Analyzing Malware Putty using Function
Alignment in the Binary

Arne Wichmann, Sandro Schulze, Sibylle Schupp
Technische Universitdt Hamburg-Harburg, Hamburg, Germany
{arne.wichmann, sandro.schulze, schupp}@tuhh.de

This paper shows a representation of executables
and an alignment of functions in an executable to
be used when reverse engineering embedded systems.
These techniques are not limited to this applica-
tion and can also be used when studying code vari-
ations, code clone-and-own scenarios, and when lo-
cating hotspots for software quality inspections.

1 Techniques

The proposed applications make use of one already
presented technique, namely a scalable representation
using scatter plots of the static control flow of ex-
ecutables [7] and an alignment technique based on
Hirschberg [4], which we have not presented so far.
This alignment technique produces an alignment of
two function sequences using a similarity measure on
the optionally normalized function lengths, which is
based on a previous work that employed more metrics
to produce the alignment [6].

The key assumption behind these techniques is that
the sequence of functions in an executable is mostly
stable and invariant against changes in compiler ver-
sion, optimisation level, source-code version, and the
selected feature set. For example, in a classical C ex-
ecutable the code from one source file is transformed
into an object file and several of these, together with
some libraries are linked into one executable, without
any further changes to their order.

Scalable Representation The scatter plot repre-
sentation [7] shows all static control flow references
of the executable. The raw data used for this are all
pairs of program counters and next possible program
counters. This covers the intraprocedural control flow,
as well as calls to other functions.

The presentation can use several different scales on
the axes which allow it to be invariant to different
kinds of distortions: It always plots pairs of source
and target addresses of a control reference. A raw
address representation hides the length of the func-
tions in the executable. These function lengths can
be seen as the local steepness of a diagonal when the
sources are grouped by function. Furthermore, the
source function can be mapped to their position in an
alignment. The target addresses are indexed to close
gaps in the address space, which may occur due to seg-
mentation. To make the targets comparable between
two executables, their indices are scaled and shifted.

Function Alignment The alignment technique
uses Hirschberg’s Algorithm to calculate an alignment
of two sequences of functions. The functions are repre-
sented either by their raw length or their scaled mean-
free length. Individual functions are compared using
1/ (14|l —lp]) as a similarity measure (1 for iden-
tical length, approaching 0 for a growing difference).
This allows the alignment calculation to be free of any
threshold to determine identity of two functions. In-
stead it maximizes the sum of similarities.

There are several other function comparison algo-
rithms available, most notable are BinDiff [2], which
compares the control-flow graphs of individual func-
tions and the works of Stojanovic [5] and Berta [1],
which calculate complex metrics on functions and
then use information retrieval techniques.

2 Applications

Our techniques allow for a fast visual overview of both
single executables and pairs of aligned executables.
The structures in the visual overview can be inter-
preted by a human inspector and help to identify mod-
ules and libraries (coupling in and between modules),
and highlight functions and modules with high fan-in
(vertical line) or fan-out (horizontal line).

Reverse Engineering Black-Box Embedded
Systems The techniques were originally developed
in a reverse engineering scenario, where one or more
executables from otherwise undocumented embedded
systems are analyzed, to answer high level questions
about the system. Such a question can for example
be: What happened in the system to trigger the fault-
condition 637 Often there is more than one executable
of the system available, because the software was sam-
pled from several systems with different versions.
The plot representation can be used for a first orien-
tation in the executable, to identify so-called hotspots,
such as printf, and, thus, make the disassembled code
much more readable. Additionally, some of the pro-
gram’s modularization can already be reconstructed
from the representation (see [7]). In the reverse-
engineering scenario, the alignment technique useful
when a second executable make the variability explicit
or the first has become obsolete and the effort of re-
verse engineering the first needs to be preserved.

Clone-and-Own Analysis for Binaries In a sce-
nario where code gets cloned and changed in a differ-

ent (potentially hidden) repository and just a binary
gets published, the techniques can be used to show
the changes made to the binary.

A manual inspection of the aligned representations
allows an identification of similar executables both for
license enforcement (e.g., GPL) and change inspection
(analysis of modifications).

Comparing Change Logs and Binaries In a
scenario where an outside contractor delivers closed
source binaries and provides information about the
changes made, the alignment techniques can be em-
ployed to quickly identify parts of the binary where
the changes were made.

For most updates, the build process and general
setup can be assumed as stable, which implies that the
two executables will be very similar and all changes
to the functions will be due to feature additions or
bugfixes. In the alignment the function sequence will
show insertions or deletions where features are added
or removed, and the similarities of aligned function
pairs will reflect the bugfixes.

Locating Software Quality Hotspots The last
scenario is the location of hotspots to be analyzed for
software quality inspection, based on the representa-
tion. It allows one to easily identify frequently used
functions and check their quality properties. Addi-
tionally it is possible to identify functions that dis-
tribute the control flow over large parts of the exe-
cutable. Of course, one still has to check manually
whether such a distribution is actually legitimate (de-
bug or shell interfaces) or represents a poor design.

3 Example: Malware Putty

In 2015 a malicious clone of the popular ssh client
Putty was discovered [3]. The inspections showed that
the main modification was the addition of a function
that is called during the authentication and leaks the
credentials used. The malicious executable was com-
piled using a newer version of Visual C++.

Figure 1 shows the application of the alignment
and representation of the malicious version (left) and
version 0.63 (right) of Putty. The alignment was cal-
culated on the scaled function lengths. This allows
the alignment to be invariant to the changes in the
toolchain. The color of the plot points signifies the
similarity of function pairs (black is 0, lightblue is 1).
The changeset is shown using blue marker lines that
mark functions not present in the opposite executable.

The alignment shows a visually very similar se-
quence of functions (diagonals), with high similarities
between the functions. There are several insertions
and deletions marked in the alignment, which suggests
that the clone is not based on version 0.63 directly.
The last part of the diagonal represents the C library,
which shows huge differences due to the changed com-
piler versions. The malicious function is one of the
functions added in the MalPutty executable.

MalPutty.exe putty063.exe
=
% = hk :
S = E é_@%ﬁ ;J;.‘ 1
= = L :.]
c — i 3 [&
i) = Hj g
3] = . H
= = ml A
L 1000 g il \ ; %
° -y .a bhe ‘- d ..:. ¥
2 = =i Y I
2 L= b . - RN
= = & T
< : N
1500 = 33%
#lp &
1 1 1 1 1 1
-1 0 1 -1 0 1

Scaled Target Address Index

Figure 1: Alignment of a Malicious Version of Putty
(left) with Putty Version 0.63 (right)

By this example, we can demonstrate the afore-
mentioned application scenarios. First, the malicious
Putty is a direct example of the clone-and-own sce-
nario. Second, the Putty executable is relatively stan-
dalone, not depending on a lot of external libraries,
and therefore represents the closedness of executables
of embedded systems. Third, since it is unclear on
which commit exactly the clone was forked, it can
possibly also be closer to Putty 0.64. Selecting such a
base executable resembles the analysis of change logs
(not shown here). Lastly, the set of changed and in-
serted functions can be used to identify the possible
set of malicious functions.

References

[1] K. Berta et al. “Estimation of similarity between
functions extracted from x86 executable files”. In:
SJEE (2015).

[2] T. Dullien et al. “Graph-based comparison of ex-
ecutable objects”. In: SSTIC (2005).

[3] C. Fry. “Trojanized PuTTY Software”. In: Cisco
Security Blog (2015). URL: http : / / blogs .
cisco . com/ security / trojanized - putty -
software.

[4] D.S. Hirschberg. “A Linear Space Algorithm for
Computing Maximal Common Subsequences”.
In: Com. ACM (1975).

[5] S.Stojanovié et al. “Approach for estimating sim-
ilarity between procedures in differently compiled
binaries”. In: IST (2015).

[6] A. Wichmann et al. “Matching Machine-Code
Functions in Executables within one Product

Line via Bioinformatic Sequence Alignment”. In:
MUD (2015).

[7] A. Wichmann et al. “Visual Analysis of Control
Coupling for Executables”. In: WSRE (2015).

