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Abstract

One major drawback of model based development is
that support by software analysis tools is usually not
available. This is because each modeling language
would require specially crafted tools. We present a
framework that circumvents this problem by allowing
integrated analysis of different models from the auto-
motive domain. It also exploits certain specialities of
the domain to realize analyses that would otherwise
not have been possible.

1 Introduction

The trend towards model-based software development
is quite intense in the automotive domain. This
paradigm shift has a lot of advantages. For exam-
ple, domain specific languages allow engineers to ex-
press specifications in a language that is closer to their
domain. However, it also brings a number of disad-
vantages with it. In particular, the models are often
proprietary, and there is only limited tool support to
deal with them. There are hardly any tools for anal-
ysis of such models. However, since these models are
also software and underly the same effects as tradi-
tional software artifacts, they become large and com-
plex as more and more changes and extensions are per-
formed [6]. Maintenance and understanding of these
models becomes more and more expensive and error-
prone. Tools that support these tasks are needed - but
it is uneconomic to come up with a new tool for every
new modeling language. In the following, we present a
framework that is capable of analyzing different kinds
of models from the automotive domain.

2 Automotive Models

The modeling language ASCET! is designed for de-
veloping embedded automotive software. It supports
block diagrams, state charts, ESDL code, and C code.
Block diagrams support a data flow oriented view on
the software and are quite close to what electrical en-
gineers are used to work with. State charts can be
used to specify program logics. ESDL is a language
that is similar to Java and allows textual specification

Thttp://www.etas.com/en/products/ascet_software_
products.php

of rather control flow centric functions. C code can
also be embedded. All these artifacts are translated
to C code and integrated on the C code level. How-
ever, for analyses, it is desirable to do that on the
model level, because this is the level that the devel-
oper works with.

3 Architecture

The basic idea is to have an intermediate representa-
tion that is capable of expressing certain aspects of
the different input models in a uniform way — sim-
ilar to what has already been done for integrating
different textual languages [5]. Since all these lan-
guages end up in C code, an intermediate representa-
tion on the basis of C code constructs can be used for
procedural aspects and interfaces. Additionally, one
must then ensure traceability — i.e., support naviga-
tion from the intermediate representation back to the
original model. This representation is then adequate
for performing uniform analyses on all the different
input models — and also when they cross modeling
language borders. Additional languages can then be
easily added by implementing another frontend that
transforms the input model to the uniform intermedi-
ate representation.
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Figure 1: Framework architecture.

The central layers of the architecture as shown in
Figure 1 build on the common intermediate represen-



tation and provide advanced analyses. The advantage
here is that all the analyses are readily available for
every modeling language that will be added in the
future. On top of all that, there are visualizations.
Those are partly input model specific, like results that
are shown as an overlay in a block diagram, while oth-
ers are independent visualizations of analysis results.

4 Basic Analyses and Interpreter

On this common basis, we perform a number of stan-
dard analyses, like control and data flow analysis
and alias analysis. The result is a structure that is
similar to the well-known program dependence graph
(PDG) [2]. The PDG can directly be used for slicing.
Several PDGs that also may originate from different
models can be linked together (using inlining) to form
a single large PDG that can then be used for further
analyses. Inlining is possible here since recursion is
not allowed in our software.

Our framework implements a relaxed version of ab-
stract interpretation, compared to Cousot’s orig-
inal idea [1]. For us, it is basically the interpreta-
tion of a computer program using some abstraction
for values and calculations. It need not necessarily
be monotonic functions over ordered sets. Of course,
this implies some differences. For example, loop han-
dling is different (there is not necessarily a fix point).
Since we are mostly concerned with analyzing soft-
ware that contains very few and limited loops [7], this
seems to be okay. On the other hand, we gain much
more freedom and flexibility in the choice of the ab-
straction, and we will see the benefit of that in the
use cases. The abstract interpreter performs abstract
operations on abstract values and uses an abstract
storage model. The freedom of choice of the abstrac-
tion makes it very flexible. For example, the same
interpreter is used for data flow analysis, partial eval-
uation, interval arithmetics, and concolic testing [3] —
by just using different abstractions.

5 Use Cases

The analysis framework is meanwhile used for a num-
ber of standard use cases as well as for individual
(scripted) analyses. The very first and obvious use
case is signal flow analysis, which corresponds to
slicing of models. Slicing simply means to calculate
all reachable nodes in the PDG from a given point.
Given a starting point, e. g., in an ASCET block dia-
gram, we just need to identify the corresponding node
in the PDG, calculate all reachable PDG nodes, and
map the result back to the original model. This high-
lighting of signal flows turned out to be very helpful
especially for calibration engineers, who have to find
out which parameters (that they have to adjust) in-
fluence which output values.

Another use case of the PDG is C code visu-
alization, which means transforming the code to a
block diagram representation. Since block diagrams

emphasize data flows, and data flows are explicitly
represented in the PDG, the transformation is largely
straight-forward. These two use cases are meanwhile
available as a feature of ETAS’ eHandbook?.

A third use case is partial evaluation. Partial
evaluation is the execution of program code with par-
tially existing but incomplete assignments of variables
occurring in a program with concrete values [4]. By
assigning values to only few of the variables, it is of-
ten possible to largely reduce the model. This is done
by graying out parts of the model that are not exe-
cuted in the given setting. This enables developers
to understand a model much more quickly since they
can concentrate on certain scenarios without having
to manually interpret the program. It is also helpful
to be able to assign values to some variables and see
the effect on a local result without having to define the
entire environment. The latter is often quite complex
and tedious in automotive software.

6 Conclusion

We have presented the basic ideas of our software
analysis framework. The main advantage of having
a specialized framework within Bosch are that it can
exploit the specialities of automotive software, and
that it can deal with upcoming models. Meanwhile,
it is available for everyone within Bosch (“Bosch inter-
nal open source”). It is now used for many different
purposes like test case generation, multicore analyses,
security analyses, and others.
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