Identifying Bottlenecks in a Visualization Platform for Tracing

Adaptation Decisions

Martin Pfannemuller

Christian Becker

{martin.pfannemueller,christian.becker }@uni-mannheim.de
Universitat Mannheim, Germany

Abstract

Measuring the performance of different operations as
part of a software system can help to identify per-
formance bottlenecks. This information can be used
to improve the performance of the monitored system.
In previous work, we proposed a visualization plat-
form for observing and understanding adaptation de-
cisions in self-adaptive systems. In this paper, we ap-
ply Kieker as a monitoring solution to measure the
runtime of different operations based on the granular-
ity of methods and tasks. As a result, we identified
possibilities for improvements in our implementation.

1 Introduction

Today’s software systems, such as communication sys-
tems, consist of a high number of capabilities and
configuration options. With the changing landscape
of our networks, communication systems like overlay
networks have to adapt themselves to the changing
execution contexts. As an example, a wireless sensor
network (WSN) can adapt its topology using adaptive
topology control based on the position and number
of nodes in the system. Concepts from self-adaptive
systems research, such as the introduction of an adap-
tation logic (AL) to a system, can be applied for im-
proving the system’s behavior. However, in case a
developer achieves to add adaptive behavior to a sys-
tem, it is not directly observable how and if the sys-
tem is adapted by the adaptation logic. In previous
work, we tackled this challenge of understanding and
tracing a self-adaptive system by providing a visual-
ization tool for making adaptation decisions in the do-
main of communication systems traceable [8, 9]. The
tool was evaluated concerning the functional require-
ments of traceability and extensibility as well as the
nonfunctional requirement of responsiveness. The re-
sponsiveness has been measured in a high-level aggre-
gating fashion. Hence, this evaluation was not help-
ful for identifying bottlenecks in the implementation
in a fine-grained way. In this paper, we tackle this
by applying a well-known performance measurement
framework. By that, we measure the performance of
different operations of the visualization tool using a
prerecorded trace of a WSN with and without taking
specific events of the trace into account.

The remainder of this paper is structured as fol-
lows. Section 2 presents theoretical background and
the system from previous work. Additionally, this
section outlines the approach of measuring the per-
formance of our system in a detailed way by apply-
ing Kieker, a framework for performance monitor-
ing [6]. The following Section 3 shows the results
of our measurements for identifying the performance
bottlenecks. Finally, Section 4 concludes this paper.

2 Background and Approach

This section introduces background information about
self-adaptive systems and the measured system.
Then, the approach for identifying bottlenecks in our
implementation is outlined.

Self-Adaptive Systems: Self-adaptive systems
adapt themselves to changes in the execution envi-
ronment and their technical resources [2]. First, they
consist of the actual system that should be adapted
which is called managed resource (MR). This resource
can, e.g., be some software, hardware, or the network.
Second, they contain a control loop called adaptation
logic (AL). The MR sends sensor information about
the execution environment and technical resources to
the AL, while the AL uses this information for provid-
ing adaptations. These adaptations can be changes of
parameters or the architecture of the MR [3].
Dynamic Software Product Lines: One approach
for specifying and building self-adaptive systems is
to use dynamic software product lines (DSPL) [4].
In this case, the variability of the MR can, e.g., be
specified using feature models [1]. A feature model
consists of a tree structure representing the variabil-
ity of a software artifact. This approach has been
extended multiple times, including the possibility to
model the execution context [5]. By building these
context feature models (CFM) representing the re-
configuration possibilities of the software, the possible
context states, and constraints, the adaptation behav-
ior can be specified. The system’s variability is repre-
sented by system features, and the context by context
features accordingly. In previous work, we used this
specification technique as part of an adaptation logic
[7]. A selection of system and context features repre-
sents one configuration and state of the system.

If-A i ALAVIZ
Se s S(::::We Available Co
v Performance Goals|
) Network »
Component
Performance Goal
Weight Changes
! Metric
Adaptation | pjanned System Component “ -
Logic (AL) Configurations | & P S
> o Q
e} c
8 <
CFM ' ' ol
Component
I l Network Model
Changes
'r\:;';igri: Context Values Goal -
(MR) Metric Values Component

Turn Coala OFf

[E—
Events via JSON-based socket

Figure 1: COALAVI1Z connected with self-adaptive system. Left: Self-adaptive system. Right: COALAV1Z with
backend @), and visualization consisting of network @), metric @, CFM @), and goal @ views [8, 9].

Visualization Tool: After applying the approach
from [7], we identified the traceability of reconfigu-
ration decisions as critical for developers and system
designers [8, 9]. This led to a visualization tool for self-
adaptive communication systems named COALAVIZ.
Figure 1 shows an overview of the system with the self-
adaptive system on the left. The AL and the MR are
connected via a socket interface to the backend of the
visualization tool Q The views consist of a network
view for showing the network topology @, a metric
view for plotting nonfunctional metrics @, a CFM
view for presenting the context feature model includ-
ing the selection of system and context features (@),
and a goal view for setting the weights for the nonfunc-
tional goals @. The system was implemented with
Java using Vaadin® and Javascript forming a web ap-
plication. For sending the events to COALAV1Z, the
system uses a JSON-based socket interface.
Measurement Approach: The quantitative per-
formance evaluation of the visualization tool in [8]
revealed low responsiveness in case of many simul-
taneous events. In this paper, we apply Kieker [6]
to analyze the performance of COALAVIZ in a fine-
granular fashion and to identify the bottlenecks that
cause these performance issues. Kieker is an exten-
sible framework for measuring software performance.
It is not only capable of conducting performance mea-
surements, but it also can analyze and visualize the
monitored data. Additionally, Kieker is able to adapt
the monitoring at runtime. It provides multiple ways
of monitoring. In our approach, we directly embed-
ded Kieker as a dependency in our code, writing the
logs to a temporary directory as described in the user
guide?. We applied Kieker in methods of the system,
beginning from sending events until the changes are
actually rendered.

Ihttps://vaadin.com/
?http://eprints.uni-kiel.de/16537/

3 Results

For our measurements, we employed the same WSN
replay used in [8]. The replay consists of different
events from a simulated WSN with a running adapta-
tion logic as evaluated in [7]. Tt simulates 2.5 minutes
of the WSN’s behavior. Figure 2 shows an overview
of the number of events per type. The figure shows
that mostly nodes and edges are changing over time.
The former change regarding their position, as the
nodes are moving, while the latter change as the signal
strength updates accordingly. The movement leads
to removed edges while some nodes are added, and
no nodes get removed. Sixty-nine times a new metric
value is sent and four times the adaptation logic sends
an updated CFM selection.

400

of events
per type

N
o
o

40 56

o

Tge
O

i
+O
5 5
> >
T ks

x

4

s §
+S 2
< &
£ £
i N
N &
~ &

R,
(111’)% A

y/ lo, i

Figure 2: Number of events per event type in the
WSN replay. Node and edge events concern @, the
metric value event belongs to (@, and the reconfigu-
ration event contains a new selection for the CFM Q

As a first result of our measurements, see Fig-
ure 3. It consists of averaged measurements with-
out taking the event type into account, including: 1)
transmission of the event from the AL to COALAV1Z,
2) parsing the JSON structure, and 3) actually han-
dling the event. Handling here means triggering the
event-specific frontend code. As the network and the

https://vaadin.com/
http://eprints.uni-kiel.de/16537/

metric view use Javascript libraries, this triggers the
Javascript code that runs asynchronously [8]. With-
out taking the event type into account, the measure-
ments show, that the transmission time, the JSON
parsing, and the handling time per event are not
significantly high. For the actual transmission and
parsing, there are not many optimization possibilities.
However, handling the events is implemented by tool-
specific code. Hence, the next step was to measure
the handling time of events per event type.

=S

o
T
Transmission

T T
Parse String Handle Event

Figure 3: Average runtime of event transmission,
parsing, and handling.

= = = = =
g N] § g &
= 5 g = & &
> 5 <& <& o L
§ S 9 9 5
S ~ < <~ &
-
& A
3

Figure 4: Average handling runtime of events per
event type.

The handling times per event type are shown in
Figure 4. Tt confirms the findings in [8], stating the
custom-built CFM view is slower than the Javascript
views. One reason for this is that it is rendered as
an image in the web browser. Thus, even in case of
small changes, the whole image has to be rerendered.
The measurements indicate that COALAV1Z can han-
dle single events in a responsive way. However, the
overall measurements in [8] show some spikes in the
response time, even at timestamps with a low num-
ber of simultaneous events. Based on the fine-grained
results of this work, we investigated our code with
respect to handling multiple events at the same time.
By that, we could identify sequential event-processing,
which reduces the overall performance. One way of
improvement would be to parallelize the execution.
Nevertheless, merely parallelizing this aspect does not
work as, e.g., modifying a node depends on the earlier
creation of the same node. This could lead to broken
events which depend on other events to be rendered
first. In future work, we will fix this bottleneck using
a queue-based solution.

4 Conclusion

This paper applied the Kieker monitoring framework
in a Vaadin-based web application. The measure-
ments show that the render times of the CFM view
are higher compared to the other views. With the help
of Kieker, we were able to identify sequential process-
ing in our code, which causes bottlenecks and reduced
scalability. We were able to apply Kieker using the
provided user guide in a basic way. More advanced
techniques such as the aspect-based measurement, the
analysis, and adaptation possibilities were not tested
yet. In the future, we plan to apply Kieker in the
self-adaptive system and especially as part of the AL.
By that, we are planning to also use Kieker’s analysis,
visualization, and adaptive monitoring capabilities.

Acknowledgment

This work has been funded by the German Research Founda-
tion (DFG) as part of project A4 of the Collaborative Research
Center (CRC) 1053-MAKI.

References

[1] K. C. Kang et al. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Tech. rep.
Carnegie-Mellon University Software Engineer-
ing Institute, Nov. 1990.

[2] J. O. Kephart and D. M. Chess. “The Vision
of Autonomic Computing”. In: IEEE Computer
36.1 (2003), pp. 41-50.

[3] P.K.McKinley et al. “Composing Adaptive Soft-
ware”. In: IEEE Computer 37.7 (2004), pp. 56—
64.

[4] S. O. Hallsteinsen et al. “Dynamic Software
Product Lines”. In: IEEE Computer 41.4 (2008),
pp- 93-95.

[5] H. Hartmann and T. Trew. “Using Feature Dia-
grams with Context Variability to Model Multi-
ple Product Lines for Software Supply Chains”.
In: SPLC. IEEE Comp. Society, 2008, pp. 12-21.

[6] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: a framework for application perfor-
mance monitoring and dynamic software analy-
sis”. In: ICPE. ACM, 2012, pp. 247-248.

[7] M. Weckesser et al. “Optimal reconfiguration
of dynamic software product lines based on
performance-influence models”. In: SPLC. ACM,
2018, pp. 98-109.

[8] M. Pfannemdiller et al. “CoalaViz: Supporting
Traceability of Adaptation Decisions in Pervasive
Communication Systems”. In: PerCom Work-
shops. IEEE, 2019, pp. 590-595.

[9] M. Pfannemiiller et al. “Demo: Visualizing Adap-
tation Decisions in Pervasive Communication
Systems”. In: PerCom Workshops. IEEE, 2019,
pp. 335-337.

	Introduction
	Background and Approach
	Results
	Conclusion

