
 
88 

 
J. ICT Res. Appl. Vol. 9, No. 1, 2015, 88-110 

 
 

Received January 30th, 2015, 1st Revision March 29th, 2015, 2nd Revision May 20th, 2015, Accepted for 
publication June 4th, 2015. 
Copyright © 2015 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2015.9.1.5 

Strengthening Crypto-1 Cipher Against Algebraic Attacks 

Farah Afianti & Ari M. Barmawi 

School of Computing, Telkom University, 
Jl. Telekomunikasi 1, Terusan Buah Batu Bandung, 40257 Indonesia 

Email: farahaphie@tass.telkomuniversity.ac.id 
 
 
Abstract. In the last few years, several studies addressed the problem of data 
security in Mifare Classic. One of its weaknesses is the low random number 
quality. This causes SAT solver attacks to have lower complexity. In order to 
strengthen Crypto-1 against SAT solver attacks, a modification of the feedback 
function with better cryptographic properties is proposed. It applies a primitive 
polynomial companion matrix. SAT solvers cannot directly attack the feedback 
shift register that uses the modified Boolean feedback function, the register has 
to be split into smaller groups. Experimental testing showed that the amount of 
memory and CPU time needed were highest when attacking the modified 
Crypto-1 using the modified feedback function and the original filter function. In 
addition, another modified Crypto-1, using the modified feedback function and a 
modified filter function, had the lowest percentage of revealed variables. It can 
be concluded that the security strength and performance of the modified Crypto-
1 using the modified feedback function and the modified filter function are better 
than those of the original Crypto-1. 

Keywords: Boolean function; Crypto-1; primitive polynomial; pseudorandom 
generator; SAT solver. 

1 0BIntroduction 
Recently the use of RFID systems has increased significantly, so that several 
companies produce RFID technology, among which NXP Semiconductors. One 
of the best-known products of NXP Semiconductors is Mifare Classic. In 2009, 
this product covered more than 70% of the contactless smartcard market [1]. 
However, there is a problem with Mifare Classic’s data security. 

In the last few years, several studies have addressed the problem of data security 
in Mifare Classic [1]-[5]. One of the attacking processes discussed by Curtois, 
et al. [2] uses algebraic attacks to recover the secret key in a short time without 
accessing the hardware. The research reported by Liu, et al. [6] showed how to 
retrieve a Crypto-1 secret key even faster than Curtois, et al. [2].  

The objective of the algebraic attack in [6] was to test the quality of the 
pseudorandom numbers [2]. Furthermore, the attacker may recover the secret 
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key by solving a large number of polynomial equations. There are several ways 
to solve such equations, such as linearization, Gröbner bases or extended 
linearization (XL) algorithms [7], SAT solvers [8], etc. SAT solvers are 
efficient [8] because they are faster than exhaustive search and do not need 
additional memory to store the CNF SAT problem [9]. They solve the equation 
by first converting the polynomial into a CNF SAT problem and then guessing 
each variable using the SAT solver algorithm. 

Since Mifare Classic is vulnerable to attacks, in 2008, NXP semiconductors 
introduced a new product called Mifare Plus to replace Mifare Classic. 
However, Karsten Nohl [10] found that Crypto-1 is vulnerable to algebraic 
attacks both in Mifare Classic and Mifare Plus. NXP Semiconductors developed 
another cipher for the RFID transponder system for the car immobilizer industry 
called Hitag2. It is claimed to be more secure than Crypto-1 because the taps of 
the Boolean function of Hitag2 are not regular [11]. Even though Hitag2 has 
higher algebraic immunity than Crypto-1 it can still be cracked using an SAT 
solver in 6.5 hours [12]. 

This paper proposes a modification of the Boolean feedback function in the 
pseudorandom generator of Crypto-1 for strengthening Crypto-1 against SAT 
solver attacks. For this purpose, the cryptosystem should satisfy cryptographic 
properties [6] and the Boolean function should satisfy cryptographic properties 
as well. The proposed modification of the Boolean feedback function uses a 
primitive polynomial companion matrix derived from Wang’s construction [13]. 
Wang’s construction uses the same construction as the Carlet-Feng function 
[14]. Both can be classified as perfect algebraic immune functions [6] that meet 
the cryptographic properties requirement. However, the Carlet-Feng function 
cannot be implemented efficiently with large input variables because of the 
discrete logarithm problem [13]. This is the reason why we prefer to adopt 
Wang’s construction rather than the Carlet-Feng function, although both of 
them are perfect algebraic immune functions. 

This rest of this paper is organized as follows. Section 2 discusses Crypto-1 and 
SAT solver attacks. Section 3 describes the cryptographic properties and 
Wang’s construction. Section 4 briefly explains the experimental testing and 
discusses the algorithmic complexities of the proposed method for overcoming 
SAT solver attacks. Finally, the conclusion is given in Section 5. 

2 Attacking Crypto-1 using SAT solvers 
Crypto-1 can be attacked using SAT solvers [2],[12]. SAT solvers are able to 
recover the secret key of Crypto-1 without interacting with the hardware (both 
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RFID tag and reader). Section 2.1 and 2.2 discuss Crypto-1 and the method for 
attacking Crypto-1.  

2.1 Crypto-1 
Crypto-1 is a proprietary stream cipher produced by NXP Semiconductors. The 
input of the Crypto-1 cryptosystem is a message or plaintext and the output is a 
ciphertext with the same length as the plaintext. The ciphertext is obtained by 
XOR-ing the keystream and the plaintext, where the keystream is generated 
using a linear feedback shift register (LFSR).  

The basic concept of the Crypto-1 encryption method is as follows. The 
Crypto-1 cipher encrypts the authentication message and other messages 
exchanged between the RFID tag and reader. Crypto-1 uses a 48-bit LFSR and 
the generator polynomial of Crypto-1 is as shown in Eq. (1) [3]. 

g(x) = x48 + x43 + x39 + x38 + x36 + x34 + x33 + x31 + x29 
+ x24 + x23 + x21 + x19 + x13 + x9 + x7 + x6+ x5+ 1 (1)  

The initialization input of this LFSR is the secret key of the Mifare RFID tag. 
The binary LFSR of size n is a finite-state automaton with an internal state of n 
bits. In each clock cycle, the feedback function L shifts the state by one 
position, where the input bit is a linear function of the previous bits [15]. This 
means that the LFSR shifts one bit to the left and replaces the rightmost tap 
using a feedback function. After this, one bit of the keystream is calculated by 
using a filter function. These processes are repeated and terminated when the 
length of the keystream is the same as the length of the plaintext. The details are 
shown in Figure 1. 

 
Figure 1 48-bit LFSR of Crypto-1 cryptosystem. 

At time i, the internal state of the LFSR is ai…ai+47 and at time(i+1) the internal 
state is ai+1…ai+48. Eq. (2) is the feedback function to calculate the new 
rightmost tap register [1].  
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The keystream as the output of the LFSR is calculated using a filter function. 
The filter function 𝑓 ∶ 𝐹248 → 𝐹2 is defined by Eq. (3) [3]. 

0 1 47 9 11 13 15 17 19 21 23

25 27 29 31 33 35 37 39 41 43 45 47

( ... ) ( ( , , , ), ( , , , ),
( , , , ), ( , , , ), ( , , , ))

c a b b

a b

f x x x f f x x x x f x x x x f
x x x x f x x x x f x x x x

=
 (3)  

where 𝑓𝑎 ,𝑓𝑏 ∶ 𝐹24 → 𝐹2 and 𝑓𝑐 ∶ 𝐹25 → 𝐹2 are defined by Eq. 4 [1]. 
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The algebraic normal forms (ANF) of fa , fb and fc are in Eq. (5). 

fa(y0,y1,y2,y3) = y0y2y3+y1y2y3+y0y1+y0y2+y0y3+y1y2+y2y3 

+y0+y1 
(5.a) 

fb(y0,y1,y2,y3) = y0y1y2 + y0y2y3 +y1y2y3 +y0y1 +y0y2 +y0y3 
+y1y2 +y1y3+y2 

(5.b) 

fc(y0,y1,y2,y3,y4)= y0y1y2y4 +y1y2y3y4 +y0y1y3 +y0y1y4 + y1y2y3 
+ y0y3y4+y1y3y4+y0y2+y0y3+y0y4+y3y4+y0+y4 

(5.c) 

Based on the encryption method of Crypto-1 the author claims that it is secure. 

2.2 SAT Solver Attacks 
SAT stands for ‘satisfiability’. A Boolean formula is satisfiable if there are 
several value assignments of false and true to its variables that cause it to be 
evaluated to true [16]. In contrast, if it is evaluated to false then it is called 
unsatisfiable. The input of an SAT problem must be in conjunctive normal form 
(CNF) so that it is called a CNF-SAT problem. CNF-SAT consists of several 
clauses. The clauses can be seen as a logical expression connected with a 
conjunctive (AND-gate) expression. Every clause is a large disjunction (OR-
gate) of several variables called literals [9]. An SAT solver is an algebraic 
method to solve all of the system’s polynomial equations over finite fields [17]. 
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Algebraic attacks are passive. They work independently of the quality of the 
random numbers [2]. The principle of the algebraic attack is converting the 
cipher into polynomial equations and solving those equations. The solution is 
used to recover the secret key of the cipher [9]. Based on [15], the LFSR system 
can be written as Eq. (6). 

f(Li(a))=bi (6)  

where : f (   )    is a filter function 
 L(  )   is a feedback function 
 a    is an internal state of the LFSR 
 bi    is a keystream from the internal state of the LFSR at time i 

The LFSR in the Crypto-1 cipher can be converted into polynomial equations so 
that it can be attacked algebraically by solving these equations. The basic 
concept of attacking Crypto-1 is using several outputs of the keystream as the 
input of the SAT solver. The keystream can be expressed by equations in 
algebraic normal form (ANF). Before the equation can be solved using an SAT 
solver, the ANF must be converted into CNF. This study focuses on an over 
defined system where the number of equations is greater than the number of 
unknown variables. The details of how an algebraic attack works are shown in 
Figure 2. 

 
Figure 2 Implementation of algebraic attack. 

Algebraic cryptanalysis is implemented by building the equations from the 
cipher that will be attacked. It is supported by the ciphertext, the plaintext and 
the cipher. The keystream can be obtained by XOR-ing the ciphertext with the 
plaintext. Since the cipher is already known, the register taps can be recovered 
from the last clock until the first clock. The main purpose of an algebraic attack 
is obtaining the secret key that can be represented as the content of the initial 
register tap in the first clock. All of the constraints in each clock cycle are used 
to build the equation. After obtaining the equation, they should be converted 
into ANF, followed by converting the ANF into CNF. This can be done 
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automatically using the Grain of Salt tool [18]. Finally, an attack using the 
CryptoMiniSat tool [12] is conducted. The output of the tool is the internal state 
of the feedback shift register and other parameters to analyze the complexity 
during the attacking process. The complexity of CryptoMiniSat can be 
concluded from the amount of memory and CPU time used [17]. 

Analyzing the results of SAT solver attacks against Crypto-1, it can be 
concluded that the vulnerability of Crypto-1 is caused by the weak feedback 
function against algebraic attacks.  

3 Modified Crypto-1  
Since the feedback function is vulnerable to algebraic attacks, the main 
objective of this research is strengthening Crypto-1 by replacing the original 
feedback function with one that has better cryptographic properties (see Section 
3.1). For this purpose, Wang’s construction is used because it has the best 
values – near optimal– for all cryptographic properties. Wang’s construction is 
explained in detail in Section 3.2. 

The construction process of the modified Boolean feedback function is shown 
in Figure 3.  

 
Figure 3 Method for finding the new Boolean function. 

The input of Wang’s construction is a primitive polynomial and the output is a 
truth table. The cryptographic properties, such as algebraic degree, algebraic 
immunity, nonlinearity and balancedness, can be calculated from the truth table. 
These parameters should be calculated for further use, such as cryptographic 
properties evaluation or comparison between the original and the modified 
function for deciding whether the modified function works better against SAT 
solver attacks. Calculation of the cryptographic properties is discussed in detail 
in Section 3.1. The input of this process is the truth table from Wang’s 
construction and the output are the cryptographic property values. 
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Since the truth table containing the cryptographic property values cannot be 
used directly, it has to be converted into a Boolean function. ANF is the 
standard form of Boolean functions. It can be computed from the truth table 
using the fast Möbius transform.  

3.1 Cryptographic Properties 
The cryptographic properties are used as the basic criteria to find the best 
Boolean function. This is necessary for defending the system against algebraic 
attacks. There are several cryptographic properties in nonlinear Boolean 
functions, such as: 

a. Algebraic Degree 

A good Boolean function has a high algebraic degree. The algebraic degree is 
the maximum number of ANF clauses in a Boolean function that are written as 
Eq. (7) or can be rewritten as Eq. (8) [6]. 

deg(f) = max wt(c)|𝑎𝑐 ≠ 0 (7)  

2

2

,)( Faxaxf
nFc

c
c

c∑
∈

∈=  (8) 

The Hamming weight of f denoted by wt(f ) is the number of ones (nonzero) in 
the truth table of f. The way to calculate wt(f ) is as follows: 

Let 𝐹2 denote Galois Field (2) and 𝐹2𝑛 denote the n-dimensional binary vector 
space over 𝐹2. The mapping of the Boolean function f : 𝐹2𝑛 → 𝐹2 is denoted as 
𝐹𝐵𝑛. The support of f is calculated by Eq. (9) [6]. 

support(f ) = x ∈ 𝐹2𝑛 |f (x) = 1 (9) 

Furthermore, the Hamming distance between n-variable Boolean function f and 
g is the number of x ∈ Fn where f(x) = g(x) and is denoted by d(f,g) = wt(f + g). 
The affine function is a Boolean function that has a degree of at most one. The 
general form of affine functions is shown in Eq. (10) [6]. 

f (x) = c0⊕ c1x1⊕ ... ⊕ cn xn (10) 

A cryptosystem using a Boolean function for randomization can be attacked 
easily if its degree is low [19]. 

b. Balancedness 

The Boolean function f  is balanced if the truth table contains an equal number 
of zeros and ones or can be calculated using Eq. (11) [6].  

wt(f ) =2n−1 (11) 
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Balancedness means that the output of the function is uniformly distributed. 

c. Nonlinearity 

The nonlinearity of the Boolean function f denoted by Nl(f) is the minimum 
Hamming distance between  f and all affine functions [19]. The higher the value 
of the nonlinearity, the higher the randomness is. The nonlinearity can be 
calculated using Eq. (12) [19]. 

|})({|max
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α
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−−=  
(12)  

where Wf  is the Fourier or Walsh-Hadamard transform of function f . 

The Fourier or Walsh-Hadamard transform can be calculated using Eq. (13) 
[19]. 
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In simple terms, the Walsh transform is the matrix vector product of matrix Wf t 
and Boolean function f(x)[20]. Matrix Wf t is an n x n matrix from which the 
value of Wf t can be calculated using Eq. (14) [19]. 
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where N = 2n 

The upper bound of the nonlinearity can be calculated with Eq. (15) [19]. 

2,22)( 121 >−== −− nnbentNl
nn  (15)  

where n is the number of input variables. 

The function that reaches the upper bound in Eq. (15) is called the bent 
function. 

d. Algebraic Immunity 

There are several types of algebraic attacks. Some of them are algebraic attacks 
that can be defended against by algebraic immunity; fast algebraic attacks that 
can be defended against by algebraic immunity; and probability algebraic 
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attacks. Cryptosystems using a Boolean function with perfect algebraic 
immunity are resistant against those types of algebraic attacks [6]. 

The algebraic immunity of a Boolean function f  is the minimum value of e such 
that the product of the Boolean function g with degree at most e and f or f + 1 is 
equal to zero. This can be written as Eq. (16) [6]. 

AI(f )= min{deg(g)|g.f = 0 or g.(f + 1) = 0, g= 0 and g∈ 𝐹𝐵𝑛} (16)  

The optimal algebraic immunity of a Boolean function with n variables is 
�𝑛
2
�[6].  

A perfect algebraic immune function must have maximum AI and agrees with 
the following definition [6]: 

Let f be an n-variable Boolean function. The function f is said to be perfect 
algebraic immune (PAI) if for any positive integer e < n/2, the product gf 
has degree at least n − e for any non-zero function g of degree at most e. 

The number of input variables in a balanced Boolean function with perfect 
algebraic immunity is equal to a power of two plus one (2s + 1) and the number 
of input variables in an unbalanced Boolean function with perfect algebraic 
immunity is a power of two (2s) [6]. 

3.2 Wang’s construction 
As explained in Section 1, Wang’s construction was chosen because it can be 
implemented in embedded hardware that has limitations in power and 
computation. The basic operation in embedded hardware is just ‘XOR’ and 
‘AND’ and the output of Wang’s construction is a truth table, which can be 
converted into ANF. ANF is the basic form of Boolean functions. It has only 
‘XOR’ and ‘AND’ operators.  

In 2010, Wang, et al. [13] studied the construction of Boolean functions using a 
primitive polynomial as the input. The construction has good cryptographic 
properties. Its basic concept can be explained as follows: 

Let p(x)=xn+cn-1xn−1+...+c1x+1 be the primitive polynomial over F2
n .The 

companion matrix is defined as matrix A in Eq. (17) [13]. 



 Strengthening Crypto-1 Cipher Against Algebraic Attack 97 
 























=

−1

2

1

1...00
...............

0...10
0...01

10...00

nc

c
c

A  (17)  

Matrix A with n columns and n rows (n x n matrix) has characteristics as 
follows: 

a. The (n –1) x (n−1) matrix, which (n–1) columns start from the first column 
and (n –1) rows start from the second row, is the identity matrix.  

b. The last column is the coefficient of the primitive polynomial.  
c. The remainder of the first rows is filled by zeros. 

Given any initial value b1, the iterative sequences of b can be defined as            
B = {bi |1 ≤ i ≤2n −1} where the value of bi is explained in Eq. (18) [13]. 

𝑏𝑖 ∈ 𝐹2𝑛 
𝑏𝑖+1 = 𝐴𝑏𝑖, 1 ≤ i ≤ 2𝑛 − 1 (18)  

 
Construction 1 [13]. f (x) is a Boolean function on 𝐹2𝑛 and 1f = {Ai b1|0 ≤ i < 
2n−1}, where 0 ≠  b1 ∈ Fn. Then it must be a balanced Boolean function since 
wt(f ) = 2n−1 . 
 
This construction has a structure similar to the Carlet-Feng function [14], 
including perfect algebraic immunity if the input variables are a power of two 
[6]. 

3.3 Implementation of Wang’s construction 
Wang’s construction is proposed as the main concept to create a Boolean 
function that has optimal cryptographic properties. The first step is choosing the 
number of input variables. Furthermore, the number of primitive polynomials is 
calculated from those input variables. The number of primitive polynomials 
over 𝐹2𝑛 is calculated using Eq. (19). 

𝜑(2𝑛 − 1)
𝑛

 (19)  
 
where:  n is the number of input variables  
  φ is Euler’s totient function 
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Among the primitive polynomial alternatives, the one must be selected that has 
the highest nonlinearity. Nonlinearity is the only determined parameter property 
because it is stated in Wang, et al. [13] that the other properties (excluding 
nonlinearity) have the same value on all of the primitive polynomials, which is 
near the optimal value. How Wang’s construction works is shown in Figure 4. 

 
Figure 4 Procedure for creating Wang’s construction. 

3.4 Implementation of Modified Crypto-1 Feedback Function 
Wang’s construction is a balanced function so that the input must be a power of 
two. It was chosen because it fulfills the perfect algebraic immunity requirement 
as mentioned in Section 3.1. Crypto-1 has 48 bits so that the choice of the input 
variables (2n + 1) is 17 or 33. The number of input messages used in the 
implementation was seventeen. This number was selected because for 33 input 
messages a minimum RAM of (2n x n) bytes is needed to create the truth table, 
which is not possible using a common workstation. The seventeen input 
variables over F217 had 7710 choices of primitive polynomials. This is the 
outcome of Eq. (19), where the value of n is 17. Among all of the primitive 
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polynomials, two that had the highest nonlinearity, near the optimal value (bent 
function). These are stated in Eq. (20) and Eq. (21). 

g(x)=x17+x14+x13+x10+x6+x+1 (20)  

g(x) =x17+x16+x11+x7 +x4+x3+1 (21)  

The nonlinearity value of these primitive polynomials is 65250. The 
nonlinearity of the bent function is 65354, so the difference is 104, or 0.159%. 
Of the two primitive polynomials with the highest nonlinearity either could be 
chosen because all the cryptographic parameters are the same and the number of 
variables is the same (seven) in both functions. This research chose Eq. (21) so 
that the total index of support (f(x)) was a half of (217) or 65536. The first 
hundred support(f (x)) indexes can be seen in Figure 5. 

 
Figure 5 Example of support(f(x)) indexes. 

Moreover, the value of these support(f(x)) indexes in the truth table was 
evaluated to one, while the other indexes, which are not mentioned in 
support(f(x)), were evaluated to zero. Then, the completed truth table could be 
converted into ANF. The output of Wang’s construction with seventeen input 
variables was an algebraic normal form (ANF) with 65133 terms. These could 
be implemented in 65132 ‘OR’ gates and 488668 ‘AND’ gates.  

4 Experimental Testing and Discussion  
This section discusses experimental testing of the modified Crypto-1, sampling, 
data presentation from the experiments and an analysis of the output. The last 
part of this section discusses a summary of the results in answer to the 
objectives of this research. 

4.1 Experimental Scenarios 
Based on the objectives of this research, a number of experiments were 
conducted to evaluate the strength of Crypto-1 before and after modification. In 
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order to evaluate the strength of Crypto-1, an evaluation of different 
combinations of the modified and original Boolean feedback function and filter 
function was done. Also, an experiment was conducted using several cases with 
different input messages to encrypt. This experiment was set up to evaluate 
whether the length of the message to encrypt has an effect in each feedback shift 
register scenario. The scenarios used in the experiment are summarized in 
Table 1. 

Table 1 Experimental scenarios based on combinations of feedback and filter 
functions. 

Scenario 
Code  

Feedback Shift Register 
Feedback Function Filter Function 

OFB-OFL Original Original 
MFB-OFL Modified Original 
OFB-MFL Original Modified 
MFB-MFL Modified Modified 

 
The OFB-OFL and OFB-MFL scenarios were conducted to evaluate whether 
the different tap positions of the filter function affected the original Boolean 
feedback function. 

The MFB-OFL and MFB-MFL scenarios were conducted to evaluate whether 
the modified Boolean feedback function affects the whole cryptosystem, even 
when the tap positions of the filter function are changed. 

The OFB-OFL scenario is the original Crypto-1. It consists of the original 
feedback function combined with the original filter function, as illustrated in 
Figure 1 under Section 2.1. 

 
Figure 6 MFB-OFL scenario. 

The MFB-OFL scenario is a modified Crypto-1 consisting of the modified 
feedback function combined with the original filter function, as illustrated in 
Figure 6. 
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Figure 7 OFB-MFL scenario. 

The OFB-MFL scenario is a modified Crypto-1consisting of the original 
feedback function combined with the modified filter function. The modified 
filter function changes the input tap positions of the filter function based on 
another primitive polynomial, as illustrated in Figure 7. 

 
Figure 8 OFB-MFL scenario. 

The MFB-MFL scenario is a modified Crypto-1 consisting of the modified 
feedback function combined with the modified filter function. The modified 
filter function in the MFB-MFL scenario is the same as that in the OFB-MFL 
scenario, as illustrated in Figure 8. 

Updating the position of the filter function was tested to find out whether it has 
a substantial effect on the system. Also, the regular tap positions in the original 
filter function are considered a weakness [11]. One of the primitive polynomials 
on F248, which has twenty one variables, can be seen in Eq. (22). 

g(x)=x48+x45+x40+x36+x34+x33+x29+x27+x24+x22+x20+ 
x19 +x15+x14+x11 +x10 +x9 +x8 +x7 +x2 +1 

(22)  

The degree of the primitive polynomials marks who setups are used as the input 
of the Boolean function in reverse order. This is because the least significant 
bit (LSB) in the Crypto-1 cryptosystem is on the left. 
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4.2 Population/Sampling 
Generally, the size of a Mifare RFID tag is 2K, which offers two thousand and 
forty eight bytes, or 4K, and requires four thousand and ninety six bytes of data 
storage. The higher the amount of data that is saved in the tag, the more time is 
needed to encrypt. The RFID tag is usually used to save the ID of the owner. 
Indonesia has two main kinds of IDs: the Kartu Tanda Penduduk– KTP (citizen 
identity card), which requires about twelve bits, and the Surat Ijin Mengemudi– 
SIM (driving license), which requires about sixteen bits of storage data. Another 
commonly used ID is the student ID, in this example from Telkom University. 
The number of digits in this student ID was ten bits. Based on these three cases, 
three types of input messages with ten, twelve and sixteen bits will be tested. 

4.3 Experiments 
Three types of Boolean functions were used to construct the feedback shift 
register in this research. Figure 9 is the result of comparing the cryptographic 
properties among them. 

  
                       (a) Algebraic Degree                                                  (b) Nonlinearity 

 
(c) Algebraic Immunity 

Figure 9 Cryptographic properties comparison. 

Based on the cryptographic properties calculation in Figure 9, it can be 
concluded that:  
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a. All of the Boolean functions fulfill the balancedness requirement. This 
means that the support functions fill half of their truth table. 

b. The distance of algebraic degree, nonlinearity and algebraic immunity 
between the original feedback function and their own optimal value is about 
94.44%, 100%, and 88.89%. These distances in all properties are the 
highest among these Boolean functions. 

c. The distance of algebraic degree, nonlinearity and algebraic immunity 
between the modified feedback function and their own optimal value is 
about 5.89%, 0.16%, and zero. These distances in all properties are the 
lowest among these Boolean functions. The algebraic immunity property 
even has no distance to its optimal value. 

d. The distance of algebraic degree, nonlinearity and algebraic immunity 
between the original filter function and their own optimal value is about 
40%, 12.41%, and 40%. 

Although the number of input variables in the modified feedback function is the 
lowest among these Boolean functions, it has the highest value of algebraic 
 

 
(a) CNF Variable on Scenario OFB-OFL and 

OFB-MFL 
(b) CNF Variable on Scenario MFB-OFL and 

MFB-MFL 

 
(c) CNF Term on Scenario OFB-OFL and 

OFB-MFL 
(d) CNF Term on Scenario MFB-OFL and 

MFB-MFL 

Figure 10 SAT Solver attack preprocessing. 
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degree, nonlinearity and algebraic immunity. The cryptographic properties of 
the modified Boolean function are near to their optimal values. The algebraic 
immunity even reaches its optimal value. 

These Boolean functions are used to encrypt the messages based on the 
scenarios in Section 4.1. There are four types of feedback shift registers based 
on the combination of the feedback and filter functions. In each scenario an 
algebraic attack was executed using an SAT solver. The initialization steps were 
not analyzed in the experiments; the attacks focus on the encryption process. An 
SAT solver attack consists of two main steps. First, it converts the ANF of the 
Boolean function into CNF. The results from our experiments can be seen in 
Figure 10. Based on Figure 10, it can be seen that the MFB-OFL scenario (the 
feedback shift register consists of the modified Boolean feedback function and 
the original filter function) has the highest number of CNF variables and terms. 
Furthermore, attack preprocessing in the MFB-OFL Scenario requires 1.2 GB to 
save the CNF file, which is the largest one. 

The second step of an SAT solver attacks is finding the value of each literal in 
CNF using CryptoMiniSat. Both the MFB-OFL and MFB-MFL scenario, which 
use the modified Boolean feedback function, could not be attacked directly by 
CryptoMiniSat because of stack smashing. Stack smashing is a protection by 
the C programming language to detect buffer overflow errors. The number of 
clauses or terms was so high that it was hard to guess each literal or variable in 
these clauses. Furthermore, the stack as a data structure to store assigned literals 
reached its upper bound buffer limit because of some conflicting ANF terms. 
These terms must be removed so that the number of ANF parts can be 
increased. 

Table 2 Conflicting terms in MFB-OFL scenario. 

Iteration 
Number 

Term 
Number 

Term Value 
Number of 
Revealed 
Variables 

Percentage of 
Revealed 
Variables 

1 3003 x12+x15+x17+x19+x24+x29+x35+x39+x42 17268 4.786% 
2 3015 x12+x15+x17+x19+x24+x27+x29+x39 17322 4.801% 
3 3016 x12+x15+x17+x19+x24+x27+x29+x39+x43 17322 4.801% 
4 3017 x12+x15+x17+x19+x24+x27+x29+x39+x42 17322 4.801% 
5 3019 x12+x15+x17+x19+x24+x27+x29+x35+x42 17322 4.801% 
6 3023 x12+x15+x17+x19+x24+x25+x39+x42+x43 17322 4.801% 
7 3024 x12+x15+x17+x19+x24+x25+ x35+ x43 17322 4.801% 
8 3025 x12+x15+x17+x19+x24+x25+ x35+ x42 17322 4.801% 
9 3026 x12+x15+x17+x19+x24+x25+x35+x42+x43 17322 4.801% 

10 3027 x12+x15+x17+x19+x24+x25+ x35+ x39 17322 4.801% 
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The higher the number of ANF parts that is attacked, the higher the number of 
CNF variables that will be revealed. A higher number of revealed CNF 
variables means a higher likelihood of recovering the secret key. The conflicting 
terms in a ten-bit input message can be seen in Tables 2 and 3.  

The first iteration of Table 2 shows that removing ANF term number 3003, 
whose value is x12 + x15 + x17 + x19 + x24 + x29 + x35 + x39 + x42, reveals 4.786% of 
the variables. This means that attacking 3002 ANF terms (exactly under the 
conflicting term that is 3003 minus 1) reveals the value of 17268 variables of 
the total of 360783 variables. 

Table 3 Conflicting terms in MFB-MFL scenario. 

Iteration 
Number 

Term 
Number Term Value 

Number of 
Revealed 
Variables 

Percentage of 
Revealed 
Variables 

1 1527 x14+x15+x17+x19+x24+x25+x35+x39+x42 10608 3.307% 
2 1595 x12+x25+x27+x42 10944 3.412% 
3 1597 x12+x25+x27+x39 10944 3.412% 
4 1606 x12+x24 10992 3.427% 
5 2009 x12+x17+x19+x24+x29+x39 12900 4.021% 
6 2010 x12+x17+x19+x24+x29+x39+x43 12900 4.021% 
7 2021 x12+x17+x19+x24+x27+x35+x39+x42 12948 4.036% 
8 2023 x12+x17+x19+x24+x27+x29 12948 4.036% 
9 2033 x12+x17+x19+x24+x25+x43 12996 4.051% 

10 2042 x12+x17+x19+x24+x25+x35+x42+x43 13036 4.064% 
 
The first iteration of Table 3 shows that removing ANF term number 1527, 
whose value is x14 + x15 + x17 + x19 + x24 + x25 + x35 + x39 + x42, reveals 3.307% of 
the variables. This means that attacking 1526 ANF terms (exactly under the 
conflicting term that is 1527 minus 1) reveals the value of 10608 variables of 
the total of 320782 variables. 

Based on Tables 2 and 3, it can be concluded that the distance of iteration in the 
MFB-OFL scenario was lower than that in the MFB-MFL scenario, although 
the number of conflicting terms in the first iteration of the MFB-OFL scenario 
was higher than that in the MFB-MFL scenario. The MFB-MFL scenario 
produced conflicts starting from term number 1527, while the MFB-OFL 
scenario produced conflicts starting from term number 3003. Furthermore, the 
last five conflicting terms in the MFB-OFL scenario were consecutive terms 
and the number of revealed variables was constant after the second iteration. 
Based on these facts, it can be predicted that the number of revealed variables in 
the MFB-OFL scenario will remain constant but in the MFB-MFL scenario will 
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increase gradually. The reason is because the number of input tap positions that 
are the same in the feedback and filter function is higher in the MFB-OFL 
scenario than in the MFB-MFL scenario. This means that the variance of 
variables in the MFB-OFL scenario is lower than in the MFB-MFL scenario. 
Based on this evidence, it can be concluded that the complexity needed to attack 
the MFB-OFL scenario at the first iteration is lower than for the MFB-MFL 
scenario. 

The other alternative to attack the modified Boolean function is grouping the 
terms based on the area of the conflicted terms. Experiments were conducted in 
this study to find the amount of memory and CPU time needed for an attack 
among the total of 65133 ANF clauses in the MFB-OFL and MFB-MFL 
scenarios. The results can be seen in Figure 11. There were three groups of ANF 
terms consisting of 1500, 2500, and 3000 terms respectively. The CPU time 
needed was calculated from the average value of ten data. The amount of 
memory needed was stable, which means that the value was always the same, 
although the experiment was run more than once. 

  
(a) The Memory Used in Scenario MFB-

OFL 
(b) The Memory Used in Scenario MFB-

MFL 

 
(c) The CPU Time in Scenario MFB-OFL (d) The CPU Time in Scenario MFB-MFL 

Figure 11 CryptoMiniSat complexity. 
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Based on Figure 11, it can be concluded that it was more complicated to attack 
the feedback shift register in the MFB-OFL scenario than in the MFB-MFL 
scenario because the amount of memory used in the MFB-OFL scenario was 
higher than in the MFB-MFL scenario. Since the use of memory depends on the 
number of CNF variables and terms in a scenario, it can be concluded that the 
amount of memory used in the MFB-OFL scenario was higher than in the MFB-
MFL scenario because the CNF variables and terms in the MFB-OFL scenario 
were higher than in the MFB-MFL scenario. Furthermore, the CPU time in the 
MFB-OFL scenario was higher than in the MFB-MFL scenario because the 
number of CNF variables and terms in the MFB-OFL scenario were higher than 
in the MFB-MFL scenario. Moreover, more time was required to solve the 
higher number of equations. 

4.4 Discussion 
Based on the attacking processes in the MFB-OFL and MFB-MFL scenario, the 
drawbacks and benefits among these scenarios are as shown in Table 4. 

Table 4 Comparison between MFB-OFL and MFB-MFL scenario. 

Scenario Drawbacks Benefits 
MFB-OFL The first attack iteration gives a 

high number of revealed 
variables 

Memory & CPU time for attacking 
process are high 

MFB-MFL Memory & CPU time needed 
for attacking process are low 

The first attack iteration gives a low 
number of revealed variables 

If computer resources are considered, then the MFB-OFL scenario, which 
consists of the modified feedback function and the original filter function of 
Crypto-1, is the best choice for the feedback shift register since the MFB-OFL 
scenario needs more CPU time. This scenario needs about 2.596 seconds and 
84.50 MB of memory to attack 3000 from the total of 65133 ANF terms. 
However, this is just 4.6% of the total attack processing. In addition, the time 
required to attack is higher than to encrypt the message, i.e. about 2.315 
seconds. 

If the number of revealed variables is considered, then the MFB-MFL scenario, 
which consists of the modified feedback function and the modified filter 
function of Crypto-1, is the best choice for the feedback shift register since this 
scenario has a lower number of revealed variables than the MFB-OFL scenario. 
The MFB-MFL scenario has a lower number of revealed variables in the first 
iteration than the MFB-OFL scenario and still has a lower number of revealed 
variables even if the number of revealed variables in the next iteration is 
increased. 
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5 Conclusion 
This paper proposed a modified Boolean feedback function to protect the 
Crypto-1 encryption algorithm against SAT solver attacks. The modification 
was developed for overcoming weaknesses of Crypto-1, especially the random 
number quality. For this reason, it uses Wang’s construction because this has 
cryptographic properties near the optimal values. Moreover, it still has the 
possibility to be implemented in embedded systems. 

Based on the experiments conducted in this research, it was shown that the 
modified Boolean feedback function had the best cryptographic properties 
although the balancedness property among all functions is the same. Moreover, 
the algebraic immunity in the modified Boolean feedback function reaches 
optimal value and can be categorized as a perfect algebraic immune system. 

The modified Crypto-1 consisting of the modified feedback function and the 
original filter function is the most complicated combination to attack. Therefore, 
this feedback shift register is appropriate to be selected if computer resources 
are considered. The modified Crypto-1 consisting of the modified feedback 
function and the modified filter function has the lowest percentage of revealed 
variables so that it is appropriate to be selected as the best feedback shift 
register if the number of revealed variables is considered. Finally, it can be 
concluded that the modified Crypto-1 provides stronger protection against SAT 
solver attacks than the original Crypto-1. However, implementation of the 
modified Crypto-1 is still an open problem. It needs to be further analyzed so 
that the complexity of the implementation of the modified Boolean feedback 
function can be reduced. 
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