
Analyzing and Improving the Performance of
Continuous Container Creation and Deployment∗

Ahmad Alamoush, Holger Eichelberger
{alamoush,eichelberger}@sse.uni-hildesheim.de
University of Hildesheim, Hildesheim, Germany

Abstract
Continuous Deployment automates the delivery of
new versions of software systems. To ease installation
and delivery, often container virtualization is applied.
In some applications, container images may be subject
to variants, as, e.g., device-specific software is needed
on Edge devices in Industry 4.0. Here, model-driven
approaches can prevent human errors and save devel-
opment efforts. However, employing a naive approach,
creating one container image per variant can be time-
consuming. In this paper, we discuss the impact of
different (Docker) container image creation techniques
for variant-rich Industry 4.0 applications. Our results
show that a combination of techniques like container
image stacking or semantic fingerprinting can save up
to 59% build time and up to 89% deployment time,
while not affecting the container startup time.

1 Introduction
Continuous Deployment automates and reduces the
time of software systems delivery. Using container
virtualization in continuous (incremental) deployment
eases the installation and delivery of software systems
to different environments. Depending on the applica-
tion, the images1 may be subject to variants to con-
sider customizations, user decisions or device require-
ments, e.g., for Industry 4.0 edge devices. To handle
variants efficiently while preventing human errors and
saving development efforts, a model-driven generative
approach can be a solution. However, using a naive
approach may create an image for each variant which
can be time and resource consuming.

In this context, we ask: Can we improve and mea-
sure the development time performance of creating
(Docker) containers by advanced image creation tech-
niques?. In [1], Shahin et al. present a systematic
literature review on Continuous Integration, Deliv-
ery, and Deployment. The authors identified 30 ap-
proaches that facilitate the implementation of Contin-
uous Integration. Non of those use containerization.

∗IIP-Ecosphere is partially supported by the German Fed-
eral Ministry of Economic Affairs and Climate Action (BMWK)
under grant 01MK20006D

1We use "image" as short form of "container image" and
denote with "container" a running container.

Park et al. [2] add a replaceable dynamic layer in an
image to reduce boot-up time during updates. Instead
of redeploying a new container, they pause the con-
tainer, exchange the dynamic layer and resume the
container. We also rely on layering, but to improve
build time. Moreover, we are not aware of compara-
ble approaches to model-driven container creation.

In this paper, we analyze the effects of two tech-
niques, namely image stacking to increase the reuse
among similar containers and semantic fingerprint-
ing to avoid unnecessary image creations. To identify
performance effects, we conduct an experiment with
two service-based applications from the IIP-Ecosphere
project [4], where we create container images in a
model-driven fashion. In particular, we show that a
combination of the two techniques can save up to 59%
build time and up to 89% deployment time.

In Section 2, we present image stacking and seman-
tic fingerprinting as techniques to improve container
creation. In Section 3, we detail our experiment and
discuss the results. Finally, we conclude with some
outlook on future work.

2 Approach
In this section, we discuss the context of our work, i.e.,
usual and model-driven container creation and intro-
duce two techniques that we apply to improve con-
tainer creation time, namely image stacking through
base images and semantic fingerprinting.

Usually, (Docker) images are created by stacking
container layers on top of each other. Each layer adds
software, libraries, dependencies, files, etc. A naive
approach just adds all layers of a container to a single
image, in the extreme case without placing reusable
elements into a lower layer. Changing a single file,
e.g., as part of an update, forces the re-creation of
the image, and, potentially of almost all contained
layers. Although Docker detects file changes and trig-
gers the creation of only needed layers, it may per-
form unneeded operations if only timestamps, e.g., in
a JAR file or a Python library installation have been
changed, while the actual software remained the same.
Thus, a naive approach usually leads to superfluous
builds and unnecessary time consumption.

A model-driven approach to container creation



employs a detailed model of the applications to be
virtualized, e.g., including required software depen-
dencies or operating system tools, to create contain-
ers automatically. In our case, we focus on service-
based applications for an AI-enabled Industry 4.0
platform [3, 4], where the model specifies the required
Maven/Python dependencies per Java/Python ser-
vice, the needed platform services to start services re-
motely, or the required Java or Python version. More-
over, as Industry 4.0 edge devices are rather heteroge-
neous in nature, we also capture device specific infor-
mation, e.g., monitoring plugins or whether a custom
build of libraries are already such as TensorFlow are
required. We focus on static ahead-of-time images for
each application to detect build and dependency er-
rors before applications are deployed to a shop floor.
In other words, we avoid (risky) time- and bandwidth
intensive on-site builds per individual (edge) device.

We apply the following two techniques to reduce
the build time:

• Base image / image stacking: Create base
images with common layers shared among im-
ages and applications. Base images are stacked
on the operating system as start image, while fur-
ther application-specific layers are stacked on top.
Thus, images for common layers are created once,
saving time in building, publishing / pushing, and
deploying a container.

• Semantic fingerprinting: Employ additional
knowledge from the model regarding the files used
in a container to identify, whether relevant con-
tent has been changed. We store MD5 checksums
as fingerprints of the files used during the last
build of an image. Relevant files may be source
files including Python dependency lists, binary
files or archive files (based on their contained
files). This approach avoids image rebuilds if only
timestamps in Java JAR files or installations of
Python libraries have changed.

3 Experiment and Results
We are interested, whether the two techniques in-
troduced in the last section can outperform a naive
build with respect to build, publication, deploy-
ment/installation and container startup time. In this
section, we discuss an experiment based on two ap-
plication and measure the respective execution times.
Then, we discuss the results.

Experimental environment: We used two
VMware virtual machines (VM), each with 2 virtual
CPU cores, 4 GB of RAM, and Linux Ubuntu Server
20.04 installed. For containerization, we use Docker
version 20.10.7. One VM acts as build/distribution
Server and hosts a local docker registry, the other VM
plays the role of a device, i.e., a deployment target.

Experimental subjects: We use the following
two representative service-based applications from the

OPC UA 

Connector

AAS 

Connector

App AAS
Cam 

Source

Ac�on

Decider

Python 

AI

AAS Product

Registry

AXC 3152

IIP-Ecosphere pla�orm

UR5e

Figure 1: HM’22 application services [3]

IIP-Ecosphere project to measure and compare our
approach. Each application is defined in a separate
configuration model.

• The Test application (TA) defines a simple appli-
cation consisting of with three linearly connected
Java services. We use this application for regres-
sion tests of our platform.

• The HM’22 application (HA) was used as a plat-
form demonstrator at the Hannover fair 2022 [3,
4]. As shown in Figure 1, HA consists of five Java
services and a Python AI service and performs a
visual quality inspection of model cars.

In addition to the application services, a container
may include a Java VM, a Python installation, re-
quired dependencies as well as IIP-Ecosphere platform
services to manage the application services [4] as well
as a (local) communication broker. Both applications
are specified in terms of a topological configuration
model, which also defines the base characteristics of
the involved (edge) devices.

Depending on the settings in the configuration
model, the container creation either employs the naive
approach or the base image technique, which may be
combined with the semantic fingerprinting. In gen-
eral, the container creation for HA stacks python:3.8-
slim-buster2 as start image, a JDK, the IIP-Ecosphere
platform services, the Python dependencies of the ap-
plication, the application services, device-specific ser-
vices and a startup script. For TA, the container
creation replaces start image with Alpine:3.183 as no
Python is needed. If the base image technique is
enabled, for the HM’22 application a reusable im-
age with Java, Python, IIP-Ecosphere services and
Python dependencies is created. The base image for
TA is similar, but without Python dependencies. As
we use separate models for the applications, there
images are not shared among the applications. The
configuration models specify two types of devices and
thus, cause, the creation of two (differing) images per
application.

Experimental procedure: We apply five treat-
ments: naive approach, base image without finger-
printing and fingerprinting triggering the creation of
three different layers with different impact. The layer

2https://hub.docker.com/_/python
3https://hub.docker.com/_/alpine

https://hub.docker.com/_/python
https://hub.docker.com/_/alpine


triggers are in order of decreasing impact a python de-
pendency change, a Java platform service change and
a configuration setting change just affecting some re-
source files. In the experiment, we disable the Docker
build cache to avoid any mutual influence.

On the server VM, we measure the sums of the
building and publishing time for all images per appli-
cation. On the device VM, we measure the installation
/ pulling time of the images, the time needed to create
containers from the images as well as the startup time
of the containers. We ran the experiment five times
and calculated the average.

Test application (3 services)
Server Side Client Side

Treatment Build Publish Pull Create Start
Naive 235 32 13 0,620 0,280
Stacked 302 20 8 0,391 0,224
Python 0 0 0,157 0,101 0,244
Java 190 9 4 0,378 0,237
Model 192 10 5 0,436 0,240

HM’22 (7 services)
Server Side Client Side

Treatment Build Publish Pull Create Start
Naive 425 87 41 0,607 0,279
Stacked 394 51 20 0,397 0,246
Python 389 46 21 0,385 0,233
Java 176 10 4 0,384 0,240
Model 175 10 4 0,400 0,242

Build [s] Publish [s] Pull [s]

1

10

100

1000

Naive Stacked Python Java Model

Test applica�on (3 services)

1

10

100

1000

Naive Stacked Python Java Model

HM'22 (7 services applica�on)

Build [s] Publish [s] Pull [s]

Figure 2 & Table 1: Experimental results in seconds.

Results: At a glance, the naive approach is faster
for the TA than the base image technique as shown
in Figure 2. This is due to the small image size where
creating two images instead of one causes measurable
overhead. Here, base images improve publishing and
pulling time by 35% and 39%, respectively. For HA,
container building, publishing and pulling time are
improved by 7%, 41% and 51%, respectively.

The following treatments trigger different forms of
layer re-creation for the respective stacked image. As
the TA does not contain Python services, the con-
tainer creation is skipped here. For HA, the container
creation re-builds the base image including the shared
Python dependencies, i.e., the measures are similar

to the base image technique. For the remaining two
changes, in particular the re-creation of the base im-
age is skipped and only the required layers are rebuilt.
For the TA, this leads to an improvement of 19%,
70%, and 65% improvement for build, publishing and
pulling time, respectively. For HA, we measured a
speedup of 59% improvement for build time and 89%
for publishing and pulling time.

The differences for container creation and startup
for all treatments are relatively small compared with
container building, publishing, and pulling. Here, the
improvement in container creation and startup time
is around 0,2 and 0,04 seconds, respectively.

Limitations: Our results are coupled with the
notion of service-based applications in IIP-Ecosphere
and that reuse effects may only be apparent for mul-
tiple applications in the same model/platform.

4 Conclusion
Container virtualization eases the delivery of software
in Continuous Deployment. Variant-rich software ap-
plications may require multiple containers, which can
be efficiently realized by a model-drive approach.

In this paper, we present a model-driven approach
to container creation and compare techniques to re-
duce the build, publishing, installation time. In ap-
plications with a larger number of common container
layers, our techniques can improve the build time by
up to 59% and deployment time by up to 89%. In
applications with a smaller size of common layers, our
techniques may affect the build time while still im-
proving the deployment time up to 39%.

In the future, we plan to refine the techniques, e.g.,
to create multiple base images to facilitate the reuse
among applications specified in the same model.

References
[1] M. Shahin, M. Ali Babar, and L. Zhu. “Contin-

uous Integration, Delivery and Deployment: A
Systematic Review on Approaches, Tools, Chal-
lenges and Practices”. In: IEEE Access 5 (2017),
pp. 3909–3943.

[2] J. Park et al. “A Method of Dynamic Container
Layer Replacement for Faster Service Providing
on Resource-Limited Edge Nodes”. In: Interna-
tional Conference on Electronics and Communi-
cation Engineering (ICECE). 2019, pp. 434–437.

[3] H. Eichelberger, G. Palmer, and C. Niederee.
“Developing an AI-enabled Industry 4.0 platform
- Performance experiences on deploying AI onto
an industrial edge device”. In: Softwaretechnik-
Trends (2023), pp. 35–37.

[4] H. Eichelberger et al. “Developing an AI-Enabled
IIoT Platform - Lessons Learned from Early
Use Case Validation”. In: Software Architec-
ture. ECSA 2022 Tracks and Workshops. 2023,
pp. 265–283.


	Introduction
	Approach
	Experiment and Results
	Conclusion

