
Influence of Identifier Length and Semantics on the
Comprehensibility of Source Code

Johannes Hofmeister
University of Heidelberg

Janet Siegmund
University of Passau

Daniel V. Holt
University of Heidelberg

Abstract: Identifiers are essential for the under-
standing of source code. Programmers can name them
arbitrarily, which is a major source for hard to un-
derstand code. We investigated how an identifier’s
length and semantics affect program comprehensibil-
ity. In a controlled experiment, we showed that iden-
tifier names using proper words lead to a faster de-
fect detection than identifier names using abbreviated
words or single letters.

1 Introduction
Software maintenance is one of the major cost fac-
tors in software development [5], and programmers
spend much of their time comprehending source code
[3]. Program comprehension is affected by identifier
names, as they can help developers choose an efficient
comprehension strategy [2].

Psychological research suggests that identifier
names can affect program comprehension, but it re-
mains unclear whether short or long identifier names
are beneficial. Some findings seem to favor short iden-
tifier names, for example lists of short items fit better
into memory than lists of long items [1], and short
words are more common in natural language than long
words [6].

Other findings support the opposite. Longer words
have richer semantics and that allow to regroup con-
cepts as chunks of information, thus relieving working-
memory resources [1]. Single letters are easier to spot
when embedded in real words [4]. Therefore, program
comprehension should benefit from real word identifer
names although they might be longer.

Thus, it is unclear whether short or long identifier
names are beneficial for program comprehension.

In this paper, we investigate the question how dif-
ferent identifier naming styles affect program compre-
hension. To research this matter, we evaluated how
fast participants detected semantic defects in source
code. While syntactic errors are usually caught during
compile time, semantic defects, such as faulty calcu-
lations or runtime-errors, are caused by syntactically
correct code, which does not perform its function ac-
cording to its specification.

Participants have to use mental execution to find
such defects, and if identifier style has an effect on
response time, participants should perform differently
with different identifier styles.

2 Method
To address our research question, we conducted a web-
based experimental study. Via online platforms, such
as Twitter and Xing.de, we recruited 72 professional
C# developers (Age: 35.3 ± 6.8 years, experience:
14.0 ± 5.8 years, C# experience: 7.8 ± 3.6 years); all
were native German speakers.

We designed six snippets of C# code. Each con-
sisted of a commented, self-contained, 15-line long
function, and was available in three versions, with
their identifier names altered to either whole words
(e.g., customer), abbreviations of three characters
(e.g., cus), or single letters (e.g., a). Every snip-
pet had a derivate version with a semantic defect, as
shown in Listing 1.

1: List<char> a(string b) {
2: List<char> c = new List<char> { ’{’, ’}’ };
3: List<char> d = new List<char>();
4: for (int e = 0; e < b.Length; e++) {
5: char f = b[e];
6: if (c.Contains(f)) {
7: c.Add(f);
8: }
9: }

10: return d;
11: }
Listing 1: Example snippet with single letter identifier
names. Identifiers where named alphabetically, but the
standard .NET API left intact (e.g. List, String, etc.).

The listings shows a snippet with single letter iden-
tifier names. Here, we omitted comments and empty
lines to keep the example short. The snippet contains
a semantic defect in line 7. The function is supposed
to identify all curly-braces within a piece of code, but
matching characters are added to the wrong list. The
line should read d.Add(f);.

We used a repeated-measures design, in which each
participant saw all types of snippets (letter, abbrevi-
ation, and word identifier names). We instructed par-
ticipants to find the semantic defects in three different
snippets and measured the time they required to suc-
ceed. To control for practice or fatigue effects, the
order of the snippets was randomized for each partic-
ipant.

3 Results
We evaluated the differences in response times using
planned contrasts, and tested them for significance us-

1



Figure 1: Left: Reaction time, grouped by identifier types. The plots disregard the inter-individual differences which we
controlled for in our statistical tests. Right: Response speeds grouped by identifier type. Participants detected defects
20% faster when code contained identifier names using words instead of abbreviations or single letters. The vertical bars
show 95% confidence intervals.

ing Student’s t-test. Our data are described in Table
1, separated for each identifier type. The distributions
were skewed to the right, which reduces the power of
our significance tests due to slow outliers. To counter-
act, we transformed our data using an inverse trans-
formation, yielding ’Defect per Minute’ rather than
’Minutes per Defect’. The raw data are plotted on
the left in Figure 1.

Table 1: Response durations and speeds during the seman-
tic task, split by identifier type. ’Duration’ is shown as
median (MD) and interquartile range (IQR). Defects per
minute are shown as mean (M) and standard deviation
(SD).

Duration Defects per Minute

Type MD IQR M SD

Word 1:25.48 1:12.78 0.78 0.42
Abbreviation 1:38.57 1:05.37 0.65 0.31
Letter 1:40.36 1:24.87 0.66 0.39

We found a statistically significant difference be-
tween words and non-words (abbreviations and single
letters combined in contrast variable ψa, tψa(71) =
2.73; p = .004). We found no significant difference
in the speeds for abbreviations and single letters
(tψb(71) = 0.07). Participants detected semantic de-
fects in the code the fastest when it used normal word
identifier names. When code used abbreviations and
single letter identifiers, participants were equally fast.
However, when participants interacted with code us-
ing normal words, they were on average 20% faster
(dz = 0.32, Cohen, 1988). This effect is shown in
Figure 1.

4 Discussion
Since there was no difference between single letters
and abbreviations, we conclude that length alone is
not enough to explain how identifier names affect pro-
gram comprehension, and semantics appear to play an
important role. Although the normal-word identifier
names are longer than abbreviations, they lead to a
faster understanding of the code and detection of the

defect. We assumed that short names would relieve
working memory; however, the presented comprehen-
sion tasks appeared to benefit more from the semantic
properties of the normal-word identifier names.

We found that code using normal words can be
understood more quickly and eases defect detection.
This finding suggests that proper identifer naming
should be considered during the initial creation of
source code, in order to save maintenance costs later
on in a software’s life cycle. Although longer names in-
crease typing effort in comparison with abbreviations
or single letters, auto completion and the benefit from
semantics during program comprehension render this
difference negligible.

Acknowledgements
This work has been supported by the DFG grant SI
2045/2-1.

References
[1] A. D. Baddeley, N. Thomson, and M. Buchanan.

Word length and the structure of short-term mem-
ory. Journal of Verbal Learning and Verbal Behav-
ior, 14:575 – 589, 1975.

[2] R. Brooks. Towards a theory of the comprehension
of computer programs. International Journal of
Man-Machine Studies, 18:543 – 554, 1983.

[3] T. D. LaToza, G. Venolia, and R. DeLine. Main-
taining Mental Models: A Study of Developer
Work Habits. In Proceedings of the 28th Interna-
tional Conference on Software Engineering, ICSE
’06, pages 492–501, New York, NY, USA, 2006.
ACM.

[4] G. M. Reicher. Perceptual recognition as a func-
tion of meaningfulness of stimulus material. Jour-
nal of Experimental Psychology, 81:275–280, Aug.
1969.

[5] A. von Mayrhauser and A. Vans. Program com-
prehension during software maintenance and evo-
lution. Computer, 28(8):44–55, 1995.

[6] B. S. Weekes. Differential Effects of Number of
Letters on Word and Nonword Naming Latency.
The Quarterly Journal of Experimental Psychol-
ogy Section A, 50:439–456, May 1997.


