) log (k log(n)TLmax)) ,

assuming access to q-piecewise succinct descriptions for c and ρ encoded in some ordering

of Ω and a contraction oracle matching this ordering.

Proof. Note that the attacker’s strategy consists of bases of just rank-1 matroid so

implementing RWM for her is trivial. We focus on the implementation for the defender

side. Again it is enough to show the game is linear. By definition, we have

RD(S, i) =
∑
j∈S

RΩ
D(j, i)

where RΩ
D : [n]× [n]→ R is

RΩ
D(i, j) =


r(i) if i = j

c(i) else.

As an immediate corollary, we also get fast equilibrium computation.

Corollary 8.3.14 (Equilibrium Computation for Security). Let I = (Ad, Aa, {r, ζ, c, ρ})

be a security game where Ad are the bases of a rank-k matroid on the ground set Ω and

Aa = Ω. Suppose c, ρ : Ω 7→ R are q-piecewise under some ordering of Ω. Then it is

possible to compute an ε-CCE (Nash if the game is zero-sum) with probability at least

1− η in time

O
(
L2
maxk

2 log(n/η)ε−2(CO + q log(n) + L2
maxkε

−2 log2(n/η)) log
(
k log(n/η)ϵ−1Lmax

))
,
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assuming access to an q-piecewise succinct description for c and ρ encoded under some

ordering of Ω and a contraction oracle matching this ordering.

We note that this result easily generalizes to settings with multiple attackers or an

attacker who chooses targets corresponding to a matroid basis.

8.3.2 Dueling Games and the JSV Chain

Matroids (or more generally FLC’s) are not the only type of constrained state

space that can be sampled under arbitrary external fields. Indeed, long before these

results Jerrum, Sinclair, and Vigoda [223] famously proved (in work on approximating

the permanent) that bipartite matchings have this property as well. We give an improved

version of their result due to Bezáková, Štefankovič, Vazirani, and Vigoda [63].

Theorem 8.3.15 (JSV Chain). Let (Kn,n, w) be an edge-weighted complete bipartite graph,

and consider the distribution over perfect matchings given by:

Pr(M) ∝
∏
e∈M

we.

It is possible to δ-approximately sample from this distribution in Õ(n7 log 1
δwmin

) time, where

wmin is the minimum weight.

Note one can phrase this result as a sampling algorithm for permutations over

external fields, where the state-space is viewed as a subset of [n]n. Like matroids, bipartite

matchings are very natural objects and underlie a fair number of well-studied games. In

this section, we focus on the setting of dueling games. Dueling games model two player

competitive optimization over a shared ground set.

Definition 8.3.16 (Dueling Games). A dueling game I = (Ω, µ, A1, A2) consists of a set

Ω, a distribution µ over Ω, and strategy spaces A1, A2 ⊂ RΩ
+. The reward matrices are
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given by the probability of ranking x ∼ µ higher than the opponent:

R1(s, t) = Prx∼µ[s(x) > t(x)]− Prx∼µ[t(x) > s(x)],

and likewise:

R2(s, t) = Prx∼µ[t(x) > s(x)]− Prx∼µ[s(x) > t(x)].

There is no known polynomial time algorithm for computing equilibria of general

dueling games. We will give a general algorithm for a class of dueling games we call

unrestricted.

Definition 8.3.17 (Unrestricted Dueling Games). A dueling game I = (Ω, µ, A1, A2) is

called un-restricted if there exist subsets S1, S2 ⊂ R with |S1| = |S2| = |Ω| such that A1

(respectively A2) consists of all possible assignments of Ω to S1 (respectively S2).

It is not hard to see that unrestricted dueling games are linear over perfect matchings

in a complete bipartite graph. As a result, we can use the JSV-chain to simulate optimistic

hedge in polynomial time.

Theorem 8.3.18 (Sampling Unrestricted Dueling Games). Let I = (Ω, µ, A1, A2) be an

unrestricted dueling game where |Ω| = n. Then it is possible to implement δ-RMWT
β in

time Õ(T 2n7 log(1/δ)).

Proof. We focus on player 1. The result is analogous for player 2. Strategies in an

unrestricted dueling game correspond to perfect matchings in the complete bipartite graph

Kn,n, where the LHS corresponds to elements of Ω, and the RHS corresponds to elements

in S1. To fit into our prior framework of linearity and external fields, one may view these

perfect matchings as elements of En (where E is the edge set of Kn,n). Recall that the

reward is given by:

R1(s, t) = Prx∼µ[s(x) > t(x)]− Prx∼µ[t(x) > s(x)]
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It is not hard to see this is linear over the edges of matching:

R1(s, t) =
∑
e∈s

RΩ
1 (e, t)

where RΩ
1 : E × A2 → R is given by:

RΩ
1 ({v, w}, t) =


µ(v) if w > t(v)

−µ(v) if w < t(v)

0 else

As a result, Observation 8.3.3 implies that RWM is given by the application of an external

field over the edges of perfect bipartite matchings, which is exactly the distribution

considered in Theorem 8.3.15. All that is left is to efficiently build access to the weights

of the underlying bipartite graph, which is a small onetime cost that is asymptotically

dominated by even the mixing time of the JSV chain. As a result, it is enough to run

Theorem 8.3.15 T times, which gives the resulting runtime bound.

We note that this result can easily be generalized to a slightly larger class of games

where |S1| and |S2| may be larger than Ω, and specific edges in the bipartite representation

may be disallowed (i.e. we might add the constraint that x ∈ Ω can never be given rank

1). Such strategies correspond to sampling matchings on a generic bipartite graph (rather

than Kn,n), and no-regret learning can can also be performed by the JSV-chain.

Finally, we’ll look at a classic dueling game that fit into the unrestricted framework:

ranking duel. Ranking duel (or the ‘search engine game’) is a game where two players

compete to choose the best ranking of n items. One of these items is pulled from a known

distribution, and the player who ranked it higher wins.

Ranking duel is an unrestricted game where S1, S2 = [n] and the action spaces

A1, A2 = Sn, i.e. permutations of n. As a result Theorem 8.3.18 immediately implies an
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efficient algorithm for sampling in δ-RWM.

Corollary 8.3.19 (Ranking Duel without Regret). Let I = ([n], µ,Sn,Sn) be an instance

of ranking duel. Then there exists an algorithm with regret:

RegT ≤ O
(√

T ·
(√

k log(n) +
√
log(1/η)

))

with probability at least 1− η that runs in time Õ(T 2n7).

As a corollary we get the fastest known equilibrium computation for ranking duel,

Corollary 8.3.20 (Equilibrium Computation for Ranking Duel). Let I = ([n], µ, Sn, Sn)

be an instance of ranking duel. Then there exists an algorithm computing an ε-CCE (Nash

if the game is zero-sum) with probability at least 1− η in time Õ(n9 log(1/η)/ε4)

Unfortunately, while the JSV-chain is an improvement over previous extended linear

programming approaches to dueling games [211, 4], n9 can hardly be called a practical

running time. In fact, it should be noted there is a faster known no-regret algorithm for

perfect bipartite matchings called PermELearn that runs in O(Tn4) time.

Thus Theorem 8.3.18 is perhaps more interesting from the perspective of the method

than the result itself. Designing faster and simpler Markov chains for sampling bipartite

matchings has long been a favorite open problem in the sampling community. Our setting

gives a nice intermediate version of this problem, as the matching problems arising from

unrestricted dueling games have particularly nice structure. In particular, they correspond

to monotonic weightings, in the sense that for every fixed vertex v on the LHS on the

graph, the edge weight of w(v, i) ≥ w(v, j) if i ≥ j. Matchings with monotonic weights are

actually well-studied in the literature, including the resolution of the monotone column

permanent conjecture [79] and rapid mixing of the switch chain8 for binary monotonic
8The switch chain is in essence the 2-step Glauber Dynamics on the view of matchings as a subset of

En.
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weights [134]. However despite these related results, a fast algorithm for sampling general

bipartite matchings with monotonic weights remains an interesting open problem, and the

application to practical no-regret algorithms for dueling games gives yet another motivation

for its study.

8.4 Playing Games via DP-Sampling

While MCMC-sampling is a powerful tool, standard techniques like Glauber Dy-

namics may not perform well in settings that require global coordination across coordinates.

In this section, we develop a new sampling technique toward this end based on Dynamic

Programming, taking advantage of the fact that many settings of interest, such as Colonel

Blotto, additionally exhibit certain recursive structure. In particular, we consider a large

class of problems called Resource Allocation Games that broadly generalize the Colonel

Blotto game.

Resource Allocation Game..

In a resource allocation game, each player assigns fungible items to some number

of battlefields. Namely, for the i-th player, the action space Ai is the set of ordered size

ki partition of ni for ki, ni ∈ Z+. 9 One can see the action space is indeed a hypergraph

where the vertices correspond to pairs (h, x) interpreted as “assigning x items to the h-th

battlefield”, and a strategy is simply a subset of vertices (1, x1), · · · , (k, xk) satisfying∑k
h=1 xh = n. Let the variables xi,h denote the number of items assigned by the i-th

player to the h-th battlefields and A−i := A1 × · · · × Ai−1 × Ai+1 × · · · × Am denote the

set of action tuples from players other than player i. The reward structure of a resource

allocation game is defined by a set of battlefield reward functions ri,h : [0, n]× A−i 7→ R

for each player i ∈ [m] and battlefield h ∈ [ki]. Let a−i ∈ A−i be the actions picked by
9While we define actions as all k-partitions of [n], our algorithm also applies to action spaces that are

subsets of these partitions with arbitrary assignment constraints on each battlefield (i.e., of the form, at
most m items can be assigned to battle j).
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players other than player i. The total reward received by the i-th player is given by the

sum of rewards over individual battles:

Ri(xi,1, · · · , xi,h, a−i) =

ki∑
h=1

ri,h(xi,h, a−i).

Additionally, let ri,h,a−i
: [0, n] 7→ R be the restriction of ri,h after fixing the strategies

of the other players i.e. ri,h,a−i
(x) = ri,h(x,a−i). We say the resource allocation game

is q-piecewise and monotonic if for every i ∈ [m], h ∈ [ki], and a−i ∈ A−i, ri,h,a−i
is a

q-piecewise constant and monotonically increasing function.

In the remainder of this section, we discuss how one achieves no-regret learning for

the first player (the algorithm for the other players is analogous). For this purpose, we will

drop the subscript indicating the player number and let n = n1, k = k1, rh = r1,h, a = a−1.

RWM Distributions..

To achieve no-regret learning, we will need to approximately sample from the

distributions arising from running the RWM algorithm on Resource Allocation Games.

Assume that the players have played the game for T rounds. Let a(t) ∈ A−1 be the action

tuples observed from all but the first player at the t-th round. For an action x ∈ A1 that

assigns xh items to the h-th battlefield, RWM will set its weight wT (x) as

wT (x) = β
∑k

h=1

∑T
t=1 rh(xh,a

(t)) , (8.5)

where β ∈ [1/2, 1) is the learning rate. For simplicity, we will define the cumulative

battlefield reward function (negated to simplify the syntax appearing after)

ℓ
(T+1)
h (xh) = −

T∑
t=1

rj(xh; a
(t)), (8.6)
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so the weight for strategy x can alternatively be written as
∏k

h=1 β
ℓ
(t+1)
h (xh). We remark that,

if the resource allocation game is monotonic and q piecewise, ℓ(T+1)
j (·) is also monotonically

increasing and a ((q− 1) · t+1)-piecewise constant function. Though the domain of ℓj is of

size n+1, the property allows us to represent it succinctly in space O(qt), which is critical

when we try to design algorithms whose runtime depends on n polylogarithmically. In this

section, we focus on how one could design algorithms to efficiently sample from RM (T ) (β)

approximately given succinct descriptions of the functions rh,a(t) for all h ∈ [k] and t ∈ T

(recall that rh,a(t) is the restriction of the battlefield reward function rh after fixing the

other players’ actions). This allows us to implement δ-RWM in polylogarithmic time.

Theorem 8.4.1 (RWM in Resource Allocation Game). Let I = {(Ai, Ri)
m
i=1} be an

m-player monotonic, q-piecewise resource allocation game where A1 = Pk(n) for n, k ∈ Z+.

Suppose the reward of the first player is bounded by Lmax. Then it is possible to implement

δ-RWMT
β in time

O(Tk) ·

(
min

(
T 2Lmax log(1/β)/δ · ζ1 (log T + log ζ2) · log n , n log n

)
+min(Tq, n)

)
.

where ζ1 := min (Lmax log(1/β)/δ, q) , ζ2 := max (Lmax log(1/β)/δ, q), assuming access to a

Tq-piecewise succinct description of ℓ(t)h defined in Equation (8.6) for all h ∈ [k], t ∈ [T ].

As corollaries of the above theorem, we obtain efficient no-regret learners and

algorithms for computing CCEs in Resource Allocation Games.

In the remainder of this section, we present the sampling algorithm whose analysis

leads to the proof of Theorem 8.4.1, and discuss a number of applications to games in the

literature including Colonel Blotto and its variants.

8.4.1 Sampling via estimation of partition function

We will focus for the moment on how one could sample from the RWM distribution

just in round T . For that purpose, we often omit the superscript T for the function ℓ
(T )
h
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(Equation (8.6)) for simplicity. To sample with a dynamic program, we define the partition

function for an RWM distribution in resource allocation.

Partition Function.

The partition function fh : [0] ∪ Z+ 7→ R+ for h ∈ [k] is defined as the sum of

partial weights of all strategies that allocate y soldiers in the subgame induced on the first

h battles. Namely,

fh(y) =
∑

x1+···+xh=y

h∏
i=1

βℓi(xi). (8.7)

It has long been known that efficient algorithms for computing the partition function of a

self-reducible problem imply efficient (approximate) samplers for the problem’s solution

space [224]. As one can see, computing the partition function fh in our setting simply

corresponds to counting the number of (weighted) size h partitions of y, which is exactly

such a self-reducible problem. Consequently, if one has the values for the partition functions

precomputed, one can use them to sample from the RWM distribution efficiently. We

provide the detailed sampling procedure below for completeness.

In particular, this is done by sampling the number of items to put in each battlefield

sequentially, conditioned appropriately on prior choices. One puts x1 ∈ {0, . . . , n} soldier

to the first battlefield with probability

P[x1 = y] ∝ βℓ1(y) · fk−1(n− y). (8.8)

To sample from the (h+1)-th battlefield conditioned on the fact that one has put x1, . . . , xh

soldiers in battles 1 . . . h, it is enough to sample according to the distribution

P [xh+1 = y|x1...h] ∝ βℓh+1(y) · fk−h−1

(
n−

(
h∑

j=1

xj

)
− y

)
. (8.9)
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The probabilities defined according to Equations (8.8), (8.9) yields exactly the

RWM distribution, but computing the partition function exactly can be quite costly. For

this purpose, we consider the notion of δ-approximations (multiplicative) of functions.

Definition 8.4.2 (δ-approximation). Given f : [0, n] 7→ R+ and f̂ : [0, n] 7→ R+, we say f̂

is a δ-approximation of f if for all x ∈ [0, n] we have

(
1− δ

)
f(x) ≤ f̂(x) ≤

(
1 + δ

)
f(x).

Fortunately, with δ/(Ck)-approximations of the partition functions for some sufficiently

large constant C, one can still perform δ-approximate sampling from the RWM distribution

(See proof of Lemma 8.4.3).

Another important observation for achieving efficient (approximate) sampling is

that ℓh, the reward function for each battlefield, is a piece-wise constant function. Hence,

further optimization is possible if the approximations used for each partition function is also

piece-wise constant (and this is indeed the case as we will see shortly). The pseudo-code for

the sampling algorithm that takes as input the succinct descriptions of the (approximate)

partition functions and the reward functions is given below.
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Algorithm 2. Partition-Sampling
Require: Succinct descriptions Df̂h

for h ∈ [k] ; succinct description Dgh of the function

gh(x) = βℓh(x).

1: Initialize the number of unused soldiers u = n.

2: Initialize an empty assignment description S.

3: for h = 1 . . . k do

4: Compute the succinct description Dκh
of the function κh : [0, u] 7→ R+ defined as

κh(i) := gh(i) · f̂k−h (u− i) . (8.10)

▷ |Dκh
| = |Dgh|+ |Df̂h

| and Dκh
can be computed in time linear with respect to the

description length.

5: {Compute intervals}

6: for (ai, bi, yi) ∈ Dκh
do

7: Compute the cumulative weight of constant intervals.

νi := yi · (bi − ai + 1). (8.11)

8: {Sample an interval}

9: Sample j ∈ 1 . . . |Dκh
| according to the weight vector ν.

10: {Sample soldiers used in battle h}

11: Sample zh uniformly for {aj, aj + 1, . . . bj − 1, bj} where [aj, bj ] is the j-th constant

interval in Dκh
.

12: Add zh to the strategy S description.

13: u← u− zh.

14: return S. 746



Lemma 8.4.3. Let I = {(Ai, Ri)
m
i=1} be an m-player monotonic, q-piecewise resource

allocation game where Ai = Pki(ni) for ni, ki ∈ Z+. At the t-th round, for each h ∈ [k], let

f̂h be δ/(2k)-approximations of the partition function defined in Equation (8.7), and let

gh(x) = βℓh(x). Assume one is given the succinct descriptions Df̂h
and Dgh. Then, there

exists an algorithm Partition-Sampling which performs δ-approximate sampling from

RM (T ) (β) in time

k ·O (p+min (Tq, n) + log n)

where p := max |Df̂h
|.

Proof. If we were to perform the sampling process with fh instead of f̂h, we would get

exactly the distribution RM (t) (β). This follows from repeated applications of Bayes’ rule

and that we are sampling the correct conditional distribution. Namely,

P [x1 = y1, . . . , xk = yk] =
k∏

h=1

P [xh = yh | xh′ = yh′ ,∀h′ < h]

To make sure that we are performing δ-approximate sampling overall, it suffices if

we perform δ/k approximate sampling for each conditional distribution (each battlefield).

To perform exact sampling, one needs to compute the weight

κ∗
h(i) := gh(i) · fk−h−1(u− i).

Since for every h ∈ [k] we have f̂h are δ/(2k) approximations of fh, we also have κh is

δ/(2k) approximations of κ∗
h, which implies that

(1− δ/(2k))
n∑

i=0

κ∗
h(i) ≤

n∑
i=0

κh(i) ≤ (1 + δ/(2k))
n∑

i=0

κ∗
h(i).

It then follows that the distribution defined by κ∗
h and κh differs by at most δ in total

variation distance.
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To analyze the runtime, we note that for each battlefield, we first compute the

succinct description Dκh
defined in Equation (8.10). Since it is the point-wise multiplication

between gh, which is min(Tq, n)-piecewise constant, and f̂k−h−1, which is p-piecewise

constant, κh will be p+min(Tq, n) piecewise constant. To construct the succinct description

of Dκh
, one maintains two pointers a = 0, b = u and keeps track of the interval from

Dgh that a is in and the interval from Df̂h
that b is in. Then, one shifts a forward and

b backward to seek for constant intervals of Dκh
. It is easy to see the runtime of the

construction is linear with respect to |Dκh
|. Then, computing νi requires scanning through

the succinct description of Dκh
once. After that, we first sample from a multinomial

distribution with support at most p, which takes time O(p). Then, we sample from a

uniform distribution with support at most n, which takes time O(log n). Adding everything

together then gives our final runtime.

8.4.2 Computing the Partition Function

We now move to showing how to (approximately) compute the partition function.

As a warmup, we will first show how this can be done exactly via dynamic programming.

In particular, we want to fill a k × n table such that the (h, y) entry corresponds to the

value fh(y).

Proposition 8.4.4. The values fh(y) for all h ∈ [k] and y ∈ [0, n] can be computed in

time O (nk log n).

Proof. Notice that we have the following recursion

fh(y) =

y∑
x=0

βℓh(x) · fh−1 (y − x) . (8.12)

fh is exactly the convolution of βℓh(·) and fh−1. Using Discrete Fast Fourier Transform,

fh can be evaluated in time O(n log n) ([81]). Hence, in total, the entire DP table can be

filled in time O(nk log n).

748



Next, we will discuss how one can develop faster algorithms when n is substantially

larger than k, T , and Lmax. Our main technical result is an algorithm to pre-compute the

partition functions “approximately” whose runtime depends on n polylogarithmically.

Proposition 8.4.5. There exists an algorithm Approx-DP which constructs f̂1, · · · , f̂k

such that f̂i is a δ-approximation of the partition function fi pointwisely, and runs in time

O
(
kT 2Lmax log(1/β)/δ · ζ1 (log T + log ζ2) · log n

)
.

where ζ1 := min (Lmax log(1/β)/δ, q) , ζ2 := max (Lmax log(1/β)/δ, q).

This seems a bit surprising as there are in total k · (n+1) values that we need to pre-

compute (fh(y) for all h ∈ [k] and y ∈ [0, n]). However, notice that we are only interested

in computing approximations to these values. And, as each fh is itself a monotonically

increasing function, we can approximate it with a sufficiently simple piece-wise function.

Fact 8.4.6. Given a monotonically increasing function f : [0, n] 7→ R+, it can be δ-

approximated by a function that is d-piecewise constant where

d = Θ(log(max
x

f(x)/min
x

f(x))/δ).

Hence, the algorithm Approx-DP does not need to output the entire k × (n +

1) tables specifying the partition functions. Rather it can just construct the succinct

descriptions of a series of functions f̂1, · · · , f̂k such that f̂i is a δ-approximation of fi. By

Claim 8.4.6, we can indeed find such f̂i that are Θ(log(βTLmax)/δ) = Θ(TLmax log(1/β)/δ)

piecewise constant. As the first building block of the Approx-DP, we demonstrate

the routine which, given query access to an unknown monotonically increasing function,

constructs a piecewise constant approximation of the function.
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Lemma 8.4.7. Given a monotonically increasing function f : [0, n] 7→ R+ and query

access to f , there exists an algorithm Piecewise-Approximate which outputs a piecewise

function f̂ satisfying that

– f̂ is d-piecewise constant for d = Θ(log(maxx f(x)/minx f(x))/δ).

– (1− δ) · f(x) ≤ f̂(x) ≤ f(x).

– the algorithm runs in time O (log n · d ·Q).

where Q is the cost of making a single query to f .

Proof. The algorithm proceeds by iteratively finding the longest interval from a starting

point such that the function values at the endpoints are within a (1 + δ)-factor of each

other, and then letting f̂ on this interval be the constant function given by the value of

f on the right endpoint. By the monotonicity of f , it is easy to see that f̂ is indeed a

δ-approximation of f on this interval. The algorithm then repeats this process starting

from the next value on which f̂ is not yet defined and repeats until f̂ has been defined on

the entire domain.

Since the function values of f increase by at least a factor of (1 + δ) be-

tween each interval and the last, the total number of intervals is at most d =

Θ(log(maxx f(x)/minx f(x))/δ).

Algorithm 3. Piecewise-Approximate
Require: Query access to f : [0, n] 7→ R+; Approximation accuracy δ.

1: D ← {}, a← 0.

2: while a ≤ n do

3: Binary Search to find the largest b such that f(b) ≤ f(a) · (1 + δ).

4: Add (a, b, f(a)) to D. (setting f̂(x) to f(a) for all a ≤ x ≤ b.)

5: a← b+ 1.

6: return D.
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With this in mind the construction of the series of piecewise constant approximation

functions f̂1, · · · , f̂k becomes clear: one initializes f̂1 = Piecewise-Approximate(f1)

and then defines f̂h recursively as f̂h = Piecewise-Approximate(f ′
h) where f ′

h(y) =∑y
x=0 f̂h−1(x) ·gh(y−x). Recall that the routine Piecewise-Approximate requires query

access to the input function. Hence, we need to show how one could implement query

access to f1 and f ′
h for h ∈ [k] efficiently (independent of n). The former is easy given

the succinct description of f1 since f1 = βℓ1(x) is a T · q piecewise constant function. To

realize the latter, we use the fact that f ′
h is the convolution of f̂h and gh which are both

piecewise constant functions. In particular, we give the following routine which efficiently

implements query access to convolutions of piecewise constant functions.

Algorithm 4. Convolution-Query
Require: Succinct descriptions Df ,Dg of two piece-wise constant functions f , g; Query

point x.

1: Preprocess Df to extend each tuple into the form (ai, bi, yi, si) where si :=
∑

j<i(bj −

aj + 1) · yj.

2: Let

F (z) =


∑z

i=0 f(i) for i ≥ 0 ,

0 otherwise.

3: res← 0.

4: for each interval (ai, bi, yi) ∈ Dg do

5: res += (F (x− ai)− F (x− bi − 1)) · yi.

6: return res.

We note that the pre-processing incurs a one-time cost for each new function f and

does not need to be performed for different queries with respect to the same function f .

We also note F (z) can be evaluated by first binary search the first index j such that for

751



(aj, bj, yj, sj) ∈ Df we have bj ≥ z. Then use the equality F (z) = sj + (z − aj) · yj.

Lemma 8.4.8. Assume one is given the succinct description Df , Dg of two functions

f, g : [0, n] 7→ R+. Let (f ⋆ g)(x) =
∑x

i=0 f(i) · g(x− i). Suppose |Df | = pf and |Dg| = pg

with pf < pg. There exists an algorithm Convolution-Query that takes O(pf + pg) time

to preprocess Df , Dg and then takes O (pf · log pg) time to return query access (f ⋆ g)(x)

for each x ∈ [0, n].

Proof. In the pre-processing step, for each tuple (ai, bi, yi) ∈ Df , we add an extra number

si which denotes the prefix-sum of all elements before the interval [ai, bi]. This can be

done easily by scanning through the tuples of succinct description in order in one pass.

Then, if one want to query the prefix sum F (z), one can just find out which interval z

falls into by binary search and then computes in constant time with si.

Then, using the fact that g is piecewise constant, we can rewrite the convolution

query (f ⋆ g)(x) as

x∑
i=0

f(x− i) · g(i) =
|Dg |∑
i=1

yi ·

(
x−ai∑

j=x−bi−1

f(j)

)
=

|Dg |∑
i=1

yi ·
(
F (x− ai)− F (x− bi − 1)

)
.

where (ai, bi, yi) are tuples in Dg. Since evaluating each query to F takes at most O(log |Df |)

time (for binary search), the above expression can be evaluated in time O (|Dg| log |Df |).

We are now ready to present the pseudocode and analysis of Approx-DP, whose

analysis then lead to the proof of Proposition 8.4.5.
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Algorithm 5. Approx-DP

Require: For each h ∈ [k], succinct description Dgh of the function gh(x) = β−ℓh(x);

number of goods n; number of battlefields k; approximation error δ.

1: Initialize f̂1 as g1.

Df̂1
← Piecewise-Approximate (g1, δ/(4k)) .

2: for h = 2 · · · k do

3: Consider the function

f ′
h(y) =

y∑
x=0

f̂h−1(x) · gh(y − x) =

y∑
x=0

f̂h−1(x) · βℓh(y−x). (8.13)

4: Set f̂h to be the piecewise approximation of f ′
h.

Df̂h
← Piecewise-Approximate (f ′

h, δ/(4k)) .

5: return Df̂h
for h ∈ [k].

We note that the query access to g1 is by simply reading from the suc-

cinct description Dg1 . Further, query access to f ′
h(y) is implemented by routine

Convolution-Query(Df̂h−1
, Dgh , y) (see the Appendix for its pseudocode and runtime).

Proof of Proposition 8.4.5. We will show via induction that each f̂h is monotonically

increasing and f̂h an (h · δ/k)-approximation of the original function fh. Consider the

function f ′
h defined in Equation (8.13). Since both f̂h−1(x) and β−ℓh(x) are monotonically

increasing, their convolution f ′
h is also monotonically increasing. Besides, by our inductive

hypothesis, f̂h−1 is an ((h − 1) · δ/k)-approximation of fh−1, implying that f ′
h is an

((h− 1) · δ/k)-approximation of fh. By Lemma 8.4.7, f̂h is a (δ/k)-approximation of f ′
h,
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and consequently a (h · δ/k)-approximation of fh.

The runtime of the algorithm is dominated by the (k − 1) times we call the

routine Piecewise-Approximate in Line 4. Notice that maxx fh(x)/minx fh(y) can

be at most β−ℓ(x) where ℓ(x) is at most TLmax. As we have argued, each f ′
h is always

a δ-approximation of fh, which implies that maxx f
′
h(x)/minx f

′
h(y) is at most exp(2 ·

log(1/β)TLmax). Therefore, each f̂h is a O(log(1/β)TLmax) constant function.

Piecewise-Approximate uses the routine Convolution-Query as its query

access to the input function f ′
h. By Lemma 8.4.8, Convolution-Query incurs a one-time

cost of O(TLmax log(1/β)/δ + Tq) to preprocess the succinct descriptions of gh(x) =

βℓh(x) and f̂h−1. Then, each query takes time O (T · ζ1 · (log T + log ζ2)) . where ζ1 :=

min (Lmax log(1/β)/δ, q) , ζ2 := max (Lmax log(1/β)/δ, q). By Lemma 8.4.7, each call to

Piecewise-Approximate then takes time

O
(
T 2Lmax log(1/β)/δ · ζ1 (log T + log ζ2) · log n

)
.

The overall runtime just multiplies the entire expression by k.

Combining Lemmas 8.4.3,8.4.4, and Lemma 8.4.5, we then obtain an efficient

algorithm for δ-RWM in Resource Allocation Games, which concludes the proof of Theorem

8.4.1.

8.4.3 Applications of the meta algorithm

In this section, we describe the main applications of our sampling algorithm.

Colonel Blotto Game.

A well-studied example of the resource allocation game is the Colonel Blotto Game.

In the game, m players try to assign {ni}mi=1 troops to k different battlefields. For the i-th

battlefield, the player who places more soldiers wins the battle and earn a reward of wi ∈ Z+
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(ties are broken e.g. lexicographically).10 This can be viewed as a resource allocation game

where the reward function rj is simply the threshold function rj(x) = wj · 1(x > y) where

y is the maximum number of soldiers placed by the other players. It is easy to see that rj

is monotonically increasing and 2-piecewise constant. Hence, Theorem 8.4.1 immediately

gives an efficient no-regret learning algorithm for the Colonel Blotto Game.

Corollary 8.4.9 (Colonel Blotto without Regret). Let I be an m-player Colonel Blotto

Game where the i-th player tries to assign ni soldiers to k battlefields satisfying ni ≤ n.

Then there is a no-regret learning algorithm for I with regret:

RegT ≤ O
(
Lmax

√
T ·
(√

k log(n) +
√
log(1/η)

))

with probability at least 1− η that runs in time

Tk ·O

(
min

(
n log n, T 2Lmax log(TLmax) log n

)
+m

)
.

Proof. By Lemma 8.2.10, to achieve no-regret learning in T rounds, we simply need to

perform δ-approximate sampling from the RWM distributions with learning rate log(1/β),

where δ =
√

k log n/T and β = 1 −
√

k log n/T . For T ≥ C · k log n for a sufficiently

large constant, we have log(1/β) = O(
√

k log n/T ). Hence, log(1/β)/δ = O(1). To show

that we can perform the sampling process efficiently, we will apply Theorem 8.4.1 with

q = 2 since Colonel Blotto is a resource allocation game whose reward function is always

2-piecewise. To do so, we need to construct and maintain the succinct descriptions of the

cumulative battlefield reward function ℓ
(t)
h required by the sampling algorithm. Let a

(t)
j,h

be the number of soldiers that the j-th player assigns to the h-th battlefield at the t-th
10In the zero-sum variant the other player also loses wi.
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round. Then, for the first player, we essentially have

ℓ
(t)
h (x) = wh ·

t−1∑
t′=1

1

{
x > max

j=2···m
a
(t′)
j,h

}
.

After observing the assignments from other players at round t, one first computes the

maximum ν
(t)
h = maxj=2···m a

(t)
j,h, which can be done in O(m) time. After that, one essentially

adds ℓ(t−1)
h with the threshold function 1

{
x > ν

(t)
h

}
, which takes time O(min(T, n)), which

is strictly dominated by the sampling time. Overall, the update just adds an additive

factor of O(Tkm) in total.

This immediately gives an algorithm for computing ϵ-approximate CCEs in the

Colonel Blotto Game (or Nash Equilibria when m = 2). Namely, we simulate no-regret

playing for all m players simultaneously for T = C · kL2
maxϵ

−2 log(mn/η) many rounds.

Corollary 8.4.10 (Equilibrium Computation for Colonel Blotto Games). Let I be an m-

player Colonel Blotto Game where the i-th player tries to assign ni soldiers to k battlefields

satisfying ni ≤ n. There exists an algorithm to compute an ϵ-approximate CCE (Nash if

the game is two-player zero-sum) with probability at least 1− η in time

m ·O

(
mk2ϵ−2L2

max log(mn/η)min

(
nk2L2

maxϵ
−2 log(m/η) · log2 n , k4L7

maxϵ
−6 log4(n)

· log3(m/η) · log
(
kLmaxϵ

−1 log(mn/η)
)))

.

In the regime where n is far greater than k, ϵ, and Lmax, this gives an exponential

improvement over prior algorithms [4] (at the cost of being approximate rather than exact).
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Dice Game.

Dice Games are a randomized variant of Blotto first proposed in [105] where m-

players11 construct and roll dice, with the highest roller winning the game. These games

are another natural instance of resource allocation. More formally, in the dice game each

of m-playes has a ki-sided die and ni points to distribute. The i-th player builds their

die by assigning a number of dots to each face such that the sum is exactly ni (where

ki, ni ∈ Z+). Note that the action space Ai is then exactly the set of ordered partitions

Pki(ni). The rewards are determined by “rolling” the m dice simultaneously; the player

with the highest roll wins. In other words, for each player a face is selected uniformly at

random and independently, and the player with more dots on the chosen faces wins and

earns a reward of 1. The reward function is given by the expected reward of this process.

Let xi,h be the number of dots that the i-th player placed on the h-th face of her

die for i ∈ [m] and h ∈ ki, and denote by Xi the random variable representing the number

of dots obtained by player i after rolling. The expected utility for the first player is given

by

P[X1 > max(X2, · · · , Xm)] =
1

k1

k1∑
h=1

P[x1,h > max(X2, · · · , Xm)]

=
1

k1

k1∑
h=1

m∏
i=2

P[x1,h > Xi].

=
1

k1

k1∑
h=1

m∏
i=2

1

ki

ki∑
h′=1

1(x1,h > xi,h′).

Let k = maxi ki. It is not hard to see that 1
ki

∑ki
h′=1 1(x1,h > xi,h′) is an O(k)-piecewise

monotonic function and
∏m

i=2
1
ki

∑ki
h′=1 1(x1,h > xi,h′) is an O(mk) piecewise monotonic

function. Hence, this is indeed a O(mk)-piecewise monotonic resource allocation game.

Applying our meta-algorithm immediately gives the following results on no-regret learning
11The original dice game is defined for two players. This can be nonetheless generalized naturally to an

m-player setting.
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and equilibrium computation in dice games.

Corollary 8.4.11 (No-regret Learning in Dice Games). Let I = {(Ai, Ri)
m
i=1} be an m

player dice game such that maxi ki ≤ k and maxni ≤ n. Then there is a no-regret learning

algorithm for I with regret

RegT ≤ O
(
Lmax

√
T ·
(√

k log(n) +
√
log(1/η)

))

with probability at least 1− η, and runs in time

Tk ·O

(
min

(
T 2 · log(Tm) · log n, n log n

)
+ Tkm

)
.

Proof. Similar to the proof of Theorem 8.4.9, we will apply Theorem 8.4.1 with q := mk

and Lmax = 1. The main step is to maintain the succinct description of ℓ(t)h . In dice games,

the cumulative reward functions ℓ
(t)
h for all faces are identical and take the form

ℓ(t)(x) =
t−1∑
t′=1

1

k1

m∏
i=2

1

ki

ki∑
h=1

1(x > x
(t′)
i,h ).

After observing the actions x(t)
i,h for i ∈ [m], h ∈ [ki] at the t-th round, we first compute the

functions ν
(t)
i (x) = 1

ki

∑ki
h=1 1(x > x

(t)
i,h), which are all at most k-piecewise. This requires

sorting x
(t)
i,1, · · ·x

(t)
i,ki

, which takes time at most O(k log k). As a result, constructing all

ν
(t)
2 , · · · ν(t)

m takes time in total O(mk log k). Then, we will point-wisely multiply all ν(t)
i

together. One can proceed in a divide and conquer manner: in the first pass, multiply

together ν
(t)
i in groups of two, in the second pass, multiply together ν

(t)
i in groups of

four and continues until all ν(t)
i are multiplied together. There will be logm passes and

the computation cost for each pass is at most O(mk). Hence, the process takes time

O(mk logm) in total. Then, we add the resulting function to ℓ(t−1), which incurs another

cost of O(Tkm). Hence, in total, (assuming logm < T ), it takes time O(Tkm) to update
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ℓ(t) at one round.

Corollary 8.4.12 (Equilibrium for Dice Games). Let I = {(Ai, Ri)
m
i=1} be a dice game

with n = max(n1, . . . , nm), and k = max(k1, . . . , km). There exists an algorithm to compute

an ϵ-CCE (Nash if the game is two-player zero-sum) with probability at least 1− η in time

m ·O

(
min

(
nk2ϵ−2 log(m/η) · log2 n, k4ϵ−6 log4(n) · log3(m/η) · log(kϵ−1m log(n/η))

)
+mk4ϵ−4 log2(mn/η)

)
.

8.4.4 Multi-resource allocation games

A natural generalization of the resource allocation game is when each player has

multiple resource types. This occurs naturally in many settings: a Colonel in Blotto, for

instance, might have access to multiple unit types including troops, tanks, and planes

(this variant was introduced in [56]). One would expect that the reward functions should

vary depending on which types of units the Colonel chooses.

More formally, in the multi-resource allocation game, the i-th player has Bi types

of fungible items. We denote by ni,b the number of type-b items that the i-th player

possesses. Her strategy is an allocation of these items to ki battlefields. We denote Xi,b,h

as the number of type b items that the i-th player assigns to the h-th battlefield. Similar

to the single-resource allocation game, for each player i and each battlefield h, there is a

battlefield reward function

ri,h : ([0, ni,1])× · · · × ([0, ni,B])× A−i 7→ R ,

where we recall A−i is the set of strategy tuples from the players other than i. Let S ∈ A−i

be the strategies used by the other players, the total reward for the i-th player on strategy
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X = {Xi,b,h} is given by summing over the rewards on each individual battlefield:

Ri(X,S) =

ki∑
h=1

ri,h (Xi,1,h, · · · , Xi,b,h, S) .

We now prove a variant of Theorem 8.4.1 for the multi-resource setting.

Theorem 8.4.13 (RWM in Multi-Resource Allocation Game). Let I = {(Ai, Ri)
m
i=1}

be an m-player multi-resource allocation game where Ai = Pki(ni,1) × · · · × Pki(ni,B)

for n1, · · ·nB, k ∈ Z+. Suppose the reward of the first player is bounded by Lmax,

maxi∈[m],b∈[B] ni,b = n, maxi∈[m] ki = k. Then it is possible to implement (exact) RMWT
β in

time

O
(
TkB(n+ 1)2B +mTk2B · (n+ 1)B

)
.

assuming query access to ri,h : ([0, ni,1])× · · · × ([0, ni,B])× A−i 7→ R.

Proof. We proceed to analyze the partition function of the RWM distribution. As usual,

we will conduct the analysis from the first player’s perspective and drop the subscript

used to index the player. Suppose the game is played for T rounds and the observed

actions from the other players’ are S(1), · · · , S(T ). Then, similar to Equation (8.6), for an

assignment x ∈ Ai, we will define the cumulative reward

ℓ
(T+1)
h (X1,h, · · · , Xb,h) =

T∑
t=1

rh
(
X1,h, · · · , XB,h, S

(t)
)
.

For simplicity, we will abbreviate (X1,h, · · · , Xb,h) as X∗,h. Then, we have the weight for

the action x is simply

wT (X) =
k∏

h=1

βℓ
(T+1)
h (X∗,h).

After dropping the superscript marking the rounds, accordingly, the partition function is
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now fh : ([0, n])B 7→ R+ for h ∈ [k] defined as

fh(y) =
∑
X∈Xy

k∏
h=1

βℓh(X∗,h) ,

where Xy = {X ∈ (Z+)B×k|∀b ∈ [B] ,
∑k

h=1Xb,h = yb}. We still have the recursion

fh(y) =
∑
z∈Zy

fh(y − z) · βℓh(z) , (8.14)

where Zy = {z ∈ ([0, n])B|∀b , zb ≤ yb}.

Compared to the single-resource allocation game, there are O
(
k · (n+ 1)B

)
parti-

tion function values we need to compute. Using dynamic programming and the recursion

stated in Equation (8.14), each of them now takes time at most O
(
B(n+ 1)B

)
. Hence,

filling the entire DP table takes time O
(
kB · (n+ 1)2B

)
.

After that, we likewise sample the assignment for each battlefield sequentially. We

will write n = (n1, · · · , nB). For the first battlefield, we sample

P[X∗,1 = y] ∝ βℓ1(y) · fk−1 (n− y) .

To sample from the (h+ 1)-st battlefield, one sample according to the distribution

P [X∗,h+1 = y|X∗,1···h] ∝ βℓh+1(y) · fk−h−1

(
n−

(
h∑

j=1

X∗,j

)
− y

)
.

The domain size of the distributions we sample from is O
(
(n+ 1)B

)
. To compute the

probabilities of each element takes O(B) times. Hence, the sampling time for one battlefield

is O
(
B · (n+ 1)B

)
. Hence, the runtime of the sampling process is dominated by that of

computing the partition functions.

Finally, we discuss how we maintain the function ℓ
(t)
h at round t. To do that,
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we gather the strategy S(t) observed at the t-th round from other players and then

query rh(z, S
(t)) for each z ∈ ([0, n])B, and add that to ℓ

(t−1)
h (z). Each query takes time

O(mBk) (to write down the input). In total, maintaining ℓ
(t)
h in T rounds takes time

O(mTk2B(n + 1)B). Adding this together with the time for computing the partition

function then gives our final runtime.

As an immediate application, we get no-regret learning and equilibrium computation

for the multi-resource allocation games such as the multi-resource Colonel Blotto problem.

Corollary 8.4.14 (Multi-resource without Regret). Let I = {(Ai, Ri)
m
i=1} be an m-player

multi-resource allocation game where Ai = Pki(ni,1) × · · · × Pki(ni,B) for n1, · · ·nB, k ∈

Z+. Suppose the reward of the first player is bounded by Lmax, maxi∈[m],b∈[B] ni,b = n,

maxi∈[m] ki = k. Then there is a no-regret learning algorithm for I with regret:

RegT ≤ O

Lmax

√
T ·


√√√√ B∑

b=1

log(nB) +
√
log(1/η)


with probability at least 1− η that runs in time

O
(
TkB(n+ 1)2B +mTk2B · (n+ 1)B

)
assuming query access to ri,h : ([0, ni,1])× · · · × ([0, ni,B])× A−i 7→ R.

Corollary 8.4.15 (Equilibrium Computation for Multi-Resource Allocation Games). Let

I = {(Ai, Ri)
m
i=1} be an m-player multi-resource allocation game where Ai = Pki(ni,1)×

· · · × Pki(ni,B) for n1, · · ·nB, k ∈ Z+. Suppose the reward of the first player is bounded

by Lmax, maxi∈[m],b∈[B] ni,b = n, maxi∈[m] ki = k. There exists an algorithm to compute an
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ϵ-approximate CCE (Nash if two-player zero-sum) with probability at least 1− η in time

O
(
m(n+ 1)2Bk2B2L2

maxϵ
−2 log(mn/η) +m2(n+ 1)Bk3B2L2

maxϵ
−2 · log(mn/η)

)
assuming query access to ri,h : ([0, ni,1])× · · · × ([0, ni,B])× A−i 7→ R.
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8.5 No-regret Learning and Equilibrium Computation

Lemma 8.5.1 (Lemma 4.1 from [88] Rephrased). Let I = {(Ai, Ri)
m
i=1} be an m-player

game played repeatedly for T rounds. Denote s
(t)
i as the mixed strategy chosen by the i-th

player, and a
(t)
i ∼ s

(t)
i as the action sampled. Assume the i-th player follows an algorithm

which computes s
(t)
i solely based on a

(t′)
j for t′ < t and j ∈ [m]\{i}. Furthermore, suppose

the following is true

sup
b
(t)
j ∈Aj for t∈[T ],j ̸=i

E

[
max
e∈Ai

T∑
t=1

Ri(e, b
(t)
−i)−

T∑
t=1

Ri(a
(t)
i , b

(t)
−i)

]
≤ B.

Then, for all δ ∈ (0, 1), with probability at least 1− δ, it holds

max
e∈Ai

T∑
t=1

Ri(e, a
(t)
−i)−

T∑
t=1

Ri(a
(t)
i , a

(t)
−i) ≤ B + Lmax

√
T/2 log(1/δ).

at the end of the repeated play for the i-th player.

Proof of Lemma 8.2.10. If one follows exactly from the Randomized Weighted Majority
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algorithm, one has the guarantee that

sup
b
(t)
j ∈Aj for t∈[T ],j ̸=i

E
a
(t)
i ∼RM

(t)
i (β)

[
max
e∈Ai

T∑
t=1

Ri(e, b
(t)
−i)−

T∑
t=1

Ri(a
(t)
i , b

(t)
−i)

]
≤ Lmax

√
T logN.

In reality, since we are performing κ-approximate sampling, we have

TV
(
RM

(t)
i (β) , s

(t)
i

)
≤ κ.

Since the reward of the game is bounded by Lmax, we have

sup
b
(t)
j ∈Aj for t∈[T ],j ̸=i

E
a
(t)
i ∼s

(t)
i

[
max
e∈Ai

T∑
t=1

Ri(e, b
(t)
−i)−

T∑
t=1

Ri(a
(t)
i , b

(t)
−i)

]

≤Lmax

√
T logN + κ · Lmax · T.

Then, by Lemma 8.5.1, it then holds

1

T
max
e∈Ai

T∑
t=1

Ri(e, a
(t)
−i)−

1

T

T∑
t=1

Ri(a
(t)
i , a

(t)
−i)

≤Lmax

√
logN/T + κ · Lmax + Lmax

√
log(1/δ)/(2T ).

with probability at least 1 − δ. Setting T = L2
maxϵ

−2 log(N/δ) and κ = min(1/2, ) then

gives the average regret is bounded by O(ϵ).

Proof of Corollary 8.2.11. By Lemma 8.2.10, if we set T = C · (L2
maxϵ

−2 log(Nm/η)),

δ = ϵ/(CLmax) for a sufficient large constant and simulate the repeated game playing for

T rounds where each player makes her decision based on δ-RWM, the regret of the i-th

player is bounded by ϵ with probability at least 1− δ/m. By union bound, this holds for

all players simultaneously. Ths results then follows from Theorem 8.2.8.
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8.6 Bit-complexity and Stability of Numeric Opera-
tions

To avoid un-necessary technical details of the bit-complexities of numbers and

time complexities of algebraic operations, the algorithmic results in the main body of this

work are stated in the Algebraic Computation Model. In particular, we assume additions,

subtractions, multiplications, divisions, exponentiation and comparisons can be carried

between real numbers in constant time, and that the computing device has query access

to the digits of the real numbers. We remark that, for all the games we study, if the

rewards are rational numbers with bounded bit complexities, our algorithms can all be

implemented exactly in the RAM computation model with their runtime increased by at

most polynomial factors. Unsurprisingly, if one is more careful with the numeric precision

needed and maintains only multiplicative approximations of each algebraic operations, our

algorithms can be implemented in the RAM model losing only poly-logarithmic factors.

In this section, we discuss some standard techniques to this end for the reader interested

in any implementation of our algorithms.

We first discuss how we represent and perform algebraic operations on numbers

whose absolute values are exponentially large or small. While writing these numbers down

exactly is costly, for the purpose of δ-approximate sampling, it is actually sufficient t keep

poly(δ) multiplicative approximations of these numbers. Fortunately, these approximations

can indeed be represented much more succinctly using the scientific notations. For

convenience, for a number a ∈ R+, we will call ã a δ-approximation of a if we have

(1− δ)a ≤ ã ≤ (1 + δ)a and a one-sided δ-approximation if we have (1− δ)a ≤ ã ≤ a.

Fact 8.6.1. Given a ∈ R+ satisfying exp(−q) ≤ a ≤ exp(q) for q ∈ Z+, let ã be a written

in scientific form keeping Θ(log(1/δ)) many significant figures. Then, ã is a one-sided

δ-approximation of a and can be represented using Θ(log(δ−1) + log q) many bits.

Instead of performing exact arithmetic computations, we can perform ‘approximate’
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arithmetic operations on real numbers in all our algorithms.

Claim 8.6.2. Let a, b ∈ R+ be two numbers in scientific notations with s significant figures.

– one-sided δ-approximation of additions and multiplications can be performed in time

O(s) and O(s log s) respectively.

– δ-approximation of division can be performed in time O(s+ log(1/δ)).

– Given 1 ≤ α ≤ 2 that has s significant figures and i ∈ Z+ ∪ {0}, a one-side

δ-approximation of αi can be computed in time O(s · log2 i · log(δ−1)).

Proof. The first two claims follow from the definition of (one-sided) δ-approximation. We

proceed to show that one can perform approximate exponentiation efficiently. In particular,

we argue that αi can be computed fairly accurately via fast exponentiation while keeping

C · log(i/δ) significant figures throughout the computation for some large enough constant

C. By doing so, we can make sure the approximation to α is a one-sided ξ-approximation

where ξ = δ/ic for some large enough constant c. Consequently, the approximation of βj

for any j ∈ [i] that is a power of 2 is within (1 ± 4log2(i) · ξ). It then follows αi can be

approximated within (1± ξ ·O(log i) · 4log2(i)) = (1± δ) when c is sufficiently large.

Unsurprisingly, the output of applying a series of arithmetic operations will be

within multiplicative factors of the result obtained by replacing each operation with its

approximate counterpart.

Fact 8.6.3. Given a variable y that is the result of V arithmetic operations including

Addition, Multiplication and Division on the inputs x1, · · · , xn ∈ R+ in scientific notations

with s significant figures, let ŷ be the variable obtained by replacing all the arithmetic

operations with their δ/(10V )-approximate counterparts for small enough δ. Then, ŷ will

be a δ-approximation of y. Moreover, if only additions and multiplications are used, the

approximation is one-sided i.e. ŷ ≤ y.
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Careful readers may find that subtraction is excluded when we discuss approximate

algebraic operations in Claim 8.6.2. For two numbers a, b ∈ R+ and â, b̂ be their δ

approximations counterparts, â−b̂ may be wildly different from a−b when a is substantially

larger than b. Yet, subtraction between real numbers is indeed used in two different places.

Firstly, subtractions occur in Discrete Fourier Transform, which is used in Proposition 8.4.5

to compute the convolution between functions. The numeric stability of DFT varies among

different implementations and depends on a number of subtle factors (See [336]). If

numeric stability indeed becomes an issue in the actual implementation, one can fallback

to evaluate the convolution in the brute-force manner, which increases the complexity

from O(nk log n) to O(n2k).

Another place where subtractions are used is in Algorithm 4 to compute range sum

of piece-wise function efficiently. As such, we need a numerically more stable technique for

performing range sum query in place of the prefix sum technique. In particular, given the

succinct description of a q-piecewise constant function f : {0} ∪ [n] 7→ R+ and δ ∈ (0, 1)

beforehand, we want to perform some preprocessing in time q · polylog(n, q, δ−1) and then

answer a series of queries of the form
∑b

i=a f(i) within (1 ± δ) multiplicative factors in

time polylog(n, q, δ−1).

Claim 8.6.4. Given the succinct description Df of a q-piecewise constant function f :

{0} ∪ [n] 7→ R where the function values contain at most s significant figures, there

exists an algorithm Range-Sum-Query which performs some preprocess in time O(qs) +

polylog(q, δ−1, n), and can compute one-sided δ-approximation to query of the form∑b
i=a f(i) in time polylog(n, q, δ−1).

Proof. Let Df = {(a1, b1, y1), · · · (aq, bq, yq)}. In the preprocessing step, we first compute

the range sum of all intervals [ai, bi] (approximately). Denote the results as an array

[s1, · · · , sq]. Then, we build a segment tree with the array, where nodes store the ap-

proximate range sum of intervals of lengths that are powers of 2. This takes O(q log(q))
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arithmetic operations. The data structure then allows us to answer
∑b

i=a si with O(log(q))

arithmetic operations with enough accuracy. Then, when we receives a query
∑b

i=a f(i).

We first binary search for the intervals of f that a, b fall into respectively. Next, one

uses the pre-built segment tree to answer the range sum of any intervals that are strictly

contained in [a, b] and then adds the sum of remaining elements. It is then not hard to see

that the pre-processing step takes time at most O(qs) + polylog(q, δ−1, n), and answering

each query takes time polylog(q, δ−1, n).

Lastly, we discuss the building block of sampling: sampling from multinomial

distributions. Typically, our algorithm computes a vector w1, · · · , wn and then samples

from the multinomial distribution X where P[X = i] ∝ wi. This is simple in the Algebraic

computation model as one can easily reduce this to sampling from uniform distributions

over real intervals (which can be done at assumed unit cost). In particular, one first

computes the prefix sum W1, · · ·Wn. Then, one samples z from the uniform distribution

over the interval [0,Wn] and returns j for Wj−1 < z < Wj. This clearly takes at most

time O(n). In the bit-complexity model, we can nonetheless achieve approximate sampling

from arbitrary multinomial distributions with similar runtime.

Claim 8.6.5. Given a weight vector (w1, · · · , wn) in scientific notations with s significant

figures, δ-approximate sampling from the multinomial distribution X such that P[X =

i] ∝ wi can be done in time Õ(n · (log(δ−1) + s)).

Proof. After reading the input, one first truncates to make sure each wi has at most

O(log(n/δ)) many significant figures as that is already enough for the specified ‘sampling

accuracy’. After that, all arithmetic operations will be carried out with their c · δ/n

approximations for some sufficiently small constant c. In the next step, one normalizes the

weight vector and rounds each wi to their nearest multiple of c · δ/n. Doing so changes

the distribution by at most c · δ in total variation distance. One can then multiply all

wi by a factor of n/(c · δ) to make everything an integer. Finally, one can do the same
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thing as sampling in the Algebraic computation model: computing the prefix sums and

reducing the problem to sampling from uniform distributions, now over integer intervals.

The integers in the interval can be at most n2/(c · δ) so the runtime is dominated by the

preliminary computations performed.

We note that in many cases we actually require a slightly more complicated sampling

procedure where we wish to sample from a q-piecewise support-n multinomial with q ≪ n.

This can be done similarly in time Õ((q + log(n))(log(δ−1) + s)) by first sampling one

of the q piecewise intervals by the above technique, then sampling uniformly within the

interval.

8.7 Implementing Glauber Dynamics

This section is devoted to proving Theorem 8.3.8, which we repeat here for conve-

nience.

Theorem 8.7.1 (RWM on Matroids). Let I = {(Ai, Ri)
m
i=1} be an m-player game on

a size-n ground set Ω. If Ai consists of the bases of a rank-k matroid, is linear, and is

collision-sensitive with support q, then it is possible to implement δ-RWMT
β in time

O

(
kiT (CO + q log(n) +mk−iT log(n)) log

(
ki log(n) + LmaxT log(β−1)

δ

))
,

assuming access to a q-piecewise succinct description of NCi encoded under an ordering of

Ω and a contraction oracle matching the same ordering.

Proof. Since Ai is given by the bases of a rank-k matroid, the single-step Glauber Dynamics

on Ωw mix in time

T (GD(Ωw), δ) ≤ O

(
k log

(
log(|Ai|/w∗)

δ

))
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for any external field w ∈ RΩ
+. In our setting, we have that |Ai| ≤ nk, and w∗ ≥ βLmaxT ,

and the process needs to be repeated once per round bringing the complexity to:

O

(
kT log

(
k log(n) + LmaxT log(β−1)

δ

))

times the implementation time of a single step of Glauber dynamics.

It is left to bound this cost. To implement a step of GD in the t-th round of

optimistic hedge, we first remove a uniformly random element from our current basis, then

re-sample from the conditional distribution. The first step can easily be implemented

in O(log(k)) time. The latter step requires more care. Let ê denote the (k − 1)-size set

resulting from the down-step of the walk. Query the contraction oracle on ê and call the

resulting set Se ⊂ E. Notice that by definition, the conditional measure of any x ∈ Se is

proportional to β−rt(x) where

rt(x) =
t∑

j=1

RΩ
i (x, s

(j)).

Thus to perform the conditional sampling efficiently, it is sufficient to compute the external

field for each element in Se and sample from the corresponding multinomial distribution.

While implementing this naively would require time at least |Se| to check the weight

of each element in the conditional distribution, this can be circumvented via our assumption

that our game is collision-sensitive with bounded support. In particular, assume for the

moment we have access to a succinct description for the vertex-wise total rewards rt(v)

that is (q + tmk−i)-piecewise, and that the output of the contraction oracle respects the

order of the description (we will argue this can be constructed efficiently shortly). As a

result, the total rewards in Se are (q + tmk−i)-piecewise as well. This means that using

query access to CO,12 we can build a succinct description for total rewards on the elements
12Formally we are also assuming here one has query access to the size of the output of the contraction

oracle. Note this can be easily implemented in polylog(n) time even if one does not assume such access.
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in |Se| (labeled by their index in CO). Sampling from the corresponding multinomial

distribution in the algebraic computation model then takes O((q + tmk−i)) time, and one

can then feed the sampled index into CO to receive the correct vertex. Altogether, a single

step of GD can therefore be implemented in O(CO + (q + tmk−i) log(n)) time assuming

access to the appropriate description of total rewards.

Finally, we argue we can construct and maintain the succinct descriptions of the

vertex-wise reward functions over T rounds efficiently. Recall we start with an q-piecewise

succinct description for the no-collision vertex-wise reward values. In each round, at most

mk−i new elements of Ω are introduced into the history, and since the game is collision-

sensitive the resulting succinct description of rewards is at most (q + tmk−i)-piecewise in

the t-th round as desired. The computational cost stems from noting that it is actually

sufficient just to update the rewards for vertices which have appeared in the opponent

history (and the number of rounds in which it has appeared). During look-up, computing

the total reward for any vertex v that has appeared t times can be computed in O(1) time

by simply adding the stored value (T − t)Ri(v, s) for any s ̸∈ v. The cost of building

the succinct description is therefore asymptotically dominated by the sampling procedure

above, which gives the final complexity.

This chapter, in full, is based on the material as it appears in the Symposium on

Discrete Algorithms 2023. Beaglehole, Daniel; Hopkins, Max; Kane, Daniel; Liu, Sihan;

Lovett, Shachar. “Sampling Equilibria: Fast No-Regret Learning in Structured Games”.

The dissertation author was a primary investigator and author of this material.
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