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Abstract

Efficient Neural Architecture Search methods based on

weight sharing have shown good promise in democratiz-

ing Neural Architecture Search for computer vision models.

There is, however, an ongoing debate whether these efficient

methods are significantly better than random search. Here

we perform a thorough comparison between efficient and

random search methods on a family of progressively larger

and more challenging search spaces for image classification

and detection on ImageNet and COCO. While the efficacies

of both methods are problem-dependent, our experiments

demonstrate that there are large, realistic tasks where ef-

ficient search methods can provide substantial gains over

random search. In addition, we propose and evaluate tech-

niques which improve the quality of searched architectures

and reduce the need for manual hyper-parameter tuning.

1. Introduction

Neural Architecture Search (NAS) tries to find net-

work architectures with excellent accuracy-latency trade-

offs. While the resource costs of early approaches [45, 31]

were prohibitively expensive for many, recent efficient ar-

chitecture search methods based on weight sharing promise

to reduce the costs of architecture search experiments by

multiple orders of magnitude. [28, 3, 24, 5, 41]

The effectiveness of these efficient NAS approaches has

been questioned by recent studies (e.g., [18, 43]) present-

ing experimental results where efficient architecture search

methods did not always outperform random search base-

lines. Furthermore, even when gains were reported, they

were often modest. However, most existing results come

with limitations. First: negative results may simply indicate

that existing algorithms are challenging to implement and

Figure 1: Validation accuracies of 250 random architectures (blue

bars) vs. 5 independent runs of our TuNAS search algorithm (pink

lines) for three different search spaces. Rejection sampling is used

to ensure the latencies of random architectures are comparable to

those of searched architectures.

tune. Second: most negative results focus on fairly small

datasets such as CIFAR-10 or PTB, and some are obtained

on heavily restricted search spaces. With those caveats in

mind, it is possible that efficient NAS methods work well

only on specific search spaces and problems. But even so,

they can still be useful if those problems are of high practi-

cal value. For this reason we focus on the following: “Can

efficient neural architecture search be made to work reliably

on large realistic search spaces for realistic problems?”

When comparing against simpler algorithms such as ran-

dom search, we must consider not just explicit costs, such

as the time needed to run a single search, but also implicit

costs. For example, many models operate under hard la-

tency constraints (e.g., a model running on a self-driving car

in real time). However, the reward functions used by Mnas-

Net [36] and ProxylessNAS [5] require us to run multiple

searches with different hyper-parameters to match a given
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latency target.1 Larger models cannot be deployed, while

smaller models have sub-optimal accuracies.

We present TuNAS, a new easy-to-tune and scalable im-

plementation of efficient NAS with weight sharing, and use

it to investigate the questions outlined above:

• We investigate two existing models from the NAS liter-

ature, and find that while some of their gains are likely

due to better training hyper-parameters, some are due

to real improvements in the network architectures.

• We use TuNAS to study the effectiveness of weight

sharing on the ProxylessNAS search space for Ima-

geNet. Prior work [5] demonstrated that an efficient

NAS algorithm could find state-of-the-art image clas-

sification architectures on this space, but left open the

question of whether a simple random search baseline

could find equally good results. We find that efficient

NAS can significantly outperform random search on

the ProxylessNAS search space on ImageNet.

• We further evaluate our implementation on two new

and even larger search spaces. We find that (i) TuNAS

continues to find high-quality architectures, and (ii) the

gap between TuNAS and random search increases sig-

nificantly on these new search spaces.

• We demonstrate that when weight sharing is imple-

mented carefully, the same algorithm can be used

across different classification search spaces and across

domains (classification and object detection).

• We propose and evaluate two new techniques, which

we call op and filter warmup, for better training the

shared model weights used during a search. These

techniques improve the quality of architectures found

by our algorithm, sometimes by a large margin.

• We propose a novel RL reward function which allows

us to precisely control the latency of the final architec-

ture returned by the search, significantly reducing the

need for additional hyper-parameter tuning.

2. Related work

Neural Architecture Search was proposed as a way to au-

tomate and optimize the design process for network archi-

tectures. Existing methods have achieved impressive results

on image classification [45, 40, 37], object detection [10, 6],

segmentation [21], and video understanding [29]. Early

methods were based on Reinforcement Learning [44, 1],

Genetic Algorithms [32, 23, 31] or Bayesian Optimiza-

tion [17]. As these methods require a large amount of com-

pute to achieve good results, recent works focus on address-

1In our experiments we typically needed to run 7 searches to achieve

the desired latency.

ing this requirement [2, 27, 26, 22]. In many of these meth-

ods, a single supernetwork is trained which encompasses all

possible options in the search space [4, 28, 3, 5, 24, 41, 7].

A single path within the supernetwork corresponds to an ar-

chitecture in the search space. With this scheme, weight

sharing naturally occurs between the architectures.

Within the framework of efficient search methods based

on weight sharing, our work is closely related to ENAS [28],

DARTS [24], SNAS [41] and especially ProxylessNAS [5]

in terms of optimizing the quality-latency tradeoff of ar-

chitectures. Different from ProxylessNAS, our method is

able to handle substantially larger and more difficult search

spaces with less prior knowledge (e.g., hand-engineered

output filter sizes) and achieve improved performance.

Multi-Objective Search. An important strength of Neu-

ral Architecture Search is that it can cope with an ob-

jective function beyond pure accuracy. Recently, Neu-

ral Architecture Search has been used intensively to find

architectures that have better tradeoff between accuracy

and latency [36, 39, 8, 5, 35], FLOPS [37], power con-

sumption [14], and memory usage [9]. We also focus

on resource-aware NAS because (i) finding architectures

with good trade-offs between accuracy and latency is valu-

able in practice, and (ii) constrained optimization may be

more challenging than unconstrained optimization, which

makes it ideal for a stress-test of efficient NAS algorithms.

With this in mind, we make use of and extend the search

spaces proposed by MnasNet [36], ProxylessNAS [5], Mo-

bileNetV2 [33] and MobileNetV3 [13], which are close or

among the state-of-the-art networks for mobile settings.

Random Search vs Efficient Search Methods. The use of

more complicated search methods in Neural Architecture

Search has been challenged [43, 18]. In a nutshell, these

studies find that for certain problems and search spaces, ran-

dom search performs close to or just as well as more com-

plicated search methods. These studies, however, mainly

focused on relatively small tasks (such as CIFAR-10) and

accuracy-only optimization. Our focus is on larger and

more challenging searches which incorporate latency con-

straints. In these more realistic settings, efficient architec-

ture search significantly outperforms random search.

3. Search Spaces

Our goal is to develop a NAS method that can reliably

find high quality models at a specific inference cost across

multiple search spaces. We next present three progressively

larger search spaces and show that they are non-trivial: they

contain known good reference models2 that clearly outper-

form models found by random search, as shown in Table 1.

2In Table 3 we present our reproductions to the published numbers. In

all cases our reproductions are at least as accurate as the published results.
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Search Space Cardinality Ref Model Our Search
Random Search

Simulated

N=1 N = 20 N = 50 N = 250 Latency (ms)

ProxylessNAS ∼1021 76.2 76.3± 0.2 74.1 ± 0.8 75.4 ± 0.1 75.4 ± 0.2 75.6 83-85

ProxylessNAS-Enlarged ∼1028 76.2 76.4± 0.1 72.1 ± 1.5 74.4 ± 0.5 74.6 ± 0.3 74.8 83-85

MobileNetV3-Like ∼1043 76.5 76.6± 0.1 71.7 ± 1.7 74.1 ± 0.6 74.6 ± 0.3 74.9 57-59

Table 1: Comparison between reference models proposed in previous work (“Ref Model”), random search baselines in our search spaces

(“Random Search”), and searched models found by TuNAS (“Our Search”). We report validation accuracies on ImageNet after 90 epochs

of training. Cardinality refers to (an upper bound of) the number of unique architectures in the search space. The reference model for the

ProxylessNAS and ProxylessNAS-Enlarged search spaces is our reproduction of the ProxylessNAS mobile CPU model [5]. The reference

model for the MobileNetV3-Like search space is our reproduction of MobileNetV3 [13]. Mean and variance for Random Search are

reported over 5 repeats for N=20 and N=50, and 250 repeats for N=1.

Search Space Built Around
Base Filter Sizes

(ci’s for each layer)

Typical Choices within an Inverted Bottleneck Layer

Expansion Ratio Kernel Output filter size SE

ProxylessNAS MobileNetV2 ProxylessNAS [5] {3, 6} {3, 5, 7} ci 7

ProxylessNAS-Enlarged MobileNetV2 ×2 when stride = 2 {3, 6} {3, 5, 7} ci ×

�
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,
5
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,
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, 1,

5
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,
3

2
, 2
 

7

MobileNetV3-Like MobileNetV3 ×2 when stride = 2 {1, 2, 3, 4, 5, 6} {3, 5, 7} ci ×

�

1

2
,
5

8
,
3

4
, 1,

5

4
,
3

2
, 2
 

{7, 3}

Table 2: Search spaces we use to evaluate our method. The first two are built around MobileNetV2, whereas the third search space uses

the combination of ReLU and Swish activations and the new model head from MobileNetV3. We use a target inference time of 84ms for

the first two (to compare against ProxylessNAS and MnasNet) and 57ms for the third search space (to compare against MobileNetV3).

The same table shows that for the larger of these search

spaces, the gap between known good models and random

search baselines widens. Although architecture search be-

comes more difficult, it can also be more beneficial.

3.1. Search Space Definitions

Details of the three search spaces are summarized in Ta-

ble 2. Motivations for each of them are outlined below.

ProxylessNAS Space. The first and the smallest search

space is a reproduction of the one used in Proxyless-

NAS [5], an efficient architecture search method that reports

strong results on mobile CPUs. It consists of a stack of in-

verted bottleneck layers, where the expansion ratio and the

depthwise kernel size for each layer are searchable. The

search space is built around MobileNetV2 [33], except that

the output filter sizes for all the layers are handcrafted to be

similar to those found by MnasNet [36].

ProxylessNAS-Enlarged Space. While earlier convolu-

tional architectures such as VGG [34] used the heuristic

of doubling the number of filters every time the feature

map width and height were halved, more recent models

[33, 36, 5] obtain strong performance using more carefully

tuned filter sizes. Our experimental evaluation (Table 8)

demonstrates that these carefully tuned filter sizes are in fact

important for obtaining good accuracy/latency tradeoffs.

While output filter sizes are something that we ideally

should be able to search for automatically, the original Prox-

ylessNAS search space used manually tuned filter sizes built

around those discovered by an earlier and more expensive

search algorithm [36]. To understand whether this restric-

tion can be lifted, we explore an extension of the Proxyless-

NAS search space to automatically search over the number

of output filters in each layer of the network.

Specifically, we define a list of possible output filter sizes

for each layer in our search space by multiplying an integer-

valued base filter size by a predefined set of multipliers
�

1

2
, 5

8
, 3

4
, 1, 5

4
, 3

2
, 2
 

and rounding to a multiple of 8.3 The

base filter size is 16 for the first layer of the network, and

is doubled whenever we start a new block. If two layers

of the network are connected via a residual connection, we

constrain them to have the same output filter size.

MobileNetV3-Like Space. Our largest search space is in-

spired by MobileNetV3 [13]. Different from the previ-

ous spaces, models in this space utilize the Swish activa-

tion function [30] and a compact head [13]. The search

space is also much larger than the previous two. First: in-

verted bottleneck expansion ratios can be selected from the

set {1, 2, 3, 4, 5, 6}, compared with {3, 6} in other search

spaces. Second: we optionally allow a Squeeze-and-Excite

module [15] to be added to each inverted bottleneck. Out-

put filter sizes are searched; the choices follow the same

heuristic used in the ProxylessNAS-Enlarged space.

3.2. Measuring Search Algorithm Effectiveness

We measure the effectiveness of our NAS algorithm on a

given search space in two different ways.

3For performance reasons, working with multiples of 8 was recom-

mended for our target inference hardware.
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Reference Models. Can our algorithm match or exceed the

quality of known good architectures within the space? For

example, when evaluating the effectiveness of our algorithm

on the ProxylessNAS-Enlarged space, we compare against

MobileNetV2 [33] (a hand-tuned model), MnasNet [36]

(a model obtained from a more expensive NAS algorithm

where thousands of candidate architectures were trained

from scratch), and ProxylessNAS-Mobile [5] (a model ob-

tained using a NAS algorithm similar to ours, which we use

to verify our setup).

Random Search. Can our algorithm provide better results

in less time than random search without weight sharing, an

easy-to-implement heuristic which is widely used in prac-

tice? In industry settings, it is common to target a specific

latency T0; slower models cannot be deployed while faster

models typically have sub-optimal accuracies [37]. How-

ever, in practice only a small percentage of models are ac-

tually close to this inference target.

To make the baseline interesting in this realistic setup,

we perform rejection sampling in the range of T0±1ms to

obtain N random models. These models are then trained for

90 epochs and validated. The model with the best result on

the validation set is subsequently trained for 360 epochs and

evaluated on the test set, analogous to our searched models

for final evaluation. Note the cost of random search with

N = 15 to 30 is comparable with the cost of a single run of

our efficient search algorithm (Appendix F).

Besides the comparisons discussed above, the complex-

ity of our search spaces can be quantified using several

other metrics, which we report in Table 1. A clear pro-

gression in the task difficulties can be observed as we move

from the smallest ProxylessNAS search space to the largest

MobileNetV3-Like search space.

4. TuNAS

TuNAS uses a reinforcement learning algorithm with

weight sharing to perform architecture searches. Our al-

gorithm is similar to ProxylessNAS [5] and ENAS [28], but

contains changes to improve robustness and scalability and

reduce the need for manual hyper-parameter tuning.

A search space is represented as a set of categorical de-

cisions which control different aspects of the network ar-

chitecture. For example, a single categorical decision might

control whether we use a 3×3, 5×5, or 7×7 convolution at

a particular position in the network. An architecture is an

assignment of values to these categorical decisions.

During a search, we learn a policy π, a probability dis-

tribution from which we can sample high quality architec-

tures. Formally, π is defined as a collection of independent

multinomial variables, one for each of the decisions in our

search space. We also learn a set of shared weights W ,

which are used to efficiently estimate the quality of candi-

date architectures in our search space.

We alternate between learning the shared weights W us-

ing gradient descent and learning the policy π using RE-

INFORCE [38]. At each step, we first sample a network

architecture α ∼ π. Next, we use the shared weights to

estimate the quality Q(α) of the sampled architecture us-

ing a single batch of examples from the validation set. We

then estimate the inference time of the sampled architecture

T (α). The accuracy Q(α) and inference time T (α) jointly

determine the reward r(α) which is used to update the pol-

icy π using REINFORCE.4 Finally, we update the shared

model weights W by computing a gradient update w.r.t. the

architecture α on a batch of examples from the training set.

The above process is repeated over and over until the

search completes. At the end of the search, the final ar-

chitecture is obtained by independently selecting the most

probable value for each categorical decision in π.

4.1. Weight Sharing

To amortize the cost of an architecture search, NAS al-

gorithms based on weight sharing (e.g., [3, 28, 24, 5]) train

a large network – a one-shot model – with many redundant

operations, most of which will be removed at the end of the

search. In ProxylessNAS [5], for instance, we must select

between three possible kernel sizes (3, 5, or 7) and two pos-

sible expansion factors (3 or 6), giving us 3×2 = 6 possible

combinations. In ProxylessNAS, each of these six combi-

nations will have its own path through the network: its own

set of trainable weights and operations which are not shared

with any other path. At each step, we randomly select one

of the six paths and update the shared model weights and

RL controller using just the weights from the selected path.

While this approach works well when the number of

paths is small, the size of the one-shot model will quickly

blow up once we add more primitives to the search. For

instance, the number of unique inverted bottleneck config-

urations per layer can be as large as 6 × 3 × 7 × 2 = 252
in our MobileNetV3-Like space, in contrast to 2 × 3 = 6
options in the ProxylessNAS space (Table 2). As a result,

the search process cannot be carried out efficiently because

each inverted bottleneck will only be trained a small frac-

tion of time (1/252 under a uniform policy).

Operation Collapsing. Instead of using a separate set of

weights for each possible combination of choices within an

inverted bottleneck, we share (“collapse”) operations and

weights in order to ensure that each trainable weight gets

a sufficient gradient signal. The approach is illustrated in

Figure 2. For example, while ProxylessNAS uses different

1×1 convolutions for each possible depthwise kernel within

4We set the learning rate of the RL controller to 0 during the first 25%

of training. This allows us to learn a good set of shared model weights

before the RL controller kicks in. Details are provided in Appendix E.2.
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Figure 2: Illustration of our aggressive weight sharing scheme for

inverted bottleneck layers. Each choice block is associated with a

decision to be made based the RL policy. The expansion ratios and

output filter sizes for the 1× 1 convolutions are learned through a

channel masking mechanism.

an inverted bottleneck, we reuse the same 1×1 convolutions

regardless of which depthwise kernel is selected.

Channel Masking. Complementary to operation collaps-

ing, we also share parameters between convolutions with

different numbers of input/output channels. The idea is to

create only a single convolutional kernel with the largest

possible number of channels. We simulate smaller channel

sizes by retaining only the first N input (or output) chan-

nels, and zeroing out the remaining ones. This allows us to

efficiently search for both expansion factors and output filter

sizes in an inverted bottleneck, as learning these is reduced

to learning multinomial distributions over the masks.

4.2. Targeting a Specific Latency

For many practical applications (e.g., real-time image

perception), we want the best possible model that runs

within a fixed number of milliseconds. However, we found

that with the existing RL reward functions used by Mnas-

Net [36] and ProxylessNAS [5], we frequently had to retune

our search hyper-parameters in order to find the best models

under a given latency target. This extra retuning step mul-

tiplied resource costs by 7× in many of our experiments.

We now explain why, and propose a new reward function to

address the issue.

Soft Exponential Reward Function. In previous work,

Tan et al. [36] proposed a parameterized RL reward func-

tion to find architectures with good accuracy/time tradeoffs,

and evaluated two instantiations of this function. In the

first instantiation (later adopted by ProxylessNAS [5]), they

maximize the reward

r(α) = Q(α)× (T (α)/T0)
β

where Q(α) indicates the quality (accuracy) of a candidate

architecture α, T (α) is its inference time, T0 is a problem-

dependent inference time target, and β < 0 is the cost expo-

nent, a tunable hyper-parameter of the setup. Since β < 0,

this reward function is maximized when the model quality

Q(α) is large and the inference time T (α) is small.

However, to find the best possible model whose in-

ference time is less than T0, we must perform a hyper-

parameter sweep over β. If β is too small, the inference con-

straint will effectively be ignored. If β is too large, we will

end up with models that have low latencies but sub-optimal

accuracies. To make matters worse, we found that changing

the search space or search algorithm details required us to

retune the value of β, increasing search experiment costs by

7× in practice.

Figure 3 shows a geometric intuition for this behavior.

Each contour line in the plot represents a set of possible

tradeoffs between model quality and latency which yield the

same final reward. Our goal is to try to find an architecture

with the highest possible reward, corresponding to a con-

tour line that is as far to the top left as possible. However,

the reward must correspond to a viable architecture in the

search space, which means the contour must intersect the

population’s accuracy-latency frontier (circled in black).

For the soft exponential reward, the figure suggests that

a small shift in the population (e.g., due to a change in the

training setup or search space) can significantly alter the op-

timal latency. This explains why the same value of β can

lead to different latencies in different searches. Both the

hard exponential reward function and the proposed absolute

reward function, which we will discuss next, are more sta-

ble, thanks to the “sharp” change points in their contours.

Hard Exponential Reward Function. A second instantia-

tion of the MnasNet reward function [36] penalizes models

whose inference times T (α) are above T0 but does not re-

ward models whose inference times are less than T0:

r(α) =

(

Q(α), if T (α) ≤ T0

Q(α)× (T (α)/T0)
β , if T (α) > T0

(1)

At first glance, we might expect that an RL controller using

this reward would always favor models with higher accura-

cies, provided that their inference times do not exceed T0.

However, this is not the case in our experiments. The reason

is that the RL controller does not select a single point on the

Pareto frontier. Rather, it learns a probability distribution

over points. If the cost exponent β is too large, the controller

will become risk-adverse preferring to sample architectures

whose latencies are significantly below the target T0. This

allows it to minimize the probability of accidentally sam-

pling architectures whose times exceed the target and incur-

ring large penalties. Empirically, we found that if we made

the cost penalty β too large, the controller would sample ar-

chitectures with inference times close to 75ms, even though

the target inference time was closer to 85ms.

Our Solution: Absolute Reward Function. We propose

a new reward function which can find good architectures

whose inference times are close to a user-specified target T0

and is robust to the exact values of hyper-parameters. The
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Figure 3: Contours of different reward functions and their interac-

tions with the frontiers. The blue and the orange denote the fron-

tiers of two search spaces with different accuracy-latency trade-

offs. Left: Soft exponential reward function. Center: Hard ex-

ponential reward function. Right: Our absolute reward function.

Regions in black indicate architectures with the highest reward.

key idea is to add to our reward function a prior that larger

models are typically more accurate. Instead of just asking

the search to identify models with inference times less than

T0 (as in previous work), we explicitly search for the best

possible models whose inference times are close to T0. This

implies a constrained optimization problem:

max
α

Q(α) subject to T (α) ≈ T0 (2)

The above can be relaxed as an unconstrained optimization

problem that aims to maximize

r(α) = Q(α) + β |T (α)/T0 − 1|

where | · | denotes the absolute function and β < 0, the cost

exponent, is a finite negative scalar that controls how much

strongly we encourage architectures to have inference times

close to T0. The expression T (α)/T0 ensures the reward is

scale-invariant w.r.t. latency. Search results are robust to the

exact value of β,5 and this scale-invariance further reduces

the need to retune β for new devices and search spaces.

Using the absolute value reward, we found that while

the average inference time of models sampled by the RL

controller was consistently close to the target, the inference

time of the most likely architecture selected at the end of the

search could be several milliseconds lower. We combat the

mismatch between average and most likely inference times

by adjusting the learning rate schedule of the RL controller.

Instead of using a constant learning rate through the search,

we exponentially increase the RL learning rate over time.

This allows the controller to explore the search space (with

a relatively low learning rate) at the start of the search, but

also ensures that the entropy of the RL controller is low at

the end of the search, preventing the mismatch. Additional

information is provided in Append B.

4.3. Improving the shared model weights

We identified two techniques that allowed us to improve

the quality of the models found by architecture search ex-

periments. Both techniques rely on the intuition that if we

5We used the same value of β for all our classification experiments.

can ensure that all of our shared model weights are suffi-

ciently well-trained, we can get a more reliable signal about

which parts of the search space are most promising.

Filter Warmup. We can efficiently search over different

filter sizes by masking out tensors across the filters dimen-

sion. For example, we can simulate a convolution with 96

output filters by taking a convolution with 128 output fil-

ters and zeroing out the rightmost 32. However, this intro-

duces a bias into our training process: the left-most filters

will always be trained, whereas the right-most filters will

be trained only occasionally. To counteract this effect, we

randomly enable all the output filters – rather than just the

filters selected by the RL controller – with some probability

p. We linearly decrease p from 1 to 0 over the first 25% of

the search,6 during which the RL controller is disabled and

only the shared model weights are trained.

Op Warmup. We enable all possible operations in the

search space at start of training, and gradually drop out more

and more of the operations as the search progresses. Our

discussion will focus on a single choice block, where the

goal is to select one of N possible operations (e.g., convo-

lutions, inverted bottleneck layers, etc.) from a predeter-

mined search space. The idea was originally proposed and

evaluated by Bender et al. [3], who used carefully-tuned

heuristics to determine the dropout schedule. We found that

a simplified version of the idea could be used to improve our

search results with minimal tuning. With some probability

p between 0 and 1 we enable all operations within a choice

block, rather than just enabling the operations selected by

the RL controller. When multiple operations are enabled,

we average their outputs. When p = 0, the controller’s be-

havior is unaffected by op warmup. When p = 1, we enable

all possible operations at every training step. In our imple-

mentation, we linearly decrease p from 1 to 0 over the first

25% of the search, during which the RL controller is dis-

abled and only the shared model weights are trained. Op

warmup can be implemented in a memory-efficient manner

by leveraging rematerialization (Appendix C).

5. Experimental Setup and Baselines

For the ProxylessNAS and ProxylessNAS-Enlarged

search spaces, our searches target the same latency as the

published ProxylessNAS Mobile architecture [5]. For our

MobileNetV3-Like search space, we target the latency of

MobileNetV3-Large [13]. The resulting architectures are

trained from scratch to obtain validation and test set accura-

cies. Unless otherwise specified, we obtained validation set

accuracies of standalone models on a held-out subset of the

ImageNet training set, after training on the remainder for

6We also experimented with decreasing p over 50% of steps instead of

25%, but did not observe a significant effect on search quality.
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90 epochs. We obtained test set accuracies after training on

the full training set for 360 epochs. Details for standalone

training and architecture search are reported in Appendix E.

For architecture search experiments, we always repeat

the entire search process 5 times as suggested by Lindauer

and Hutter [20], and report the mean and variance of the

performance of the resulting architectures. This is different

from the popular practice of training a single resulting archi-

tecture multiple times, which only reflects the variance of a

single searched architecture (which can be cherry-picked)

rather than the search algorithm itself. For reproductions of

published models such as MobileNetV2 where no architec-

ture search is required on our part, we report the mean and

variance across five training runs.

Identical hyper-parameters are used to train all of our

models. (See Appendix E for details.) The one exception

is the dropout rate of the final fully connected layer, which

is set to 0 when training for 90 epochs, 0.15 when training

MobileNetV2-based models for 360 epochs, and 0.25 when

training MobileNetV3-based models for 360 epochs. We

initially experimented with tuning hyper-parameters such as

the learning rate and dropout rate separately for each model.

However, this did not lead to any additional quality gains,

and was omitted for our final experiments.

5.1. Reproducing Reference Architectures

We start by reproducing three popular mobile image

classification models in our training setup: MobileNetV2

[33], MnasNet-B1 [36], and ProxylessNAS [5]. This serves

two purposes. First, it allows us to verify our training and

evaluation setup. And second, it allows us to cleanly dis-

tinguish between improvements in our model training setup

and improvements in our searched network architectures.

Results are presented in Table 3. Our hyper-parameters

provide quality comparable to the published results for

MnasNet-B1 and significantly improve upon the published

results of ProxylessNAS and MobileNetV2.

There is an especially large (1.3%) accuracy improve-

ment in our reproduction of MobileNetV2. This suggests

that some of the quality gains from MnasNet and Proxy-

lessNAS which were previously attributed to better network

architectures may in fact be due to better hyper-parameter

tuning. It underscores the importance of accounting for dif-

ferences in training and evaluation setups when comparing

different network architectures.

6. Results and Discussion

Compared with previous papers on efficient architecture

search such as ProxylessNAS, our architecture search setup

includes several novel features, including (i) a new abso-

lute value reward, (ii) the use of op and filter warmup, and

(iii) more aggressive weight sharing during searches. At

the end of this section we will systematically evaluate these

Name Simulated Accuracy (%)

Latency Valid Test Test

ours published ours

MobileNetV2 77.2 ms 74.5 ± 0.1 72.0 73.3 ± 0.1

MnasNet-B1 84.5 ms 76.0 ± 0.1 74.5 74.5 ± 0.1

ProxylessNAS 84.4 ms 76.3 ± 0.2 74.6 74.9 ± 0.1

MobileNetV3 58.5 ms 76.5 ± 0.2 75.2 75.3 ± 0.1

Table 3: Reproductions of our baseline models on ImageNet.

Model / Method Valid Acc (%) Test Acc (%) Latency

ProxylessNAS [5] 76.2 74.8 84.4

RS (N = 20) 75.4 ± 0.2 73.9 ± 0.3 84.3 ± 0.8

RS (N = 50) 75.4 ± 0.2 74.0 ± 0.2 83.8 ± 0.6

TuNAS (90 epochs) 76.3 ± 0.2 75.0 ± 0.1 84.0 ± 0.4

Table 4: Results in the ProxylessNAS search space. “Proxyless-

NAS [5]” is our reproduction of the ProxylessNAS-Mobile model.

Our TuNAS implementation includes op/filter warmup, the abso-

lute value reward, and more aggressive weight sharing.

Model / Method Valid Acc (%) Test Acc (%) Latency

MobileNetV2 [33] 74.4 73.4 77.2

MNASNet-B1 [36] 76.0 74.5 84.5

ProxylessNAS [5] 76.2 74.8 84.4

RS (N = 20) 74.4 ± 0.5 73.1 ± 0.6 84.0 ± 0.6

RS (N = 50) 74.6 ± 0.3 73.2 ± 0.3 83.5 ± 0.3

TuNAS (90 epochs) 76.4 ± 0.1 75.3 ± 0.2 84.0 ± 0.4

Table 5: Results in the ProxylessNAS-Enlarged search space.

Model / Method Valid Acc (%) Test Acc (%) Latency

MobileNetV3-L [13] 76.5 75.3 58.5

RS (N = 20) 74.1 ± 0.6 73.0 ± 0.5 58.5 ± 0.5

RS (N = 50) 74.6 ± 0.3 73.5 ± 0.2 58.7 ± 0.4

TuNAS (90 epochs) 76.6 ± 0.1 75.2 ± 0.2 57.0 ± 0.2

TuNAS (360 epochs) 76.7 ± 0.2 75.4 ± 0.1 57.1 ± 0.1

Table 6: Results in the MobileNetV3-Like search space.

changes. First we evaluate our proposed efficient architec-

ture search implementation on the three search spaces pre-

sented in Section 3, and compare our results against random

search with similar or higher search cost. The search spaces

gradually increase in terms of both size and difficulty.

Finding 1: TuNAS outperforms Random Search (RS) by

a large margin in each of our three classification search

spaces. This holds even though we use 2-3x more com-

pute resources for each RS experiment (Appendix F).

First (Table 4), we evaluate our search algorithm on

the ProxylessNAS search space [5]. Despite having lower

search costs, the accuracies of architectures found with an

efficient architecture search improve upon random search

by 1%. These also provide a sanity check for our setup: the

results of our search are competitive with those reported by

the original ProxylessNAS paper.

Next (Table 5), we evaluate our search algorithm on the

ProxylessNAS-Enlarged search space, which additionally

searches over output filter sizes. In this larger and more
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challenging search space, the accuracy gap between our

method and random search increases from 1% to 2%.

Finally (Table 6), we evaluate our search algorithm on

our MobileNetV3-Like search space, which is the most

challenging of the three. In addition to being the largest

of the three search spaces, the accuracies of architectures

sampled from this search space are – on average – lower

than the other two. Increasing the size of a random sample

from N = 20 to N = 50 can improve the results of random

search. However, we find that increasing the search time of

our algorithm from 90 to 360 epochs can also improve the

results of our efficient algorithm, while still maintaining a

lower search cost than random search with N = 50.

Finding 2: The TuNAS implementation generalizes to

object detection. We investigate the transferability of our

algorithm to the object detection task, by searching for the

detection backbone w.r.t. both mean average precision and

the inference cost. Results on COCO [19] are summarized

in Table 7. The searched architecture outperforms the state-

of-the-art model MobileNetV3 + SSDLite [13]. Details of

the experimental setup are presented in Appendix E.3.

Finding 3: Output filter sizes are important.

MnasNet-B1 [36] searches over the number of output fil-

ters in addition to factors such as the kernel sizes and ex-

pansion factors. This is different from many recent papers

on efficient NAS–including ENAS [28], DARTS [24], and

ProxylessNAS [5]–which hard-coded the output filter sizes.

To determine the importance of output filter sizes, one

possibility would be to modify the output filter sizes of a

high-performing model (such as the ProxylessNAS-Mobile

model) and look at how the model accuracy changes. How-

ever, we can potentially do better by searching for a new

architecture whose operations are better-adapted to the new

output filter sizes. We therefore perform two different vari-

ants of the latter procedure. In the first variant, we replace

the ProxylessNAS output filter sizes (which are hard-coded

to be almost the same as MnasNet) with a naive heuristic

where we double the number of filters whenever we halve

the image width and height, similar to architectures such as

ResNet and VGG. In the second, we double the number of

filters at each new block. Table 8 shows that searched filter

sizes significantly outperform both doubling heuristics.

Finding 4: Aggressive weight sharing enables larger

search spaces without significant quality impact. We

share weights between candidate networks more aggres-

sively than previous works such as ProxylessNAS (Section

4.1). This lets us explore much larger search spaces, includ-

ing one with up to 252 options per inverted bottleneck. For

the ProxylessNAS space (where searches are possible with

and without it), we verified that it does not significantly af-

fect searched model quality (Appendix G).

Backbone COCO Test-dev mAP Latency

MobileNetV2 20.7 126

MNASNet 21.3 129

ProxylessNAS 21.8 140

MobileNetV3-Large 22.0 106

TuNAS Search 22.5 106

Table 7: Backbone architecture search results on MS COCO in the

MobileNetV3-Like space. All detection backbones are combined

with the SSDLite head. Target latency for TuNAS search was set

to 106ms (same as for MobileNetV3-Large + SSDLite).

Filters Valid Acc (%) Test Acc (%) Latency

ProxylessNAS 76.3 ± 0.2 75.0 ± 0.1 84.0 ± 0.4

×2 Every Stride-2 74.8 ± 0.2 73.5 ± 0.2 83.9 ± 1.0

×2 Every Block 75.3 ± 0.2 74.0 ± 0.2 83.9 ± 0.2

Table 8: Effect of output filter sizes on final model accuracies.

Reward Valid Acc (%) Test Acc (%) Latency

MnasNet-Soft Reward 76.2 ± 0.2 74.8 ± 0.3 79.5 ± 3.3

Absolute Value Reward 76.4 ± 0.1 75.0 ± 0.1 84.1 ± 0.4

Table 9: Comparison of our absolute value reward function

(T0=84ms) vs. the reward used by MnasNet and ProxylessNAS.

While both provide similar quality/latency tradeoffs, our absolute

value reward allows precise control over the inference latency, and

reduces the need for extra tuning to find a suitable cost exponent.

Search Space Warmup Valid Acc (%) Test Acc (%) Latency

ProxylessNAS 7 76.1 ± 0.1 74.7 ± 0.1 84.0 ± 0.3

ProxylessNAS 3 76.3 ± 0.2 75.0 ± 0.1 84.0 ± 0.4

ProxylessNAS-Enl 7 75.8 ± 0.3 74.6 ± 0.2 83.6 ± 0.2

ProxylessNAS-Enl 3 76.4 ± 0.1 75.3 ± 0.2 84.0 ± 0.4

MobileNetV3-Like 7 76.2 ± 0.2 75.0 ± 0.1 57.0 ± 0.6

MobileNetV3-Like 3 76.6 ± 0.1 75.2 ± 0.2 57.0 ± 0.2

Table 10: Comparison of search results with vs. without op and

filter warmup. We use aggressive weight sharing and search for 90

epochs in all search configurations.

Finding 5: The absolute value reward reduces hyper-

parameter tuning significantly. With the MnasNet-Soft

reward function, we found it necessary to grid search over

β ∈ {−0.03,−0.04,−0.05,−0.06,−0.07,−0.08,−0.09}
in order to reliably find network architectures close to the

target latency. By switching to the absolute value reward

function, we were able to eliminate the need for this search,

reducing resource costs by a factor of 7. We compared the

quality of both methods on our implementation of the Prox-

ylessNAS search space with weight sharing, and found that

the Absolute Value reward function did not significantly af-

fect the quality/latency tradeoff (Table 9 and Appendix D).

Finding 6: Op and filter warmup lead to consistent im-

provements across all search spaces. Controlled experi-

ments are presented in Table 10. While improvements are

small in some spaces, they account for nearly half of all

quality gains in the ProxylessNAS-Enlarged Space.
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