Developer Experience with the Django Web Framework
(Extended Abstract)

Frederik Riither

Hakan Aksu Ralf Lammel

Software Languages Team, University of Koblenz-Landau

Abstract

Web frameworks involve many aspects, e.g., forms,
model, testing, and migration. Developers differ in
terms of their per-aspect experience. We describe a
methodology for the identification of relevant aspects
of a web app framework, measurement of experience
atoms per developer and per aspect based on the com-
mit history of actual projects, and the compilation
of developer profiles for summarizing the relevance of
different aspects and the developers’ contribution to
the project. Measurement relies on a rule-based lan-
guage. Our case study is concerned with the Python-
based Django web app framework and the open source
Django-Oscar project from which experience atoms
were extracted.

1 Motivation

A typical scrum team consists of developers, a scrum
master, a product owner, and yet others. One of the
typical tasks of a product owner is to organize the
product backlog which may also include bugs. A task
of the product owner is to assign bugs to persons.
Finding suitable persons may be challenging for large
teams with significant fluctuation. Our approach may
recommend a developer for the assignment based on
the analyzed experience. We assume that necessary
experience can also be extracted from bug reports and
associated files by essentially the same method. We
apply our approach in a case study to the Django app
framework and to the Django-Oscar project on Github
from which experience atoms are extracted.

2 Experience atoms

The key idea is to rank developers in terms of aspects
based on their past commit activities. Experience is
measured in experience atoms per aspect. We rely on
the following definition [2]: “Experience atoms are el-
ementary units of experience. Experience, we assume,
is the direct result of a persons activity with respect
to a work product, enhancing it or fixing a problem.
The smallest meaningful unit of such changes is an
experience atom.”

The process of finding aspects is based on two steps.
First, a suitable documentation such as a tutorial

\
\

KnowledgeManagement /
BuildManagement |~

\
[
/
/
Deployment _

J

Figure 1: Classification of aspects of experience in
Django projects

(e.g., the Django tutorial® in the case study) is used
as input; a list of mentioned classes, directories, and
files is aggregated, subject to a threshold for inclu-
sion. Second, all the imports from the project under
investigation are collected. The list of imports is used
to identify widely used aspects that are not part of
the documentation from the first step. Both lists are
combined and names are assigned to the items; see
Fig. 1 for the result.

3 Rule-based detection

The analysis of a project is based on rules. A rule

can be described as a function that maps source code

changes along commits to identified experience atoms.

Such functions are composed from filters operating at

different source-code levels and operations that com-

bine Boolean values and numbers of experience atoms.
There exist four main filters:

FilenameFilter a condition on the filename of
changed file.

DirectoryFilter a condition on the directory of a
changed file.

Thttps://docs.djangoproject.com/en/1.9/intro/tutorial01/



TextFilter a condition on the text-level content of a
changed file.

TreeFilter a condition on the parse tree-level con-
tent of a changed file. For instance, one may
search for specific methods or classes for the sake
of detecting experience atoms for aspects.

Those filters can be combined with the help of op-
erations ‘and’, ‘or’, and ‘implies’. Here is an example
for a rule that uses two filters:

Other /KnowledgeManagement:
DirectoryFilter("docs") or
FilenameFilter("ReadMe.md")

This rule identifies the aspects KnowledgeManage-
ment if a commit took place in the docs folder or a
changed file has the name ReadMe.md. The filters are
combined with an or operation since both operations
indicate that the person has performed a task related
to knowledge management. The number of changed
lines are to be counted as experience atoms.

A recurring detection scenario is that an aspect is
associated with inheritance from a certain framework
class. To this end, we leverage a SuperClassFilter
which is derived from the basic filter TreeFilter and
checks for a specific superclass. For instance:

Model/Data:
TextFilter("import django.db.Model") implies
SuperClassFilter("Model")
In this rule, we also check that a specific namespace
was imported to avoid confusion of the Model class
with one from another library.

Aspect Category Count Unit %
VCS Administration 134 file 88
HTML Forms 1205 class 55
Validation Other 10 function | 11
Model Forms 1827 class 54
BuildM. Administration 300 file 66
DjangoConfig. Other 3005 file 88
Fixture Database 4923 file 92
Templates Other 27140 count 42
Django Test 12703 class 72
AdminInterface Model 770 class 82
Migration Database 58 class 14
Generell Test 16091 file 67
Data Model 20683 class 61
KnowledgeM. Other 4962 file 57
Figure 2: Experience of David Winterbottom in the

Django-Oscar project. The last column shows the percent-
age of the experience for an aspect in the project. The
units ‘file’, ‘class’, and ‘function’ refer to the number of
changed lines in the corresponding scope; the unit ‘count’
refers to the number of matches in the changed lines.

4 Developer profile

Fig. 2 shows the experience of the developer with the
most commits in the Django project of our case study.
While he collected usually the most experience atoms,
there are three aspects where he does not own over
50 %, namely Templates, Migration, and Validation.

This observation gives insight into the collaboration
and the division of responsibilities in the project.

5 Related work

Our work on rule-based detection of experience as-
pects (‘skills’) is inspired, for example, by previous
work of Teyton et al. [4]. In this work, skills related
to Java development, e.g., development of JUnit tests,
are analyzed also with the help of a rule-based lan-
guage and also based on analyzing the commit history.
No general classification of experience aspects is de-
veloped though; this work was targeted at industrial
case studies that were using the Java platform.

Matter et al. [1] assign bugs to developers by the
similarity of the vocabulary in their produced source
code and the bug description. Nguyen et al. [3] track
bug reports through their lifecycle. Based on such
historical data, a recommendation of a developer for
a future assignment is provided. Our approach intro-
duces explicitly a high level of abstraction in terms
of an up-front classification of experience, subject to
rule-based detection.

6 Conclusion

Let us return to the motivating scenario on bug as-
signment. Given relatively dominant developers such
as David Winterbottom in our case study, it may be
an obvious choice to assign ‘all’ bugs to these domina-
tors. Obviously, such a naive approach does not scale.
In the interest of a division of work, the developer
profiles are to be used to find the ‘next best’ assign-
ment, i.e., someone who is sufficiently experienced and
available overall. Further, the developer profiles also
reveal aspects (for dominant developers or otherwise)
for which other developers would be more ‘qualified’
(more experienced) anyhow.

In future work, we plan to validate our approach
in terms of the feasibility and accuracy of assigning
developers to bugs. For instance, we would like to
compare suggestions based on our approach with some
available ground truth based on project history.

References

[1] Dominique Matter, Adrian Kuhn, and Oscar Nier-
strasz. Assigning Bug Reports Using a Vocabulary-
based Expertise Model of Developers. In Proc. MSR
2009. IEEE Computer Society, 2009.

[2] Audris Mockus and James D. Herbsleb. Expertise
browser: a quantitative approach to identifying exper-
tise. In Proc. ICSE 2002, pages 503-512. ACM, 2002.

[3] Tung Thanh Nguyen, Tien N. Nguyen, Evelyn
Duesterwald, Tim Klinger, and Peter Santhanam. In-

ferring developer expertise through defect analysis. In
Proc. ICSE 2012, pages 1297-1300. IEEE, 2012.

[4] Cédric Teyton, Marc Palyart, Jean-Rémy Falleri,
Floréal Morandat, and Xavier Blanc. Automatic ex-
traction of developer expertise. In Proc. EASE 201/,
pages 8:1-8:10. ACM, 2014.



