
Visualization of API Experience
(Extended Abstract)

Hakan Aksu Ralf Lämmel Wojciech Kwasnik
Software Languages Team, University of Koblenz-Landau

Abstract
Developers differ in terms of the APIs that they are
experienced in. Understanding such differences helps
in balancing team structures and assigning develop-
ers to pending issues or hiring developers. In this
extended abstract, we demonstrate how simple API-
related, per-developer metrics can be visualized to
give a quick overview on the API experiences of devel-
opers. Data extraction is based on mining the commit
history in projects in terms of references to API ele-
ments (methods and types). We visualize experiences
as maps and aster plots.

Keywords: Program Comprehension, Software Vi-
sualization, Mining Software Repositories, Developer
Experience.

1 Underlying concepts
We use the term API as follows: an API is a set of
types (classes, interfaces, etc.) referable by name and
distributed together for use in software projects. APIs
can be described by their package names, package pre-
fixes, and types within packages. An example would
be the package prefix javax.swing referring to Java’s
API for GUI programming.

Following Roover et al. [2], we use the term domain
for an extra level of abstraction for grouping APIs.
For instance, Java’s APIs java.awt and javax.swing
APIs contribute to the GUI domain. These are other
examples of domains: XML (programming), Meta
(programming), IO, Web (programming). A domain
is a (named) set of APIs.

Our use of the term ‘experience’ is informed by the
definition in the Oxford Dictionary, 2015: “The knowl-
edge or skill acquired by a period of practical experi-
ence of something, especially that gained in a particu-
lar profession”. In our context, the period of practical
experience is the contribution to a given project in
terms of commits, which are sets of changes which
may involve usage of API elements (classifiers, meth-
ods, enums). Following Mockus et al. [1], we assume
a suitable notion of ‘experience atoms’—here related
to APIs. An atom is either a reference to an API
element or a distinct API element being referenced
in lines changed by a commit. Thus, we use these
metrics: API references: AR, API elements: AE,
Domain references: DR, and Domain elements: DE.

The extraction of referenced API elements relies
on a lexical approach. The extractor iterates over
changed lines from the commits and tokenizes them
into Java lexical units. Those lexemes or Java iden-
tifiers are considered candidates for names of API el-
ements. These candidates are intersected with the
API elements of packages imported in a changed file.
The resulting set is considered a referenced API el-
ement. The examples of this extended abstract are
concerned with the popular open source libGDX and
its rich commit history.

2 Visualization as map
Fig. 1 shows a map for developer experience. The
complete rectangle proxies for the references to all
APIs made by all developers. The contained rect-
angles group experience atoms by domain. The yet
further nested rectangles group experience atoms by
API and developer; one color is used per API regard-
less of different developers. Developers are shown here
per number code 1, . . . , 8 for the top-8 committers
and ‘R’ for the rest. In this manner, we can assess the
contribution of each domain to the project, the contri-
bution of each API to the project, and the significance
of experience of individual developers for given APIs
and domains.

3 Visualization as aster plot
We use an aster plot per-developer for a given mea-
sure such as DR and we show these aster plots for
all (selected) developers next to each other for com-
parison. An aster plot is an extended pie chart (or
circle chart). In addition to the angles of segments,
the aster plot has different radii for each segment and
a value in the center. The angle of each segment is
proportional to the quantity of the relevant API met-
ric for the given developer. The radius is proportional
to the given developer’s percentage of the metric for
the developer with the highest value. The value in the
middle is the mean of all radii on a 0. . . 100 scale.

The aster plots of Fig. 2 visualize domain references
for the top-8 developers. (In fact, we focus on GitHub
committers rather than GitHub authors here.) Each
plot shows the top-8 domains for the developer at
hand where the remaining domains are summarized
in Other. The favorite domains of each developer can



Figure 1: Domain & API references (DR and AR) for libGDX

Figure 2: Per-developer comparison of domain references for libGDX

be easily observed in this manner. For instance, the
favorite domains (with the most references) of devel-
oper 2 are Meta, GUI, IO, and Media. The developers
can be easily compared by means of the radii. For in-
stance, developer 1 is the most experienced developer
in the Archiving domain even though it makes only a
small contribution to all the experience atoms of this
developer.

4 Conclusion

The developed visualization approach summarizes
several aspects of per-developer API usage in a concise
and systematic manner. The overall idea of interpret-
ing API usage (in terms of both references to API
elements and referenced API elements) is not new [3];
the original insight of the present work is that ratios
of APIs are compared for each individual developer
and across all developers while adding the abstraction

level of domains on top of APIs.
In future work, we plan to develop a comprehen-

sive visualization tool that allows one to explore per-
developer API usage along different dimensions based
on the selection of a collection of developers, a win-
dow on the commit timeline, a collection of APIs or
domains, and yet other parameters.

References
[1] Audris Mockus and James D. Herbsleb. Expertise

browser: a quantitative approach to identifying exper-
tise. In Proc. of ICSE 2002, pages 503–512. IEEE,
2002.

[2] Coen De Roover, Ralf Lämmel, and Ekaterina Pek.
Multi-dimensional exploration of API usage. In Proc.
of ICPC 2013, pages 152–161. IEEE, 2013.

[3] David Schuler and Thomas Zimmermann. Mining us-
age expertise from version archives. In Proc. MSR
2008, pages 121–124. ACM, 2008.


