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The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angleθ13
with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GWth reactors were detected in six
antineutrino detectors deployed in two near (flux-weightedbaseline 470 m and 576 m) and one far (1648 m)
underground experimental halls. With a 43,000 ton-GWth-day livetime exposure in 55 days, 10416 (80376)
electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected
number of antineutrinos at the far hall isR = 0.940 ± 0.011(stat) ± 0.004(syst). A rate-only analysis finds
sin2 2θ13 = 0.092 ± 0.016(stat)± 0.005(syst) in a three-neutrino framework.

PACS numbers: 14.60.Pq, 29.40.Mc, 28.50.Hw, 13.15.+g
Keywords: neutrino oscillation, neutrino mixing, reactor, Daya Bay

It is well established that the flavor of a neutrino oscil-
lates with time. Neutrino oscillations can be described by the
three mixing angles (θ12, θ23, andθ13) and a phase of the
Pontecorvo-Maki-Nakagawa-Sakata matrix, and two mass-
squared differences (∆m2

32 and∆m2
21) [1, 2]. Of these mix-

ing angles,θ13 is the least known. The CHOOZ experi-
ment obtained a 90%-confidence-level upper limit of 0.17 for
sin22θ13 [3]. Recently, results from T2K [4], MINOS [5] and
Double Chooz [6] have indicated thatθ13 could be non-zero.
In this paper, we present the observation of a non-zero value
for θ13.

For reactor-based experiments, an unambiguous determina-
tion of θ13 can be extracted via the survival probability of the
electron antineutrinoνe at short distances from the reactors,

Psur ≈ 1− sin2 2θ13 sin
2(1.267∆m2

31L/E) , (1)

where∆m2
31 = ∆m2

32 ±∆m2
21, E is theνe energy in MeV

andL is the distance in meters between theνe source and the
detector (baseline).

The near-far arrangement of antineutrino detectors (ADs),
as illustrated in Fig. 1, allows for a relative measurement by
comparing the observedνe rates at various baselines. With
functionally identical ADs, the relative rate is independent of
correlated uncertainties and uncorrelated reactor uncertainties
are minimized.

A detailed description of the Daya Bay experiment can be
found in [7, 8]. Here, only the apparatus relevant to this anal-
ysis will be highlighted. The six pressurized water reactors
are grouped into three pairs with each pair referred to as a
nuclear power plant (NPP). The maximum thermal power of
each reactor is 2.9 GWth. Three underground experimental
halls (EHs) are connected with horizontal tunnels. Two ADs

are located in EH1 and one in EH2 (the near halls). Three
ADs are positioned near the oscillation maximum in the far
hall, EH3. The vertical overburden in equivalent meters of
water (m.w.e.), the simulated muon rate and average muon
energy, and average distance to the reactor pairs are listedin
Table I.

FIG. 1. Layout of the Daya Bay experiment. The dots represent
reactors, labeled as D1, D2, L1, L2, L3 and L4. Six ADs, AD1–
AD6, are installed in three EHs.

As shown in Fig. 2, the ADs in each EH are shielded with
>2.5 m of high-purity water against ambient radiation in all
directions. Each water pool is segmented into inner and outer
water shields (IWS and OWS) and instrumented with photo-
multiplier tubes (PMTs) to function as Cherenkov-radiation
detectors whose data were used by offline software to remove
spallation neutrons and other cosmogenic backgrounds. The
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Overburden Rµ Eµ D1,2 L1,2 L3,4

EH1 250 1.27 57 364 857 1307

EH2 265 0.95 58 1348 480 528

EH3 860 0.056 137 1912 1540 1548

TABLE I. Vertical overburden (m.w.e.), muon rateRµ (Hz/m2), and
average muon energyEµ (GeV) of the three EHs, and the distances
(m) to the reactor pairs.

detection efficiency for long-track muons is>99.7% [7].
Theνe is detected via the inverseβ-decay (IBD) reaction,

νe + p → e+ + n, in a Gadolinium-doped liquid scintillator
(Gd-LS) [9, 10]. The coincidence of the prompt scintillation
from thee+ and the delayed neutron capture on Gd provides
a distinctiveνe signature.

Each AD consists of a cylindrical, 5-m diameter stainless
steel vessel (SSV) that houses two nested, UV-transparent
acrylic cylindrical vessels. A 3.1-m diameter inner acrylic
vessel (IAV) holds 20 t of Gd-LS (target). It is surrounded by
a region with 20 t of liquid scintillator (LS) inside a 4-m diam-
eter outer acrylic vessel (OAV). Between the SSV and OAV,
37 t of mineral oil (MO) shields the LS and Gd-LS from ra-
dioactivity. IBD interactions are detected by 192 Hamamatsu
R5912 PMTs. A black radial shield and specular reflectors are
installed on the vertical detector walls and above and below
the LS volume, respectively. Gd-LS and LS are prepared and
filled into ADs systematically to ensure all ADs are function-
ally identical [7]. Three automated calibration units (ACUs)
mounted on the SSV lid allow for remote deployment of an
LED, a 68Ge source, and a combined source of241Am-13C
and60Co into the Gd-LS and LS liquid volumes along three
vertical axes.

FIG. 2. Schematic diagram of the Daya Bay detectors.

The results are based on data taken from 24 December 2011
to 17 February 2012. A blind analysis strategy was adopted,
with the baselines, the thermal power histories of the cores,
and the target masses of the ADs hidden until the analy-

ses were frozen. Triggers were formed from the number of
PMTs with signals above a∼0.25 photoelectron (pe) thresh-
old (NHIT) or the charge-sum of the over-threshold PMTs
(ESUM). The AD triggers were NHIT> 45 or ESUM& 65
pe. The trigger rate per AD was< 280 Hz with a negligible
trigger inefficiency for IBD candidates. The data consist of
charge and timing information for each PMT, and were accu-
mulated independently for each detector. To remove system-
atic effects due to reactor flux fluctuations, only data sets with
all detectors in operation were used.

The energy of each trigger in an AD was reconstructed
based on the total pe collected by the PMTs. The energy
calibration constant,∼163 pe/MeV for all ADs and stable
throughout the data collection period, was determined by set-
ting the energy peak of the60Co source deployed at each
AD center to 2.506 MeV. Vertex reconstruction was based
on center-of-charge (COC), defined as the charge-weighted-
mean of the coordinates of all PMTs. The mapping from COC
to vertex was done by analytic corrections determined using
data collected with60Co sources deployed at various points
within the AD. A vertex-dependent correction to energy
(<10%) and a constant factor (0.988) were applied equally to
all ADs to correct for geometrical effects and energy nonlin-
earity between the60Co and the neutron capture on Gd (nGd),
determined by the60Co and Am-C sources at the detector cen-
ter. An independent energy calibration that utilized the peak
of thenGd from spallation neutron to set the energy scale and
templates derived from Monte Carlo simulations (MC) for
vertex reconstruction, gave consistent performance [7]. The
energy resolution was (7.5/

√

E(MeV)+0.9)% for all 6 ADs.
IWS and OWS triggers with NHIT> 12 were classified

as ‘WS muon candidates’ orµWS. Events in an AD within
±2 µs of aµWS with energy>20 MeV and>2.5 GeV were
classified as muons (µAD) and showering muons (µsh), re-
spectively, for vetoing purposes. An instrumental background
due to spontaneous light emission from a PMT, denoted as a
flasher, was rejected efficiently [7].

IBD events were selected with the following criteria:0.7<
Ep < 12.0 MeV, 6.0 < Ed < 12.0 MeV, 1 < ∆t < 200 µs,
the prompt-delayed pair was vetoed by preceding muons if
td − tµWS

< 600 µs, td − tµAD
< 1000 µs or td − tµsh

< 1
s, and a multiplicity cut that requires no additional>0.7 MeV
trigger in the time range(tp − 200µs, td + 200µs), whereEp

(Ed) is the prompt (delayed) energy and∆t = td − tp is the
time difference between the prompt and delayed signals. Sta-
tistically consistent performance was achieved by an indepen-
dent analysis that used different energy reconstruction, muon
veto, and multiplicity cuts.

The inefficiency of the muon veto for selecting IBD events
(1− ǫµ) was calculated by integrating the vetoed time of each
muon with temporal overlaps taken into account. Inefficiency
due to the multiplicity selection(1 − ǫm) was calculated by
considering the probability that a random signal occurred near
an IBD in time. The average values ofǫµ · ǫm are given for
each AD in Table II.

We considered the following kinds of background: acciden-
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AD1 AD2 AD3 AD4 AD5 AD6

IBD candidates 28935 28975 22466 3528 3436 3452

No-oscillation prediction for IBD 28647 29096 22335 3566.5 3573.0 3535.9

DAQ live time (days) 49.5530 49.4971 48.9473

Muon veto time (days) 8.7418 8.9109 7.0389 0.8785 0.8800 0.8952

ǫµ · ǫm 0.8019 0.7989 0.8363 0.9547 0.9543 0.9538

Accidentals (per day) 9.82±0.06 9.88±0.06 7.67±0.05 3.29±0.03 3.33± 0.03 3.12±0.03

Fast-neutron (per day) 0.84±0.28 0.84±0.28 0.74±0.44 0.04±0.04 0.04±0.04 0.04±0.04
9Li/8He (per AD per day) 3.1±1.6 1.8±1.1 0.16±0.11

Am-C correlated (per AD per day) 0.2±0.2
13C(α, n)16O background (per day)0.04±0.02 0.04±0.02 0.035±0.02 0.03±0.02 0.03±0.02 0.03±0.02

IBD rate (per day) 714.17±4.58 717.86± 4.60 532.29±3.82 71.78± 1.29 69.80±1.28 70.39±1.28

TABLE II. Signal and background summary. The background andIBD rates were corrected for theǫµ · ǫm efficiency. The no-oscillation
predictions based on reactor flux analyses and detector simulation have been corrected with the best-fit normalization parameter in determining
sin2 2θ13.

tal correlation of two unrelated signals,β-n decay of9Li/8He
produced by muons in the ADs, fast-neutron backgrounds
produced by muons outside the ADs,13C(α,n)16O interac-
tions, and correlated events due to the retracted Am-C neutron
source in the ACUs. The estimated background rates per AD
are summarized in Table II.

The accidental background was determined by measuring
the rate of both prompt- and delayed-like signals, and then
estimating the probability that two signals randomly satisfied
the∆t required for IBD selection. Additional estimates using
prompt and delayed candidates separated by more than 1 ms
or 2 meters provided consistent results. The uncertainty in
the measured accidental rate was dominated by the statistical
uncertainty in the rate of delayed candidates.

The rate of correlated background from theβ-n cascade of
9Li/8He decays was evaluated from the distribution of the time
since the last muon using the known decay times for these iso-
topes [11]. The9Li/8He background rate as a function of the
muon energy deposited in the AD was estimated by preparing
samples with and without detected neutrons 10µs to 200µs
after the muon. A 50% systematic uncertainty was assigned to
account for the extrapolation to zero deposited muon energy.

An energetic neutron entering an AD can form a fast-
neutron background by recoiling off a proton before being
captured on Gd. By relaxing theEp < 12 MeV criterion in
the IBD selection, a flat distribution inEp was observed up to
100 MeV. Extrapolation into the IBD energy region gave an
estimate for the residual fast-neutron background. A similar
flatEp distribution was found in the muon-tagged fast-neutron
sample produced by inverting the muon veto cut. Consistent
results were obtained by scaling the muon-tagged fast-neutron
rate with muon inefficiency, and by MC.

The 13C(α,n)16O background was determined using MC
after estimating the amount of238U, 232Th, 227Ac, and210Po
in the Gd-LS from their cascade decays, or by fitting theirα-
particle energy peaks in the data.

A neutron emitted from the 0.5-Hz Am-C neutron source in

an ACU could generate a gamma-ray via inelastic scattering in
the SSV before subsequently being captured on Fe/Cr/Mn/Ni.
An IBD was mimicked if both gamma-rays from the scat-
tering and capture processes entered the scintillating region.
This correlated background was estimated using MC. The
normalization was constrained by the measured rate of single
delayed-like candidates from this source.

Table III is a summary of the absolute efficiencies and the
systematic uncertainties. The uncertainties of the absolute
efficiencies are correlated among the ADs. No relative effi-
ciency, exceptǫµ · ǫm, was corrected. All differences between
the functionally identical ADs were taken as uncorrelated un-
certainties.

The spill-in enhancement resulted when neutrons from IBD
outside the target drift into the target, and was evaluated using
MC. The spill-out deficit (∼2.2%) was included in the abso-
lute Gd capture ratio. The Gd capture ratio was studied us-
ing Am-C neutron data and MC at the detector center and the
spallation neutron data and was determined using IBD MC.
Efficiencies associated with the delayed-energy, the prompt-
energy, and the capture-time cuts were evaluated with MC.
Discussion of the uncertainties in the number of target pro-
tons, live time, and the efficiency of the flasher cut can be
found in Ref. [7].

Uncorrelated relative uncertainties have been addressed
in detail by performing a side-by-side comparison of two
ADs [7]. The IBD nGd energy peaks for all six ADs were
reconstructed to8.05 ± 0.04 MeV. The relative energy scale
between ADs was established by comparing thenGd peaks
of the IBD- and spallation-neutrons, and alpha-particles in
the Gd-LS. Both energy-reconstruction approaches yielded
a 0.5% uncorrelated energy-scale uncertainty for all six ADs.
The relative uncertainty in efficiency due to theEd cut was
determined to be 0.12% using data. By measuring the differ-
ence in the neutron capture time of each AD, from which the
Gd-concentration can be calculated, the relative uncertainty in
the fraction of neutrons captured on Gd (the Gd capture ratio)
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Detector

Efficiency Correlated Uncorrelated

Target Protons 0.47% 0.03%

Flasher cut 99.98% 0.01% 0.01%

Delayed energy cut 90.9% 0.6% 0.12%

Prompt energy cut 99.88% 0.10% 0.01%

Multiplicity cut 0.02% <0.01%

Capture time cut 98.6% 0.12% 0.01%

Gd capture ratio 83.8% 0.8% <0.1%

Spill-in 105.0% 1.5% 0.02%

Livetime 100.0% 0.002% <0.01%

Combined 78.8% 1.9% 0.2%

Reactor

Correlated Uncorrelated

Energy/fission 0.2% Power 0.5%

IBD reaction/fission 3% Fission fraction 0.6%

Spent fuel 0.3%

Combined 3% Combined 0.8%

TABLE III. Summary of absolute efficiencies, and correlatedand
uncorrelated systematic uncertainties.

was found to be<0.1%. All other relative uncertainties were
O(0.01%) and the combined uncertainty was 0.2%. Indepen-
dent analyses obtained similar results on the background and
relative uncertainties.

This analysis was independent of reactor flux models. The
νe yield per fission [12] was not fixed when determining
sin2 2θ13. Whether we used the conventional ILL fluxes [13–
16] (2.7% uncertainty) or the recently calculated fluxes [17,
18] (3.1% uncertainty) had little impact on the results. The
thermal energy released per fission is given in Ref. [19]. Non-
equilibrium corrections for long-lived isotopes were applied
following Ref. [17]. Contributions from spent fuel [20, 21]
(∼0.3%) were included as an uncertainty.

Thermal-power data provided by the power plant carry an
uncertainty of 0.5% per core [22–24] that we conservatively
treat as uncorrelated. The fission fractions were also pro-
vided for each fuel cycle as a function of burn-up, with a
∼5% uncertainty from validation of the simulation [25, 26].
A DRAGON [27] model was constructed to study the correla-
tion among the fission rates of isotopes. The uncertainties of
the fission fraction simulation resulted in a 0.6% uncorrelated
uncertainty of theνe yield per core. The baselines have been
surveyed with GPS and modern theodolites to a precision of
28 mm. The uncertainties in the baseline and the spatial dis-
tribution of the fission fractions in the core had a negligible
effect to the results. Fig. 3 presents the background-subtracted
and efficiency-corrected IBD rates in the three EHs. Relative
reactor flux predictions are shown for comparison.

The νe rate in the far hall was predicted with a weighted
combination of the two near hall measurements assuming no
oscillation. The weights were determined by the thermal
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FIG. 3. Daily average measured IBD rates per AD in the three ex-
perimental halls as a function of time. Data between the two vertical
dashed lines were used in this analysis. The black curves represent
no-oscillation predictions based on reactor flux analyses and detector
simulation for comparison. The predictions have been corrected with
the best-fit normalization parameter in determiningsin2 2θ13.

power of each reactor and its baseline to each AD. We ob-
served a deficit in the far hall, expressed as a ratio of observed
to expected events,

R = 0.940± 0.011(stat)± 0.004(syst) .

In addition, the residual reactor-related uncertainties were
found to be 5% of the uncorrelated uncertainty of a single
core.

The value ofsin2 2θ13 was determined with aχ2 con-
structed with pull terms accounting for the correlation of the
systematic errors [28],

χ2 =

6
∑

d=1

[

Md − Td

(

1 + ε+
∑

r ω
d
rαr + εd

)

+ ηd
]2

Md +Bd

+
∑

r

α2
r

σ2
r

+

6
∑

d=1

(

ε2d
σ2
d

+
η2d
σ2
B

)

, (2)

whereMd are the measured IBD events of thed-th AD with
backgrounds subtracted,Bd is the corresponding background,
Td is the prediction from neutrino flux, MC, and neutrino os-
cillations [29],ωd

r is the fraction of IBD contribution of the
r-th reactor to thed-th AD determined by baselines and re-
actor fluxes. The uncertainties are listed in Table III. The
uncorrelated reactor uncertainty isσr (0.8%), σd (0.2%) is
the uncorrelated detection uncertainty, andσB is the back-
ground uncertainty listed in Table II. The corresponding pull
parameters are (αr, εd, ηd). The detector- and reactor-related
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correlated uncertainties were not included in the analysis; the
absolute normalizationε was determined from the fit to the
data. The best-fit value is

sin2 2θ13 = 0.092± 0.016(stat)± 0.005(syst)

with aχ2/NDF of 4.26/4. All best estimates of pull parameters
are within its one standard deviation based on the correspond-
ing systematic uncertainties. The no-oscillation hypothesis is
excluded at 5.2 standard deviations.

The accidental backgrounds were uncorrelated while the
Am-C and (alpha,n) backgrounds were correlated among
ADs. The fast-neutron and9Li/8He backgrounds were site-
wide correlated. In the worst case where they were correlated
in the same hall and uncorrelated among different halls, we
found the best-fit value unchanged while the systematic un-
certainty increased by 0.001.

Fig. 4 shows the measured numbers of events in each de-
tector, relative to those expected assuming no oscillation. The
6.0% rate deficit is obvious for EH3 in comparison with the
other EHs, providing clear evidence of a non-zeroθ13. The
oscillation survival probability at the best-fit values is given
by the smooth curve. Theχ2 versus sin22θ13 is shown in the
inset.
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FIG. 4. Ratio of measured versus expected signal in each detector,
assuming no oscillation. The error bar is the uncorrelated uncertainty
of each AD, including statistical, detector-related, and background-
related uncertainties. The expected signal is corrected with the best-
fit normalization parameter. Reactor and survey data were used to
compute the flux-weighted average baselines. The oscillation sur-
vival probability at the best-fit value is given by the smoothcurve.
The AD4 and AD6 data points are displaced by -30 and +30 m for
visual clarity. Theχ2 versussin2 2θ13 is shown in the inset.

The observedνe spectrum in the far hall is compared to
a prediction based on the near hall measurements in Fig. 5.
The disagreement of the spectra provides further evidence of
neutrino oscillation. The ratio of the spectra is consistent with
the best-fit oscillation solution ofsin2 2θ13 = 0.092 obtained
from the rate-only analysis [31].
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FIG. 5. Top: Measured prompt energy spectrum of the far hall (sum
of three ADs) compared with the no-oscillation prediction from the
measurements of the two near halls. Spectra were backgroundsub-
tracted. Uncertainties are statistical only. Bottom: The ratio of mea-
sured and predicted no-oscillation spectra. The red curve is the best-
fit solution withsin2 2θ13 = 0.092 obtained from the rate-only anal-
ysis. The dashed line is the no-oscillation prediction.

In summary, with a 43,000 ton-GWth-day livetime expo-
sure, 10,416 reactor antineutrinos were observed at the far
hall. Comparing with the prediction based on the near-hall
measurements, a deficit of 6.0% was found. A rate-only anal-
ysis yieldedsin2 2θ13 = 0.092± 0.016(stat) ± 0.005(syst).
The neutrino mixing angleθ13 is non-zero with a significance
of 5.2 standard deviations.
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