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Abstract

The fully- connected layers of deep convolutional neural

networks typically contain over 90% of the network param-

eters. Reducing the number of parameters while preserving

predictive performance is critically important for training

big models in distributed systems and for deployment in em-

bedded devices.

In this paper, we introduce a novel Adaptive Fastfood

transform to reparameterize the matrix-vector multiplica-

tion of fully connected layers. Reparameterizing a fully

connected layer with d inputs and n outputs with the Adap-

tive Fastfood transform reduces the storage and computa-

tional costs costs from O(nd) to O(n) and O(n log d) re-

spectively. Using the Adaptive Fastfood transform in convo-

lutional networks results in what we call a deep fried con-

vnet. These convnets are end-to-end trainable, and enable

us to attain substantial reductions in the number of param-

eters without affecting prediction accuracy on the MNIST

and ImageNet datasets.

1. Introduction

In recent years we have witnessed an explosion of ap-

plications of convolutional neural networks with millions

and billions of parameters. Reducing this vast number of

parameters would improve the efficiency of training in dis-

tributed architectures. It would also allow for the deploy-

ment of state-of-the-art convolutional neural networks on

embedded mobile applications. These train and test time

considerations are both of great importance.

A standard convolutional network is composed of two

types of layers, each with very different properties. Con-

volutional layers, which contain a small fraction of the net-

work parameters, represent most of the computational ef-

fort. In contrast, fully connected layers contain the vast

majority of the parameters but are comparatively cheap to

evaluate [21].

This imbalance between memory and computation sug-

gests that the efficiency of these two types of layers should

be addressed in different ways. [12] and [18] both describe

methods for minimizing computational cost of evaluating

a network at test time by approximating the learned con-

volutional filters with separable approximations. These ap-

proaches realize speed gains at test time but do not address

the issue of training, since the approximations are made af-

ter the network has been fully trained. Additionally, nei-

ther approach achieves a substantial reduction in the num-

ber of parameters, since they both work with approxima-

tions of the convolutional layers, which represent only a

small portion of the total number of parameters. Many other

works have addressed the computational efficiency of con-

volutional networks in more specialized settings [13, 24].

In contrast to the above approaches, [11] shows that there

is significant redundancy in the parameterization of several

deep learning models, and exploits this to reduce the num-

ber of parameters. More specifically, their method repre-

sents the parameter matrix as a product of two low rank

factors, and the training algorithm fixes one factor (called

static parameters) and only updates the other factor (called

dynamic parameters). [33] uses low-rank matrix factoriza-

tion to reduce the size of the fully connected layers at train

time. They demonstrate large improvements in reducing the

number of parameters of the output softmax layer, but only

modest improvements for the hidden fully connected lay-

ers. [37] implements low-rank factorizations using the SVD

after training the full model. In contrast, the methods ad-

vanced in [33] and this paper apply both at train and test

time.

In this paper we show how the number of parameters

required to represent a deep convolutional neural network

can be substantially reduced without sacrificing predictive

performance. Our approach works by replacing the fully
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connected layers of the network with an Adaptive Fastfood

transform, which is a generalization of the Fastfood trans-

form for approximating kernels [23].

Convolutional neural networks with Adaptive Fastfood

transforms, which we refer to as deep fried convnets, are

end-to-end trainable and achieve the same predictive per-

formance as standard convolutional networks on ImageNet

using approximately half the number of parameters.

Several works have considered kernel methods in deep

learning [16, 7, 10, 27]. The Doubly Stochastic Gradients

method of [10] showed that effective use of randomization

can allow kernel methods to scale to extremely large data

sets. However, the approach used fixed convolutional fea-

tures, and cannot jointly learn the kernel classifier and con-

volutional filters. [27] showed how to learn a kernel func-

tion in an unsupervised manner.

There have been other attempts to replace the fully con-

nected layers. The Network in Network architecture of [25]

achieves state of the art results on several deep learning

benchmarks by replacing the fully connected layers with

global average pooling. A similar approach was used by

[35] to win the ILSVRC 2014 object detection competition

[32].

Although the global average pooling approach achieves

impressive results, it has two significant drawbacks. First,

feature transfer is more difficult with this approach. It is

very common in practice to take a convolutional network

trained on ImageNet and re-train the top layer on a different

data set, re-using the features learned from ImageNet for

the new task (potentially with fine-tuning), and this is dif-

ficult with global average pooling. This deficiency is noted

by [35], and motivates them to add an extra linear layer to

the top of their network to enable them to more easily adapt

and fine tune their network to other label sets. The second

drawback of global average pooling is computation. Con-

volutional layers are much more expensive to evaluate than

fully connected layers, so replacing fully connected layers

with more convolutions can decrease model size but comes

at the cost of increased evaluation time.

In parallel or after the first (technical report) version

of this work, several researchers have attempted to create

sparse networks by applying pruning or sparsity regulariz-

ers [8, 4, 26, 14]. These approaches however require train-

ing the original full model and, consequently, do not enjoy

the efficient training time benefits of the techniques pro-

posed in this paper. Since then, hashing methods have also

been advanced to reduce the number of parameters [6, 3].

Hashes have irregular memory access patterns and, conse-

quently, good performance on large GPU-based platforms

is yet to be demonstrated. Finally, distillation [15, 31] also

offers a way of compressing neural networks, as a post-

processing step.

2. The Adaptive Fastfood Transform

Large dense matrices are the main building block of fully

connected neural network layers. In propagating the signal

from the l-th layer with d activations hl to the l+1-th layer

with n activations hl+1, we have to compute

hl+1 = Whl. (1)

The storage and computational costs of this matrix multi-
plication step are both O(nd). The storage cost in particular

can be prohibitive for many applications.

Our proposed solution is to reparameterize the matrix of

parameters W ∈ R
n×d with an Adaptive Fastfood trans-

form, as follows

hl+1 = (SHGΠHB)hl = Ŵhl. (2)

In Section 3, we will provide background and intuitions be-
hind this design. For now it suffices to state that the storage

requirements of this reparameterization are O(n) and the

computational cost is O(n log d). We will also show in the

experimental section that these theoretical savings are mir-

rored in practice by significant reductions in the number of

parameters without increased prediction errors.

To understand these claims, we need to describe the com-

ponent modules of the Adaptive Fastfood transform. For

simplicity of presentation, let us first assume that W ∈
R

d×d. Adaptive Fastfood has three types of module:

• S,G and B are diagonal matrices of parameters. In

the original non-adaptive Fastfood formulation they

are random matrices, as described further in Section 3.

The computational and storage costs are trivially O(d).

• Π ∈ {0, 1}d×d is a random permutation matrix. It can

be implemented as a lookup table, so the storage and

computational costs are also O(d).

• H denotes the Walsh-Hadamard matrix, which is de-

fined recursively as

H2 :=

[
1 1
1 −1

]
and H2d :=

[
Hd Hd

Hd −Hd

]
.

The Fast Hadamard Transform, a variant of Fast

Fourier Transform, enables us to compute Hdhl in

O(d log d) time.

In summary, the overall storage cost of the Adaptive

Fastfood transform is O(d), while the computational cost is

O(d log d). These are substantial theoretical improvements

over the O(d2) costs of ordinary fully connected layers.

When the number of output units n is larger than the

number of inputs d, we can perform n/d Adaptive Fast-

food transforms and stack them to attain the desired size.

In doing so, the computational and storage costs become

O(n log d) and O(n) respectively, as opposed to the more

substantial O(nd) costs for linear modules. The number of

outputs can also be refined with pruning.
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2.1. Learning Fastfood by backpropagation

The parameters of the Adaptive Fastfood transform

(S,G and B) can be learned by standard error derivative

backpropagation. Moreover, the backward pass can also be

computed efficiently using the Fast Hadamard Transform.

In particular, let us consider learning the l-th layer of the

network, hl+1 = SHGΠHBhl.

For simplicity, let us again assume that W ∈ R
d×d and

that hl ∈ R
d. Using backpropagation, assume we already

have ∂E

∂hl+1
, where E is the objective function, then

∂E

∂S
= diag

{
∂E

∂hl+1
(HGΠHBhl)

⊤

}
. (3)

Since S is a diagonal matrix, we only need to calculate the

derivative with respect to the diagonal entries and this step

requires only O(d) operations.

Proceeding in this way, denote the partial products by

hS = HGΠHBhl

hH1 = GΠHBhl

hG = ΠHBhl

hΠ = HBhl

hH2 = Bhl. (4)

Then the gradients with respect to different parameters in

the Fastfood layer can be computed recursively as follows:

∂E

∂hS

= S⊤
∂E

∂hl+1

∂E

∂hH1
= H⊤

∂E

∂hS

∂E

∂G
= diag

{
∂E

∂hH1
h⊤

G

}
∂E

∂hG

= G⊤
∂E

∂hH1

∂E

∂hΠ
= Π⊤ ∂E

∂hG

∂E

∂hH2
= H⊤

∂E

∂hΠ

∂E

∂B
= diag

{
∂E

∂hH2
h⊤

l

}
∂E

∂hl

= B⊤
∂E

∂hH2
. (5)

Note that the operations in ∂E

∂hH1
and ∂E

∂hH2
are simply ap-

plications of the Hadamard transform, since H⊤ = H, and

consequently can be computed in O(d log d) time. The op-

eration in ∂E

∂hΠ
is an application of a permutation (the trans-

pose of permutation matrix is a permutation matrix) and can

be computed in O(d) time. All other operations are diago-

nal matrix multiplications.

3. Intuitions behind Adaptive Fastfood

The proposed Adaptive Fastfood transform may be un-

derstood either as a trainable type of structured random pro-

jection or as an approximation to the feature space of a

learned kernel. Both views not only shed light on Adap-

tive Fastfood and competing techniques, but also open up

room to innovate new techniques to reduce computation and

memory in neural networks.

3.1. A view from structured random projections

Adaptive Fastfood is based on the Fastfood transform

[23], in which the diagonal matrices S, G and B have ran-

dom entries. In the experiments, we will compare the per-

formance of the existing random and proposed adaptive ver-

sions of Fastfood when used to replace fully connected lay-

ers in convolutional neural networks.

The intriguing idea of constructing neural networks with

random weights has been reasonably explored in the neu-

ral networks field [34, 19]. This idea is related to random

projections, which have been deeply studied in theoretical

computer science [28]. In a random projection, the basic

operation is of the form

y = Wx, (6)

where W is a random matrix, either Gaussian [17] or bi-
nary [1]. Importantly, the embeddings generated by these

random projections approximately preserve metric infor-

mation, as formalized by many variants of the celebrated

Johnson-Lindenstrauss Lemma.

The one shortcoming of random projections is that the

cost of storing the matrix W is O(nd). Using a sparse ran-

dom matrix W by itself to reduce this cost is often not a vi-

able option because the variance of the estimates of ‖Wx‖
can be very high for some inputs, for example when x is

also sparse. To see this, consider the extreme case of a very

sparse input x, then many of the products with W will be

zero and hence not help improve the estimates of metric

properties of the embedding space.

One popular option for reducing the storage and com-

putational costs of random projections is to adopt random

hash functions to replace the random matrix multiplication.

For example, the count-sketch algorithm [5] uses pairwise

independent hash functions to carry this job very effectively

in many applications [9]. This technique is often referred to

as the hashing trick [36] in the machine learning literature.

Hashes have irregular memory access patterns, so it is not

clear how to get good performance on GPUs when follow-

ing this approach, as pointed out in [6].

Ailon and Chazelle [2] introduced an alternative ap-

proach that is not only very efficient, but also preserves

most of the desirable theoretical properties of random pro-

jections. Their idea was to replace the random matrix by

a transform that mimics the properties of random matrices,

but which can be stored efficiently. In particular, they pro-

posed the following PHD transform:

y = PHDx, (7)

where P is a sparse n × d random matrix with Gaussian

entries, H is a Hadamard matrix and D is a diagonal matrix

with {+1,−1} entries drawn independently with probabil-

ity 1/2. The inclusion of the Hadamard transform avoids
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the problems of using a sparse random matrix by itself, but

it is still efficient to compute.

We can think of the original Fastfood transform

y = SHGΠHBx (8)

as an alternative to this. Fastfood reduces the computation

and storage of random projections to O(n log d) and O(n)
respectively. In the original formulation S,G and B are

diagonal random matrices, which are computed once and

then stored.

In contrast, in our proposed Adaptive Fastfood trans-

form, the diagonal matrices are learned by backpropaga-

tion. By adapting B, we are effectively implementing Au-

tomatic Relevance Determination on features. The matrix

G controls the bandwidth of the kernel and its spectral in-

coherence. Finally, S represents different kernel types. For

example, for the RBF kernel S follows Chi-squared distri-

bution. By adapting S, we learn the correct kernel type.

While we have introduced Fastfood in this section, it was

originally proposed as a fast way of computing random fea-

tures to approximate kernels. We expand on this perspective

in the following section.

3.2. A view from kernels

There is a nice duality between inner products of fea-

tures and kernels. This duality can be used to design neural

network modules using kernels and vice-versa.

For computational reasons, we often want to determine

the features associated with a kernel. Working with features

is preferable when the kernel matrix K is dense and large.

(Storing this matrix requires O(m2) space, and computing

it takes O(m2d) operations, where m is the number of data

points and d is the dimension.) We might also want to de-

sign statistical methods using kernels and then map these

designs to features that can be used as modules in neural

networks. Unfortunately, one of the difficulties with this

line of attack is that deriving features from kernels is far

from trivial in general.

An important fact, noted in [30], is that infinite kernel ex-

pansions can be approximated in an unbiased manner using

randomly drawn features. For shift-invariant kernels this

relies on a classical result from harmonic analysis, known

as Bochner’s Lemma, which states that a continuous shift-

invariant kernel k(x,x′) = k(x − x′) on R
d is positive

definite if and only if k is the Fourier transform of a non-

negative measure µ(w). This measure, known as the spec-

tral density, in turn implies the existence of a probability

density p(w) = µ(w)/α such that

k(x,x′) =

∫
αe−iw

⊤(x−x
′) p(w)dw

= αEw[cos(w⊤x) cos(w⊤x′) + sin(w⊤x) sin(w⊤x′)],

where the imaginary part is dropped since both the kernel

and distribution are real.

We can apply Monte Carlo methods to approximate

the above expectation, and hence approximate the ker-

nel k(x,x′) with an inner product of stacked cosine and

sine features. Specifically, suppose we sample n vec-

tors i.i.d. from p(w) and collect them in a matrix W =
(w1, . . .wn)

⊤. The kernel can then be approximated as the

inner-product of the following random features:

φrbf(Wx) =
√

α/n (cos(Wx), sin(Wx))
⊤
. (9)

That is, φ(Wx) is the neural network module, consisting of

a linear layer Wx and entry-wise nonlinearities (cosine and

sine in the above equation), that corresponds to a particular

implicit kernel function.

Approximating a given kernel function with random fea-

tures requires the specification of a sampling distribution

p(w). Such distributions have been derived for many pop-

ular kernels. For example, if we want the implicit kernel to

be a squared exponential kernel,

k(x,x′) = exp

(
−
‖x− x′‖2

2ℓ2

)
, (10)

we know that the distribution p(w) must be Gaussian: w ∼
N (0, diag(ℓ2)−1). In other words, if we draw the rows of

W from this Gaussian distribution and use equation (9) to

implement a neural module, we are implicitly approximat-

ing a squared exponential kernel.

As another example of the mapping between kernels and

random features, [7, 29] introduced the rotationally invari-

ant arc-cosine kernel

k(x,x′) =
1

π
||x||||x′||(sin(θ) + (π − θ) cos(θ)), (11)

where θ is the angle between x and x′. Then by choos-

ing W to be a random Gaussian matrix, they showed that

this kernel can be approximated with Rectified Linear Unit

(ReLU) features:

φrelu(Wx) =
√
1/nmax(0,Wx). (12)

The Fastfood transform was introduced to replace Wx

in Equation 9 with SHGΠHBx, thus decreasing the com-

putational and storage costs.

4. Deep Fried Convolutional Networks

We propose to greatly reduce the number of parame-

ters of the fully connected layers by replacing them with

an Adaptive Fastfood transform followed by a nonlinear-

ity. We call this new architecture a deep fried convolutional

network. An illustration of this architecture is shown in Fig-

ure 1.
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Convolutional and pooling layers

Represent as a vector

FastFood

Softmax

Figure 1. The structure of a deep fried convolutional network. The

convolution and pooling layers are identical to those in a standard

convnet. However, the fully connected layers are replaced with the

Adaptive Fastfood transform.

In principle, we could also apply the Adaptive Fastfood

transform to the softmax classifier. However, reducing the

memory cost of this layer is already well studied; for ex-

ample, [33] show that low-rank matrix factorization can be

applied during training to reduce the size of the softmax

layer substantially. Importantly, they also show that train-

ing a low rank factorization for the internal layers performs

poorly, which agrees with the results of [11]. For this rea-

son, we focus our attention on reducing the size of the in-

ternal layers.

5. MNIST Experiment

The first problem we study is the classical MNIST opti-

cal character recognition task. This simple task serves as an

easy proof of concept for our method, and contrasting the

results in this section with our later experiments gives in-

sights into the behavior of the Adaptive Fastfood transform

at different scales.

As a reference model we use the Caffe implementation

of the LeNet convolutional network.1 It achieves an error

rate of 0.87% on the MNIST dataset.

We jointly train all layers of the deep fried network (in-

cluding convolutional layers) from scratch. We compare

both the adaptive and non-adaptive Fastfood transforms us-

ing 1024 and 2048 features. For the non-adaptive trans-

forms we report the best performance achieved by varying

the standard deviation of the random Gaussian matrix over

the set {0.001, 0.005, 0.01, 0.05}, and for the adaptive vari-

ant we learn these parameters by backpropagation as de-

scribed in Section 2.1.

The results of the MNIST experiment are shown in Ta-

ble 1. Because the width of the deep fried network is sub-

stantially larger than the reference model, we also experi-

mented with adding dropout in the model, which increased

performance in the deep fried case. Deep fried networks are

1https://github.com/BVLC/caffe/blob/master/

examples/mnist/lenet.prototxt

MNIST (joint) Error Params

Fastfood 1024 (ND) 0.83% 38,821

Adaptive Fastfood 1024 (ND) 0.86% 38,821

Fastfood 2048 (ND) 0.90% 52,124

Adaptive Fastfood 2048 (ND) 0.92% 52,124

Fastfood 1024 0.71% 38,821

Adaptive Fastfood 1024 0.72% 38,821

Fastfood 2048 0.71% 52,124

Adaptive Fastfood 2048 0.73% 52,124

Reference Model 0.87% 430,500
Table 1. MNIST jointly trained layers: comparison between a ref-

erence convolutional network with one fully connected layer (fol-

lowed by a densely connected softmax layer) and two deep fried

networks on the MNIST dataset. Numbers indicate the number of

features used in the Fastfood transform. The results tagged with

(ND) were obtained wtihout dropout.

able to obtain high accuracy using only a small fraction of

of parameters of the original network (11 times reduction in

the best case). Interestingly, we see no benefit from adap-

tation in this experiment, with the more powerful adaptive

models performing equivalently or worse than their non-

adaptive counterparts; however, this should be contrasted

with the ImageNet results reported in the following sec-

tions.

6. Imagenet Experiments

We now examine how deep fried networks behave in a

more realistic setting with a much larger dataset and many

more classes. Specifically, we use the ImageNet ILSVRC-

2012 dataset which has 1.2M training examples and 50K

validation examples distributed across 1000 classes.

We use the the Caffe ImageNet model2 as the reference

model in these experiments [20]. This model is a modified

version of AlexNet [22], and achieves 42.6% top-1 error

on the ILSVRC-2012 validation set. The initial layers of

this model are a cascade of convolution and pooling layers

with interspersed normalization. The last several layers of

the network take the form of an MLP and follow a 9216–

4096–4096–1000 architecture. The final layer is a logistic

regression layer with 1000 output classes. All layers of this

network use the ReLU nonlinearity, and dropout is used in

the fully connected layers to prevent overfitting.

There are total of 58,649,184 parameters in the reference

model, of which 58,621,952 are in the fully connected lay-

ers and only 27,232 are in the convolutional layers. The pa-

rameters of fully connected layer take up 99.9% of the total

number of parameters. We show that the Adaptive Fastfood

transform can be used to substantially reduce the number of

parameters in this model.

2https://github.com/BVLC/caffe/tree/master/

models/bvlc_reference_caffenet

1480

https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt
https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet


ImageNet (fixed) Error Params

Dai et al. [10] 44.50% 163M

Fastfood 16 50.09% 16.4M

Fastfood 32 50.53% 32.8M

Adaptive Fastfood 16 45.30% 16.4M

Adaptive Fastfood 32 43.77% 32.8M

MLP 47.76% 58.6M
Table 2. Imagenet fixed convolutional layers: MLP indicates that

we re-train 9216–4096–4096–1000 MLP (as in the original net-

work) with the convolutional weights pretrained and fixed. Our

method is Fastfood 16 and Fastfood 32, using 16,384 and 32,768

Fastfood features respectively. [10] report results of max-voting of

10 transformations of the test set.

6.1. Fixed feature extractor

Previous work on applying kernel methods to ImageNet

has focused on building models on features extracted from

the convolutional layers of a pre-trained network [10]. This

setting is less general than training a network from scratch

but does mirror the common use case where a convolutional

network is first trained on ImageNet and used as a feature

extractor for a different task.

In order to compare our Adaptive Fastfood transform di-

rectly to this previous work, we extract features from the

final convolutional layer of a pre-trained reference model

and train an Adaptive Fastfood transform classifier using

these features. Although the reference model uses two

fully connected layers, we investigate replacing these with

only a single Fastfood transform. We experiment with two

sizes for this transform: Fastfood 16 and Fastfood 32 us-

ing 16,384 and 32,768 Fastfood features respectively. Since

the Fastfood transform is a composite module, we can ap-

ply dropout between any of its layers. In the experiments

reported here, we applied dropout after the Π matrix and

after the S matrix. We also applied dropout to the last con-

volutional layer (that is, before the B matrix).

We also train an MLP with the same structure as the top

layers of the reference model for comparison. In this set-

ting it is important to compare against the re-trained MLP

rather than the jointly trained reference model, as training

on features extracted from fixed convolutional layers typi-

cally leads to lower performance than joint training [38].

The results of the fixed feature experiment are shown in

Table 2. Following [38] and [10] we observe that train-

ing on ImageNet activations produces significantly lower

performance than of the original, jointly trained network.

Nonetheless, deep fried networks are able to outperform

both the re-trained MLP model as well as the results in [10]

while using fewer parameters.

In contrast with our MNIST experiment, here we find

that the Adaptive Fastfood transform provides a significant

performance boost over the non-adaptive version, improv-

ing top-1 performance by 4.5-6.5%.

6.2. Jointly trained model

Finally, we train a deep fried network from scratch on

ImageNet. With 16,384 features in the Fastfood layer we

lose less than 0.3% top-1 validation performance, but the

number of parameters in the network is reduced from 58.7M

to 16.4M which corresponds to a factor of 3.6x. By further

increasing the number of features to 32,768, we are able to

perform 0.6% better than the reference model while using

approximately half as many parameters. Results from this

experiment are shown in Table 3.

ImageNet (joint) Error Params

Fastfood 16 46.88% 16.4M

Fastfood 32 46.63% 32.8M

Adaptive Fastfood 16 42.90% 16.4M

Adaptive Fastfood 32 41.93% 32.8M

Reference Model 42.59% 58.7M
Table 3. Imagenet jointly trained layers. Our method is Fastfood

16 and Fastfood 32, using 16,384 and 32,768 Fastfood features

respectively. Reference Model shows the accuracy of the jointly

trained Caffe reference model.

Nearly all of the parameters of the deep fried network

reside in the final softmax regression layer, which still uses

a dense linear transformation, and accounts for more than

99% of the parameters of the network. This is a side ef-

fect of the large number of classes in ImageNet. For a data

set with fewer classes the advantage of deep fried convolu-

tional networks would be even greater. Moreover, as shown

by [11, 33], the last layer often contains considerable redun-

dancy. We also note that any of the techniques from [8, 6]

could be applied to the final layer of a deep fried network to

further reduce memory consumption at test time. We illus-

trate this with low-rank matrix factorization in the following

section.

7. Comparison with Post Processing

In this section we provide a comparison to some existing

works on reducing the number of parameters in a convolu-

tional neural network. The techniques we compare against

here are post-processing techniques, which start from a

full trained model and attempt to compress it, whereas our

method trains the compressed network from scratch.

Matrix factorization is the most common method for

compressing neural networks, and has proven to be very ef-

fective. Given the weight matrix of fully connected layers

W ∈ R
d×n, we factorize it as

W = USV⊤,

where U ∈ R
d×d and V ∈ R

n×n and S is a d × n diago-

nal matrix. In order to reduce the parameters, we truncate

all but the k largest singular values, leading to the approx-

imation W ≈ ŨṼ⊤, where Ũ ∈ R
d×k and Ṽ ∈ R

n×k
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and S has been absorbed into the other two factors. If k is

sufficiently small then storing Ũ and Ṽ is less expensive

than storing W directly, and this parameterization is still

learnable.

It has been shown that training a factorized representa-

tion directly leads to poor performance [11] (although it

does work when applied only to the final logistic regres-

sion layer [33]). However, first training a full model, then

preforming an SVD of the weight matrices followed by a

fine tuning phase preserves much of the performance of

the original model [37]. We compare our deep fried ap-

proach to SVD followed by fine tuning, and show that our

approach achieves better performance per parameter in spite

of training a compressed parameterization from scratch. We

also compare against a post-processed version of our model,

where we train a deep fried convnet and then apply SVD

plus fine-tuning to the final softmax layer, which further re-

duces the number of parameters.

Results of these post-processing experiments are shown

in Table 4. For the SVD decomposition of each of the

three fully connected layers in the reference model we set

k = min(d, n)/2 in SVD-half and k = min(d, n)/4 in

SVD-quarter. SVD-half-F and SVD-quarter-F mean that

the model has been fine tuned after the decomposition.

There is 1% drop in accuracy for SVD-half and 3.5%

drop for SVD-quarter. Even though the increase in the error

for the SVD can be mitigated by finetuning (the drop de-

creases to 0.1% for SVD-half-F and 1.3% for SVD-quarter-

F), deep fried convnets still perform better both in terms of

the accuracy and the number of parameters.

Applying a rank 600 SVD followed by fine tuning to the

final softmax layer of the Adaptive Fastfood 32 model re-

moves an additional 12.5M parameters at the expense of

∼0.7% top-1 error.

For reference, we also include the results of Collins and

Kohli [8], who pre-train a full network and use a sparsity

regularizer during fine-tuning to encourage connections in

the fully connected layers to be zero. They are able to

achieve a significant reduction in the number of parameters

this way, however the performance of their compressed net-

work suffers when compared to the reference model. An-

other drawback of this method is that using sparse weight

matrices requires additional overhead to store the indexes

of the non-zero values. The index storage takes up space

and using sparse representation is better than using a dense

matrix only when number of nonzero entries is small.

8. Conclusion

Many methods have been advanced to reduce the size of

convolutional networks at test time. In contrast to this trend,

the Adaptive Fastfood transform introduced in this paper is

end-to-end differentiable and hence it enables us to attain

reductions in the number of parameters even at train time.

Model Error Params Ratio

Collins and Kohli [8] 44.40% — —

SVD-half 43.61% 46.6M 0.8

SVD-half-F 42.73% 46.6M 0.8

Adaptive Fastfood 32 41.93% 32.8M 0.55

SVD-quarter 46.12% 23.4M 0.5

SVD-quarter-F 43.81% 23.4M 0.5

Adaptive Fastfood 16 42.90% 16.4M 0.28

Ada. Fastfood 32 (F-600) 42.61% 20.3M 0.35

Reference Model 42.59% 58.7M 1
Table 4. Comparison with other methods. The result of [8] is based

on the the Caffe AlexNet model (similar but not identical to the

Caffe reference model) and achieves ∼4x reduction in memory

usage, (slightly better than Fastfood 16 but with a noted drop in

performance). SVD-half: 9216-2048-4096-2048-4096-500-1000

structure. SVD-quarter: 9216-1024-4096-1024-4096-250-1000

structure. F means after fine tuning.

Deep fried convnets capitalize on the proposed Adaptive

Fastfood transform to achieve a substantial reduction in the

number of parameters without sacrificing predictive perfor-

mance on MNIST and ImageNet. They also compare favor-

ably against simple test-time low-rank matrix factorization

schemes.

Our experiments have also cast some light on the issue

of random versus adaptive weights. The structured ran-

dom transformations developed in the kernel literature per-

form very well on MNIST without any learning; however,

when moving to ImageNet, the benefit of adaptation be-

comes clear, as it allows us to achieve substantially better

performance. This is an important point which illustrates

the importance of learning which would not have been vis-

ible from experiments only on small data sets.

The Fastfood transform allows for a theoretical reduction

in computation from O(nd) to O(n log d). However, the

computation in convolutional neural networks is dominated

by the convolutions, and hence deep fried convnets are not

necessarily faster in practice.

It is clear looking at out results on ImageNet in Ta-

ble 2 that the remaining parameters are mostly in the output

softmax layer. The comparative experiment in Section 7

showed that the matrix of parameters in the softmax can be

easily compressed using the SVD, but many other methods

could be used to achieve this. One avenue for future re-

search involves replacing the softmax matrix, at train and

test times, using the abundant set of techniques that have

been proposed to solve this problem, including low-rank de-

composition, Adaptive Fastfood, and pruning.

The development of GPU optimized Fastfood transforms

that can be used to replace linear layers in arbitrary neural

models would also be of great value to the entire research

community given the ubiquity of fully connected layers.

1482



References

[1] D. Achlioptas. Database-friendly random projections:

Johnson-Lindenstrauss with binary coins. J. Comput. Syst.

Sci., 66(4):671–687, 2003.

[2] N. Ailon and B. Chazelle. The Fast Johnson Lindenstrauss

Transform and approximate nearest neighbors. SIAM Jour-

nal on Computing, 39(1):302–322, 2009.
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