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Abstract: This paper suggests a PDG-based code 

clone detection algorithm that handles procedure 

calls with summary information about the called 

procedures in order to improve the precision of the 

detection results. 

1 Introduction 

One possible approach for code clone detection is 

using PDGs (Program Dependency Graphs) as 

intermediate representation [1]. In contrast to other 

program representations like token streams or 

abstract syntax trees, PDGs provide a clone 

detection that is more closely related to the 

semantics of the analyzed program and provides 

more precise results. For each clone pair candidate, 

our  approach compares two graph backward slices 

in the PDGs to decide about the clone property. 

This reduces clone detection to a graph reachability 

problem with additional equivalence constraints. 

Our goal is to detect any PDG subgraph matches 

even if a subgraph is in the middle of a procedure’s 

PDG. 

Because of the runtime complexibility of PDG-

based clone detection that is generally cubic in the 

total number of nodes in all PDGs, in the worst 

case, one has to handle performance aspects 

carefully. Especially interprocedurality might 

threaten an acceptable performance. When the slice 

matching process reaches procedure call nodes and 

the called procedure is the same for both slices, the 

procedure call nodes are obviously equivalent. The 

case when different procedures are called is more 

complicated. Conservatively, a procedure call 

matches any other call, producing many false 

positives. The opposite rejects any calls of different 

procedures, resulting in false negatives. 

A more precise implementation could dive into the 

details of the called procedures and try to match 

their bodies for each call. As a procedure is usually 

called from multiple call sites it would be analyzed 

repetitively. In the worst case, exponentially many 

repetitions would be necessary. To avoid this 

complexity, we calculate summaries instead, 

following the idea introduced by Reps, Horwitz, 

and Binkley [2] for interprocedural slicing. They 

suggest to calculate summary edges that indicate 

the set of procedure input parameters a procedure 

output value is possibly dependent on. Our first 

approach was to implement exactly this in our clone 

detector. It models reads and writes on global 

variables and reference parameters as well as return 

values as artificial parameters in the intermediate 

representation. For matching two procedure call 

nodes that reference different procedures, it looks 

up the summary edges of these procedures and tries 

to match the resulting sets of dependencies.  

The problem with this approach is that it does not 

provide any information how to map dependencies 

in the first set to dependencies in the second set. 

But this information is crucial to continue the 

matching process behind the procedure call nodes. 

As an approximation, the matching might assume 

that the formal parameters are declared in the same 

order for both procedures and sacrifice the 

detectability of parameter reordering. But for reads 

or global variables, this assumption is unrealistic. 

Our solution is to calculate clones in two passes. 

Pass 1 is coarse-grained and finds clones that span 

procedures from their output to their input. Pass 2 is 

fine-grained and detects any PDG subgraph 

matches. Summaries of the procedure clones found 

in pass 1 are used to facilitate finding further 

procedure clones in pass 1 as well as fine-grained 

clones in pass 2. 

2 Procedure Clone Summaries 

More exactly, our procedure clones do not 

necessarily cover whole procedures. For each 

discriminable component of all output values of a 

procedure, a separate backward slice is calculated. 

We call these slices features. In general, a 

procedure implements multiple features. I.e., an 

output value of a record type provides separate 

features for all record components. The elements of 

an array are viewed as one component with just one 

slice. A feature is uniquely characterized by the 

output value component that spans it. The backward 

slice of a feature is limited by references to input 

value components of the procedure that contains the 

feature. The component granularity of input values 

is the same as described above for output values. 

Pass 1 of our clone detection compares each feature 

with the features of all other procedures. We 

heuristically assume that a feature is not a clone of 



another feature of the same procedure. If the slices 

of two features completely match, a feature clone 

pair is recognized. During the matching process, 

irrelevant nodes are skipped wherever possible. The 

clone detector stores a summary of each detected 

feature clone pair. Such a summary encompasses 

references to the output value components that 

characterize the features and a description of the 

mapping between corresponding input value 

components. 

In comparison to procedure clones that have to 

cover whole procedures, the feature clones 

approach is more flexible and provides a higher 

probability to find clones at that coarse granularity 

level. Nevertheless, for many software systems, we 

expect only a small number of feature clones. But 

for the subsequent fine-grained clone detection in 

pass 2 not only the recognized feature clones are 

relevant. The negative information that two features 

are not in a clone relationship is also useful. It can 

be used to eliminate clone candidates that call these 

features. 

3 Unification of Clone Parameters 

A full structural congruence of the slices that 

represent code fragments is not sufficient to decide 

about the clone property. Additionally, it has to be 

checked if corresponding input values are 

consistently referenced. E.g., x + x * y is congruent 

with a + b * b but not semantically equivalent. This 

is exactly the difference between type 2 clones and 

parameterized clones, as defined by Baker [3]. We 

have integrated a parameter unification in pass 1 

that enforces a bijective mapping between the input 

value components of the matched code fragments. 

A weaker but still sufficient check allows us to map 

an input value component of one fragment to a 

literal value in the other fragment. E.g., x + 3 * y 

matches a + b * c, although these fragments are not 

semantically equivalent. The second fragment is 

more general than the first.  

A similar situation is a mapping of some input 

value components of one fragment with multiple 

input value components of the other one. E.g., x + y 

* z matches a + a * a. Here, the first fragment is 

more general than the second. This kind of clone is 

called surjective clone, because a surjective 

mapping between the input value components of 

both fragments exists. 

4 Evaluation 

As an example, we analyse the program 

gnuplot_x11 from the gnuplot open-source software 

package. It consists of 75 procedures. A 

procedure’s average number of features is 20.1, 

resulting in #feat = 1570 features overall. The 

number of feature clone pair candidates is #cand = 

1139859, #cand < #feat
2
 = 2464900. #cand is less 

than half of #feat
2
 because of our exclusion of 

feature clones within the same procedure. 

Only 42 feature clone pairs are found. This low 

number of feature clones confirms our expectation. 

Furthermore, all detected feature clones are rather 

small. Except of one clone of size 48, the clones do 

not  encompass more than 7 nodes. 

To evaluate pass 2 we have compared the clone 

sizes histograms for fine-grained clones without 

and with usage of feature clones summaries. The 

usage of summaries shifts the histogram to smaller 

clones because more matches of call nodes are 

excluded. This splits clones into smaller ones. 

5 Future Work 

It could be an appropriate heuristic to assume that 

features of a procedure p1 are usually not clones of 

features of a procedure p2 if p1 calls directly or 

indirectly p2. This constraint can be checked by 

traversing the call graph in topological order. We 

have to validate this assumption with further 

experiments. 

Our current approach supports the matching of code 

fragments in situations where procedure call nodes 

occur in both code fragments in corresponding 

positions. Another interprocedural situation is 

matching a procedure call with equivalent inlined 

program code. To support this kind of clone as 

well, a more comprehensive preparation phase is 

required. It is not sufficient to compare feature 

slices with other feature slices. They have to be 

compared with slices spanned at arbitrary positions 

inside of procedures. This can be calculated by 

another pass before pass 2. It has to be evaluated if 

it is worth to spent the additional effort in contrast 

to an implementation that dives into the details of 

the called procedure in such situations. 

 

References 
 
[1] Raghavan Komondoor and Susan Horwitz, “Using 

Slicing to Identify Duplication in Source Code,” in 

Proc. of the 8th International Symposium on Static 

Analysis (SAS ’01), London, UK, Springer-Verlag, 

2001. 

[2] Thomas Reps, Susan Horwitz, and David Binkley, 

“Interprocedural slicing of computer programs using 

dependence graphs,” in Proc. Of the ACM 

SIGPLAN 1988 conference on Programming 

language design and implementation (PLDI ’88), 

New York, NY, USA, ACM, 1988. 

[3] Brenda S. Baker, “On finding duplication and near-

duplication in large software systems,” in Proc. of 

the Second Working Conference on Reverse 

Engineering (WCRE '95),Washington, DC, USA, 

IEEE, 1995. 


