Logarithmic Numbers and Asynchronous Accumulators The Future of DL Chips

April 5, 2021

Bill Dally Chief Scientist and SVP of Research, NVIDIA Corporation Adjunct Professor of CS and EE, Stanford

Motivation

Deep Learning was Enabled by Hardware

Deep Learning is Gated by Hardware

CHALLENGES: ACCELERATING BIG AND SMALL

Exploding Model Complexity

Distributed Pervasive Acceleration

Some History

Single-Chip Inference Performance - 317X in 8 years

Kepler (2012)

3.95 TFLOPS (FP32) 250 GB/s 300W 28nm

Single-Chip Inference Performance - 317X in 8 years

Pascal (2016)

10.6 TFLOPS (FP32) 21.3 TFLOPS (FP16) FDP4 732 GB/s (HBM) NVLink 300W

Single-Chip Inference Performance - 317X in 8 years

Tensor Cores! 15 TFLOPS (FP32) 125 TFLOPS (FP16) HMMA 900 GB/s (HBM) 300 GB/s NVLink 300W

Single-Chip Inference Performance - 317X in 8 years

Integer Tensor Cores! 65 TFLOPS (FP32) 130 TFLOPS (FP16) 261 TOPs (Int8) IMMA 672 GB/s (G5) Ray Tracing!

Turing (2018)

Single-Chip Inference Performance - 317X in 8 years

Ampere (2020)

Sparsity! BF16 & TF32! 156 / 312 TFLOPS (TF32) (dense/sparse) 312 / 624 TFLOPS (FP16 or BF16) 624 / 1,248 TOPS (Int 8) 1,248 / 2,496 TOPS (Int 4) 2TB/s (HBM) 400W

3.12 TOPS/W (Int 8) 6.24 TOPS/W (Int 4)

Structured Sparsity

Gains from

Number representation FP32, FP16, Int8 (TF32, BF16)

Complex instructions DP4, HMMA, IMMA

Process 28nm, 16nm, 7nm

Specialized Instructions Amortize Overhead

Operation	Energy**	Overhead*
HFMA	1.5pJ	2000%
HDP4A	6.0pJ	500%
HMMA	110pJ	22%
IMMA	160pJ	16%

*Overhead is instruction fetch, decode, and operand fetch – 30pJ **Energy numbers from 45nm process

Accelerators

All have a matrix-multiply unit fed by a memory hierarchy.

NVIDIA DLA

Sparsity Compression Data gating Winograd

Command Interface

Open-sourced at nvdla.org

EIE (2016)

<u>Efficient Inference Engine</u> for compressed fully connected layers

Sparsity Hardware CSR Coding Scalar Quantization

Eyeriss (2016)

Tiling (dataflows) Weight stationary Row stationary

Spatial tiling with optimized dataflows for CNNs

SCNN (2017)

Sparsity Outer product Scatter-Add

Optimized PE for accelerating compressed <u>Sparse CNN</u>s

SIMBA (RC18) (2019)

Scalable MCM Hierarchical Mesh

Tiled PEs in a scalable MCM 128 TOPS 0.11 pJ/Op

MAGNET

Configurable using synthesizable SystemC, HW generated using HLS tools

Processing Element (PE)

MAGNET RESULTS

Design Space Exploration for ResNet-50

43% Energy Efficiency Improvement from Multi-Level Dataflows

VS-Quant

Per-Vector Scaled Quantization for Low-Precision Inference

$$y_q(j) = \left(\sum_{i=0}^{vecsize-1} w_q(i)a_q(i)\right) s_w(j)s_a(j)$$

Fine-grained scale factors per vector

Modified vector MAC unit for VS-Quant

Works with either post-training quantization or quantization-aware retraining! [Dai et al., MLSYS 2021]

Energy, Area, and Accuracy Tradeoff

BERT-base and BERT-large on SQuAD

* Amount of scale rounding varies among design points

31

Weight Width / Activation Width / Weight Scale Width / Activation Scale Width "-" indicates per-channel scaling

[Dai et al., MLSYS 2021]

Accelerators

- Start with a matrix multiplier
- Tiling (dataflow)
 - Maximize re-use from memory hierarchy
 - Number of levels and size of each level are free variables
- Sparsity
 - Compression (memory and communication)
 - Data gating
 - Sparse computation
- Number representation
 - Coding (makes math expensive)
 - Scaling (put the bits where the do the most good)
 - Scale by the vector

Logarithmic Numbers

Energy Breakdown

- Input Buffer
- Weight Buffer
- = Accumulation Buffer
- Accumulation collector
- Datapath + MAC
- Data Movement

Number Representation

Logarithmic Numbers

$$v = -1^s 2^{ei.ef}$$

Dynamic Range 10⁵ WC Accuracy 4%

Vs Int8 – DR 10² WC Accuracy 33%

Can apply offset to EI to represent any range of 16 integers, e.g., -8 to 7 (scaling)

Numbers near zero need special treatment

Computer Multiplication and Division Using Binary Logarithms*

JOHN N. MITCHELL, Jr., † Associate, ire

Summary—A method of computer multiplication and division is proposed which uses binary logarithms. The logarithm of a binary number may be determined approximately from the number itself by simple shifting and counting. A simple add or subtract and shift operation is all that is required to multiply or divide. Since the logarithms used are approximate there can be errors in the result. An error analysis is given and a means of reducing the error for the multiply operation is shown.

I. INTRODUCTION

M ULTIPLICATION and division operations in computers are usually accomplished by a series of additions and subtractions. and shifts. Conbe binary logarithms (to the base two). Since $\log_{10} N$ is usually written log N and $\log_e N$ is written ln N, to avoid ambiguity and the necessity of writing the subscript a similar notation will be adopted in this paper to imply $\log_2 N$:

$$\lg N \equiv \log_2 N.$$

A table of binary logarithms is shown in Fig. 1, and the familiar logarithmic curve is plotted in Fig. 2. Suppose the points where $\lg N$ is an integer are connected by straight lines. The dashed lines in Fig. 2 describe the

Mitchell, John N. "Computer multiplication and division using binary logarithms." *IRE Transactions on Electronic Computers* 4 (1962): 512-517.

Convolutional Neural Networks using Logarithmic Data Representation

Daisuke Miyashita

Stanford University, Stanford, CA 94305 USA Toshiba, Kawasaki, Japan

Edward H. Lee

Stanford University, Stanford, CA 94305 USA

Boris Murmann

Stanford University, Stanford, CA 94305 USA

DAISUKEM@STANFORD.EDU

EDHLEE@STANFORD.EDU

MURMANN@STANFORD.EDU

Abstract

Recent advances in convolutional neural networks have considered model complexity and

Integer log only $- 2^{a.0}$

(Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; He et al., 2015) but have steadily grown in computational complexity. For example, the Deep Residual Learning (He

Miyashita, Daisuke, Edward H. Lee, and Boris Murmann. "Convolutional neural networks using logarithmic data representation." *arXiv preprint arXiv:1603.01025* (2016).

4-bit Log Representation (L2.2)

4-bit Integer Representation (Int4)

Why Log

- Lower error where it matters
- Same accuracy with fewer bits
- Multiplies become adds

45nm Energy numbers from Horowitz 2014

US 20210050440A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2021/0056446 A1 Dally et al. (10) Pub. No.: US 2021/0056446 A1 (43) Pub. Date: Feb. 25, 2021

(54) INFERENCE ACCELERATOR USING LOGARITHMIC-BASED ARITHMETIC

- (71) Applicant: NVIDIA Corporation, Santa Clara, CA (US)
- (72) Inventors: William James Dally, Incline Village, NV (US); Rangharajan Venkatesan, San Jose, CA (US); Brucek Kurdo Khailany, Austin, TX (US)
- (21) Appl. No.: 16/750,823
- (22) Filed: Jan. 23, 2020

Related U.S. Application Data

(63) Continuation-in-part of application No. 16/549,683, filed on Aug. 23, 2019.

Publication Classification

(51) Int. Cl. G06N 5/04

(2006.01)

(52) U.S. Cl.

(57) ABSTRACT

Neural networks, in many cases, include convolution layers that are configured to perform many convolution operations that require multiplication and addition operations. Compared with performing multiplication on integer, fixed-point, or floating-point format values, performing multiplication on logarithmic format values is straightforward and energy efficient as the exponents are simply added. However, performing addition on logarithmic format values is more complex. Conventionally, addition is performed by converting the logarithmic format values to integers, computing the sum, and then converting the sum back into the logarithmic format. Instead, logarithmic format values may be added by decomposing the exponents into separate quotient and remainder components, sorting the quotient components based on the remainder components, summing the sorted quotient components using an asynchronous accumulator to produce partial sums, and multiplying the partial sums by the remainder components to produce a sum. The sum may then be converted back into the logarithmic format.

Numbers being summed are one hot

Two bits of accumulator toggle on average

vs half of bits toggling for normal add

Wasteful to clock a 24b register

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2021/0056399 A1
Dally et al. (43) Pub. Date: Feb. 25, 2021

(54) ASYNCHRONOUS ACCUMULATOR USING LOGARITHMIC-BASED ARITHMETIC

- (71) Applicant: NVIDIA Corporation, Santa Clara, CA (US)
- (72) Inventors: William James Dally, Incline Village, NV (US); Rangharajan Venkatesan, San Jose, CA (US); Brucek Kurdo Khailany, Austin, TX (US); Stephen G. Tell, Chapel Hill, NC (US)
- (21) Appl. No.: 16/750,917
- (22) Filed: Jan. 23, 2020

Related U.S. Application Data

(63) Continuation-in-part of application No. 16/549,683, filed on Aug. 23, 2019.

Publication Classification

(51)	Int. Cl.	
	G06N 3/063	(2006.01)
	G06F 17/16	(2006.01)

(52) U.S. Cl.

CPC G06N 3/063 (2013.01); G06F 17/16 (2013.01)

(57) ABSTRACT

Neural networks, in many cases, include convolution layers that are configured to perform many convolution operations that require multiplication and addition operations. Compared with performing multiplication on integer, fixed-point, or floating-point format values, performing multiplication on logarithmic format values is straightforward and energy efficient as the exponents are simply added. However, performing addition on logarithmic format values is more complex. Conventionally, addition is performed by converting the logarithmic format values to integers, computing the sum, and then converting the sum back into the logarithmic format. Instead, logarithmic format values may be added by decomposing the exponents into separate quotient and remainder components, sorting the quotient components based on the remainder components, summing the sorted quotient components using an asynchronous accumulator to produce partial sums, and multiplying the partial sums by the remainder components to produce a sum. The sum may then be converted back into the logarithmic format.

Big Picture

XOR of sign bits selects inc/dec (0/1)

Integer bits of sum (x) select bit position to increment

Fraction bits of sum (y) select which accumulator to increment

Energy Relative to Full-Adder Bit

Symbol	FA Equiv	Description
С	2	Carry-Lookahead adder bit
Μ	1.6	Multiplier partial product bit (b ² of these in a b-bit mult)
R	2	Register bit
W	0.1	Wire width of full-adder bit

Energy Comparison

Log6 MAC Unit

Element	FA equiv	
6b CL Adder	6C	12
2 Acc Bits Toggle	4R	8
Select Wires	2(32+32)W	13
TOTAL	6C+4R+128W	33

Int8 MAC Unit

Element	FA equiv	
8b Multiplier	64M	102
24b CL Adder	24C	48
24b Reg	24R	48
TOTAL	64M+24(R+C)	198

Conversion

Conclusion

Conclusion

- GPU inference performance doubling every year
 - Better number representation, FP16, Int8, Int4, ...
 - Complex instructions, DP4A, HMMA, IMMA
 - Sparsity
 - Plumbing
- Accelerators experiment with new techniques
 - Sparsity, Tiling (data flows), Number Representation
- Log Numbers give more "bang per bit"
 - Same accuracy with fewer bits (less memory area, energy)
 - Very low energy arithmetic
- Asynchronous accumulators
 - Log results in one-hot add into accumulator
 - Only clock the bits that toggle

4-bit Log Representation (L2.2)

4-bit Floating Point (FP2.2)

Log vs FP

- Slightly better accuracy
 - Constant maximum error across range
 - FP error maximum at start of each subrange
- Much simpler arithmetic
 - FP still needs a small multiplier
 - FP needs normalization
 - Have to do a real add not just an increment/decrement

PASCAL GP100

- 10 TeraFLOPS FP32
- 20 TeraFLOPS FP16
- ●16GB HBM 750GB/s
- 300W TDP
- •67GFLOPS/W (FP16)
- 16nm process
- •160GB/s NV Link