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Abstract

Background: Dietary fiber has been recommended for glucose control, and typically low intakes are observed in
the general population. The role of fiber in glycemic control in reported literature is inconsistent and few reports
are available in populations with type 1 diabetes (T1D).

Methods: Using data from the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study [n = 1257; T1D: n =
568; non-diabetic controls: n = 689] collected between March 2000 and April 2002, we examined cross-sectional
(baseline) and longitudinal (six-year follow-up in 2006–2008) associations of dietary fiber and HbA1c. Participants
completed a validated food frequency questionnaire, and a physical examination and fasting biochemical analyses
(12 h fast) at baseline visit and at the year 6 visit. We used a linear regression model stratified by diabetes status,
and adjusted for age, sex and total calories, and diabetes duration in the T1D group. We also examined correlations
of dietary fiber with HbA1c.

Results: Baseline dietary fiber intake and serum HbA1c in the T1D group were 16 g [median (IQ): 11–22 g) and 7.9
± 1.3% mean (SD), respectively, and in the non-diabetic controls were 15 g [median (IQ): 11–21 g) and 5.4 ± 0.4%,
respectively. Pearson partial correlation coefficients revealed a significant but weak inverse association of total
dietary fiber with HbA1c when adjusted for age, sex, diabetes status and total calories (r = − 0.07, p = 0.01). In the
adjusted linear regression model at baseline, total dietary fiber revealed a significant inverse association with HbA1c
in the T1D group [β ± SE = − 0.32 ± 0.15, p = 0.034], as well as in the non-diabetic controls [− 0.10 ± 0.04, p = 0.009].
However, these results were attenuated after adjustment for dietary carbohydrates, fats and proteins, or for
cholesterol and triglycerides. No such significance was observed at the year 6 follow-up, and with the HbA1c
changes over 6 years.

Conclusion: Thus, at observed levels of intake, total dietary fiber reveals modest inverse associations with poor
glycemic control. Future studies must further investigate the role of overall dietary quality adjusting for fiber-rich
foods in T1D management.
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Background
The incidence of type 1 diabetes (T1D), an autoimmune
disorder, as well as cardiovascular disease (CVD), the major
vascular complication of diabetes have been increasing
worldwide [1, 2]. Based on the statistics reported by the
American Heart Association, only 1.5% of US adults meet
the guidelines for healthy diet pattern [2]. While the recom-
mendation of healthy dietary pattern may have poor com-
pliance in populations, the role of modifying individual
nutrients and bioactive compounds has gained much atten-
tion in the management of chronic diseases such as T1D.
Among the dietary components, fiber has been shown to
play an important role in glycemic control in diabetes [3].
In a meta-analysis of randomized clinical trials reported by
Silva et al. (2013), higher fiber diets (up to 42.5 g/day) or
supplements containing soluble fiber (15 g/day) were found
to significantly decrease HbA1c and fasting plasma glucose
in adults with type 2 diabetes [4]. In another systematic re-
view, foods rich in soluble fiber, such as beta-glucans, were
shown to improve glycemia in diabetes patients [5]. These
effects of fiber have been explained by biological mecha-
nisms in delaying gastric emptying and decreasing glucose
absorption that subsequently lead to decreases in postpran-
dial rise of blood glucose [6, 7]. In addition, dietary fiber, es-
pecially increased soluble fiber intake, has also been
associated with anti-inflammatory properties and in modu-
lating the immune system with potential implications in the
prevention of T1D in children [8].
Epidemiological evidence on the associations of dietary

fiber and glycemic control in adults with type 1 diabetes is
limited and conflicting. In a longitudinal study of youths
with type 1 diabetes (n = 136), following behavioral nutri-
tion intervention, fiber intake was associated with im-
proved glycemic control [9]. Data from the European
Diabetes Centers (EURODIAB) Prospective Complications
Study have reported lower fiber intake in adults with type
1 diabetes (n = 1102) [10], as well as an inverse association
of fiber with HbA1c in these adults (n = 1659) [11]. In an-
other study, fiber intake was not associated with HbA1c
control in youths (n = 908) in a longitudinal dietary study
[12]. While several factors may be involved in the differ-
ences in these study findings, participant characteristics,
such as levels of dietary fiber intake and cardio-metabolic
profiles, and duration of diabetes may play an important
role, and thus a need to further investigate these associa-
tions in well-defined cohorts of T1D.
We have previously reported low prevalence of ideal

cardiovascular health (1.1%), especially based on the
American Heart Association definition of health matrices,
in adults with type 1 diabetes in the coronary artery calci-
fication in type 1 diabetes (CACTI) study [13]. We now
aim to identify the associations of dietary fiber with
glycemic control in the same cohort at cross-sectional and
longitudinal time points.

Methods
Study participants
The data presented in this report were collected as part of
the baseline examination of the CACTI study. The study
enrolled 1416 individuals between 19 and 56 years of age,
with no known history of CHD: 652 subjects with type 1
diabetes and 764 nondiabetic control subjects. Participants
with type 1 diabetes had long-standing disease (mean dur-
ation 23 years, range 4–52 years), were insulin dependent
within a year of diagnosis, and were diagnosed prior to
age 30 or had positive antibodies or a clinical course con-
sistent with type 1 diabetes. Non-diabetic control subjects
had fasting blood glucose < 110mg/dL and were generally
spouses, friends and neighbors of cases. The inclusion and
exclusion criteria have been described previously [14]. All
study participants provided informed consent and the
study protocol was approved by the Colorado Multiple
Institutional Review Board.

Dietary intake
Study participants who completed the baseline screening
visit were asked to fill out a validated self-administered
semi quantitative food-frequency questionnaire of 126
food items (Harvard FFQ, 1988) [15]. The procedures
have been previously published in detail [14]. The nutri-
ent values and dietary fiber content of foods for the Har-
vard FFQ were estimated primarily on the basis of the
USDA food composition database, and the correlation
coefficient for dietary fiber was 0.68 based on the valid-
ation studies [15, 16]. The total dietary fiber content was
mainly derived from the following food groups included
in the FFQ: breakfast cereals, breads, other cereal foods,
potatoes, legumes, lentils, vegetables, fruits, and nuts
and seeds. One thousand three hundred six study partic-
ipants completed the FFQ. Calorie intake was calculated
per the guidelines suggested by Willett [17] for exclud-
ing individuals with implausible reported energy intake,
40 participants were excluded due to reported caloric in-
take that was very low (< 500 cal per day if female or <
800 cal per day if male), or very high (3500 or higher if
female, 4000 or higher if male), leaving 571 participants
with type 1 diabetes and 696 controls in this analysis
[14]. Among these, for the current analysis, complete
biochemical and dietary information was available in 568
participants with type 1 diabetes and 689 controls and
were included in the final cross-sectional analysis.

Cardiovascular risk factors
Participants completed a baseline examination between
March 2000 and April 2002. Anthropometric measure-
ments were obtained and included height, weight and waist
circumference. Body mass index was calculated in kg/m2.
Resting systolic blood pressure (SBP) and fifth-phase dia-
stolic blood pressure (DBP) were measured three times
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while the patients were seated, following a 5min rest, and
the second and third measurements were averaged (Omron
HEM-705CP). In addition, participants completed stan-
dardized questionnaires that enquired about medical his-
tory, current medication, insulin doses, physical activity,
alcohol and tobacco use and family medical history. Follow-
ing a 12 h fast, participants came to the clinic in the morn-
ing for blood collection and analyses of biochemical
variables. Lipids (total cholesterol, HDL-cholesterol, LDL-
cholesterol and triglycerides), fasting glucose and HbA1c
were measured. After an overnight fast, blood was col-
lected, centrifuged and separated. Plasma was stored at 4 °C
until assayed. Total plasma cholesterol and triglyceride
levels were measured using standard enzymatic methods;
HDL cholesterol was separated using dextran sulphate, and
LDL cholesterol was calculated using the Friedewald for-
mula. High-performance liquid chromatography was used
to measure HbA1c (HPLC, BioRad variant).

Statistical analysis
Variables were examined for normality (normal plots),
and non-normally distributed variables (dietary fiber,
plasma triglycerides) were log transformed. Differences
in risk factors between men and women with type 1
diabetes and without diabetes were examined using a
Student’s t test. A χ2 test for goodness of fit was used to
determine if categorical risk factors differed between pa-
tients with type 1 diabetes and non-diabetic participants.
Wilcoxon rank sum test was used to compare differ-
ences of continuous variables with skewed distributions.
Correlations of dietary fiber with HbA1c, and dietary
macronutrients (carbohydrates, total fats and proteins as
percentage of daily caloric intake) and cardiovascular
risk factors (systolic and diastolic blood pressure, BMI,
waist circumference, plasma total-, HDL- and LDL-chol-
esterol and triglycerides, and glucose) were examined
using Pearson correlation coefficients after adjusting for
age, sex, diabetes status and total calories in the entire
cohort, as well as by T1D status. Linear regression ana-
lysis was used to examine associations of dietary fiber in-
take at baseline with contemporaneous HbA1c, as well
as with HbA1c at year 6 follow-up and the change
between year 6 and baseline. Models were adjusted for
relevant covariates as follows: model 1 (age, sex, and
total calories, and diabetes duration for T1D), model 2
(model 1 + dietary carbohydrates, fats and proteins) and
model 3 (model 1 + plasma lipids). In addition, longitu-
dinal analyses were adjusted for baseline HbA1c and the
duration of follow-up. Logistic regression analysis was
used to examine associations of quintiles of total dietary
fiber with the probability of poor control (> 7%) vs. opti-
mal control (< 7%) of HbA1c at baseline and the 6-year
follow-up.

Results
A total of 1257 participants were included in the
cross-sectional analysis, and a total of 990 participants
who had HbA1c values at both baseline and Year 3 were
included in the longitudinal analysis in this report. Table 1
shows the baseline characteristics of the study participants
stratified by sex and diabetes status. Women were younger
than men in both groups, significantly so in the non-dia-
betic control group. Among the anthropometric and bio-
chemical measures in the T1D group, BMI, waist
circumference, systolic and diastolic blood pressure were
significantly lower in women, while HDL-cholesterol was
higher when compared to men. We observed similar dif-
ferences in the control group, in addition to significantly
lower fasting glucose, total cholesterol and triglycerides in
women than in men. Among the dietary nutrient intakes,
total energy intake was significantly lower, while carbohy-
drate and protein intake were modestly higher in women
than men in both groups. No significant differences in
total fiber intake were observed between men and women
in the T1D or control group (Table 1).
Table 2 shows adjusted correlation coefficients of diet-

ary fiber intake with anthropometrics, biochemical and
dietary variables in the entire cohort, as well as by
diabetes status. Dietary fiber exhibited a significant and
inverse correlation with HbA1c, BMI, waist circumfer-
ence, systolic and diastolic blood pressure, serum choles-
terol and triglyceride. Among the dietary nutrients, fiber
intake revealed a significant positive association with
total carbohydrates, and an inverse association with total
fat intake in the entire cohort (all p < 0.05). These signifi-
cant correlations persisted in non-diabetic controls, but
were somewhat attenuated in T1D cases for BMI, waist
circumference, plasma HDL-C, triglycerides and glucose.
Overall, total dietary fiber intake remained inversely cor-
related with HbA1c in T1D cases as well as non-diabetic
controls (Table 2).
Table 3 shows the associations of baseline dietary

total fiber intake as a continuous variable with HbA1c
at year 6 and the change (year 6 – baseline) stratified
by diabetes status. Cross-sectional analysis at baseline
revealed a significant inverse association of dietary fiber
intake with HbA1c in the model adjusted for age, sex,
total calories and diabetes duration in the T1D group,
as well as in non-diabetic controls (Model 1). The sig-
nificance did not persist in models further adjusted for
dietary nutrients (Model 2) and conventional lipids
(Model 3). Longitudinal analyses revealed no significant
association in any of the models examined. The
six-year change in HbA1c was observed to be 0.05 (−
0.69–0.63) %, median (IQR) in the T1D group, and 0.01
(− 0.2–0.30) %, in the non-diabetic controls.
Log-transformed values of fiber were used for analyses
presented in Tables 2 and 3.
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Table 1 Baseline characteristics of the CACTI cohort

Type 1 diabetes Non-diabetic control

Men (n = 251) Women (n = 320) p-value Men (n = 347) Women (n = 349) p-value

Age (years) 38.0 ± 9.0 36.0 ± 9.0 0.07 40.0 ± 9.0 38.0 ± 9.0 0.01

HbA1c (%) 7.9 ± 1.2 7.9 ± 1.3 0.75 5.6 ± 0.4 5.4 ± 0.4 < 0.0001

Met < 7% HbA1c goal (%) 18.7 22.0 0.67 N/A N/A N/A

Duration of diabetes (years) 24.0 ± 9.0 23.0 ± 9.0 0.18 N/A N/A N/A

Duration of follow-up (years) 6.2 ± 0.6 6.2 ± 0.5 0.23 6.1 ± 0.5 6.2 ± 0.6 0.25

BMI (kg/m2) 26.6 ± 3.8 25.8 ± 4.7 0.04 27.2 ± 4.1 25.1 ± 5.6 < 0.0001

Waist circumference (cm) 90.8 ± 11.0 81.0 ± 12.0 < 0.0001 93.0 ± 12.0 79.0 ± 13.0 < 0.0001

Systolic blood pressure (mm Hg) 122.0 ± 13.0 114.0 ± 14.0 < 0.0001 118.0 ± 11.0 111.0 ± 13.0 < 0.0001

Diastolic blood pressure (mm Hg) 80.0 ± 9.0 75.0 ± 8.0 < 0.0001 82.0 ± 8.0 76.0 ± 8.0 < 0.0001

Plasma glucose (mg/dL) 199.0 ± 102.0 187.0 ± 93.0 0.14 93.0 ± 10.0 87.0 ± 9.0 < 0.0001

Plasma cholesterol (mg/dL) 175.0 ± 35.0 176.0 ± 33.0 0.81 198.0 ± 43.0 185.0 ± 34.0 < 0.0001

Plasma HDL-cholesterol (mg/dL) 50.0 ± 13.0 60.0 ± 17.0 < 0.0001 43.0 ± 11.0 58.0 ± 14.0 < 0.0001

Plasma triglycerides (mg/dL) 83.0 (62.0–114.0) 77.0 (62.0–103.0) 0.08 123.0 (89.0–181.0) 89.0 (66.0–124.0) < 0.0001

Energy intake (kcal/day) 1954.0 ± 625.0 1633.0 ± 561.0 < 0.0001 1992.0 ± 655.0 1655.0 ± 528.0 < 0.0001

Carbohydrate intake (% kcal/day) 44.0 (38.0–51.0) 46.0 (40.0–52.0) 0.04 47.0 (42.0–52.0) 48.0 (42.0–54.0) 0.04

Fat intake (% kcal/day) 36.0 (31.0–41.0) 35.0 (30.0–39.0) 0.08 34.0 (29.0–37.0) 33.0 (28.0–36.0) 0.06

Protein intake (% kcal/day) 18.0 (16.0–21.0) 19.0 (17.0–21.0) 0.004 18.0 (15.0–20.0) 19.0 (16.0–21.0) 0.0004

Total dietary fiber (g) 16.0 (12.0–22.0) 15.0 (11.0–21.0) 0.06 15.0 (11.0–21.0) 16.0 (11.0–21.0) 0.88

Physical activity (kJ/week) 7517 (3165–14,118) 5020 (1938–10,862) 0.32 6986 (3048–12,861) 6232 (2859–11,255) 0.21

Data are presented as means ± SD and median (IQ range)
P < 0.05 in bold; Comparison between men and women: t test for difference in means, χ2 test for difference in proportions, and Wilcoxon rank sum test for
difference of continuous variables with skewed distributions

Table 2 Pearson partial correlation coefficients of total dietary fiber with clinical parameters and dietary variables in the CACTI
cohort

Variable Total dietary fiber (all subjects)
(n = 1257)

Total dietary Fiber T1D cases
(n = 568)

Total dietary fiber non-diabetic controls
(n = 689)

R p-value R p-value R p-value

HbA1c −0.07 0.01 −0.08 0.03 − 0.10 0.009

Systolic blood pressure −0.11 0.0001 −0.08 0.05 −0.12 0.002

Diastolic blood pressure −0.13 < 0.0001 −0.09 0.03 −0.13 0.001

BMI −0.14 < 0.0001 −0.02 0.56 −0.16 < 0.0001

Waist circumference −0.12 < 0.0001 −0.01 0.73 −0.14 0.0003

Plasma cholesterol −0.09 0.0007 −0.12 0.005 −0.06 0.11

Plasma HDL- cholesterol 0.04 0.16 −0.02 0.56 0.11 0.004

Plasma triglyceride −0.07 0.009 −0.008 0.85 −0.10 0.007

Plasma glucose −0.03 0.33 −0.02 0.59 −0.08 0.022

Carbohydrate (% daily intake) 0.43 < 0.0001 0.45 < 0.0001 0.43 < 0.0001

Protein intake (% daily intake) −0.05 0.089 −0.08 0.05 −0.04 0.26

Fat intake (% daily intake) −0.41 < 0.0001 −0.40 < 0.0001 − 0.43 < 0.0001

Based on log transformed values of dietary fiber
Adjusted for age, sex, total calories and diabetes status, and duration (T1D)
T1D type 1 diabetes
P < 0.05 in bold
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Table 4 shows data from logistic regression analysis to
examine the associations of quintiles of dietary fiber in-
take with the probability of poor vs. optimal glycemic
control (HbA1c > 7% vs. < 7%). At baseline, no signifi-
cant associations were noted, but those in the highest
category of fiber intake [29 (23-69 g), mean (range)]
compared to the lowest (reference), trended towards an
inverse association in adjusted analysis (p = 0.08, Table 4).
No significant associations were noted at year 6
follow-up. No significant interaction effects of dietary
fiber and sex were noted in our analyses (p = 0.22).

Discussion
To our knowledge few reports have been published on
the association between dietary fiber intake and glycemic
control in T1D. Thus, our study found a significant in-
verse association between total dietary fiber intake and
HbA1c levels at the baseline visit of the CACTI study in
those with diabetes, as well as in non-diabetic controls
in a model adjusted for standard covariates including
total calories. Our significant cross-sectional associations
of fiber with glycemic control did not persist in models
further adjusted for dietary macronutrients and blood
lipids, largely due to their known independent associa-
tions with glycemic control [18, 19]. We did not observe

any significant predictive association of baseline fiber in-
take with HbA1c levels at year 6, and the six-year
changes of HbA1c in adjusted models. These discrepan-
cies in observations between cross-sectional and pro-
spective associations may be explained by the smaller
sample size in our prospective analysis and the habitual
low baseline fiber intake that was not predictive of gly-
cemic control 6 years later. This argument may further
explain our observation of an inverse trend between
fiber intake and poorly controlled HbA1c (> 7%) but
only in the highest quintile of fiber intake in the T1D
group. Poor glycemic control in T1D has been associ-
ated with excess mortality and cardiovascular disease
(CVD) when compared to non-diabetic matched con-
trols [20, 21], and few adults with T1D meet current gly-
cemic control targets [20], thus necessitating additional
preventive strategies such as dietary fiber intake in this
high-risk population. Dietary fiber has been identified as
a nutrient of public health concern and most of the US
adults do not meet the recommendations of 38 g/day for
adults [22]. We observed an intake of dietary fiber of less
than half the recommendations in our cohort of individ-
uals with and without T1D. These findings in adults
may also be reflective of a continuum of poor dietary
fiber intake observed in children with T1D [23], thus

Table 3 Linear associations of total dietary fiber with HbA1c at baseline, prospective (year 6) and change data in the CACTI cohort

Dietary
fiber
(Baseline)

HbA1c (Baseline) HbA1c (year 6) HbA1c change (year 6-Baseline)

T1D
(n = 568)

Non-diabetic control
(n = 689)

T1D (n = 452) Non-diabetic control
(n = 538)

T1D (n = 452) Non-diabetic control
(n = 538)

beta±SE P-value beta±SE P-value beta±SE P-value beta±SE P-value beta±SE P-value beta±SE P-value

Model 1a − 0.32 ± 0.15 0.034 −0.10 ± 0.04 0.009 0.017±0.138 0.90 0.033±0.057 0.56 0.017 ± 0.138 0.90 0.033 ± 0.057 0.56

Model 2b − 0.14 ± 0.18 0.43 −0.06 ± 0.05 0.27 0.112±0.158 0.48 0.044±0.065 0.50 0.112±0.158 0.48 0.044±0.065 0.50

Model 3c − 0.08 ± 0.11 0.46 −0.05 ± 0.03 0.19 0.119±0.158 0.45 0.058±0.065 0.37 0.119±0.158 0.45 0.058±0.065 0.37

T1D type 1 diabetes
P < 0.05 are in bold font
aModel adjusted for age, sex, diabetes duration and total calories for T1D; age, sex and total calories for non-diabetic control; year 6 and change model also
adjusted for baseline HbA1c and duration of follow-up
bModel 1+ dietary carbohydrates, fats and proteins
cModel 1 + plasma total cholesterol and triglycerides

Table 4 Logistic regression associations of quintiles of total dietary fiber with the probability of poor control (> 7%) vs. optimal
control (< 7%) HbA1c at baseline and at year 6 of CACTI study

Dietary fiber
quintiles (g)

HbA1c goals (baseline)
(> 7% N = 453 vs. < 7% N = 115)

HbA1c goals (year 6)
(> 7% N = 361 vs. < 7% N = 91)

OR (95% CI) P-value OR (95% CI) P-value

Quintile 1 Reference Reference

Quintile 2 0.487 (0.147, 1.617) 0.24 1.197 (0.546, 2.625) 0.65

Quintile 3 0.420 (0.126, 1.407) 0.16 1.059 (0.475, 2.359) 0.88

Quintile 4 0.370 (0.096, 1.423) 0.15 1.987 (0.787, 5.021) 0.15

Quintile 5 0.283 (0.07, 1.153) 0.08 1.573 (0.559, 4.432) 0.39

Data presented as OR (95% CI)
Dietary fiber quintiles: Quintile 1[N: 253; mean: 7.8 g (range: 2.8–10.3 g)]; Quintile 2 [N: 254; mean: 12.0 g (range: 10.3–13.7 g)]; Quintile 3 [N: 253; mean: 15.5 g
(range: 13.7–17.4 g)]; Quintile 4 [N: 254; mean: 19.8 g (range: 17.4–22.7 g)]; Quintile 5 [N: 253; mean: 28.8 g (range: 22.7–68.5 g)]
Model adjusted for age, sex, diabetes duration and total calories; year 6 also adjusted for baseline HbA1c and duration of follow up
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identifying a strong need to improve dietary fiber intake
in early life in T1D populations.
Very few studies have been reported on the association of

dietary fiber with glycemic control, especially in T1D. Our
study findings agree with a few previously reported studies
showing no prospective associations of dietary fiber with
HbA1c in youths with T1D [9, 12], while, we observe simi-
lar findings of inverse cross-sectional association between
dietary fiber and HbA1c in adults with T1D in the EURO-
DIAB study [24], as well as in youths with T1D [25]. Our
longitudinal findings differ from another report from the
EURODIAB study in which baseline fiber intake revealed
significant protective association against elevated HbA1c
levels in a 6.8 year follow-up period [11]. In comparing our
study with this previously reported study, we observe some
differences, especially higher HbA1c at baseline and
follow-up years, 8.25 ± 1.85% and 8.27 ± 1.44% (mean ±
SD), respectively, in their study [11], vs. 7.9 ± 1.2% and 7.8
± 1.12%, respectively, in our study. Also, our smaller sample
size at the six-year follow-up (n = 990), when compared to
this previous study (n = 1659) could explain the null find-
ings in our longitudinal analysis. Further, there are numer-
ous factors that impact changes in glycemic control over
time, including adoption of new diabetes technology, such
as the use of diabetes apps and remote glucose monitoring
system [26] during the study period. Overall, the import-
ance of increasing consumption of dietary fiber must be
emphasized in the T1D population, based on the numerous
health benefits of dietary fiber in delaying gastric transit
time and improving postprandial glucose load, decreasing
inflammation and cholesterol levels [27–29].
Our findings of the inverse association of dietary fiber

with HbA1c in the non-diabetic controls agree with pre-
vious reports in such populations, and have implications
for reducing risks associated with obesity, the metabolic
syndrome and type 2 diabetes in the general population
[30–33]. In addition to our main outcome of HbA1c, we
also observed significant inverse correlations of dietary
fiber with BMI, waist circumference, systolic and dia-
stolic blood pressure, as well as serum cholesterol and
triglycerides. These findings conform to reported studies
on the protective associations of dietary fiber against
obesity, the metabolic syndrome and elevated blood
lipids [31, 32]. We also observed a moderately strong
and significant inverse association between dietary fiber
and total fat intake in the entire cohort, and this pro-
vides some evidence of unhealthy dietary patterns in
T1D populations [34]. We have previously reported
higher intake of total and saturated fats in the CACTI
cohort that were associated with poor glycemic control
[14]. Together with our current findings on fiber intake,
selected nutrients, such as dietary fats, and dietary
bioactive compounds may play an important role in
glycemic control in T1D.

Our analyses have some limitations that must be consid-
ered during the interpretation of results. In the first place,
nutritional exposure data at baseline dietary intakes from
the FFQ relied on a retrospective self-report and, therefore,
may have been prone to recall bias. Secondly, we did not
have information on the distribution of soluble vs. insol-
uble fiber intake, food groups contributing to total fiber
intake, as well as food bioactive compounds, such as resist-
ant starch shown to be associated with improved glycemic
mangement [9, 35, 36]. Thirdly, our study considered
HbA1c as a marker of long-term glycemic control, and we
did not have data on daily glucose measures to capture
day-to-day glycemic fluctuations, which have recently been
suggested as a strong predictor of overall glycemic control
[37]. Future prospective cohort studies should thus exam-
ine associations of dietary fiber intake from different food
groups, as well as different types of fiber using multiple
biomarkers of glycemic control.

Conclusions
In conclusion, our significant inverse association ob-
served between dietary fiber intake and HbA1c in the
model adjusted for age, sex and total calories, and dia-
betes duration for T1D at baseline visit (cross-sectional
analysis) provides some evidence on the role of fiber in-
take in glycemic control, which is of importance in the
management of T1D patients at a high risk of mortality
from CVD. This association did not persist in models
further adjusted for dietary macronutrients and plasma
total cholesterol and triglycerides, and this may indicate
that higher levels of fiber intake than the observed low
habitual intakes are needed to counteract the positive as-
sociations of these variables with HbA1c. Overall, our
adjusted correlation coefficients also revealed a signifi-
cant inverse association of fiber intake with HbA1c in
the entire cohort, as well as in T1D cases and
non-diabetic controls. We used data from a
well-characterized cohort of T1D patients as well as
matched non-diabetic controls, thereby permitting
generalizability of our data to these populations. Further
research may explore whether overall dietary quality
when adjusted for fiber intake is associated with gly-
cemic control in participants with T1D or non-diabetic
individuals with habitual low fiber intakes.
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