

JRA-55C:

Kobayashi, C. et al., 2014: Preliminary results of the JRA-55C, an atmospheric reanalysis assimilating conventional observations only, SOLA, 10, 78-82, doi:10.2151/sola.2014-016.

Marine Department, Japan Meteorological Agency. 1-3-4 Otemachi Chiyoda-ku Tokyo, 100-8122, Japan. Email: jra@met.kishou.go.jp

Japan Meteorological Agency

OUTLINE

In response to the success of JRA-25, JMA conducted the second Japanese global reanalysis, called JRA-55. The project involved comprehensive global atmospheric reanalysis based on fourdimensional variational analysis (4D-Var) for the last half of the 20th century (1958 onward). As a result, the two major biases found in JRA-25 have been significantly alleviated and the temporal consistency of temperature analysis is also better than that of previous analysis products.

The high-quality and long-term JRA-55 data produced are suitable for studies on climate change and multi-decadal variability as well as for the monitoring of current climate systems.

DATA ASSIMILATION SYSTEM

The data assimilation system is based on JMA's operational model as of December 2009, and improves on JRA-25 in many ways. Enhancements include a revision of the radiation scheme and the introduction of 4D-Var and variational bias correction (VarBC) for satellite radiances. These upgrades significantly reduce model biases, enhance the dynamical consistency of analysis fields and advance the handling of satellite radiances.

Resolution & levels	TL319 (~ 55 km), 60 levels up to 0.1 hPa
Advection scheme	Semi-Lagrangian
Assimilation	4D-Var, 6h time window, T106 inner model
Satellite radiance bias correction	VarBC (Dee and Uppala 2009)
Radiative transfer model for satellite	RTTOV-9.3 (Saunders et al. 2008)
Long wave radiation scheme	Line absorptions; Pre-computed Transmittance Tables and k-distribution (Chou et al. 2001) Water vapor continuum (e-type and p-type); Zhong and Haigh (1995) with MK_CKD V1.0 Radiatively active gases; H ₂ O, O ₃ , CO ₂ , CH ₄ , N ₂ O, CFC-11, CFC-12, HCFC-22

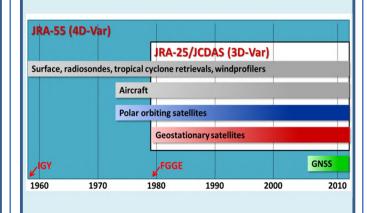
hort wave radiationAbsorptions by H2O; Briegleb (1992) Absorptions by O2, O3 and CO2; Freidenreich and Ramaswamy (1999)OzoneUntil 1978; Climatology From 1979 onward; T42L68 version of MRI- CCM1 (Shibata et al. 2005)Greenhouse gasesCO2, CH4, N2O, CFC-11, CFC-12, HCFC-22 (historical concentrations)		
Ozone From 1979 onward; T42L68 version of MRI- CCM1 (Shibata et al. 2005) CO ₂ , CH ₄ , N ₂ O, CFC-11, CFC-12, HCFC-22	hort wave radiation	Absorptions by O_2 , O_3 and CO_2 ;
	Ozone	From 1979 onward; T42L68 version of MRI-
	Greenhouse gases	2. + 2

DATA

S

G

The observational data adopted for JRA-55 were primarily those used in ERA-40 in addition to information archived by JMA. The ERA-40 observational dataset was supplied to JMA by ECMWF for use in JRA-25.


Observations for the period from 1979 onward are basically the same as those used in JRA-25. Newly available observational datasets were also collected and used whenever possible.

Major data source

The ERA-40 observational dataset supplied by ECMWF Homogenization

RAOBCORE v1.4 (Haimberger et al. 2008) 1958 – 2006 RAOBCORE v1.5 (Haimberger et al. 2012) 2007 – 2012 **Reprocessed satellite observations** GMS, GOES-9 and MTSAT-1R (MSC/JMA), METEOSAT

(EUMETSAT), TMI (NASA, JAXA), AMSR-E (JAXA), QuikSCAT(NASA/PO.DAAC), AMI(ESA), GNSS-RO (UCAR)

RESULTS

Thanks to a state-of-the art assimilation system and sophisticated observational data handling incorporating QC, the JRA-55 datasets generally shows better quality than other products.

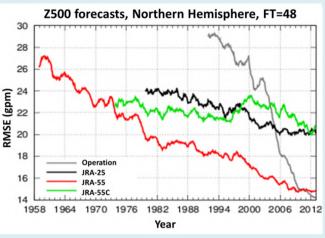


Fig: Time-series representation of RMS errors in 48-hour forecasts for geopotential height (gpm) at 500 hPa verified against own analysis.

RMS errors are significantly reduced in JRA-55 thanks to the application of the latest JMA data assimilation system.

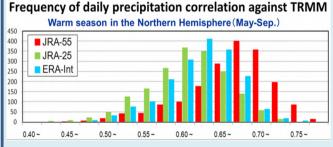


Fig: Frequency of spatial correlation for daily precipitation over the tropical region (22°S – 22°N) against TRMM from 1998 to 2009.

JRA-55 shows a higher spatial correlation for daily precipitation against TRMM observational data than JRA-25 and ERA-Int.