
Interprocedural PDG-based Code Clone Detection

Torsten Görg

University of Stuttgart

Universitätsstr. 38, 70569 Stuttgart, Germany
torsten.goerg@informatik.uni-stuttgart.de

Abstract: This paper suggests a PDG-based code

clone detection algorithm that handles procedure

calls with summary information about the called

procedures in order to improve the precision of the

detection results.

1 Introduction

One possible approach for code clone detection is

using PDGs (Program Dependency Graphs) as

intermediate representation [1]. In contrast to other

program representations like token streams or

abstract syntax trees, PDGs provide a clone

detection that is more closely related to the

semantics of the analyzed program and provides

more precise results. For each clone pair candidate,

our approach compares two graph backward slices

in the PDGs to decide about the clone property.

This reduces clone detection to a graph reachability

problem with additional equivalence constraints.

Our goal is to detect any PDG subgraph matches

even if a subgraph is in the middle of a procedure’s

PDG.

Because of the runtime complexibility of PDG-

based clone detection that is generally cubic in the

total number of nodes in all PDGs, in the worst

case, one has to handle performance aspects

carefully. Especially interprocedurality might

threaten an acceptable performance. When the slice

matching process reaches procedure call nodes and

the called procedure is the same for both slices, the

procedure call nodes are obviously equivalent. The

case when different procedures are called is more

complicated. Conservatively, a procedure call

matches any other call, producing many false

positives. The opposite rejects any calls of different

procedures, resulting in false negatives.

A more precise implementation could dive into the

details of the called procedures and try to match

their bodies for each call. As a procedure is usually

called from multiple call sites it would be analyzed

repetitively. In the worst case, exponentially many

repetitions would be necessary. To avoid this

complexity, we calculate summaries instead,

following the idea introduced by Reps, Horwitz,

and Binkley [2] for interprocedural slicing. They

suggest to calculate summary edges that indicate

the set of procedure input parameters a procedure

output value is possibly dependent on. Our first

approach was to implement exactly this in our clone

detector. It models reads and writes on global

variables and reference parameters as well as return

values as artificial parameters in the intermediate

representation. For matching two procedure call

nodes that reference different procedures, it looks

up the summary edges of these procedures and tries

to match the resulting sets of dependencies.

The problem with this approach is that it does not

provide any information how to map dependencies

in the first set to dependencies in the second set.

But this information is crucial to continue the

matching process behind the procedure call nodes.

As an approximation, the matching might assume

that the formal parameters are declared in the same

order for both procedures and sacrifice the

detectability of parameter reordering. But for reads

or global variables, this assumption is unrealistic.

Our solution is to calculate clones in two passes.

Pass 1 is coarse-grained and finds clones that span

procedures from their output to their input. Pass 2 is

fine-grained and detects any PDG subgraph

matches. Summaries of the procedure clones found

in pass 1 are used to facilitate finding further

procedure clones in pass 1 as well as fine-grained

clones in pass 2.

2 Procedure Clone Summaries

More exactly, our procedure clones do not

necessarily cover whole procedures. For each

discriminable component of all output values of a

procedure, a separate backward slice is calculated.

We call these slices features. In general, a

procedure implements multiple features. I.e., an

output value of a record type provides separate

features for all record components. The elements of

an array are viewed as one component with just one

slice. A feature is uniquely characterized by the

output value component that spans it. The backward

slice of a feature is limited by references to input

value components of the procedure that contains the

feature. The component granularity of input values

is the same as described above for output values.

Pass 1 of our clone detection compares each feature

with the features of all other procedures. We

heuristically assume that a feature is not a clone of

another feature of the same procedure. If the slices

of two features completely match, a feature clone

pair is recognized. During the matching process,

irrelevant nodes are skipped wherever possible. The

clone detector stores a summary of each detected

feature clone pair. Such a summary encompasses

references to the output value components that

characterize the features and a description of the

mapping between corresponding input value

components.

In comparison to procedure clones that have to

cover whole procedures, the feature clones

approach is more flexible and provides a higher

probability to find clones at that coarse granularity

level. Nevertheless, for many software systems, we

expect only a small number of feature clones. But

for the subsequent fine-grained clone detection in

pass 2 not only the recognized feature clones are

relevant. The negative information that two features

are not in a clone relationship is also useful. It can

be used to eliminate clone candidates that call these

features.

3 Unification of Clone Parameters

A full structural congruence of the slices that

represent code fragments is not sufficient to decide

about the clone property. Additionally, it has to be

checked if corresponding input values are

consistently referenced. E.g., x + x * y is congruent

with a + b * b but not semantically equivalent. This

is exactly the difference between type 2 clones and

parameterized clones, as defined by Baker [3]. We

have integrated a parameter unification in pass 1

that enforces a bijective mapping between the input

value components of the matched code fragments.

A weaker but still sufficient check allows us to map

an input value component of one fragment to a

literal value in the other fragment. E.g., x + 3 * y

matches a + b * c, although these fragments are not

semantically equivalent. The second fragment is

more general than the first.

A similar situation is a mapping of some input

value components of one fragment with multiple

input value components of the other one. E.g., x + y

* z matches a + a * a. Here, the first fragment is

more general than the second. This kind of clone is

called surjective clone, because a surjective

mapping between the input value components of

both fragments exists.

4 Evaluation

As an example, we analyse the program

gnuplot_x11 from the gnuplot open-source software

package. It consists of 75 procedures. A

procedure’s average number of features is 20.1,

resulting in #feat = 1570 features overall. The

number of feature clone pair candidates is #cand =

1139859, #cand < #feat
2
 = 2464900. #cand is less

than half of #feat
2
 because of our exclusion of

feature clones within the same procedure.

Only 42 feature clone pairs are found. This low

number of feature clones confirms our expectation.

Furthermore, all detected feature clones are rather

small. Except of one clone of size 48, the clones do

not encompass more than 7 nodes.

To evaluate pass 2 we have compared the clone

sizes histograms for fine-grained clones without

and with usage of feature clones summaries. The

usage of summaries shifts the histogram to smaller

clones because more matches of call nodes are

excluded. This splits clones into smaller ones.

5 Future Work

It could be an appropriate heuristic to assume that

features of a procedure p1 are usually not clones of

features of a procedure p2 if p1 calls directly or

indirectly p2. This constraint can be checked by

traversing the call graph in topological order. We

have to validate this assumption with further

experiments.

Our current approach supports the matching of code

fragments in situations where procedure call nodes

occur in both code fragments in corresponding

positions. Another interprocedural situation is

matching a procedure call with equivalent inlined

program code. To support this kind of clone as

well, a more comprehensive preparation phase is

required. It is not sufficient to compare feature

slices with other feature slices. They have to be

compared with slices spanned at arbitrary positions

inside of procedures. This can be calculated by

another pass before pass 2. It has to be evaluated if

it is worth to spent the additional effort in contrast

to an implementation that dives into the details of

the called procedure in such situations.

References

[1] Raghavan Komondoor and Susan Horwitz, “Using

Slicing to Identify Duplication in Source Code,” in

Proc. of the 8th International Symposium on Static

Analysis (SAS ’01), London, UK, Springer-Verlag,

2001.

[2] Thomas Reps, Susan Horwitz, and David Binkley,

“Interprocedural slicing of computer programs using

dependence graphs,” in Proc. Of the ACM

SIGPLAN 1988 conference on Programming

language design and implementation (PLDI ’88),

New York, NY, USA, ACM, 1988.

[3] Brenda S. Baker, “On finding duplication and near-

duplication in large software systems,” in Proc. of

the Second Working Conference on Reverse

Engineering (WCRE '95),Washington, DC, USA,

IEEE, 1995.

