
Hmedeh Z, Kourdounakis H, Christophides V et al. Content-based publish/subscribe system for web syndication. JOURNAL

OF COMPUTER SCIENCE AND TECHNOLOGY 31(2): 359–380 Mar. 2016. DOI 10.1007/s11390-016-1632-8

Content-Based Publish/Subscribe System for Web Syndication

Zeinab Hmedeh 1, Harry Kourdounakis 2, Vassilis Christophides 2, Cédric du Mouza 1, Michel Scholl 1, and
Nicolas Travers 1

1CEDRIC Laboratory, Conservatoire National des Arts et Métiers, Paris 75141, France
2FORTH/ICS, University of Crete, Heraklion, GR-70013, Greece

E-mail: zeinab.hmedeh@cnam.fr; kourdoun@csd.uoc.gr; christop@csi.forth.gr; {dumouza, scholl, nicolas.travers}
E-mail: @cnam.fr

Received July 17, 2014; revised December 21, 2015.

Abstract Content syndication has become a popular way for timely delivery of frequently updated information on the

Web. Today, web syndication technologies such as RSS or Atom are used in a wide variety of applications spreading from

large-scale news broadcasting to medium-scale information sharing in scientific and professional communities. However,

they exhibit serious limitations for dealing with information overload in Web 2.0. There is a vital need for efficient real-

time filtering methods across feeds, to allow users to effectively follow personally interesting information. We investigate

in this paper three indexing techniques for users’ subscriptions based on inverted lists or on an ordered trie for exact and

partial matching. We present analytical models for memory requirements and matching time and we conduct a thorough

experimental evaluation to exhibit the impact of critical parameters of realistic web syndication workloads.

Keywords pub/sub, subscription indexing, web syndication, partial matching, scalability

1 Introduction

Web 2.0 technologies have transformed the Web

from a publishing-only environment into a vibrant in-

formation place where yesterday’s passive readers have

become active information collectors and content gene-

rators themselves. In this context, web syndication

formats such as RSS or Atom emerge as a popular

way for timely delivery of frequently updated Web con-

tent. According to these formats, information pub-

lishers provide brief summaries (textual snippets) of

the content they deliver on the Web, called informa-

tion items, while information consumers subscribe to

a number of RSS/Atom feeds (i.e., channels) and get

informed about newly published items. Given that the

amount and diversity of the information generated on

a daily basis in Web 2.0 is unprecedented, there is a vi-

tal need for efficient real-time filtering methods across

feeds which allow users to effectively follow personally

interesting information. For instance, an RSS feed of a

newspaper delivers around 60 items per day[1]; thus a

user who is interested in news may subscribe to several

feeds and be flooded by a large number of uninteresting

items. For these reasons, we advocate a content-based

publish/subscribe paradigm for Web 2.0 syndication in

which information consumers are decoupled (in both

space and time) from information providers and they

can express their interest to specific information items

using content-based subscriptions. Rather than flood-

ing users with all items from a channel, keyword-based

subscriptions will be matched on the fly against the con-

tent of incoming items originating from different feeds.

To efficiently check whether all keywords of a sub-

scription also appear in an incoming item (i.e., broad

match semantics), we need to index the subscriptions.

Count-based (CI) and tree-based (TI) are two main in-

dexing schemes proposed in the literature for counting

explicitly and implicitly the number of contained key-

words. The majority of related data structures[2-4] can-

not be employed for conjunctions of keywords (rather

than attribute-value pairs) due to the space high-

dimensionality. In this paper, we are interested in ef-

ficient implementations of both indexing schemes us-

Regular Paper

A preliminary version of the paper was published in the Proceedings of EDBT 2012.

©2016 Springer Science +Business Media, LLC & Science Press, China



360 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

ing inverted lists (IL)[5] for CI and a variant for dis-

tinct terms of ordered tries (OT)[6] for TI and study

their behavior for critical parameters of realistic web

syndication workloads. Although these data structures

have been employed to evaluate broad match queries

in the context of selective information dissemination[7]

and sponsored search[8] or for mining frequent item

sets[9-10], their memory and matching time require-

ments appear to be quite different in our setting. This

is due to the peculiarities of web syndication systems

which are characterized[11] 1) by information items of

average length (25∼36 distinct terms) which are greater

than advertisement bids (4∼5 terms[8]) and smaller

than documents of Web collections (12K terms[7]) and

2) by very large vocabularies of terms (up to 1.5M

terms). Note also that due to broad match seman-

tics, information retrieval techniques for optimizing ILs

(e.g., early pruning[5]) are not suited in our setting.

A detailed analysis of trie structures has not been

conducted in the past while the ordered trie usage has

been discouraged in pub/sub systems due to the pro-

hibiting performance exhibited in other application ar-

eas studied in related work (e.g., document filtering

in [12]). In our work, we are going one step forward

in identifying real setting parameters under which trie

structures became competitive. In a nutshell, the main

contributions of this work are:

1) In Section 2, we consider three index structures

implementing different counting techniques for pruning

as early as possible non-matching subscriptions to an

incoming item. The first two implement the CI scheme

and rely on an inverted list (IL) of terms to the sub-

scriptions that contain them. The count-based inverted

list (CIL) variant stores each subscription into the ILs

of all the terms it contains while the ranked-key in-

verted list (RIL) stores them once in the IL of its least

frequent term. We finally consider an ordered trie (OT)

of distinct terms implementing TI with factorization of

common subscription prefixes and a variation that com-

pacts paths of unary nodes called POT.

2) In Section 3, we provide a detailed probabilistic

analysis of the size and number of visited nodes dur-

ing matching of the three indexes. This analysis takes

into account the distributions of term occurrences and

of subscription sizes. In particular, we show how OT

depth is bounded by the length of the indexed subscrip-

tions, while its width is tied up by the size of the vocab-

ulary of indexed terms. To the best of our knowledge,

such an analysis has not been previously reported in the

literature. We finally report on the deviation from the

model simulation conducted on a set of real items using

a Zipf distribution of terms and different subscription

lengths.

3) Section 4 presents the partial matching approach.

We allow a subscription to be notified whether its

more important terms are present in the incoming item.

Based on the term distribution, we assign a weight to all

terms of the subscription. For items’ terms that match

the subscription, a notification occurs only when the cu-

mulated weight is over a given subscription’s threshold.

We show how different structures can handle partial

matching and that CIL, opposed to other structures,

could be extended to efficiently process partial match-

ing.

4) In Section 5, we conduct a thorough experimen-

tal evaluation of CIL, RIL and POT 1○ using generated

subscriptions of terms appearing in a real RSS/Atom

testbed of items[1]. To the best of our knowledge, this

is the first study investigating 1) how critical work-

load parameters, such as terms distribution, the size

of the vocabulary and the sizes of subscriptions, affect

the morphology of OT, i.e., the level of achieved fac-

torization and 2) their scalability and performance in

realistic settings (e.g., for 100M of subscriptions with

1.5M of distinct terms and real distribution of terms in

items) for broad-matching and partial-matching.

Related work is presented in Section 6 while a sum-

mary which details conclusions of our experiments and

future work is given in Section 7.

2 Subscription Indexes

In the pub/sub paradigm for web syndication, users

submit long lasting (continuous) queries under the form

of keyword-based subscriptions. Whenever a news item

is published, it gets evaluated against the set of sub-

scriptions submitted to the system and for every match-

ing subscription, the corresponding subscriber is no-

tified. The set of stored subscriptions is denoted by

S and their total number by |S|. Each subscription

s ∈ S includes a set of distinct terms from a vocabulary

VS = {t1, ..., tn}. The size of s, denoted by |s|, is the to-

tal number of distinct terms it contains. I = [I1, ..., Im]

denotes the stream of incoming news items. News item

I ∈ I is also formed by a set of terms (I ⊆ VI , with VI

as the vocabulary of items). Like [7], we make the com-

1○As expected, our experiments confirm that the regular OT (ROT) is outperformed in terms of memory and matching time
requirements.



Zeinab Hmedeh et al.: Content-Based Publish/Subscribe System for Web Syndication 361

mon assumption that VS ⊆ VI . However, it is worth

noting that in reality, VS may diverge from VI signifi-

cantly. In this context, a match occurs if and only if

all of the terms (keywords) of a subscription s are also

present in a news item I (i.e., broad match semantics).

Consider the set of subscriptions S illustrated in Ta-

ble 1. Matching item I = {t2, t4} against S will result

in the set of matched subscriptions SM = {s4} since

t2 and t4 of s4 are contained in I. A naive matching

approach consists in testing whether the terms of every

subscription are contained in the incoming news item.

Clearly, this simple solution does not scale to millions

of subscriptions. For this reason, to avoid testing non-

matching subscriptions, an structured index has to be

chosen. A widely used structure is the inverted list (IL)

which maintains an inverse mapping for each term tj to

all subscriptions s that contain this item. It essentially

confines the original search space only to subscriptions

containing at least a term present within the item be-

ing matched. In particular, two variants of IL, namely

the “count-based inverted list” and the “ranked-key in-

verted list”, are studied in this paper. Additionally,

an “ordered trie” structure is considered to exploit the

term subset relations between subscriptions. To accom-

modate large vocabularies exhibited by web syndication

systems, we also study a well-known variant of tries,

namely “Patricia trie”.

Table 1. Example of Keyword-Based Subscriptions

Subscription Term

s1 t1 ∧ t2 ∧ t4

s2 t1 ∧ t3

s3 t1 ∧ t2 ∧ t5

s4 t2 ∧ t4

s5 t1 ∧ t3 ∧ t6

2.1 Count-Based Inverted List

Count-based inverted list (CIL) is essentially a map-

ping dictionary whose key is a term tj ∈ VS and whose

value is the corresponding postings list Postings(tj),

i.e., the set of subscriptions that contain the term. Fur-

thermore, to implement broad match semantics, an ad-

ditional structure has to be maintained: a counter per

subscription keeps track of the number of remaining

terms to be matched for a given subscription. The

structure that maps every subscription s ∈ S to the

number of remaining terms to be tested before report-

ing a matching is denoted by Counter.

Fig.1(a) depicts the CIL index for the example

of Table 1. The postings list associated with t2 is

Postings(t2) = {s1, s3, s4}. Initially, Counter = {s1 :

3, s2 : 2, s3 : 3, s4 : 2, s5 : 3}. Consider an incoming

news item I = {t2, t4}. The subscription elements of

Postings(t2) are first accessed and their corresponding

counters are decremented, and thus Counter = {s1 :

2, s2 : 2, s3 : 2, s4 : 1, s5 : 3}. Finally, after process-

ing t4, Counter = {s1 : 1, s2 : 2, s3 : 2, s4 : 0, s5 : 3}

and a matching is reported for subscription s4 since its

counter becomes 0.

2.1.1 CIL — Construction

When a new subscription s is posted to the system,

a new element labeled with the subscription identifier s

is added to the postings lists of all its terms. Addition-

ally, a new entry is inserted into Counter with the total

number of distinct terms |s| the subscription contains.

2.1.2 CIL — Matching

The matching process for an item I is given in Al-

gorithm 1. Initialization consists of an exact copy of

Counter

Dictionary Postings Lists Postings Lists
Directory

(b) (c)

Root

(a)

t1 s1

s1 









s1

s2

s2

s2

s3

s3
t3 s2

s4s1

s3

s5

t1

t2 t2
t2

t2 t3 t4

s4

s5s3

s2

s1

t4 t5 t6

t1

t2

t3

t1

t1

t1

s3

s5

t5

t6

s5

s5

s4

s4

t4

s4

s1

s3

s5

t2

t3

t4

t5

t6

Fig.1. Subscription indexes. (a) Counted-based inverted list. (b) Ranked-key inverted list. (c) Ordered-trie index.



362 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

Counter into Counter copy (line 1). For every term

tj ∈ I, Postings(tj) is accessed (line 3). For each

subscription s in Postings(tj), the corresponding sub-

scription value in Counter copy is decremented (line 5).

Whenever a counter reaches 0, a matching is reported.

Algorithm 1. CIL MATCH(I)

Require: an item I

1: Counter copy ← copy of Counter
2: for all terms tj ∈ I do

3: PostSet← Postings(tj)
4: for all s in PostSet do

5: Counter copy[s]
← Counter copy[s]− 1

6: if Counter copy[s] = 0 then

7: sM ← sM ∪ {s}
8: end if

9: end for

10: end for

2.2 Ranked-Key Inverted List

In contrast to CIL, in the ranked-key inverted list

(RIL), a subscription is added only to the postings list

of the least frequent among its terms. This term is

called key of the subscription. Besides the subscription

identifier, the elements of a postings list include the set

of the remaining subscription terms. This variant ob-

viates the need for an explicit Counter structure while

accessing only the postings list of the most discrimi-

nating term of a subscription. More precisely, for every

term of an incoming item, the corresponding postings

list is accessed, and for each of its subscriptions, it is

checked whether it contains the remaining item terms.

Clearly the postings lists of the frequent terms are re-

duced in comparison with CIL and subscriptions are

now distributed over a large number of postings lists of

medium-frequent terms.

Fig.1(b) depicts the RIL index for the example of

Table 1 where the term rank in frequency distribution

is given by the term subscript (t1 is the highest rank

in VS). Not all the terms have entries in the dictio-

nary. For instance, t1 and t2 do not appear as the

least frequent terms in any of the subscriptions in S.

Postings(t4) has two elements (s1 and s4) for which

the remaining (more frequent) terms to be checked are

stored. With item I = {t2, t4}, we start by checking for

subscriptions in Postings(t4). Since t1 is not present

in I which is required in subscription s1, I does not

satisfy s1. Then in the next subscription s4, t2 appears

in I ′ = I − t4 = {t2} and there are no more terms in

s4, thus it is satisfied by I.

2.2.1 RIL — Construction

When a new subscription s is posted to the system,

it is added to the corresponding postings lists. This

implies to sort the terms of s by their rank. Then an

entry labeled with the subscription identifier s is added

to the postings list of the least frequent term followed

by the remaining terms.

2.2.2 RIL — Matching

Matching an item I is given in Algorithm 2. When

item I arrives, its terms are sorted by their rank (line

1). In the rest of the paper, unless otherwise specified,

term subscripts are used to denote ordering. Then, the

postings lists Postings(tj) of the least frequent terms

are iteratively accessed (lines 2∼4). For every subscrip-

tion element of Postings(tj), it is checked whether its

remaining terms also appear in I (lines 6 and 7).

Algorithm 2. RIL MATCH(I)

Require: an item I

1: sorted terms← sort(I)
2: while sorted terms 6= {} do
3: tj ← less frequent(sorted terms)
4: sorted terms← sorted terms− tj
5: PostSet← Postings(tj)
6: for all s in PostSet(tj) do
7: if s.remaining ⊆ sorted terms then

8: sM ← sM ∪ {s}
9: end if

10: end for

11: end while

2.3 Regular Ordered Trie

As an alternative to IL indexes, an OT index is ca-

pable of exploiting the term subset relations between

subscriptions in order to build a hierarchical (as op-

posed to a flat) search space for sets of terms taking

advantage of common prefixes of terms in subscriptions

(i.e., factorization). A trie node represents a term and

a subscription is stored at node n of the trie iff its terms

are found in the path from the root to node n. Then,

two subscription paths sharing a subset of k nodes can

be merged in a single subpath of length k (i.e., common

prefix), followed by two distinct paths representing the

remaining subscription terms.

Clearly, in this structure, subscriptions are stored

only once and there is no need anymore for an ex-

plicit Counter structure. Compared with the com-

monly used trie structures for storing sentences on a

given vocabulary[6], two features characterize the or-

dered trie: 1) there is no repetition of terms in any



Zeinab Hmedeh et al.: Content-Based Publish/Subscribe System for Web Syndication 363

sentence (i.e., a subscription is a set of terms); 2) terms

in the subscriptions and therefore in the trie are to-

tally ordered. This total order could be random, fol-

low the ranking of the terms occurrence distribution in

subscription/new items whenever available, etc. This

structure referred to as regular ordered trie (ROT) has

been investigated in a different setting[7], as discussed

in Section 6. It was also used more recently in data

mining[10,13].

Fig.1(c) depicts the ROT index for subscription ex-

amples of Table 1 where the term rank is given by its

subscript (t1 has the highest rank in VS). Factorization

leads to a single node t1 for all subscriptions that share

this term. Consider now an incoming item I = {t2, t4}

(terms already sorted). Initially, term t2 is searched as

the child of the root. Since such a node exists, navi-

gation continues by looking for a t4 child node. Since

such a node also exists, subscription s4 is reported as

matching. Finally, term t4 of I is processed and since no

such path from the root exists, the matching concludes.

Collapsing single paths in the trie to single nodes will

reduce the number of nodes and consequently the mem-

ory occupied by the index, and accelerate matching. A

variant of a Patricia ordered trie (POT) obeys this prin-

ciple. Single paths corresponding to multiple nodes are

compacted into a single node. Each compact node is la-

beled with the nodes’ terms in the path. For instance,

nodes t2 and t4 in Fig.1(c) are merged in a single node

labeled with t2 and t4 in POT respectively.

2.3.1 ROT — Construction

Initially, the terms of a new subscription s are sorted

according to their ranking order. Then the path corre-

sponding to the first term of the ordered set of terms is

followed from the root. This procedure is repeated for

every term tj ∈ s. If a particular path does not exist,

then a new node labeled with the term under conside-

ration is created and inserted into the trie structure.

The node at which the top-down traversal concludes,

after consuming the whole set of terms, stores s.

2.3.2 ROT — Matching

The matching process for an item I is given in Algo-

rithm 3. When a news item I arrives, its terms are also

sorted. Paths corresponding to all the terms of I, whose

ranks are superior to that of the term assigned to the

currently considered node, are followed (lines 5∼10).

For every visited node, all linked subscriptions are re-

ported as matching (lines 2∼4).

Algorithm 3. TRIE MATCH(TNode, I)

Require: TNode: the current trie node, I : an item
1: sorted terms← sort(I)
2: if TNode contains subscriptions then

3: sMATCHED ← sMATCHED ∪ {s|s ∈ TNode}
4: end if

5: sorted terms← sorted terms− Term(TNode)
6: for all term tj ∈ sorted terms do
7: childNode← get child for term tj
8: if childNode 6= NULL then

9: TRIE MATCH(childNode, sorted terms− {tj})
10: end if

11: end for

2.4 Index Dependent Definition of Nodes

The three indexes presented previously essentially

implement a relation R of vocabulary terms within sub-

scriptions. The specific technique employed for count-

ing the matching terms in subscriptions to satisfy broad

match semantics identifies each index. As a conse-

quence, the node definition, inherent to each data struc-

ture, is also different. In CIL, an index node is a tuple

(tj , s) expressing that subscription s contains term tj .

If s has k terms, k nodes (so k R-tuples) are needed

to represent s. In RIL, an index node is a nested tuple

(tk, {(s, {tj})}) where tk is the key term, s the corre-

sponding subscription and {tj} the remaining terms to

be checked. In ROT, an index node is a nested tuple

({tj}, s) where {tj} is the set of terms encountered in

the path from root to this node which forms the ac-

tual content of subscriptions in s. When subscriptions

share the same prefix, it is expected to create less index

nodes in trie-based indexes than in inverted list-based

indexes. The rationale in studying the index behavior

in terms of abstract nodes is to understand the impact

in the morphology of the three indexes (and thus of the

search space) of critical parameters of web syndication

systems (i.e., the distribution of term occurrences or

subscription sizes).

3 Analytical Models

This section is devoted to analytical modeling for

predicting the number of nodes of the CIL, RIL and

ROT structures presented in Section 2 as well as for

predicting the number of visited nodes upon matching.

Parameters and notations that affect construction time,

memory requirements and matching time are summa-

rized in Table 2.



364 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

Table 2. Parameters Characterizing the Workload

Parameter Definition

|S| Total number of subscriptions

|VI |, |VS| Vocabulary size of items and subscriptions

|s|avg, |s|max Average and maximal subscription size respec-
tively

|I| Average news item size

P (tj) Frequencies distribution of terms in VI

θ(k) Probability for a subscription to have a size k

σi Probability to have a term with a rank 6 i

w(c), w(v) Size of counter/dictionary entry

w(p), w(n) Size of subscription posting entry/trie node

3.1 Building Time

|s|avg = Σ
|s|max

k=1 θ(k)× k, is the average size of a sub-

scription where θ(k) is the probability that a subscrip-

tion has a size k with k ∈ [1, |s|max]. Thus the time

required to insert a subscription into CIL is O(|s|avg)

(insert |s|avg new postings and a counter). RIL requires

to sort the terms before insertion to determine the less

frequent one which is performed in O(|s|avg×log |s|avg).

The time required to insert a subscription into ROT is

O(|s|avg × log |s|avg). This is due to the fact that us-

ing a hash-based implementation of trie nodes, the time

required to sort the terms of subscriptions dominates.

Observe that indexing time for all structures is indepen-

dent of the total number of stored subscriptions |S|.

3.2 Memory Requirements

Let P (tj) denote the frequency of occurrences of

term tj ∈ VI . It is assumed that the choice of tj ∈ s is

independent of the choice of any other term tm ∈ s. In

addition, let θ(k) be the probability that a subscription

has a length k with k ∈ [1, |s|max]. The probabilities

that tj is one of the terms of a subscription s, denoted

by Pr(tj ∈ s) and that tj is one of the terms of at least

one subscription in S, denoted by Pr(tj ∈ S), are:

Pr(tj ∈ s) = 1− Pr(tj /∈ s)

= 1−

|s|max
∑

k=1

θ(k)× (1 − P (tj))
k, (1)

Pr(tj ∈ S) = 1− Pr(tj /∈ S)

= 1−

|S|
∏

i=1

(1− Pr(tj ∈ s))

= 1− (

|s|max
∑

k=1

θ(k)× (1− P (tj))
k)|S|.

Then the number of terms in the vocabulary of sub-

scriptions VS is equal to: |VS | =
∑|VI |

j=1 Pr(tj ∈ S).

3.2.1 CIL Memory Requirement

Recall that the count-based index is composed of

two structures, Counter and the inverted lists that are

themselves further decomposed into the dictionary and

the subscription postings. Thus the overall memory re-

quired by the index is:

Size(CIL) = Size(Dictionary) +

Size(Postings) + Size(Counter).

The memory required by Counter is equal to:

Size(Counter) = |S| × w(c). (2)

We assume a low collision rate. Then the memory oc-

cupied by Dictionary is equal to:

Size(Dictionary) = |VS | × w(v). (3)

Finally, since each term of any subscription leads to an

entry in the corresponding postings list, the expected

total number of entries in the postings list is equal to

|S| × |s|avg and the size of the postings list is equal to:

Size(Postings) = |S| × |s|avg × w(p). (4)

In addition, for computing the matching time, we need

to know the size Size(Postings(tj)) of the postings list

of a term tj :

Size(Postings(tj)) =
Pr(tj ∈ S)

|VS|
∑

i=1

Pr(ti ∈ S)

× |S| × |s|avg, (5)

where Pr(tj ∈ S)/
|VS|
∑

k=1

Pr(tk ∈ S) is the normalized fre-

quency of tj in the postings. Thus the space consumed

by the index is:

Size(CIL)
(2,3,4)
= |VS | × w(v) + |S| × |s|avg × w(p) +

|S| × w(c).

Here (2, 3, 4) in the above formula refers to equations

used to deduce the right part of the equation.

3.2.2 RIL Memory Requirements

RIL is decomposed into Dictionary which stores

the set of terms that are the less frequent in at least

one s ∈ S, and the postings lists which store the set

of subscriptions. Since virtual nodes in CIL and RIL



Zeinab Hmedeh et al.: Content-Based Publish/Subscribe System for Web Syndication 365

consist in subscription or term IDs, we assume that

both structures share the same size w(p) for posting

entry. Thus Size(Postings) is computed as for CIL

((4)). Size(Dictionary) is however less than the CIL’s

one.

Size(RIL) = Size(Dictionary) + Size(Postings).

A subscription s belongs to a postings list

Postings(tj) iff tj ∈ s and there is no term ti ∈ s

with i < j. Thus Post(s, tj), the probability that a

subscription s belongs to Postings(tj), is:

Post(s, tj) =

|s|max
∑

k=1

θ(k)× k × P (tj)× (σj−1)
k−1,

where σj = Σj
i=1P (ti) is the probability to have a term

with a rank higher than i. Indeed, if the subscription

length is k, then there are k ways of choosing tj , the

remaining terms being chosen among the terms with

higher rank. The probability to have a term tj in Dic-

tionary is the probability to have at least one subscrip-

tion in corresponding Postings(tj):

Pr(tj ∈ Dictionary) = 1− (1− Post(s, tj))
|S|.

Thus the size of Dictionary is:

Size(Dictionary)

=

|VI |
∑

j=1

(1− (1− Post(s, tj))
|S|)× w(v). (6)

The overall memory required by the index is:

Size(RIL)
(4,6)
=

|VI |
∑

j=1

1− (1− Post(s, tj))
|S| × w(v) +

|S| × |s|avg × w(p).

Finally, when considering the length of each sub-

scription to be stored in the postings list, we deduce:

Postings(tj) = |S|

|s|max
∑

k=1

k × θ(k)× k ×

P (tj)× (σj−1)
k−1. (7)

3.2.3 ROT Memory Requirements

Although the analysis of the regular trie can be

found in particular in [14], to our knowledge, the follow-

ing is the first attempt to predict the expected number

of nodes of a regular ordered trie. The analysis takes

into account any term distribution and any distribution

of the subscriptions size. However it does not provide

a closed form. Therefore its applicability is limited to

vocabularies with size |VI | < 100 and short subscrip-

tions with size |s| < 12. It turns out that this is the

case when the vocabulary is restricted to the terms of

an item. We show that the analysis is useful for com-

puting the expected time to match an item against a

set of subscriptions. Let P be a path from the root to

a node in the trie representing term (labeled with) ti.

Its label Λ is defined as follows:

1) Λ = λ is the empty path label,

2) if P with label Λ is a path from root to a node la-

beled with ti, then Λ•j is the path label ending at node

labeled with tj whose parent is tail(P) labeled with ti.

In the following, for short, we shall say that node j

has for a prefix Λ or that j (tail(P)) has for an address

Λ • j (Λ). Let s be a subscription. There is a path in

the trie with the ordered sequence of ranks of terms in

s. It is noteworthy to mention that there are possibly
(

k

k−|P |

)

subscriptions sharing prefix Λ. Given s, Q(Λ, j)

denotes the probability that the node with address Λ•j

belongs to s.

Lemma 1. Q(Λ, j) =
|s|max
∑

k=|P|+1

θ(k) × Q(Λ, j, k)

where Q(Λ, j, k) denotes the probability that the node

with address Λ • j belongs to a subscription with size k

and is equal to:

Q(Λ, j, k) =

(

k

k − |P|

)

∏

m∈P

P (tm)× P (tj)×

(1 − σj)
(k−|P|−1). (8)

Proof. The probability that term tj belongs to s at

address Λ• j is Πm∈PP (tm)×P (tj)× (1−σj)
(k−|P|−1),

since the remaining k−|P|−1 nodes of s must be drawn

in VI −{t1, . . . , tj} (recall σj denotes the sum of proba-

bilities of the first j terms). Since there are
(

k
k−|P|

)

possible subscriptions, we obtain (8). �

We denote P (Λ, j) as the probability that node n

with address Λ • j exists in at least one subscription.

Thus node n is said to be occupied with probability

P (Λ, j). Then the probability that a node Λ• j is never

occupied by any subscription of |S| is denoted by:

P (Λ, j) = 1− (1−Q(Λ, j))|S|. (9)

Finally let E(Λ, j) denote the expected number of

nodes of the trie with root Λ• j where j has for a prefix

Λ.



366 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

Theorem 1. E(Λ, j) =
|VI |−|s|max+|P|

∑

m=i+1

P (Λ • j,m)×

(1+E(Λ•j,m)) with E(Λ, j) = 0 if |P| > s or j > |VI |.

Indeed, if node with address Λ • i • j is occupied, the

expected size of the trie with root Λ • i • j is equal to

E(Λ • i, j). Last the expected size of ROT is expressed

as:

Size(ROT ) = E(λ, 0)× w(n).

3.3 Matching Time

3.3.1 CIL Matching Time Requirements

The time complexity of matching an item I against

the set of indexed subscriptions S with Algorithm 1

is equal to the time needed to copy the counter,

T ime(Copy counter), and the time for dealing with

postings lists entries. The latter depends on the number

of times the critical inner loop (lines 4∼9) is executed,

i.e., the sum of the sizes of all the postings lists corre-

sponding to terms tj in item I. The constant time re-

quired to perform a counter decrement or test (resp. to

copy an entry of the counter) is denoted by τdecr (resp.

τcopy). Then the time needed to perform matching is:

T imeMatch(CIL)

= T ime(Copy counter) + T ime(Postings)

= |S| × τcopy +

|I|
∑

j=1

Size(Postings(tj))× τdecr

(5)
= |S| × τcopy +















|I|
∑

j=1

Pr(tj ∈ S)
|VS |
∑

i=1

Pr(ti ∈ S)

× |S| × |s|avg















× τdecr.

3.3.2 RIL Matching Time Requirements

The time needed to match an item I depends on

the number of its terms and the size of the correspond-

ing postings lists. First we must sort its terms (set up

phase) and then run through the postings lists to check

the inclusion of the subscriptions. The matching cost

is estimated as:

T imeMatch(RIL)

= T ime(Sort) + T ime(Postings)

= |I| × log |I|+ |I| ×

|VI |
∑

j=1

Size(Postings(tj))× τchk

(7)
= |I| × log |I|+ |I| ×

|I|
∑

j=1

|S| ×

|s|max
∑

k=1

k × θ(k)× (k × P (tj)× σj−1)
k−1 × τchk,

where τchk is the time needed to check term inclusion

in I.

3.3.3 ROT Matching Time Requirements

From the previous set of subscriptions S whose size

obeys distribution Distk with vocabulary V , the result-

ing ROT is denoted by T (S, Distk,V).

Definition 1 (Restriction of a Trie). The restric-

tion T ′(S, Distk,V
′) = ∆V′(T (S, Distk,V)) is the sub-

trie of T on vocabulary V ′ ⊂ V with the same maximal

depth as the maximal size of a subscription |s|max.

By definition, T ′ is pruned when its terms are not

in V ′. Subscriptions s are contained into T ′ when there

terms are all in V ′, as well as subscriptions whose pre-

fix is defined in V ′ but tail is out of V ′. All nodes

of the prefix of the latter subscriptions are occupied

as well. Theorem 2 allows to predict the number of

nodes visited upon matching an item against the set

of subscriptions. The set of terms of an item (V(I)) is

very small: it is on average equal to 25 in our datasets

for experiments. Then the expected number of visited

nodes of the restriction of the ROT to the vocabulary of

item V(I), T ′(S, Distk,V(I)), is the expected number

of nodes visited for matching I. T is used as a short

cut for T (S, Distk,V).

Theorem 2. The expected number of visited nodes

for matching item I against the subscriptions of trie T

(Algorithm 3) is equal to the expected number of nodes

of the restriction ∆V(I)(T ) where V(I) is the vocabulary

of I.

Then the expected number of visited nodes for

matching item I = {t1, . . . , tk} which has been sorted

on the term ranks, is expressed, using P (Λ, j) in (9),

as:

V isitedNodes = E(λ, 0), where

E(λ, j) =
|I|−|s|max+1

∑

m=j+1

P (λ • j,m)× (1 + E(Λ • j,m)).

Proof. Theorem 2 evaluates the average number of

nodes occupied. A node n to be visited by Algorithm 3

is a node occupied. Either n or the sub-trie of root n

possibly contains subscriptions to be checked for match-

ing. A node has no child (line 8 of Algorithm 3) when

it reachs maximal depth or when remaining terms are

not in V ′. There are no other nodes to be visited. �



Zeinab Hmedeh et al.: Content-Based Publish/Subscribe System for Web Syndication 367

Table 3 validates this model against actual measures

on real items obeying the Zipf distribution and 1M sub-

scriptions with fixed sizes (|s|max). An average was

taken over 5K real items chosen randomly from the En-

glish items crawled in [1]. We notice that the deviation

slightly increases with subscriptions size. With large

subscriptions, the depth of the trie is higher, thereby

the approximations of the computations at each level

are propagated. For a large number of leaf nodes, the

sum of approximations done becomes more significant.

Table 3. Real vs Estimated Number of Visited Nodes

|s|max Real Calculated by Theorem 1 Deviation (%)

2 426.70 426.89 +0.043

3 538.99 538.86 −0.024

4 576.52 575.77 −0.130

5 594.66 590.03 −0.770

6 600.15 595.64 −0.750

7 603.36 596.06 −1.200

8 599.80 592.17 −1.270

The total matching time, given by (10), is equal to

the time needed to sort the item’s terms and the sum of

the time spent on the visited nodes. The average time

spent on a single node is τn.

T imeMatch(ROT )

= T ime(Sort) + T ime(Nodes)

= |I| × log |I|+ E(λ, 0)× τn. (10)

4 Partial Matching

The broad-match semantics can be too restrictive

for some subscriptions, especially for long ones where

the probability of matching is very low. We investigate

in this section how different structures are able to man-

age the partial matching, i.e., they notify a subscrip-

tion when the “most characteristic” terms are present

in an item. We show that different structures support

partial matching when processing preliminary to sub-

scriptions’ decomposition in sub-subscriptions of inte-

rest. The structure of CIL also allows an extension to

support the processing of partial matching.

4.1 Term Weight

Our partial matching relies on scores for a matching

between the subscription and an item, thus we need to

define how to weight terms of the subscriptions. We

assign a weight to each term in |VS |, the vocabulary of

subscriptions which represents their importance. Seve-

ral term weighting models are proposed in literature

like the term frequency (TF) combined with inverse

documents frequency (IDF)[15], the term discrimination

value (TDV)[16] or the term precision[17].

In our context, we rely on the TDV weighting func-

tion which is more adapted to the quality of vocabu-

laries in web syndications systems. In fact, an item is

a short set of terms where term frequencies cannot be

used, and thus the tf/idf standard function is unsuit-

able. Moreover, the TDV weighting function measures

how a term helps to distinguish a set of documents (i.e.,

the term influence on the global entropy). Therefore ba-

sically for our subscriptions set, neither a very frequent

term (present in many subscriptions, thus this term is

not a selective filter for subscriptions), nor a very un-

common term (present in very few subscriptions, thus

assuming this is not a typo, it will probably never lead

to a notification) has an important TDV value. Finally,

the simplicity of computation is all the more important,

since we only have to compute a sum of weights for each

subscription as what we will see in Subsection 4.2.

More precisely, the discrimination value for a term

tk is the difference between the occurrence matrix’s

vector-space density and the matrix’s vector-space

without tk. Therefore, assuming a similarity distance

sim(I1, I2) between items, like the cosine of the eucli-

dian distance, we compute the density as the average

pairwise similarity between distinct items:

∆(I) =
1

|I| × (|I| − 1)

|I|
∑

i=1

|I|
∑

j=1∧j 6=i

sim(Ii, Ij),

where |I| is the size of the itemset.

Finally the TDV value for a term tk is:

tdv(I, tk) = ∆(I − {tk})−∆(I).

We denote for simplicity reason tdv(tk) instead of

tdv(I, tk) whenever there is no ambiguity. Based on

this function, we can weight the different terms of the

query. Each term weight is the TDV value normalized

by the sum of TDV values of the query terms.

Definition 2 (Query Term Weight). Let s =

{t1, t2, . . . , tn} be a subscription, the query term weight

̺(tk, s) is:

̺(tk, s) =
tdv(tk)

∑

i∈s tdv(ti)
.



368 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

4.2 Partial Matching Extension

Assuming the existence of a matching threshold κ,

for an incoming item I, we intend to notify a subscrip-

tion s whose matching score is greater than κ. The

matching score µ(s, I) is defined as the sum of the query

term weights of all terms of s that are matched by I,

thus µ(s, I) =
∑

t∈s∩I ̺(t, s).

4.2.1 Subscriptions Decomposition Approach

A first approach consists of indexing for each given

subscription, not only the subscription itself but also

all the subsets of terms whose matching score is greater

than κ. Consequently, in the worst case, for a sub-

scription s, we have 2|s| − 1 possible partial matchings

for s (i.e., the power set of s excluding the empty set).

Note that the containment matching property allows to

reduce the number of subsets to be indexed.

Property 1 (Containment Matching Property).

Let s′ and s′′ be subsets extracted from s. If s′′ ⊂ s′

and µ(s′′, I) > κ, then µ(s′, I) > κ. In other words,

all matchings of s′ leading to the notification of s are

already covered by s′′.

Thus we index for each given subscription, only sub-

sets of its terms whose matching scores are greater than

κ, and not included in any other subset candidate (in-

cluding the whole subscription).

While the decomposition approach is the simplest

way to handle partial matchings for all structures,

CIL can also be extended to efficiently support par-

tial matching. We can notice that both RIL and POT

rely on a terms order, thus the most unfrequent or the

first ranked term is mandatory. Then they are not can-

didates for an extension similar to CIL.

4.2.2 Extending CIL

We propose an extension of the CIL index to manage

partial matching named CILp. The mapping dictionary

in CILp is unchanged compared with CIL, but postings

lists need to store the query term weight of different

terms. Thus an entry in a postings list Postings(tj)

is now a couple (si, ̺(tj , si)) where si is the identifier

of the subscription that contains term tj whose query

term weight for si is ̺(tj , si).

The CIL Counter is now replaced by a cumulative

counter with an entry for each subscription that could

produce a possible match (i.e., their matching score

is greater than κ). These entries are initially set to

0. Note that we do not need to store Counter and

to copy it before any matching attempt like in CIL,

but we create a new one for each matching attempt.

Then during the matching attempt, for every term

tj ∈ I, Postings(tj) is accessed. For each subscription

s in Postings(tj), the corresponding subscription value

in the cumulative counter is incremented by ̺(tj , s).

Whenever a counter’s value goes over κ, a matching is

reported.

4.2.3 CILp with Users’ Thresholds

We shortly introduce a variant, CILpu, where each

user is allowed to fix the matching threshold for its sub-

scription. This choice only impacts Counter: like the

basic CIL, Counter stores information for each sub-

scription, i.e., the matching threshold κi for each sub-

scription si. With this variant, a copy of the counter

is performed for each matching, and then every term

tj ∈ I leads to lists Postings(tj) of subscriptions s.

The value of each corresponding subscription s in the

Counter copy is decremented with ̺(tj , s). Whenever

a counter reaches 0, a matching is reported.

5 Performance Evaluation

The core implementation choices and the characte-

ristics of the dataset of items and subscriptions are first

presented, and then experiments illustrate the impact

of different workload parameters on the morphology,

the space requirement and the matching time. All ex-

periments were run under Linux on a 3.60 GHz quad-

core processor with 16 GB of memory.

5.1 Implementation

All indexes were implemented using the standard

Java Collection Framework v1.6.0 20. We describe the

implementation of each index and the motivation be-

hind the choice of data structures and their different

parameters.

5.1.1 Inverted Lists

Dictionary representing the inverted list in both CIL

and RIL indexes is implemented using a static hash ta-

ble inherited from Java hash map (see Fig.2). Subscrip-

tion IDs are encoded in all structures as 4-byte integers.

In CIL, due to collisions, a dictionary entry may cor-

respond to more than one term. For this reason, each

entry is associated with a linked list of term node, whose

nodes are (tid, ↑ subSlist, ↑ next), where tid is the term’s

identifier, ↑ subSlist is a pointer to a subscription list

implemented as an array list and ↑ next a pointer to



Zeinab Hmedeh et al.: Content-Based Publish/Subscribe System for Web Syndication 369

the next node. Finally, Counter is a byte array of size

|S| (a subscription size cannot exceed 28 terms). RIL

is implemented in a similar way with two noteworthy

differences: 1) the lack of Counter, and 2) besides sub-

scriptions’ IDs, the elements of subscription lists also

keep track sequentially of the terms that remain to be

checked per subscription.

Null
Super-Node List
(Linked List)

N N

N

N
Subscriptions List
(Array List)

Directory (Hash Table)

tid

tid

Fig.2. CIL/RIL implementation. N: Null.

5.1.2 Ordered Trie

Many different data structures (e.g., linked lists, ar-

rays or trees) have been suggested for implementing effi-

ciently a trie structure. We choose a hash tree based[18]

implementation of the ROT (see Fig.3). Every internal

node includes: 1) a 4-byte integer that stores the term’s

rank, 2) an array list for storing the corresponding sub-

scriptions, and 3) a Java hash map for storing the chil-

dren nodes. A leaf node only consists of the term’s

ID and the subscription list. We have paid particular

attention to optimizing the memory requirements of in-

ternal and leaf nodes w.r.t. the number of their chil-

dren. Therefore, we distinguish nodes with or without

associated subscriptions, and with zero, one or several

children. Each node type is equipped with a different

implementation. For instance, node B is an internal

node with a hash map to index its children, but has

no subscription list associated with, unlike node C not

holding any subscription. Note that leaf nodes like D

or E do not contain any hash map since they have no

child. Since nodes may store only one subscription, we

further reduce the node size by using a single subscrip-

tion’s ID (node E) instead of an array list (node D).

Finally, in the POT variant, the paths of unary nodes

are compacted into a compact node labeled with the set

of terms of the compacted unary ones. A 4-byte array

is used to store the terms sorted by their ranks (node

F ). Despite its factorization gain in terms of abstract

nodes (see Subsection 5.2), the memory requirements of

a concrete POT node are clearly more important than

those of CIL and RIL: while for CIL and RIL, a node

occupies only 4 bytes, and it occupies on average 128

bytes for POT (a complex Java object with a hash map,

pointers, array lists, etc.).

Null

Null

A

B

D E

C

F

Children ‘‘ HashMap’’  

Subscriptions List
(Array List)

‘‘ int’’ for Single
Subscription

(Array List)

Subscriptions
List

Terms List
(Array List)

Internal
Nodes

Leaf
Nodes

tid tid

tid tidtid tid

Fig.3. ROT/POT implementation.

5.1.3 Description of Synthetic and Real Datasets

The experimental evaluation relies on a large-scale

testbed acquired over an 8-month campaign from

March 2010 to October 2010[1]. A total number of

10.7M items were collected originating from 8K produc-

tive feeds (spanning over 2K different hosting sites)[1].

From the textual content of items, a vocabulary of 1.5M

distinct terms was extracted and has been used for the

synthetic generation of subscriptions. More precisely,

we rely on the ALIAS sampling method[19] to gene-

rate subscriptions whose distinct terms follow a given

occurrence distribution Dist. Three distributions are

chosen for the subscriptions in the experiments: real

(subscriptions obey the same term distribution as the

news items term distribution), uniform, and inverse

(subscriptions follow the inverse term occurrence distri-

bution of items). Generated subscriptions are charac-

terized by three features: 1) the vocabulary size and the

occurrence distribution of terms in subscriptions VS, 2)

the total number of generated subscriptions |S|, and

3) the subscription size k that can be constant for all

subscriptions, or follow a particular distribution. When

not specified, we use the size distribution of web queries

reported in [20]. It is characterized among others by a

maximal size equal to 12 and an average equal to 2.2.

5.2 Size and Morphology of Indexes

This subsection is devoted to the impact of the sub-

scriptions size and the terms’ occurrence distribution

on the index size and morphology. These parameters

determine the degree of factorization achieved by ROT

(or POT) compared with CIL (or RIL) on common sub-

scription prefixes as well as the rank of terms for which



370 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

factorization is actually taking place. Both are essen-

tially affecting the pruning opportunities (i.e., nodes

visited) of the indexes during matching. In order to

provide a common basis for comparing the morphology

of the indexes, the number of index nodes is measured

(for the index dependent definition of abstract nodes,

see Section 2).

5.2.1 Expected Factorization Gain

Fig.4 depicts the number of ROT nodes created

per term rank compared with CIL when indexing the

same set of 10M subscriptions with a vocabulary VS =

4.7 × 105 following the real distribution of terms in

items[1]. Clearly, the distribution of the size of the CIL

postings lists is identical to the distribution of terms’

occurrences in subscriptions. We observe that the num-

ber of ROT nodes is significantly reduced not only w.r.t

CIL (due to the factorization of common prefixes) but

also w.r.t. the complete ordered trie (COT) with the

maximal depth for the subscription of size 12.

100 101 102 103 104 105 106

106

105

104

103

102

101

100

Term Rank

CIL

ROT

COT

N
u
m

b
e
r 

o
f 
N

o
d
e
s

Fig.4. Number of nodes vs term rank.

Table 4 highlights the gain achieved in the number

of nodes per term rank tr. More precisely, the gain is

defined as Gtr = (Ntr(CIL)−Ntr(ROT )) / Ntr(CIL),

where Ntr(CIL) and Ntr(ROT ) denote the number of

nodes in CIL and ROT for term rank tr respectively.

The number of occurrences, for a given term rank in the

generated subscriptions as well as the number of ROT

nodes that hold this term, is also given in this table.

As expected, the gain decreases from almost 1 for rank

1 (most frequent term) to 0 for rank 470 000 (no fac-

torization). The closer the number of nodes in ROT to

CIL, the smaller the factorization. In this experiment,

for all terms having a rank greater than 18 789, the gain

is equal to 0.

Table 4. Gain per Term Rank

Rank Number of Number of Gain (%)

Occurrences ROT Nodes

138 091 138 090 2 201 99.99

138 010 060 469 2 252 99.91

131 000 104 967 2 201 55.69

110 000 138 251 2 218 13.15

470 000 138 091 2 201 00.00

5.2.2 Impact of Subscription Size

We now focus on how the size of subscriptions affects

nodes factorization in ROT. The sets of subscriptions

are generated using the same vocabulary as previously

mentioned, but with a fixed size k ∈ {3, 6, 9, 12, 24, 36}.

To provide a common comparison ground, the total

number of term occurrences T in each set of subscrip-

tions is fixed to T = |S| × k = 1.5M.

We observe in Fig.5 that the number of ROT nodes

increases with k, i.e., factorization decreases with k. In-

deed, the larger the subscriptions, the deeper the ROT.

In this context, the probability that two subscriptions

share the same terms decreases for larger subscriptions

and the ROT behavior is close to the COT one. In

other words, larger subscriptions imply more distinct

paths. For instance, for subscription size k > 24, even

for frequent terms (i.e., rank around 100), there is no

gain. Oppositely, for subscription sizes k 6 24, more

occurrences of frequent terms are encountered in sub-

scriptions and thus the structure fully benefits from the

factorization gain. Of course, for k 6 2, the number of

subscriptions associated with leaves becomes large and

the structure degenerates to an inverted list over term

combinations (rather than individual terms).

100 101 102 103 104 105

Term Rank

CIL
ROT/Size=12

ROT/Size=3
ROT/Size=24

ROT/Size=6
ROT/Size=36

104

103

102

101

100

N
u
m

b
e
r 

o
f 
N

o
d
e
s

ROT/Size=9

Fig.5. Number of nodes vs term rank for different subscriptions
sizes.



Zeinab Hmedeh et al.: Content-Based Publish/Subscribe System for Web Syndication 371

5.2.3 Impact of Terms Order

To estimate the impact of the total order of terms

when building ROT or POT, four orders are considered:

1) a frequency order (descending order in the number

of term occurrences in subscriptions), 2) a reverse or-

der (ascending order in the number of occurrences), 3)

arrival order (order of arrival of terms in the subscrip-

tions), and 4) random order (the term rank is randomly

drawn).

The terms order has a limited impact on the size

of ROT (see Fig.6). Compared with the frequency or-

der, reverse, random and arrival order require 23.9%,

12.1% and 1.6% more nodes respectively. The differ-

ence between the frequency order and the arrival order

is expected since more frequent terms appear statisti-

cally earlier than infrequent ones and there is an impor-

tant factorization on the terms with the lowest ranks.

For the reverse order, there is now a (low) factorization

on the highly ordered terms but since these terms are

infrequent, more subscriptions will be indexed in the

sub-tries rooted at medium-frequency terms where fac-

torization is more important. This explains why this

order leads to more trie nodes, but the increase is lim-

ited.

Frequency Reverse Random

POT ROT

Arrival

Terms Order

T
o
ta

l 
N

u
m

b
e
r 

o
f 
N

o
d
e
s

15

10

5

0

(Τ106)

Fig.6. Impact of terms order on the number of created nodes.

Fig.7 shows that the terms order impacts more se-

riously the number of nodes visited during matching:

e.g., an incoming item visits 36.1% more nodes in the

frequency order than in the reverse one. The reverse

order allows a better pruning than the frequency or-

der since subscriptions featuring less frequent terms can

be quickly filtered out. A similar result, in a different

context, is reported in [7]. Surprisingly enough the or-

der has an almost negligible effect on both the POT

size and the number of nodes visited during match-

ing. The number of trie nodes differs by less than 1%

w.r.t. the considered order, and the difference between

the numbers of visited nodes does not exceed 8%. In-

deed, whereas the reverse order requires more nodes

for ROT, subscriptions in sub-tries rooted at the low-

ordered terms are poorly factorized. This poor factori-

zation leads to many unary paths that benefit from the

path compaction of POT.

Frequency Reverse Random

POT ROT

Arrival

Terms Order

N
u
m

b
e
r 

o
f 
V

is
it
e
d
 N

o
d
e
s

600

500

400

300

200

100

0

Fig.7. Impact of terms order on the number of visited nodes.

5.2.4 Impact of Terms Distribution

To investigate the impact of terms’ occurrence dis-

tribution on the indexes, in addition to the real dis-

tribution employed previously, two more distributions

are considered when generating subscriptions: 1) uni-

form and b) inverse where the most frequent terms in

subscriptions correspond to the least frequent terms in

items. Note that terms are ranked according to their

frequency order in items.

Fig.8 shows that the terms’ occurrence distribution

in subscriptions has no impact on the size of the four

indexes. For CIL and RIL, the number of nodes cor-

responds to the number of terms in subscriptions and

thus it is independent from their occurrence distribu-

tion. Regarding ROT, real or inverse distributions have

no impact on the index size. As a matter of fact, the left

part of the trie structure becomes unbalanced for the

former and this unbalance is shifted to the right for the

latter. But in all cases, a similar factorization gain is

observed. As expected, an uniform distribution results

in a significantly larger ROT index. More combinations

of terms are drawn, resulting in a more balanced trie

with more paths rooted at internal nodes, and thus less

factorization opportunities. Paths compaction attenu-

ates this effect for POT.

In contrast, distributions seriously impact the num-

bers of visited nodes during matching (Fig.9). For CIL,



372 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

this number reaches 300 000 for real, but only 1 400 for

uniform and it drops to 8 for inverse. ROT and POT

exhibit a similar behavior with 400 nodes, 26 nodes,

and one node visited on the average for the different

distributions. For CIL, inverse leads to the scanning of

shorter subscription lists leading to a lower matching

cost. For a uniform distribution, subscription lists have

almost the same size, while in real, subscription lists of

frequent terms are particularly large with a high proba-

bility to be scanned for an incoming item. Regarding

ROT and POT, uniform and inverse distributions yield

a fast pruning, because of low factorization. For inverse,

frequent item terms correspond to quite few subscrip-

tions, and it is quite rare to match more than one term.

For uniform, less subscriptions with a given prefix lead

to less nodes having to be visited.

Real Uniform Inverse

POT ROTCIL RIL

Frequencies Distribution

T
o
ta

l 
N

u
m

b
e
r 

o
f 
N

o
d
e
s

30

25

20

15

10

5

0

(Τ106)

Fig.8. Impact of the distribution on the number of created
nodes.

Real Uniform Inverse

POT ROTCIL RIL

Frequencies Distribution

106

105

104

103

102

101

100

N
u
m

b
e
r 

o
f 
V

is
it
e
d
 N

o
d
e
s

Fig.9. Impact of the distribution on the number of visited nodes.

5.2.5 ROT vs POT by Scaling Vocabulary Size

ROT will be excluded from the experiments of Sub-

section 5.3 due to its requirements on memory space

and matching time. To understand this behavior, we

studied the morphology of the trie indexes for differ-

ent vocabulary sizes. As shown in Fig.10, the number

of nodes in the trie increases linearly with the size of

the vocabulary but is greater for ROT. That is why

this index requires much more memory space and does

not allow the scaling by the number of subscriptions

indexed.

POT ROT

T
o
ta

l 
N

u
m

b
e
r 

o
f 
N

o
d
e
s

14

12

10

8

6

4

2

0
1 2 5

Vocabulary Size (Τ105)

10 15

 (Τ106)

Fig.10. Number of nodes for different vocabulary sizes.

Regarding the number of visited nodes for match-

ing an item, Fig.11 shows that the number of paths to

compute evolves exponentially for the two structures.

In fact, each trie is composed of much more nodes for

large vocabularies, and thus more nodes have to be vis-

ited on matching items.

POT ROT

N
u
m

b
e
r 

o
f 
V

is
it
e
d
 N

o
d
e
s

600

500

400

300

200

100

0
1 2 5

Vocabulary Size (Τ105)

10 15

Fig.11. Number of visited nodes for different vocabulary sizes.



Zeinab Hmedeh et al.: Content-Based Publish/Subscribe System for Web Syndication 373

5.3 Scalability and Performance in Broad

Matching

We turn now our attention to benchmarking mem-

ory space and matching/indexing time for CIL, RIL

and POT. In particular, index scalability w.r.t. crit-

ical workload parameters of web syndication systems

such as |VS | and |S| is investigated. As said previously,

ROT, whose space consumption reveals quickly scala-

bility issues, has been discarded.

5.3.1 Memory Requirements

Fig.12 illustrates the evolution of the memory space

for the three indexes for 10M of subscriptions when scal-

ing vocabulary size VS . Using vocabularies of items VI

ranging from 100K to 1.5M terms, we generate sub-

scriptions whose vocabularies VS range from 87 839 to

471 324 terms. In general, IL indexes require a third of

the memory required by POT. CIL and RIL space re-

quirements slightly increase with vocabulary size, from

250 MB to 280 MB when the vocabulary size triples

corresponding to 10% of increase. This is due to the

fact that a larger vocabulary leads to a larger hash

table for the Dictionary (we fix it as half size of the

vocabulary) while subscription lists are constant, with

|s|avg × |S| nodes for CIL and RIL. On the other hand,

POT is more sensitive to the vocabulary size, since

its space requirement grows from 710 MB to 925 MB,

about a 30% increase. This is due to the appearance of

more terms combinations in subscriptions which leads

to more paths in the trie and less factorization oppor-

tunities.

CIL
POT
RIL

M
e
m

o
ry

 S
p
a
c
e
 U

se
d
 (

M
B

)

1000

800

600

400

200

0
10 2 3

Vocabulary Size (Τ105)

4 5

Fig.12. Memory footprint by scaling |VS |.

Fig.13 illustrates the memory space consumed by

the three indexes for a vocabulary VI (resp. VS) of

1.5M (resp. 1.2M) terms when scaling the number of

subscriptions from 5M to 100M. As expected, the mem-

ory space consumed by CIL and RIL increases linearly

with the number of subscriptions. Since the Dictionary

size is fixed to half of the size of VS , only subscrip-

tion lists consume more space to store the incoming

subscriptions (i.e., a 4-byte id per new subscription).

Surprisingly enough, POT’s also exhibits a linear size

growth. While a sub-linear growth is expected with

factorization, this effect competes with the creation of

new nodes. This happens when a subscription does not

match with any of the trie paths or with alteration of

existing ones when adding a new subscription list, resiz-

ing the array of an existing subscription list, or adding

to a new hash map for its children. The gradient of the

memory curve is four times larger for POT than for CIL

and RIL. For instance for 100M subscriptions, the first

requires 9 200 MB while the other two only 2 320 MB.

Remember that despite its factorization gain in terms

of abstract nodes (see Subsection 5.2), the memory re-

quirements of a concrete POT node in our implemen-

tation are on average 128 bytes versus 4 bytes for CIL

and RIL.

CIL

POT

RIL

M
e
m

o
ry

 S
p
a
c
e
 U

se
d
 (

M
B

)

10000

8000

6000

4000

2000

0
200 40 60

Number of Subscriptions (Τ106)

80 100

Fig.13. Memory footprint by scaling |S|.

5.3.2 Matching Time

Fig.14 reveals that for 10M of subscriptions, RIL

and POT outperform CIL by one or two orders of mag-

nitude for all vocabulary sizes. For instance, a match-

ing is performed in 4.33 ms (resp. 6.21 ms) for CIL

with |VS | equal to 87K (resp. 378K), while it requires

only 0.55 ms (resp. 0.89 ms) for RIL and 0.03 ms (resp.

0.94 ms) for ROT. CIL matching leads to scanning large

subscription lists, and consequently to decrement many

counters, especially for items with 25 terms on ave-

rage that are likely to contain several frequent terms.

RIL takes advantage of the terms distribution to scan

smaller subscription lists than CIL, since by construc-

tion only few subscriptions appear in the postings lists

of frequent terms. POT benefits from a more drastic



374 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

pruning of the search space, since despite the theoret-

ically large number of paths, in POT, not many term

combinations actually exist (see the difference between

the complete trie COT and ROT in Fig.4).

CIL
POT
RIL

M
a
tc

h
in

g
 T

im
e
 (

m
s)

7

6

5

4

3

2

1

0
10 2 3

Vocabulary Size (Τ105)

4 5

Fig.14. Matching time by scaling |VS |.

The vocabulary size VS also affects indexes. CIL ex-

hibits a convergent behavior: with larger VS , more sub-

scription lists are scanned but since each one is small,

the same number of nodes is visited. RIL matching

cost grows linearly with VS : for large vocabularies, sub-

scriptions are less likely to contain the least frequent

terms, and consequently the subscription lists of the

medium frequent terms are larger; since these lists have

a higher probability to be scanned when matching an

incoming item, more nodes are expected to be visited.

In POT, this number increases exponentially with VS :

trie has less factorization opportunities (nodes for fre-

quent terms degenerate to inverted lists) and for an

incoming item, more paths need to be explored. As

a consequence, while POT outperforms RIL with one

magnitude order for small vocabularies, RIL provides

better performances for large ones (i.e., |VS | > 378K).

Fig.15 depicts the matching time for a vocabulary

VI of 1.5M terms when scaling the number of indexed

subscriptions from 5M to 100M. In the three indexes,

matching time scales linearly with the number of sub-

scriptions. CIL and RIL subscription lists grow lin-

early with |S|, thus achieving a constant gain which

explains this linear behavior (the gradient remains 6.5

times higher for CIL). In POT, the index size grows

with the number of subscriptions, and consequently the

pruning effect decreases since more paths are possibly

explored when matching an incoming item. Observe

that POT slightly outperforms RIL for a large number

of subscriptions: for 108 subscriptions, matching time

is only 7.2 ms for POT versus 10 ms for RIL.

CIL
POT
RIL

M
a
tc

h
in

g
 T

im
e
 (

m
s)

70

60

50

40

30

20

10

0
200 40 60

Number of Subscriptions (Τ106)

80 100

Fig.15. Matching time by scaling |S|.

5.3.3 Matching Time Analysis

Previous results show that POT is much faster than

CIL in matching time. To explain this order of mag-

nitude between their matching time, we measured the

time needed to execute the different instructions of their

algorithm. Table 5 (resp. Table 6) illustrates the per-

centage of some of these instructions for POT (resp.

CIL) algorithm. These tables present the average val-

ues of results of experiments on several sets of subscrip-

tions (5, 10 and 25 millions of subscriptions).

Table 5. Matching Time for POT

Instruction Percentage of Matching Time

Sort terms’ IDs 01

Searching for nodes 89

Recursive retrieval 10

Table 6. Matching Time for CIL

Instruction Percentage of Matching Time

Copy of counter 40

Scan postings list 10

Counter’s decrements 50

As shown in Table 5, 89% of the time needed to

match an item in POT is spent in searching and test-

ing nodes and the pre-processing phase (search and sort

terms’ identifiers) does not need more than 1% of the

time. In the CIL index, only 10% of time is used to

search and scan postings lists. However, almost 50% of

this time is spent in counter’s decrements, which is due

to the fact of processing all subscriptions. Another im-

portant thing is that 40% of the matching time is used

in the copy of the counter, and oppositely this instruc-

tion does not exist in the RIL which gives the difference

of time.



Zeinab Hmedeh et al.: Content-Based Publish/Subscribe System for Web Syndication 375

5.3.4 Indexing Time

Last, we measure the average time required to index

10M subscriptions generated from a vocabulary VI of

1.5M terms. IL building time is in general faster than

that of OT, with only 0.7 µs (resp. 1.0 µs) required to

insert a subscription to RIL (resp. to CIL) while POT

needs 1.7 µs. The additional POT overhead stems from

the cost of converting a trie node from one type to the

other (to accommodate added subscriptions, children,

etc.). On the contrary, CIL requires only to add the

new subscription to the corresponding postings lists of

its terms while RIL indexing is even simpler since a

subscription is added only to one postings list of its key

term.

5.4 Partial Matching

We study here the experimentation of the par-

tial matching semantics on our structures. More pre-

cisely we compare CIL, RIL and POT with the sub-

scription decomposition approach, and CIL extension

with threshold named CILp (see Subsection 4.2). We

first measure the number of partial subscriptions (pro-

duced by the decomposition) indexed regarding dif-

ferent matching thresholds assuming the containment

property (see Section 4) in Table 7. In the following,

unless precised, we set the threshold to 0.75.

Table 7. Ratio (Partial Subscriptions Indexed/Initial

Subscriptions) w.r.t. the Matching Threshold

Threshold Ratio

0.5 2.50

0.6 2.22

0.7 1.75

0.8 1.33

0.9 1.08

5.4.1 Memory Requirements

We depict in Fig.16 the memory requirements for

CIL, RIL and ROT when indexing all partial subscrip-

tions whose matching score is greater than the matching

threshold, along the variants CILp and CILpu. We ob-

serve that the memory requirement increases linearly

with the number of subscriptions for all indexes. Com-

pared with the memory space used in the broad match-

ing, CIL, RIL and ROT require around 50% more space

for storing all partial subscriptions, as expected (re-

member that for a threshold of 0.75, we have a ratio of

1.5, see Table 7). For CILp and CILpu, the array that

stores the terms’ weight consumes linearly more mem-

ory. For 10M subscriptions, the array of bytes reaches

20 MB (on average 2.2 entries are added for each sub-

scription).

0 20

CIL POT RIL CILp CILpu

40

Number of Subscriptions (Τ106)

M
e
m

o
ry

 S
p
a
c
e
 U

se
d
 (

M
B

) 
(Τ

1
0

3
) 12

10

8

6

4

2

0
60 80 100

Fig.16. Memory used in broad vs partial matching by scaling
|S|.

5.4.2 Matching Time

Fig.17 shows that the matching time also scales lin-

early with the number of subscriptions for all indexes.

While CILpu and CIL exhibit a similar matching time,

we observe that they are outperformed by CILp. The

rationale is that, unlike CILpu and CIL, CILp does not

perform a copy of Counter. This results in a gain which

increases with the size of Counter, i.e., |S|.

0 20

CIL POT RIL CILp CILpu

40

Number of Subscriptions (Τ106)

M
a
tc

h
in

g
 T

im
e
 (

m
s)

80

60

40

20

0
60 80 100

Fig.17. Matching time with partial matching by scaling |S|.

Fig.18 illustrates that the matching time in the in-

verted lists indexes (CIL and RIL) is particularly sensi-

tive to the matching threshold, while it has a small im-

pact on POT and even no impact on CILp. Indeed small

thresholds lead to more partial subscriptions, thereby

for ILs indexes it results in larger postings list to scan.

Since the matching time in the trie POT depends es-

sentially on the number of visited nodes and not on the



376 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

number of subscriptions indexed, and partial subscrip-

tions have a high probability to be included in existing

subscriptions, the increase in matching time with the

threshold remains moderate.

50

CIL POT RIL CILp CILpu

60

Threshold

14

12

10

8

6

4

2

0
70 80 90

M
a
tc

h
in

g
 T

im
e
 (

m
s)

Fig.18. Matching time in partial matching w.r.t. threshold of
matching.

5.4.3 Indexing Time

To add a subscription in CILp and its variant, we

need to add the weight of the subscription’s terms in

the postings lists. That is why we observe that CILp

requires 20% more time (0.85 µs) than CIL to index a

subscription. Determining all partial subscriptions to

be indexed largely increases the indexing time: 6.37 µs

(resp. 6.28 µs) for CIL (resp. RIL) and 8.7 µs for POT

with an average time needed to decompose a subscrip-

tion equal to 5.4 µs.

6 Related Work

Several indexes have been proposed for matching

efficiently structured (e.g., attribute-value pairs) or un-

structured subscriptions (e.g., keywords) with incom-

ing information items. In their majority, they rely

on count-based (CI) schemes rather than on a tree-

based (TI) structure. For example, LeSubscribe[2] Pub-

lish/Subscribe system employs a CI index to match sub-

scriptions: first, the set of predicates satisfied by the

incoming event is located using adequate predicate in-

dexes, and second the set of matching subscriptions is

obtained by explicitly counting the number of contained

predicates. Subscriptions are systematically examined

even when some of their predicates are not satisfied

by the incoming event. For this reason, [3] proposes

to group subscriptions according to their size as well

as common (conjunctive) sub-expressions. Authors in

[3] devised several cost-based algorithms for comput-

ing the optimal predicate clustering given knowledge

regarding the statistics of subscriptions and incoming

events while during matching, the cache capabilities of

modern processors are exploited. An extension of the

index LeSubscribe for disjunctive predicates (in limited

contexts) has been proposed in [21].

A TI index for a two-phase matching of conjunctive

subscriptions has been proposed in [4] which assumes a

fixed total ordering among subscription predicates. In

the first phase (pre-processing), a matching tree is built

over the subscription predicates based on their order-

ing. Each tree node represents a test of some type while

edges materialize the results of those tests. Lower lev-

els are refinements of the tests performed in the higher

levels of the tree while leaves store the subscriptions.

When subscriptions are composed only of equality at-

tribute/value predicates, [4] achieves matching time

and space complexity that is sub-linear with respect to

the number of subscriptions indexed. In the same spirit,

RAPIDMatch[22] proposes a two-level partitioning on

the set of indexed subscriptions which exploits the ob-

servation that in real-world applications, many events

have only a few “relative” attributes. Hence, the search

space of the RAPIDMatch TI is effectively pruned since

it can quickly identify a small subset of matching sub-

scriptions. A multi-dimensional TI is proposed in [23]

which relies on a spatial reduction of the search space

to points (for subscriptions) and range queries (for in-

coming events). These multidimensional range queries

are then evaluated via a UB-Tree index. Furthermore,

other dimensional TIs have been proposed for ranked

versions of pub/sub systems such as [24], support con-

vex indexable regions (for conjunctive predicates), and

due to the inherent limitations of high-dimensional in-

dexing do scale for a large number of attributes or at-

tribute domains (or keywords).

[25] proposes a dynamic tree data structure named

BE-tree (Boolean expression-tree) to index Boolean ex-

pressions. BE-tree scales to millions of Boolean ex-

pressions in high-dimensional space. It is a key-based

index with a main memory implementation which out-

performs [3-4, 7, 26]. An improved version named BE*-

Tree index is proposed in [27] along analytical studies of

the cost for adding a subscription, matching time and

memory space used. However the time required to add

a subscription depends not only on the subscription size

(the number of predicates per expression) but also on

the domain cardinality (the vocabulary size in our con-

text) which is not the case for our regular ordered trie.

Moreover the multi-paths BE-Tree matching algorithm

has not been formally analyzed. A top-k pub/sub sys-

tem based on BE*-tree is proposed in [28] for efficiently

determining the most relevant matching subscriptions

for a given event. Observe that all BE-tree variants do



Zeinab Hmedeh et al.: Content-Based Publish/Subscribe System for Web Syndication 377

not support partial matching unlike our proposal.

A graph-based pub/sub system is described in [29-

30] to filter RSS feed. The authors represented sub-

scriptions as tuples (subject, property, object, con-

straints (subject), constraints (object)) in a directed

labeled graph. Vertices correspond to the subject and

objects, linked by edges labeled by the properties. All

subscriptions are merged in a single graph which is in-

dexed using two-level hash tables. The first hash ta-

ble contains all vertices (the name of vertices is taken

as a hash key) and each entry in this hash table is

a link to another hash table that contains the list of

edges between these vertices. Each entry of the second

hash table is a link to a subscriptions list. Based on

non-deterministic finite state automata, [31] proposes a

pub/sub system for matching stateful subscriptions on

the stream of events such as RSS streams. Publications

are considered as temporal events with start and end

timestamps. Nonetheless while the solution presented

allows expressive subscriptions which contain operators

(e.g., when, where, only, and first), it does not scale to

millions of subscriptions like our proposal.

Few pub/sub systems have been proposed for

keyword-based subscriptions. Most noteworthy is the

SIFT[12] selective dissemination of text documents

whose alternative index schemes are thoroughly studied

in [7]. In particular, in this work, authors experimen-

tally evaluated the behavior of disk-based implementa-

tions of indices: an IL count based index, the so-called

ranked key counter-less IL in which any substitution

is sorted only in the postings list of its keyword with

smallest rank, as well as two tries. One is a regular

trie, and the other corresponds to our regular ordered

trie (ROT): the latter assumes a total order on the key-

words and the substitutions to be sorted according to

this order 2○. It is expected that this ordering leads

to many more common prefixes between substitutions.

In contrast to the disk-based implementation in [7], we

choose a central memory implementation of the indices:

we argue that the index must reside in central memory,

so that the performance scales to a large number of sub-

scriptions (of the order of 10M). Besides the fact that

we have designed memory-resident implementations of

these indexes optimized for reads, the main differences

in their observed behavior are due to 1) the size of the

incoming set of words (on average 52 in web syndica-

tion items vs 12K in text documents), 2) the size of

the subscription vocabulary (1.5M in web syndication

vs 18 000 in text documents), and the distribution of

terms’ occurrences. This explains why authors in [7]

observed that POT matching takes significantly more

time than the two inverted list indices as the increased

size in blocks leads to a higher number of I/O’s per

document. In contrast, we find that for small vocabu-

laries, POT matching time is one order of magnitude

faster than the best IL, namely the ranked key inverted

list (RIL), while for large vocabularies, both exhibit a

matching time of the same order (not studied in [7]).

Moreover, they limit their performance evaluation to

subscriptions with fixed size and keywords with uni-

form distribution. In contrast, not only do we evaluate

the redundancy saving provided by a trie hierarchy with

respect to ILs, but also we provide an analysis both of

ILs and of the regular ordered trie (analysis which is to

our knowledge novel), taking into account the statistical

properties of the vocabulary as well as the subscription

size distribution and several distributions of the key-

word employed in the subscriptions, unlike [7] which

advocates an intractable trie complexity and does not

investigate the impact of different vocabulary distribu-

tions on the performance of the indexes. The only work

exploiting CI rank information of terms occurrence dis-

tribution in order to optimize subscription matching is

presented in [32]. However, due to our vocabulary size,

the proposed query clustering techniques cannot be ap-

plied since superqueries turn out to be too large, which

results in higher costs for both testing and hash table

accesses.

On the other hand, ILs have been exploited in [8]

for indexing advertisement bids in sponsored search.

In particular, to retrieve the set of bids matching a

query issued by a user, broach match semantics is also

employed. Then, to overcome CI limitations when a

skewed term distribution occurs in subscriptions, the

authors in [8] relied on ILs built over the multi-term

combinations most frequently appearing in bids, which

reduces the search space to only a small fraction of can-

didate bids. The hash value of each IL entry is a pointer

to a data node with bid specific information (i.e., its

identifier, actual phrase, and metadata). In the sim-

ple case, IL indexes all terms in each bid (i.e., one data

node for every indexed bid) and thus an incoming query

requires retrieving data nodes associated with all sub-

sets of the terms in the bid. Since the number of index

probes grows exponentially with query size, authors in

[8] considered a maximum length on indexed term com-

binations and proposed a mapping scheme that reor-

ganizes bids sharing the same subset of terms to the

2○They do not evaluate POT, our Patricia variant of the ordered trie.



378 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

same data nodes based on a memory access cost model.

Clearly this optimization does not scale in our setting,

given that the number of incoming items (on average

52 terms) is clearly larger than that of web queries (on

average 2∼3 terms[20]).

A work for indexing Boolean expressions is pre-

sented in [26]. It relies on a CI approach which uses

inverted lists for each pair (att/val) but removes the

counting phase by creating several indexes for each sub-

scription size (called K-index). In fact, an item is noti-

fied when it matches K pairs for the K-th index with a

same subscription ID. It also avoids some unuseful tests

for large subscriptions in whichK values are larger than

the item size. To optimize the matching process, sorts

are done on matching lists and subscription IDs in lists

in order to skip efficiently unmatching IDs. However,

as said previously, our context brings quite large items

(52 terms) and it cancels the large benefit of the K-

index since all the postings lists should be accessed.

Moreover, sorting very long postings lists will make the

matching time grow up.

Finally, in [33], a top-k pub/sub approach is applied

to news stories annotation in social news. News stories

are considered as subscriptions, and tweets as published

items. The matching score between a story and a tweet

is based on their content, and a matching is reported

if its score is greater than the k-th top scored items

published previously for this specific subscription. An

IL index is used to store subscriptions, with a posting

for each term that contains all the identifiers of stories

that contain this term. Authors in [33] also proposed

to store along the story’s ID, the score contribution

of the term in the subscription which is used to com-

pute the similarity between the story and an incoming

tweet. This work is very similar to our extension of the

CIL (CILp) for partial matching. However the nature

of their data (100 000 long stories versus our dozens of

millions of short subscriptions, 14-term incoming tweets

against our 35-term items) and the matching computa-

tion lead to different optimizations and performances.

7 Conclusions

We presented and compared three index structures

for web syndication: CIL and RIL, which rely on an

inverted list, and POT based on a Patricia ordered

trie. The technical novelty of our work comes from the

thorough analysis of the complexity and experimental

evaluation of the three chosen indexes. We found that

for small vocabularies, POT matching time is one or-

der of magnitude faster than the best IL (RIL), while

for large vocabularies (like the one used on the Web),

RIL outperforms the matching POT, which uses al-

most four times more memory space. The actual dis-

tribution of term occurrences has almost no impact on

the size of the three indexing structures while it sig-

nificantly affects the number of nodes that need to be

visited upon matching something that justifies OT per-

formance gains. The smaller the subscription length,

the larger the OT factorization gain w.r.t. IL and the

larger the rank of the term from which the OT sub-

structure degenerates to an IL. We also introduced the

partial matching semantics for our indexes, especially

by extending CIL to count the score of satisfaction of

subscriptions. Moreover, not only did we experimen-

tally evaluate the redundancy saving provided by a trie

w.r.t. IL structures, but also we proposed a first analy-

sis of the ROT structure, especially based on the varia-

tion of the vocabulary, the subscription size distribution

and several term occurrence distributions.

As future work, we propose to introduce a filtering

system to reduce the number of delivered items to users.

Based on the history of the item notified for each sub-

scription, we want to filter out incoming item that does

not satisfy novelty and diversity criteria as introduced

in [34-35].

References

[1] Hmedeh Z, Vouzoukidou N, Travers N, Christophides V,

du Mouza C, Scholl M. Characterizing web syndication be-

havior and content. In Proc. the 12th WISE, Nov. 2011,

pp.29-42.

[2] Pereira J, Fabret F, Llirbat F, Preotiuc-Pietro R, Ross K A,

Shasha D. Publish/subscribe on the web at extreme speed.

In Proc. the 26th VLDB, Sept. 2000, pp.627-630.

[3] Fabret F, Jacobsen H A, Llirbat F, Pereira J, Ross K

A, Shasha D. Filtering algorithms and implementation for

very fast publish/subscribe. In Proc. SIGMOD, May 2001,

pp.115-126.

[4] Aguilera M K, Strom R E, Sturman D C, Astley M, Chan-

dra T D. Matching events in a content-based subscription

system. In Proc. the 8th PODC, Apr. 29-May 6, 1999,

pp.53-61.

[5] Zobel J, Moffat A. Inverted files for text search engines.

ACM Computing Survey, 2006, 38(2): Article No. 6.

[6] Knuth D E. The Art of Computer Programming, Volume

III: Sorting and Searching (2nd edition). Addison Wesley

Longman Publishing Co., Inc., Redwood City, CA, USA,

1998.

[7] Yan T W, Garcia-Molina H. Index structures for selec-

tive dissemination of information under the Boolean model.

ACM Transactions on Database Systems, 1994, 19(2): 332-

364.



Zeinab Hmedeh et al.: Content-Based Publish/Subscribe System for Web Syndication 379

[8] König A C, Church K W, Markov M. A data structure for

sponsored search. In Proc. the 25th ICDE, Mar. 29-April 2,

2009, pp.90-101.

[9] Bodon F. Surprising results of trie-based FIM algorithms.

In Proc. IEEE CIDM Workshop on FIMI, Nov. 2004.

[10] Malik H H, Kender J R. Optimizing frequency queries for

data mining applications. In Proc. the 7th ICDM, Oct. 2007,

pp.595-600.

[11] Travers N, Hmedeh Z, Vouzoukidou N, du Mouza C,

Christophides V, Scholl M. RSS feeds behavior analysis,

structure and vocabulary. International Journal of Web In-

formation Systems, 2014, 10(3): 291-320.

[12] Yan T W, Garcia-Molina H. The SIFT information dissem-

ination system. ACM Transactions on Database Systems,

1999, 24(4): 529-565.

[13] Bodon F. A trie-based APRIORI implementation for min-

ing frequent item sequences. In Proc. the 1st Int. Work.

Open Source Data Mining (OSDM), Aug. 2005, pp.56-65.

[14] Clément J, Flajolet P, Vallée B. Dynamical sources in in-

formation theory: A general analysis of trie structures. Al-

gorithmica, 2001, 29(1): 307-369.

[15] Baeza-Yates R A, Ribeiro-Neto B. Modern Information

Retrieval. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1999.

[16] Salton G, Wong A, Yang C S. A vector space model for

automatic indexing. Communications of the ACM, 1975,

18(11): 613-620.

[17] Bookstein A, Swanson D. Probabilistic models for auto-

matic indexing. J. Am. Soc. Inf. Sci., 1974, 25(5): 312-316.

[18] Bagwell P. Ideal hash trees. Technical Report

LAMPREPORT-2001-001, Ecole Polytechnique Fed-

eral de Lausanne, Switzerland, 2001.

[19] Walker A J. An efficient method for generating discrete ran-

dom variables with general distributions. ACM Transac-

tions on Mathematical Software, 1977, 3(3): 253-256.

[20] Beitzel S M, Jensen E C, Chowdhury A, Grossman D,

Frieder O. Hourly analysis of a very large topically cate-

gorized web query log. In Proc. the 27th SIGIR, Jul. 2004,

pp.321-328.

[21] Carzaniga A, Wolf A. Forwarding in a content-based net-

work. In Proc. the 17th SIGCOMM, Aug. 2003, pp.163-174.

[22] Kale S, Hazan E, Cao F, Singh J P. Analysis and algo-

rithms for content-based event matching. In Proc. the 25th

Int. Conf. Distributed Computing Systems (ICDCS) Work-

shops, Jun. 2005, pp.363-369.

[23] Wang B, Zhang W, Kitsuregawa M. UB-tree based efficient

predicate index with dimension transform for pub/sub sys-

tem. In Proc. the 9th DASFAA, Mar. 2004, pp.63-74.

[24] Machanavajjhala A, Vee E, Garofalakis M N, Shanmuga-

sundaram J. Scalable ranked publish/subscribe. PVLDB,

2008, 1(1): 451-462.

[25] Sadoghi M, Jacobsen H A. BE-tree: An index structure to

efficiently match Boolean expressions over high-dimensional

discrete space. In Proc. the 30th SIGMOD, Jun. 2011,

pp.637-648.

[26] Whang S, Garcia-Molina H, Brower C, Shanmugasundaram

J, Vassilvitskii S, Vee E, Yerneni R. Indexing Boolean ex-

pressions. PVLDB, 2009, 2(1): 37-48.

[27] Sadoghi M, Jacobsen H A. Analysis and optimization

for Boolean expression indexing. ACM Transactions on

Database Systems, 2013, 38(2): Article No. 8.

[28] Sadoghi M, Jacobsen H A. Relevance matters: Capitalizing

on less (top-k matching in publish/subscribe). In Proc. the

28th ICDE, Apr. 2012, pp.786-797.

[29] Petrovic M, Liu H, Jacobsen H A. G-ToPSS: Fast filtering

of graph-based metadata. In Proc. the 14th WWW, May

2005, pp.539-547.

[30] Liu H, Petrovic M, Jacobsen H. Efficient filtering of RSS

documents on computer cluster. Technical Report, MSRG,

University of Toronto, Nov. 2007.

[31] Demers A J, Gehrke J, Hong M, Riedewald M, White W

M. Towards expressive publish/subscribe systems. In Proc.

the 10th EDBT, Mar. 2006, pp.627-644.

[32] Irmak U, Mihaylov S, Suel T, Ganguly S, Izmailov R. Ef-

ficient query subscription processing for prospective search

engines. In Proc. USENIX, Jun. 2006, pp.375-380.

[33] Shraer A, Gurevich M, Fontoura M, Josifovski V. Top-k

publish-subscribe for social annotation of news. PVLDB,

2013, 6(6): 385-396.

[34] Hmedeh Z, du Mouza C, Travers N. TDV-based filter for

novelty and diversity in a real-time pub/sub system. In

Proc. the 19th IDEAS, Jul. 2015, pp.136-145.

[35] Hmedeh Z, du Mouza C, Travers N. FiND: A real-time fil-

tering by novelty and diversity for publish/subscribe sys-

tems. In Proc. the 27th SSDBM, June 29-July 1, 2015.

Zeinab Hmedeh was a lecturer at

the University Paris Ouest Nanterre

La Défense. She received her Ph.D.

degree in computer science in 2013 from

the Conservatoire National des Arts

et Métiers (CNAM) and her Master’s

degree in computer science from the Lebanese University

and the University Paul Sabatier in 2010. Her research

interests lie in the filtering of the information published on

the Web 2.0.

Harry Kourdounakis received his

M.S. degree in computer science from

the University of Crete in 2011. His

master thesis is about subscription in-

dexes for web syndication systems. He

is currently a software engineer at Brain-

soft.text text text text text text text

text text text text text text text text

text text text text text text text text text text text text

text text text text



380 J. Comput. Sci. & Technol., Mar. 2016, Vol.31, No.2

Vassilis Christophides is a pro-

fessor of computer science at the

University of Crete. He has been

recently appointed to an advanced

research position at INRIA Paris-

Rocquencourt. Previously, he worked as

a distinguished scientist at Technicolor,

R&I Center in Paris. He studied

electrical engineering at the National Technical University

of Athens (NTUA), Greece, in July 1988. He received his

DEA in computer science from the University PARIS VI,

in June 1992, and his Ph.D. degree from the Conservatoire

National des Arts et Métiers (CNAM) of Paris, in October

1996. His main research interests include databases and

Web information systems, as well as big data processing

and analysis. He has published over 130 articles in

high-quality international conferences, journals, and

workshops. He has been scientific coordinator of a number

of research projects funded by the European Union, the

Greek State, and private foundations on the Semantic

Web and Digital Preservation at the Institute of Computer

Science of FORTH. He has received the 2004 SIGMOD

Test of Time Award and the Best Paper Award at the 2nd

and the 6th International Semantic Web Conference in

2003 and 2007 respectively. He served as general chair of

the joint EDBT/ICDT Conference in 2014 at Athens and

as area chair for the ICDE “Semi-structured, Web, and

Linked Data Management” track in 2016 at Bali, Indonesia.

Cédric du Mouza is an associate

professor in the database and informa-

tion system team of the Conservatoire

National des Arts et Métiers (CNAM)

in Paris. He received his Ph.D. degree

in computer science from the CNAM in

2005 and two M.S. degrees (University

Pierre et Marie Curie-Paris VI and

University of Manchester). He also holds an engineering

diploma from the Institut d’Informatique d’Entreprise

(ENSIIE). His research work in the CEDRIC Laboratory

mainly focuses on the distributed representation, indexing

and querying of multi-dimensional, plain-text and Web

2.0 data. He is author or co-author of research papers

published in major journals or conferences (ICDE, EDBT

CIKM, SSDBM, VLDBJ, DKE, etc.).

Michel Scholl graduated from École

Nationale Supérieure des Telecommu-

nications (ENST), Paris, in 1966, and

got his Ph.D. degree from University

of California, Los Angeles, in 1977,

and Docteur d’état in computer science

from Institut polytechnique de Grenoble

(INPG), Grenoble, in 1985. Michel

Scholl spent more than 25 years at INRIA, Rocquencourt.

Since 1989, he has been a full professor in computer science

at CNAM, Paris, where he heads the SIBD research team

at CEDRIC Laboratory, and is a member of the Wisdom

PPF that he created and headed in 2007. He has been

prime contractor for more than 15 French and European

research projects and supervised about 15 Ph.D. theses.

He was vice-president of the ANR scientific committee

(programme blanc and jeunes chercheurs) and expert of

the French agency AERES. He co-authored two books and

about 90 research papers. He has been a member of the

program committee of major database conferences (ACM

SIGMOD, VLDB, and ICDE) and received a Test of Time

Award of ACM SIGMOD in 2004.

Nicolas Travers is an associate

professor in the Vertigo team of the

CEDRIC Laboratory, at Conservatoire

National des Arts et Métiers (CNAM),

Paris. He received his Ph.D. degree

in computer science from University

of Versailles-Saint-Quentin-En-Yvelines

(UVSQ) in 2006. His main focuses

are query optimization in databases: indexing technics,

continuous filtering, data and query distribution, NoSQL

databases, query languages, multi-query optimization, etc.

His researches deal mainly with Web 2.0 data, especially

with short content like RSS, Twitter or Pinterest. He is

author or co-author of some research papers published

in major journals or conferences (EDBT, CIKM, WISE,

DASFAA, IDEAS, SSDBM, IJWIS, etc.).


