
A New Approach of Visualizing Code Smells

Marcel Steinbeck
University of Bremen

marcel@informatik.uni-bremen.de

Abstract

Code smells are indicators of design flaws that may
have negative effects on the comprehensibility and
maintainability of a software system. Previous stud-
ies on software clones have shown that visualization of
findings are useful to identify clones suitable for refac-
torings. However, techniques to visualize code smells
in general are rare and, thus, an interesting field of
research to bridge the gap between code smell detec-
tion and code smell refactoring. This paper presents
an approach that is supposed to help in assessing the
extent of code smells and in ranking the relevance of
refactoring opportunities.

1 Introduction

In the last couple of years several design principles
were introduced to enhance the quality of software
at code and design level. Code smells, on the other
hand, are practices indicating violations of such prin-
ciples and may have negative effects on software com-
prehensibility and maintainability. Fowler et al. pre-
sented definitions of 22 code smells and suggested to
remove findings whenever possible [2]. Based on this
suggestion, different tools have been developed to de-
tect and remove code smells by applying appropriate
refactorings. However, the visualization of code smells
has been widely neglected yet. Though, the visualiza-
tion of software clones—the code smell claimed most
harmful by Fowler—was shown to be a very useful way
of assessing individual clones as well as the degree of
cloning in software entities such as files, packages, and
subsystems.

This paper presents a new approach to emphasize
the smell rate of packages and source code files along
with the extent of potential refactorings. With that
goal in mind, we propose to combine Voronoi treemaps
arranged on a circle (similar to the radial layout) with
heatmaps and hierarchical edge bundles in order to a)
visualize the structure of a particular package consist-
ing of source code files, b) highlight refactoring op-
portunities and, c) depict the relations of files that
contain code smell to each other.

2 Related Work

Balzer et al. [1] presented Voronoi Treemaps as an
hierarchy-based approach to visualize arbitrary met-
rics of a software system. Instead of using tradi-

tional rectangle-based layout algorithms, the layout
of a Voronoi Treemap is computed by an iterative re-
laxation of Voronoi tessellations. The advantage of
this approach is the enhanced aspect ratio between
the width and the height of particular objects repre-
sented by Voronoi cells.

Holten [4] introduced hierarchical edge bundles as
a flexible approach to reduce the visual clutter of tech-
niques visualizing compound (di)graphs, particularly
the adjacency relations between nodes. Moreover,
Holten demonstrated how hierarchical edge bundles
can be used in conjunction with existing tree visual-
ization techniques, for instance, treemaps and radial
trees. In order to customize the presentation of edges
and, thus, to provide a continuous trade-off between
a low-level and a high-level view of the adjacency
relations, a parameter used to adjust the bundling
strength has been added.

Hauptmann et al. [3] suggested the usage of edge
bundle views to interrelate the structure of a software
system with clone detection results. The developed
prototype has been implemented on top of the open
source quality assessment toolkit ConQAT and pro-
vided beneficial indications to uncover errors in the
setup of the clone detection tools.

3 Visualizing the Software

Visualizing code smells assist developers to gain in-
sights into a software system and is utile to point out
information used to enhance its quality, for instance,
by applying appropriate refactorings. Our approach
consists of three components:

1. Voronoi treemaps arranged on a circle visualizing
the size of packages and source code files in terms
of LOC (lines of code).

2. Heatmaps superimposed onto the treemaps em-
phasizing the smell rate of particular source code
files.

3. Hierarchical edge bundles depicting relations be-
tween source code files containing code smells.

An example of the resulting visualization is given
in Figure 1. In the following sections we will describe
our approach in more detail.



Figure 1: Seven Voronoi treemaps arranged on a cir-
cle representing seven packages and their source code
files. A heatmap is superimposed onto the treemaps
that emphasizes the smell rate of each file. Further-
more, edge bundles are used to depict local and global
relations between files that contain code smells.

Voronoi Treemaps and Treemap Arrangement
Treemaps are widely used to visualize the structure of
a software system as they are well suited to subdivide
a surface into smaller polygons based on an arbitrary
metric and to depict recursive entities, such as directo-
ries that contain further directories and files. Voronoi
treemaps have been introduced to enhance the aspect
ratio between the width and the height of polygons
and, thus, to enhance their comparability. The ap-
proach presented in this paper uses Voronoi treemaps
to subdivide the surfaces of arcs which, taken to-
gether, form a circle in order to a) subdivide a non-
rectangular object and b) make usage of the enhanced
comparability of polygons. In particular, each pack-
age p of a software system is represented by an indi-
vidual arc a. The length of a corresponds to the size
of p in terms of LOC. Thus, the longer a is, the more
lines of code p contains compared to other packages of
the system. Afterwards, the surface of p is subdivided
into smaller polygons by using Voronoi treemaps that
are based on LOC as well. The resulting visualiza-
tion is similar to already known techniques except of
the extra space around the center of the circle that is
used by edge bundles presented in the remainder of
this paper.

Superimposing A Heatmap Layer In addition
to Voronoi treemaps, heatmaps are used to visualize
the smell rate (SR) of individual source code files. The
smell rate of a file f puts LOC of f into relation to
the number of lines of f that are part of a code smell.
LOC in conjunction with SR is a good indicator for
the effect of a source code file on the overall system in
terms of maintainability. That is, the larger a file and
its smell rate is, the larger the overall amount of source
code that is classified as bad practice. Resolving such
large instances is most probably more efficient than
resolving small ones. However, other metrics may be

sufficient, too. The example given in Figure 1 uses
different intensities of gray, turning from white in case
of files without any code smells at all to dark gray with
increasing smell rates. Relating the size of a polygon
with its color intensity allows to easily catch files that
show high relevance according to both metrics.

Using Edges to Point Out Relations Since ev-
ery file is independently represented by a polygon,
connecting related files with edges is suitable to vi-
sualize existing relationships. Examples of such rela-
tionships include the usage of functions located in one
file by functions located in others. In case of mainte-
nance tasks, pointing out relations between files may
give further hints towards a relevance ranking. In or-
der to reduce visual clutter resulting from numerous
edges connecting lots of polygons, we suggest to a)
draw an individual edge e only if one of the files con-
nected by e contains code smells and b) use hierar-
chical edge bundles in conjunction with an adjustable
bundling strength to provide a continuous trade-off
between a low-level and a high-level view of relation-
ships. As one can see in Figure 1, relations between
files located in different packages are depicted by edges
going through the center of the circle while relations
between files located at the same package are depicted
by edges staying in the corresponding treemap. This
technique may assist developers to further assess the
extent of code smells. That is, applying refactorings to
files with lots of global relations might be more time-
consuming than applying refactorings to files with lo-
cal relations only.

4 Conclusion

We presented a new approach that is supposed to as-
sist developers in assessing the extent of code smells
and in ranking the relevance of refactoring opportuni-
ties by combining Voronoi treemaps arranged on a cir-
cle with heatmaps and edge bundles. We suggested to
visualize packages and source code files with their met-
rics LOC and SR. However, the proposed approach is
neither limited to the visualized elements nor to the
selected metrics.

References

[1] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi
treemaps for the visualization of software metrics. In
Proceedings of the 2005 ACM symposium on Software
visualization, pages 165–172. ACM, 2005.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley, 1999.

[3] B. Hauptmann, V. Bauer, and M. Junker. Using
edge bundle views for clone visualization. In Software
Clones (IWSC), 2012 6th International Workshop on,
pages 86–87, June 2012.

[4] D. Holten. Hierarchical edge bundles: Visualization
of adjacency relations in hierarchical data. IEEE
Transactions on Visualization and Computer Graph-
ics, 12(5):741–748, Sept 2006.


	Introduction
	Related Work
	Visualizing the Software
	Conclusion

