International Journal of Hybrid Information Technology
Vol.2, No.3, July, 2009

UML Modeling and Performance Evaluation of Multithreaded
Programs on Dual Core Processor

Dr. Vipin Saxena' and Manish Shrivastava®

B.B. Ambedkar University (Central University), Lucknow, India
Yysax1@rediffmail.com, 2mshrivastava@yahoo.com

Abstract

Modern Object oriented programming languages provide the facility of multithreading
programming which provides concurrent execution of multiple threads within the same
program. Basically, threads provide a way to execute code in parallel within the same
program. In high performance computing today, the multi-core CPUs have become more
common in nearly all computer systems. These processors have multiple execution cores on a
single physical chip. They provide parallelism between instructions and operations.
Therefore, the performance measurement of multithreaded programs on these processors is
an important aspect.

In the present paper, the detailed architectural modeling of a Dual Core processor is done
by the use of well known modeling language i.e. the Unified Modeling Language (UML). The
UML design for thread execution is also done. On the basis of UML design, performance of
multithreaded programs written in JAVA and C# are evaluated and a comparison between
these two is also reported through the table and the graphs.

Keywords: Dual Core processor, Object-oriented programming, Multithreading, Performance measurement,
UML.

1. Introduction

Object-oriented approach is the most important technique in today’s software
development. The Object-oriented programming improves code reusability, code
maintainability and provides high level of abstraction. All these features are quite suitable for
the development of parallel and concurrent applications. In Object-oriented technique, the
interactions and message passing among various physically distributed objects is done very
efficiently. This feature provides an effective way of simultaneous execution of multiple
processes. A thread is a lightweight process. It specifies a lightweight flow that can be
executed concurrently with other threads within the same process [1]. All the threads within a
process share the same memory space of the enclosing process. Using threads, the
performance of an application can be improved by executing multiple threads concurrently.

Modern Computer systems support Dual Core CPUs. Dual Core is an architecture that
refers to a Central Processing Unit with two complete execution cores in a single processor.
The two cores, their caches and cache controllers are all built together in a single IC. A Dual
Core processor executes two threads by running each thread on a different core. Thus the
Dual Core processors improve multithreaded throughput, and delivering the advantages of
parallel computing to properly threaded mainstream applications [2].

International Journal of Hybrid Information Technology
Vol.2, No.3, July, 2009

The Unified Modeling Language (UML) released by the Object Management Group
(OMGQ), is a graphical language and has been widely accepted as a standard way for modeling
an Object-oriented software system. It can also be applied for modeling of business processes
and hardware system architecture and design. The details and good description of the UML
notations are given in Booch et al. [1] and Alhir [3]. It also provides extension mechanisms
using stereotypes and profiles which can be applied in more domain specific modeling of a
system. There are some research papers where UML modeling is described in Computer
architecture. Gomma [4] has developed a UML based Concurrent Object Modeling and
Architectural Design Method for designing real-time and distributed applications. The UML
based modeling of parallel and distributed systems for performance oriented applications, is
described by Pllana, S. and Fahringer, T. [5]. Saxena et al. [6] proposed the UML model for
the Multiplex system for the process which are executing in distributed environment. In their
paper, Fateh Boutekkouk et al. [7] presented a new UML-based methodology for embedded
applications design and architectural modeling including the CPU model, the Memory model
etc. using stereotypes. An estimation technique of performance is also proposed.

There are many Object-oriented languages for commercial software development. Among
these languages, C# and Java are most popular and powerful in today’s programming
environment. Besides all the features of an Object-oriented language, both Java and C# have
built-in support for multithreading. There are very few papers available on quantitative
performance comparison of Object-oriented programming languages. However many papers
explain the comparison of various programming languages based on their features, technical
similarities, differences, and capabilities. Henderson Robert and Zorn Benjamin [8] compared
the run-time efficiency and compilation time of the language implementations of four modern
programming languages that support object-oriented programming (Oberon-2, Modula-3,
Sather and Self), and compared them with C++ also.

Glyph Lefkowitz [9] performed a comparison of execution speed between Java and Python
by using running some test-cases on Linux platform. Brosgol, Benjamin M. [10] compared
the concurrency-related facilities in Ada and Java, focusing on their expressive power,
support for sound software engineering, and performance. In their paper, Bulpin and Pratt
[11] presented measurements of the performance of a real simultaneous multithreading
system. The experiments were conducted on an Intel Pentium 4 Xeon based system running
the Linux 2.4.19 kernel. Figueroa, M. [12] presented results of a study to compare Java and
C# programming languages features in terms of portability, functional programming and
execution time in image processing programming area. Sestoft, P. [13] compared the numeric
performance of C, C# and Java on three small cases. The matrix multiplication, a division-
intensive loop and a polynomial evaluation were taken as case studies. Recently Saxena and
Arora [14] reported a performance evaluation for object oriented software systems using
VC++ and C#. The evaluation is done on nodes, equipped with Pentium D and Core 2 Duo
processor technologies.

In the present paper, we have measured the execution time of threads using Java and C# on
Intel’s Dual Core processor. A performance comparison of multithreaded programs consisting
of varying number of threads in Java and C# is reported. As a case study, a common
multithreaded program is developed in both these languages. The run time of each program is
measured for quantitative comparison of performance of these languages. Modeling of the
system architecture and threads processing using the UML is also done and presented. The
UML stereotypes for the process, thread and executing cores are defined. UML class
diagrams and sequence diagrams are designed for modeling of thread execution.

2. Background

International Journal of Hybrid Information Technology
Vol.2, No.3, July, 2009

2.1. Concept of Process and Thread

A process is a program in execution. It can be defined as a group of instructions of a
program which are assigned to a processor for execution. It specifies a heavyweight flow that
can execute concurrently with other processes. A thread is a block of code that runs in
concurrent with other threads within the same process. Each thread is a single sequential flow
of instructions. It is considered as a lightweight process. When a thread is created, a new
thread of control is added to the current process. The threads are easily handled in Object-
oriented way. In this, all the threads in the process run simultaneously, and can access the
same objects to implement their functionality. They can also communicate to other threads
via shared objects.

In the UML, each independent flow of control is modeled as an active object. An Active
object (instance of an active class) models the concurrent behavior of real world objects.
Active objects own an execution thread and can initiate control activities. Active classes can
be implemented by heavyweight processes with their own address space or by lightweight
threads sharing the same address space. An active class is represented as a rectangle with
thick lines [1].

2.2. UML Representation of Process and Thread

The Figure 1 shows the detailed UML design of a process and a thread and their
relationship using the class diagram. In this design, we have used UML stereotypes for
defining a process and a thread namely <<process>> and <<thread>>. The stereotypes
defined active classes of process and thread namely the classes Process and Thread. The class
Process contains multiple instances of the class Thread and described as 1..n relationship in
the diagram.

<<process>> <<thread>>
Proqess Thread
{active) {active}
thread_id: integer
process_id: integer has —)

) ! thread_size: integer
process_size. integer -“ thread_name: string
process_in_time: string thread_priority: integer
process_out_time: string

process_priority: integer

thread_start()
thread_stop()
thread_interrupt()
thread join()

process_create()
process_delete()

process_update()
process_join()
process_suspend()
process terminate()

thread_synchronize()
thread_sleep()
thread_resume()
thread_suspend()
thread_destroy()

Figure 1. UML Class Definition of Process and Thread

International Journal of Hybrid Information Technology
Vol.2, No.3, July, 2009

2.3. UML Representation of Execution Cores

The Intel’s Dual Core architecture is based on the Intel Core micro-architecture that uses
CMP (i.e. core multi processors) technology, where two or more CPUs (known as Cores)
share a single chip. In this architecture, processors move blocks of hundreds or thousands of
instructions into cache before executing them in blocks of four or more at a time, trying to
execute many complex instructions in one clock tick.

The UML modeling for representing the execution cores performed using UML. The UML
stereotypes for the execution cores are defined. The Figure 2a shows the UML stereotype
<<Execution_core>>, which is derived from the Base class. The Figure 2b shows the class
diagram for representing a core and the Figure 2c shows the single and multiple instances of
cores.

Base Class
7'y << Execution_core>>
core

core_id: string

<< stereotype >>
Execution_core

core_id: string

Figure 2b. Class diagram of Core

Figure 2a. Stereotype of Execution Core

<<Execution_core>> X |
corel: core <<Execution_core>>

_:core

Figure 2c. Single and Multiple instances of Core

3. UML Modeling for Multithreaded Programs
3.1. UML Modeling for Processor Architecture

The Intel's Core micro-architecture technology provides more efficient decoding stages,
execution units, caches, and buses for increasing the processing capacity, reducing latency
and thus achieving high performance. The architectural details of Dual Core are described in
[15] and [16]. The Figure 3 shows the complete architectural model of Dual Core processor
architecture. The class Process is interacting through the class Thread to the class
Process_Execution_Controller (PEC), which is responsible for the execution of the assigned
task. The PEC is controlling the processes by message exchanging between the classes
Processor and Memory. The PEC is also responsible for the threads controlling. The
Processor class contains two cores, i.e. Corel and Core2 and each core contains many
components responsible for process execution as shown in the figure. The class diagram of
the entire memory unit is also shown in the figure. Here class L2_Cache is shared between
two cores and caches instructions through the class |_ Cache whereas the class D_Cache is
responsible for caching the data, which is a sub class of L1_Cache.

International Journal of Hybrid Information Technology
Vol.2, No.3, July, 2009

1 1..n 1.n
1
Process_Execution_Controller Memory
Processor
1 1
1
Corel Core2 Cache RAM
ROM
|
| Microcode -
ROM
Fetch_Unit L2_Cache L1_Cache
— Instruction_Queue
[
Decoder
T I_Cache D_Cache D_TLB

Register_Allocator

Retirement_Unit

Scheduler

Register_file

Figure 3. UML Class Diagram for Processor Architecture

3.2. UML Modeling of a Thread Life Cycle

Each thread has several states and passes through these states during its life cycle. In Java

and C#, the states are the same but defined using different names. We summarize and draw a
general UML model for understanding the thread life cycle. Immediately after creating a new

International Journal of Hybrid Information Technology

Vol.2, No.3, July, 2009

thread does not start its execution. Threads in executing state on a CPU are called active. A
thread is Active if it is running, and actually occupies a processor at the current time. This
normally starts when it is given a start operation instruction. A thread is suspended if the
thread has been suspended and not doing any processing. Similarly it can go into a sleep state
for a prescribed time and then after resume its running. A thread is terminated if the thread
has finished execution. Finally it can be destroyed.
representation of states, transitions, events and actions using its State chart diagram. Figure 4
shows a simplified state chart diagram for thread states transitions.

The UML provides a graphical

Created
J

k Active

interrupt

Y,

(s

uspend / Sleep]

start
stop

Termi

nated)

nated

resume

B [

destroy

@

Figure 4. UML State Chart Diagram for Thread Life Cycle

Process

‘ L1_Cache

Processor

End of process

Loading data

Loading completes

)

A
A
o
@
-3
@
Y
M

Fetch instructi

> Creating n threads

Start Running
%

ons

|

¥
Send instructions
P

Executiol

n completes

Decoding & Execution

Transfer of results

Terminate thread

i
Threads are terminated

4 i
f
I
I
|
I
i

<<destroy>>

=
|
|
|
|
|
|

Figure 5. UML Sequence Diagram for Thread Execution

International Journal of Hybrid Information Technology
Vol.2, No.3, July, 2009

3.3. UML Sequence Diagram for Thread Execution

The UML sequence diagram for thread execution inside a core is shown in figure 5.
Here the messages are exchanged among various class objects like PEC, L2_Cache and
L1_Cache are shown. Instructions are fetched from L2_Cache, decoded into the
executable micro operations. The data are loaded from L1_Cache. Here PEC creates
multiple threads and the Processor executes the threads. After execution, the final
results of these operations are passed to the RAM. The two standard stereotypes namely
<<create>> and <<destroy>> are used to represent the creation and final destroying the
threads.

4. Experimental Results and Discussions

The experimental results are obtained by executing a common code written in Java and C#
as a console application. A sample code for creating threads repetitively inside a loop is taken
to evaluate the performance. Both Java and C# have built-in class libraries for supporting the
threads management. In Java, there is a set of classes in java.lang package that allows
programmers to create and manage threads. Similarly, in C# there is a System.Threading
namespace which contains required classes that allow thread creation and manipulation. In
this experimental work, the C# program was developed and executed using Microsoft.Net
framework v2.0.50727. The Java program was developed and executed using JDK1.5.0_11.
We measured the execution time spent in a critical loop where multiple threads are created.
The experiment was conducted on a Dual Core processor. The architectural specifications of
the system are given in table 1 below. All the experimental results are averaged from 5
different runs. Table 2 shows the execution time computed in milliseconds and the
comparison between average execution times of multithreaded programs in Java and C#.
Based on the experimental results, it is clearly shown that C# gives better results (performs
better) and is more efficient Object-oriented programming language in comparison to Java. It
is clear from the table 2 that the execution time is lesser in case of C# in comparison to Java.

Table 1. Architectural details of Pentium Dual Core Processor

Specifications Intel® Pentium® Dual Core CPU
Number of cores | 02

Model number E2180

Clock speed 2.00 GHZ

FS Bus speed 800 MHZ

Level 1 cache
size

2 x 32 KB instruction caches, 2 x 32 KB data caches

Level 2 cache
size

shared 1 MB

Instruction sets

MMX instruction set, SSE, SSE2, SSE3, EM64T

Memory size 1GB

Operating Windows XP Professional, Ver. 2002, Service pack2
System

Make HP Compaq

International Journal of Hybrid Information Technology
Vol.2, No.3, July, 2009

Figures 5a clearly displays above results in the form of graph as a performance comparison
in terms of execution time of programming codes having 10, and 10° threads and the figure 5b
indicates the same for 10° and 10* threads.

Table 2. Execution Time of Threads

Ctt JAVA
No. of Threads | 10 10° 10° 10* 10 10° 10° 10

Execution 15.625 | 78.125 406.250 | 3703.125 | 18.213 | 97.267 | 686.387 | 6658.001
Time in Milli 15.625 | 78.125 406.250 | 3671.875 | 18.290 | 97.373 | 687.690 | 6521.507
Seconds 15.625 | 78.125 406.250 | 3687.500 | 18.266 | 97.450 | 680.114 | 6676.244

15.625 | 78.125 390.625 3718.750 | 18.187 | 98.484 | 684.449 6698.573
15.625 | 78.125 406.250 3703.125 | 18.254 | 97.883 | 685.326 6494.581
Average 15.625 | 78.125 403.125 3696.875 | 18.242 | 97.691 | 684.793 6609.781
execution time
(in milli
seconds)

110
100 +
90 +
80

60
50
40
30
20 -

g
0

10

o C#
m JAVA

Execution Time (in Milli Seconds)

No. of Threads

Figure 5a. Performance comparison for 10 and 100 Threads Execution

7000
6500
6000 -
5500
5000
4500
4000
3500
3000
2500 -
2000 -+
1500
1000

O T

O -+ T

1000 10000
No. of Threads

mC#H#
m JAVA

BExecution Time (in Mlli Seconds)

Figure 5b. Performance comparison for 1000 and 10000 Threads Execution

International Journal of Hybrid Information Technology
Vol.2, No.3, July, 2009

5. Concluding Remarks

Java and C# are two popular Object-oriented programming languages. Both provide
threading facilities built into the language for thread creation and manipulation. Intel’s Dual
Core processors improve the performance of applications by executing multiple programs at a
time. The objective of the present paper is to evaluate the performance of multithreaded
programs developed in C# and Java on Intel’s Dual Core processors. The performance
comparison in term of execution time is reported. It is concluded that C# takes less execution
time as compared to Java over similar processor architectures. It is therefore concluded that
the performance of C# better than JAVA for multithreaded programs and therefore,
recommended for large number of threads computations.

Acknowledgements

The authors are very thankful to Prof. B. Hanumaiah, Vice-Chancellor, Babasaheb
Bhimrao Ambedkar University (A Central University), Vidya Vihar, Rae Bareilly Road,
Lucknow, India, for providing excellent computation facilities in the University campus.
Thanks are also due to the University Grant Commission, India, for providing financial
assistance to the Central University for research work.

References

[1] Booch, G., Rumbaugh, J., Jacobson, I. (2004), The Unified Modeling Language User Guide, Twelfth Indian
Reprint, Pearson Education.

[2] R.M. Ramanathan, “White Paper Intel® Multi-Core Processors: Making the Move to Quad-Core and Beyond”,
White paper from Intel Corporation, Retrieved from www.intel.com/technology/architecture/downloads/quad-
core-06.pdf

[3] Alhir, S.S. (1998), UML in a Nutshell: A Desktop Quick Reference, O’Reilly & Associates, First Indian
Reprint.

[4] Gomaa, H. (2001) “Designing Concurrent, Distributed, and Real-Time Applications with UML”, Proceedings
of the 23rd International Conference on Software Engineering (ICSE’01), IEEE Computer Society.

[5] Pllana, S. and Fahringer, T. (2002), “UML based modeling of Performance Oriented parallel and Distributed
Applications”, Winter Simulation Conference, 2002.

[6] Saxena, V., Arora D. and Ahmad S. (2007), “Object Oriented Distributed Architecture System through UML”,
IEEE International Conference on Advanced in Computer Vision and Information Technology, Nov. 28-30,
2007.

[7] Fateh Boutekkouk, Mohammed Benmohammed (2009), “UML for Modelling and Performance Estimation of
Embedded Systems”, Journal of Object Technology, vol. 8, no. 2, March-February 2009, pp. 95-118,
http://www.jot.fm/issues/issue_2009_03/articlel/

[8] Henderson, Robert and Zorn Benjamin (1994), “A Comparison of Object-oriented Programming in Four
Modern Languages”, Software—Practice and Experience, vol. 24, no. 11, pp. 1077-1095, John Wiley & Sons,
Ltd.

[9] Glyph Lefkowitz (2000), “A subjective analysis of two high-level, object-oriented languages Comparing
Python to Java”, Retrieved from http://twistedmatrix.com/~glyph/rant/python-vs-java.html

[10] Brosgol, Benjamin M. (1998), “A Comparison of the Concurrency Features of Ada 95 and Java”, Proceedings
of the 1998 annual ACM SIGAda international conference on Ada, Washington, D.C., November 08 - 12,
pp.175 - 192, Association for Computing Machinery.

[11] Bulpin, James R. and Pratt, lan A. (2004), “Multiprogramming Performance of the Pentium 4 with Hyper-
Threading”, In the Third Annual Workshop on Duplicating, Deconstructing and Debunking (WDDD2004)
held at ISCA '04. pp 53-62.

[12] Figueroa, Maria Isabel Diaz (2004), “Image Processing using Java and C#: A Comparison Approach”,
Retrieved from www.ece.uprm.edu/crc/crc2004/papers/Mar%92aDiaz.pdf

[13] Sestoft, Peter (2005), “Numeric performance in C, C# and Java”, Retrieved from
www.itu.dk/~sestoft/papers/numericperformance.pdf

International Journal of Hybrid Information Technology
Vol.2, No.3, July, 2009

[14] Saxena, Vipin and Arora, Deepak (2009), “Performance Evaluation for Object Oriented Software Systems”
SIGSOFT Software Engineering Notes, March 2009, vol. 34, no. 2.

[15] Simcha Gochman, Avi Mendelson, Alon Navh and Efraim Rotem (2006), “ Introducttion to Intel Core TM
DUO Processor Architecture” , Intel technology Journal, vol. 10, issue 2, May, 15, 2006

[16] Ofri Wechsler (2006), “Inside Intel® Core™ Microarchitecture: Setting New Standards for Energy-Efficient
Performance”, Technology@Intel Magazine, March 2006

Authors

7 Dr. Vipin Saxena: He is a Reader, Founder and Ex-Head, Dept. of Computer Science,
Babasaheb Bhimrao Ambedkar University, Lucknow, India. He got his M.Phil. Degree in
Computer Application in 1992 & Ph.D. Degree work on Scientific Computing from University
of Roorkee (renamed as Indian Institute of Technology, India) in 1997. He has about 14 years
of teaching experience and 17 years research experience in the field of Scientific Computing &
Software Engineering. He has published more than 75 International and National publications.
Phone: +91-9452372550, Fax: +91-522-2440821, E-mail: vsax1@rediffmail.com

Manish Shrivastava: He is a Research Scholar, Dept. of Computer Science, Babasaheb
Bhimrao Ambedkar University, Lucknow, India. He got his M.Phil. Degree in Computer
Applications in 1992. He has more than 12 years of teaching experience. Currently he is
actively engaged in the research work on the Unified Modeling Language. He has produced
several outstanding research publications. Phone: +91-9453847114 E-mail:
mshrivastava@yahoo.com

10

